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1 Introduction

A partial matrix is a matrix in which some entries are specified and others are
not (all entries specified is also allowed).  A completion of a partial matrix is a
matrix obtained by choosing values for the unspecified entries.  A pattern for
n × n matrices is a list of positions of an n × n matrix, that is, a subset of N × N,

where N = {1, . . . , n}.  In this paper a pattern is assumed to include all diagonal

positions.
A symmetric pattern is a pattern with the property that (i, j) is in the pattern

if and only if (j, i) is also in the pattern; symmetric patterns are also called
positionally or combinatorially symmetric. An asymmetric pattern is a pattern
with the property that if (i, j) is in the pattern, then (j, i) is not in the pattern.

A partial matrix specifies the pattern if its specified entries are exactly those
listed in the pattern. For a class X of real matrices, we say a pattern has X-
completion if every partial X-matrix specifying the pattern can be completed to
an X-matrix.  The matrix completion problem (for patterns) for the class of X-
matrices is to determine which patterns have X-completion.

Matrix completion problems have been studied for many classes of
matrices, including positive definite matrices [6], P-matrices [11], [4], P0-

matrices [2], M-matrices [8], M0-matrices [9], inverse M-matrices [12],  [7]  and
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many other subclasses of  P- and P0-matrices [5], [9], [1].  Recently, completion

problems for several classes have been studied at the same time, and
relationships are being found  between  the completion  problems  for  different
classes.  In this paper we survey techniques that apply to many classes, and
examine relationships between the solutions to the matrix completion problems
for certain pairs of classes.  We also describe a new result for the weakly sign
symmetric P0-completion problem and apply the relationship results to extend

this result to the classes of weakly sign symmetric P -matrices and sign
symmetric P-matrices.  The latter result resolves the issue of the completability
of the symmetric n-cycle for sign symmetric P- matrices, a problem described as
difficult in [5].

For α ⊆  N , the principal submatrix A(α) is obtained from the n × n matrix

A by deleting all rows and columns not in α . A principal minor of A  is the

determinant of a principal submatrix of A .  The matrix A  ∈  R n×n is a P -
(respectively, P0-, P0,1-) matrix if every principal minor is positive (non-

negative, non-negative and all diagonal elements of A are positive).
Additional classes of matrices are obtained by imposing various

restrictions on the signs of the entries.  The conditions we will discuss here are:
•  weakly sign symmetric, which requires aij aji > 0 for each pair i,j
•  sign symmetric, which requires aij aji > 0 or aij = 0 = aji for each pair i,j
•  nonnegative, which requires aij > 0 for all i,j
•  positive, which requires aij  > 0 for all i,j

Let X be any of the classes: P-matrices, weakly sign symmetric P-matrices,
sign symmetric P-matrices, nonnegative P-matrices, positive P-matrices, P0,1-

matrices,  weakly sign symmetric P0,1-matrices, sign symmetric P0,1-matrices,

nonnegative P0,1-matrices, P0-matrices, weakly sign symmetric P0-matrices,

sign symmetric P0-matrices, nonnegative P0-matrices.  Since every principal

submatrix of an X-matrix is an X-matrix, we define a partial matrix A  to be a
partial X- matrix if every fully specified principal submatrix is an X-matrix, and
for X one of the nonnegative or positive classes, in addition all specified entries
must be nonnegative or positive.

Digraphs are used to study matrix completion problems.  A digraph G =
(VG,EG) is a finite set of positive integers VG, whose members are called

vertices, and a set EG of ordered pairs (v,u) of distinct vertices, called arcs.  For

a pattern Q  for  n × n matrices (that includes all diagonal positions), the digraph

of Q is the digraph G = (N,E) where E = {(v,u ) | (v,u) ∈  Q and v ≠ u}.  A partial

matrix A that specifies a pattern Q is also referred to as specifying the digraph G
of Q, and G is said to have X-completion if Q does, i.e., if every partial X-matrix



specifying G can be completed to an X-matrix.  The order of a digraph is the
number of vertices.

A subdigraph of the digraph G = (VG ,EG) is a digraph H = ( VH,EH),

where VH ⊆  VG and EH ⊆  EG (note that (v,u) ∈  EH requires  v, u ∈  VH since H

is a digraph). If W  ⊆  VG, the subdigraph of G induced by W, <W>,   is the

digraph (W, EW) with EW = EG ∩  (W × W).  A subdigraph induced by a subset

of vertices is also called an induced subdigraph.
A path  (respectively, semipath) in a digraph G = (V,E) is sequence of

vertices v1, v2, ..., vk-1, vk in V such that for i = 1, ..., k-1 the arc (vi,vi+1) ∈ E
(respectively, (vi,vi+1)  ∈ E or (vi+1,vi)  ∈ E) and all vertices are distinct except
possibly v1 = vk. Clearly, a path is a semipath, although the converse is false.
The length of the (semi)path v1, v2, ..., vk-1, vk  is k-1.  A cycle is a path in
which the first vertex equals the last vertex. A digraph whose vertex set consists
of the k vertices v1, v2, ..., vk and whose arcset consists of exactly the arcs in the
two cycles v1, v2, ..., vk, v1 and v1, vk, vk-1, ... , v1 is a symmetric k-cycle.

A digraph is connected if there is a semipath from any vertex to any other
vertex (a digraph of order 1 is connected); otherwise it is disconnected. A
component of a digraph is a maximal connected subdigraph. A cut-vertex of a
connected digraph is a vertex whose deletion disconnects the digraph; more
generally, a cut-vertex is a vertex whose deletion disconnects the component
containing the vertex.  A digraph is nonseparable if it is connected and has no
cut-vertices.  A block of a digraph is a subdigraph that is nonseparable and is
maximal with respect to this property.  A (sub)digraph is called a clique if it
contains all possible arcs between its vertices.  A digraph is block-clique if every
block is a clique.  Block-clique digraphs are called 1-chordal  in [5]. A digraph
is strongly connected if there is a path from any vertex to any other vertex.
Clearly, a strongly connected digraph is connected, although the converse is
false.

2 Multi-class Methods and
Relationship Theorems

As the number of classes for which the matrix completion problem for patterns
has been studied has grown, several new techniques that apply to many classes
have been discovered.  Two important examples of such techniques appeared in
[5].  One is the asymmetric completion of a partial matrix specifying a block-
clique digraph.



Theorem 1 [5]. Let X be any of the classes (weakly sign symmetric, sign
symmetric, nonnegative, positive) P-matrices, (weakly sign symmetric, sign
symmetric, nonnegative) P0,1-matrices, (weakly sign symmetric, sign symmetric,

nonnegative) P0-matrices.  Let G be a block-clique digraph.  Then G has X-

completion, i.e., any partial X-matrix specifying G can be completed to an X-
matrix.

This extends to:

Theorem 2 [9]. Let X be any of the classes (weakly sign symmetric, sign
symmetric, nonnegative, positive) P-matrices, (weakly sign symmetric,
nonnegative) P0,1- matrices, (weakly sign symmetric, nonnegative) P0-matrices.

A digraph G has X-completion if and only if every nonseparable strongly
connected induced subdigraph of G has X-completion.

The technique of Theorem 2 has been exploited widely ([1], [2], [3], [9])
and now is a standard method of attack for digraph classification.

Another important method introduced in [5] is the inductive completion of
symmetric n-cycles.

Theorem 3 [5].  If A is a partial positive P-matrix, the graph of whose specified
entries is a symmetric n-cycle, then A can be completed to a positive P-matrix.

Unlike Theorems 1 and 2, which were proved for a large number of classes,
the base step of the inductive proof of Theorem 3 is heavily class dependent.
However, it was noted in [5] that the same inductive argument would apply to
other classes, including (weakly) sign symmetric P-matrices, if one could find
an appropriate starting point. That is, find a k such that any partial (weakly) sign
symmetric P-matrix having a symmetric k-cycle as the graph of its specified
entries can be completed to a (weakly) sign symmetric P-matrix.  Such a k has
now been found, namely k = 6 [3].  In [3] it is also shown that the result is not
true for k = 5, thus completely answering the question of which symmetric n-
cycles have (weakly) sign symmetric P-completion. This is discussed further in
Section 3 below.  This illustrates how the base for the induction varies with the
class.  In contrast, for the class of nonnegative P0-matrices, the proof in [1]

begins with n = 5.
 We  now  turn  our  attention  to  the idea  of  inferring that  a pattern  has

X-completion from the fact that it has Y-completion, as opposed to showing that
the same technique applies to both the classes X and Y.   If X and Y are classes of
matrices with X ⊆  Y, in general it is not possible to conclude either that a pattern
that has Y-completion must have X-completion (because the completion to a Y-
matrix may not be an X-matrix) or that a pattern that has X-completion must



have Y-completion (because there may be a partial Y-matrix that is not a partial
X-matrix).  However, in cases where there is a natural relationship between the
classes X and Y, it is sometimes possible to conclude that certain (or all) patterns
that have Y-completion have X-completion or vice versa. Such a result is called a
relationship theorem.  Relationship theorems were first studied in [10], and we
survey several relationship theorems here, as well as proving one new one
(Theorem 7 below).  The first of these theorems exploits certain properties of the
natural relationship between the classes of P- matrices and P0-matrices.

The classes of matrices X and X0 are referred to as a pair of Π/Π0-classes if

1. Any partial X-matrix is a partial X0-matrix.

2. For any X0-matrix A and ε > 0,  A + ε I is a X-matrix.

3. For any partial X-matrix A, there exists δ > 0 such that A - δ Ĩ  is a partial X-

matrix (where Ĩ  is the partial identity matrix specifying the same pattern as A).
If A is a P0-matrix and ε  > 0, then A + ε I is a P-matrix.  For any partial P-

matrix A, there exists δ > 0 such that A - δ Ĩ  is also a partial P-matrix, because
the determinant is a continuous function of the entries of the matrix.  Hence the
classes P- matrices and P0-matrices are a pair of Π/Π0-classes, as are subclasses

defined by one of the conditions (weakly) sign symmetric or nonnegative.

Theorem 4 [10].  For a pair of Π/Π0-classes, if a pattern has Π0-completion

then it must also have Π-completion.

Corollary 5 [10].
•  Any pattern that has P0-completion also has P-completion.
•  Any pattern that has weakly sign symmetric P0-completion also has weakly

sign symmetric P-completion.
•  Any pattern that has sign symmetric P0-completion also has sign symmetric

P-completion.
•  Any pattern that has nonnegative P0-completion also has nonnegative P-

completion.
•  Any pattern that has P0,1-completion also has P-completion.
•  Any pattern that has weakly sign symmetric P0,1-completion also has

weakly sign symmetric P-completion.
•  Any pattern that has sign symmetric P0,1-completion also has sign

symmetric P-completion.
•  Any pattern that has nonnegative P0,1-completion also has nonnegative P-

completion.



Although not a direct corollary of Theorem 4, the analogous result is also
true for the classes of P0,1-matrices and P0-matrices.  This result is obvious for
patterns that include all diagonal positions, but is true more generally [10].

Theorem 6.
•  Any pattern that has P0-completion also has P0,1-completion.
•  Any pattern that has weakly sign symmetric P0-completion also has weakly

sign symmetric P0,1-completion.
•  Any pattern that has sign symmetric P0-completion also has sign symmetric

P0,1-completion.
•  Any pattern that has nonnegative P0-completion also has nonnegative P0,1-

completion.

The following relationship result is new.

Theorem 7. Let Q be a pattern that has nonnegative P-completion. Then Q has
positive P-completion.

Proof. Let A  be a partial positive P-matrix specifying Q.  The matrix A  is a
partial nonnegative P-matrix specifying Q , and so can be completed to
nonnegative P-matrix Â .  The only reason Â  might not be a positive P-matrix
is if some entries (that were originally unspecified) are zero.  Since there are
only finitely many principal minors of Â  and these are continuous functions of
the entries of Â , we can slightly perturb zero entries while maintaining all
principal minors positive. Thus Â  can be converted into a positive P-matrix that
completes A.  

For the next result we need to distinguish the case of a symmetrically placed
pair of entries in a partial matrix, where one member of the pair, aij, is specified

(the specified twin) and the other member of the pair, xij, is unspecified (the

unspecified twin).

Lemma 8 [3]. Let Q be a pattern that has weakly sign symmetric P-completion,
where for any partial weakly sign symmetric P-matrix A specifying Q, there is a
completion in which zero is assigned to any unspecified twin whose specified
twin is zero.  Then Q has sign symmetric P-completion.

Since a partial matrix specifying a symmetric pattern does not have any
specified/unspecified twins we have the following corollary.



Corollary 9 [3].  Any symmetric pattern that has weakly sign symmetric P-
completion also has sign symmetric P-completion.

Note that Theorem 7 and Lemma 8 (and hence Corollary 9) rely on the
positivity of the determinants, and the analogous result for P0-matrices is false:

The symmetric 6-cycle has weakly sign symmetric P0-completion (Theorem 11

below) but the symmetric 6-cycle does not have sign symmetric P0-completion

(see the example in Section 3 below, taken from [5]).
Although these relationship results are all of the type that any pattern that

has Y-completion must also have X-completion where X  ⊆  Y, it is possible to
have that any pattern that has X-completion must also have Y-completion (where
again X ⊆  Y).  An example of the latter situation would be X is the class of sign
symmetric P0-matrices and Y is the class of weakly sign symmetric P0-matrices.

Clearly X  ⊆  Y .  A pattern (that includes all diagonal positions) has sign
symmetric P0-completion if and only if the pattern is block-clique [5].  It is

known [5] that any pattern of this type has weakly sign symmetric P0-

completion.  Thus in this case any pattern that has X-completion must also have
Y-completion.  In this direction we have the following relationship result:

Lemma 10 [3]. Any asymmetric pattern that has sign symmetric P-completion
has weakly sign symmetric P-completion.

3 Weakly sign symmetric P- (P0-) completion for the

   symmetric n-cycle

In this section we state the result of the weakly sign symmetric P0-completion

of the symmetric 6-cycle and apply the techniques of Section 2 to extend
completion to n-cycles with n > 6  for the classes of weakly sign symmetric P0-

matrices and (weakly) sign symmetric P-matrices.

Theorem 11 [3].  A pattern whose digraph is a symmetric 6-cycle has weakly
sign symmetric P0-completion.  That is, any partial weakly sign symmetric P0-

matrix, the digraph of whose specified entries is a symmetric 6-cycle, can be
completed to a weakly sign symmetric P0-matrix.



Note that the analogous result is not true for sign symmetric P0-matrices as

Example 3.4 of [5] shows:  A
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 cannot be

completed to a sign symmetric P0-matrix, because

Det A({4,5,6}) = -1 + x46 + x64 - x46 x64, so x46, x64 > 0.

Det A({3,4,6}) =  - x36 x63 +  x46 x63 + x36 x64 - x46 x64 so x36, x63 > 0.

Det A({2,3,6}) = - x26 x62 +  x36 x62 + x26 x63 - x36 x63 so x26, x62 > 0.

But then Det A({1,2,6}) = -1 - x26 - x62 - x26 x62 < 0

The weakly sign symmetric P0-completion of A given by the proof of Theorem

11 is 
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The inductive technique of [5] and the nonzero loop digraph technique of
[1] can be used to establish the result for n > 6:

Theorem 12 [3]. Any pattern whose digraph is a symmetric n-cycle with n > 6
has weakly sign symmetric P0-completion.

Theorem 6 yields the corresponding result for weakly sign symmetric P0,1-

matrices:

Corollary 13. Any pattern whose digraph is a symmetric n-cycle with n > 6 has
weakly sign symmetric P0,1-completion.

Corollary 5 and Corollary 9 yield the corresponding results for (weakly)
sign symmetric P-matrices:

Corollary 14 [3].  Any pattern whose digraph is a symmetric n-cycle with n > 6
has (weakly) sign symmetric P-completion. That is, any partial weakly sign



symmetric P-matrix, the digraph of whose specified entries is a symmetric n-
cycle, can be completed to a weakly sign symmetric P-matrix, and any partial
sign symmetric P-matrix, the digraph of whose specified entries is a symmetric
n-cycle, can be completed to a sign symmetric P-matrix.
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