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Graphs

I A graph G is a set of V vertices or nodes, together with a set
E of edges.

I An edge is a 2 element subset of vertices.
I Edge {v,u} is often denoted vu.
I The order of G , |G |, is the number of evertices
I All graphs discussed are simple, undirected and finite.

Example

A graph showing a path P5, cycle C4, and complete graph K4.
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Matrices and Graphs

Matrices are real and symmetric (aji = aij) unless otherwise stated.
Sn(R) is the set of n × n real symmetric matrices.

The graph G(A) = (V ,E ) of n × n matrix A is G = (V ,E ) where

I V = {1, ..., n},
I E = {ij : aij 6= 0 and i 6= j}.
I Diagonal of A is ignored.

Example

G(A)

A =


2 −1 3 5
−1 0 0 0

3 0 −3 0
5 0 0 0


1 2

34
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Inverse Eigenvalue Problem of a Graph (IEP-G )

The family of symmetric matrices described by a graph G is

S(G ) = {A ∈ Sn(R) : G(A) = G}.

The Inverse Eigenvalue Problem of a Graph G is to determine all
possible spectra (multisets of eigenvalues) of matrices in S(G ).

Example

A matrix in S(P3) is of the form

A =

 x a 0
a y b
0 b z

 where a, b 6= 0.

The possible spectra of matrices in S(P3) are all sets of 3 distinct
real numbers.

Leslie Hogben (Iowa State University and American Institute of Mathematics) 5 of 51



Applications of IEP-G

I IEP-G is motivated by inverse problems arising in the theory
of vibrations.

I IEP-G where G is a path corresponds to a discretization of
the inverse Sturm-Liouville problem for the string.

I This leads to the classical study of the inverse eigenvalue
problem for Jacobi matrices (irreducible tridiagonal matrices).

I IEP-G can be viewed as the inverse problem for a vibrating
system with prescribed structure given by G .

I IEP-G (beyond paths) has applications to modeling
skyscrapers swaying in the wind.
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Graphs for which IEP-G is solved

I Paths Pn.

I Cycles Cn.

I Complete graphs Kn.

I Graphs of order at most 5.

Leslie Hogben (Iowa State University and American Institute of Mathematics) 7 of 51



IEP-G for paths, cycles, and complete graphs

Theorem (Hochstadt, 1967)

A multiset Λ of n real numbers is the spectrum of a matrix in
S(Pn) if and only if Λ consists of n distinct numbers.

Theorem (Ferguson 1978; Fernandes, da Fonseca, 2009)

A multiset of real numbers λ1 ≤ λ2 ≤ · · · ≤ λn is the spectrum of
an n × n matrix A ∈ S(Cn) if and only if one of the following two
conditions holds:

1) λn > λn−1 ≥ λn−2 > λn−3 ≥ . . . .
2) λn ≥ λn−1 > λn−2 ≥ λn−3 > . . . .

Theorem (Barrett, Lazenby, Malloy, Nelson, Sexton, 2013)

A multiset Λ of n real numbers is the spectrum of a matrix in
S(Kn) if and only if Λ contains at least 2 distinct numbers.
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Partial answers to IEP-G

I Due to the difficulty of IEP-G , various subquestions have been
studied.

I Subquestions of interest include:
I maximum multiplicity of an eigenvalue
I minimum number of distinct eigenvalues
I ordered multiplicity lists

I Answers to such subquestions can provide information that
can be used to attack the full IEP-G .
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Maximum multiplicity and minimum rank

The maximum multiplicity or maximum nullity of graph G is

M(G ) = max{multA(λ) : A ∈ S(G ), λ ∈ spec(A)}.
= max{nullA : A ∈ S(G )}.

The minimum rank of graph G is

mr(G ) = min
A∈S(G)

rankA.

By using nullity,

M(G ) + mr(G ) = |G |.

The Maximum Multiplicity Problem (or Minimum Rank Problem)
for a graph G is to determine M(G ) (or mr(G )).
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Example

Path (tridiagonal matrix) Complete graph
mr(Pn) = n − 1 mr(Kn) = 1

A =



? ∗ 0 . . . 0 0
∗ ? ∗ . . . 0 0
0 ∗ ? . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ? ∗
0 0 0 . . . ∗ ?


B =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1



∗ is nonzero, ? is indefinite
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Determination of maximum multiplicity and minimum rank

The Maximum Multiplicity Problem for a graph G is to determine
M(G ).

Despite being much simpler than IEP-G , the Maximum
Multiplicity Problem has not been solved in general, although the
value of M(G ) is known for many families of graphs. For example:

I Trees, cycles, complete graphs, complete bipartite graphs,
hypercubes, wheels, necklaces, halfgraphs, etc.

I Cartesian products of paths, cycles, and complete graphs.

I Line graphs of trees and graphs with a Hamiltonian path.

I Complements of trees, cycles, and 2-trees.

http://admin.aimath.org/resources/graph-invariants/

minimumrankoffamilies/
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Basic properties of minimum rank/maximum multiplicity

I For a graph G of order n with an edge, 1 ≤ mr(G ) ≤ n − 1.

I If the connected components of G are G1, . . . ,Gc , then

mr(G ) =
c∑

i=1

mr(Gi ).

A graph H = (VH ,EH) is a subgraph of G = (VG ,EG ), H ≤ G , if
VH ⊆ VG and EH ⊆ EG .
A subgraph H = (VH ,EH) of G = (VG ,EG ) is induced if
u, v ∈ VH , uv ∈ EG ⇒ uv ∈ EH .

I If H is an induced subgraph of G , then mr(H) ≤ mr(G ).

I If Pk is an induced subgraph of G , then k − 1 ≤ mr(G ).
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Tools for determining maximum nullity/minimum rank

I Edge clique covers.

I Cut vertex reduction.

I Vertex connectivity lower bound.

I Zero forcing upper bound for maximum nullity.

I Colin de Verdière type parameters.

I Software that implements some of these tools:
https://sage.math.iastate.edu/home/pub/84/
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Zero Forcing

Each vertex is colored blue or white.
Color change rule
If G is a graph with each vertex colored either white or blue, u is a
blue vertex of G , and exactly one neighbor w of u is white, then
change the color of w to blue.

Example
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Zero Forcing Number

I Given a coloring of G , the final coloring is the result of
applying the color change rule until no more changes result.

I A zero forcing set for a graph G is a subset of vertices B such
that if initially the vertices in B are colored blue and the
remaining vertices are colored white, the final coloring of G is
all blue.

I The zero forcing number Z(G ) is the minimum of |B| over all
zero forcing sets B ⊆ V (G ).

I ‘Zero forcing’ refers to forcing zeros in a null vector of a
matrix described by the graph.

Theorem (AIM Special Graphs Workgroup, 2008)

For every graph G, M(G ) ≤ Z(G ).
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Strong Arnold Property

Matrix A has the Strong Arnold Property (SAP) if the zero matrix
is the only real symmetric matrix X such that

I A ◦ X = O, In ◦ X = O, and

I AX = O.

A Colin de Verdière type parameter of graph G is the maximum
nullity of (real symmetric) matrices A having G(A) = G , satisfying
SAP, and possibly other properties.

ξ(G ) = max{nullA : G(A) = G and A has SAP}.

ξ(G ) ≤ M(G ).
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Subgraphs and minors

I A contraction of edge uv identifies vertices u and v ; any loops
or duplicate edges that arise in the process are deleted.

I H is a minor of G (H � G ) if H can be obtained from G by
performing a sequence of deletions of edges, deletions of
isolated vertices, and/or contractions of edges.

I A subgraph is a minor.

I A graph parameter ζ is minor monotone if
H � G ⇒ ζ(H) ≤ ζ(G ).

I [Barioli, Fallat, H, 2005] ξ is minor monotone.

If we can find a subgraph (or other minor) H of G for which we
know ξ(H), then

ξ(H) ≤ ξ(G ) ≤ M(G ).
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Illustration using ξ

Example

M(K3) = 2.

K3 = C3 is a minor of Cn for n ≥ 3, so 2 ≤ M(Cn).

Cn − v = Pn−1, so n − 2 ≤ mr(Cn) and 2 ≥ M(Cn).
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SAP, manifolds, and generalizations

I Matrix A has SAP if and only if the constant rank manifold
and the constant pattern manifold S(G(A)) intersect
transversally at A.

I SAP is used to guarantee minor monotonicity.

I SAP and the Colin de Verdière type parameters are easier to
compute than other minor monotone parameters related to
maximum multiplicity, such as minor monotone floor of
maximum multiplicity.

I We consider the transverse intersection of other relevant
manifolds to obtain ‘subgraph monotonicity’ and a form of
‘minor monotonicity’ for additional spectral properties.

I The properties can be applied to the inverse eigenvalue
problem.
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Strong Spectral Property (SSP)

I Λ is a multiset of real numbers of cardinality n.

I The set of all n × n real symmetric matrices with spectrum Λ
is denoted by EΛ.

I Espec(A) is the set of all symmetric matrices cospectral with A.

I It is well known that EΛ is a manifold.

I The commutator AB − BA of two matrices is denoted by
[A,B].

Matrix A has the Strong Spectral Property (SSP) if the zero
matrix is the only symmetric matrix X satisfying

I A ◦ X = O, and I ◦ X = O

I [A,X ] = O.

Since AX = O implies [A,X ] = O, if A has the SSP, then A has
the SAP.
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Ordered multiplicity lists

I Suppose the distinct eigenvalues of A are µ1 < µ2 < · · · < µq
and the multiplicity of these eigenvalues are m1,m2, . . . ,mq.

I The ordered multiplicity list of A is m(A) = (m1,m2, . . . ,mq).

Ordered Multiplicity List Problem: Given a graph G , determine
which ordered multiplicity lists arise among the matrices in S(G ).

I The Ordered Multiplicity List Problem lies in between the
Inverse Eigenvalue Problem and the Maximum Multiplicity
Problem.

I The Ordered Multiplicity List Problem has been solved for
paths, cycles, and complete graphs (because the IEP-G is
solved for these graphs).

I The Ordered Multiplicity List Problem has been solved for all
graphs of order 6.
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Strong Multiplicity Property (SMP)

I m = (m1, . . . ,mq) is an ordered list of positive integers with
m1 + m2 + · · ·+ mq = n.

I Um is the set of all symmetric matrices whose ordered
multiplicity list is m.

I Um(A) is the set of symmetric matrices has the same ordered
multiplicity list as A.

I It follows from results of Arnold that Um is a manifold.
I The n× n symmetric matrix A satisfies the Strong Multiplicity

Property (SMP) provided no nonzero symmetric matrix X
satisfies

I A ◦ X = O, and I ◦ X = O,
I [A,X ] = O, and
I tr(AiX ) = 0 for i = 0, . . . , n − 1.

I SSP implies SMP.
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Subgraph monotonicity

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

G is a graph of order n, Ĝ is of order n̂, G ≤ Ĝ .

I If A ∈ S(G ) has SSP, then there exists Â ∈ S(Ĝ ) with SSP
such that

spec(Â) = spec(A) ∪ Λ

where Λ is any set of n̂ − n distinct real numbers such that
spec(A) ∩ Λ = ∅.

I If A ∈ S(G ) has SMP, then there exists Â ∈ S(Ĝ ) with SMP
such that m(Â) is obtained from m(A) by extending with 1s
in any positions.
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Application of the SSP to distinct eigenvalues

I A diagonal matrix D with distinct eigenvalues has SSP:
DX = XD implies all off-diagonal entries of X are zero.

I For any graph on n vertices and any set Λ of n distinct real
numbers, there is a realization A that has SSP and
spec(A) = Λ.

I The existence of such a matrix was proved in [Monfarad,
Shader, 2015] via a different method.

I mr(Pn) = n − 1 and M(Pn) = 1.

I The set of possible spectra of Pn is any set of n distinct real
numbers (originally shown in [Hochstadt, 1967])
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Minor Monotonicity

Theorem (Barrett, Butler, Fallat, Hall, H, Lin, Shader, Young)

Suppose H is a minor of G obtained by contraction of r edges,
deletion of s vertices, and deletion of any number of edges, and
A ∈ S(H).

SMP If A has SMP and m(A) = (m1, . . . ,mt), then there is a
matrix A′ ∈ S(G ) having SMP with m(A′) obtained from
m(A) by adding r + s ones, with at most s of these between
m1 and mt .

SSP If in addition A has SSP, then A′ can be chosen to have SSP,
spec(A) ⊆ spec(A′), the remaining eigenvalues are simple, and
s of the additional simple eigenvalues can be chosen to have
any values (including between λmin(A) and λmax(A)).
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with SSP without SSP

K1

K2

P3

K3

P4

K1,3

Paw

C4

Dmnd

K4

P5

S(2, 1, 1)

K1,4

L(3, 2) Bull

C5 Camp

Bnr Dart Kite

Hs Gem

K2,3 T5

Bfly
L(4, 1)

(K4)e W5

FHs K5−e

K5

(1)

(1, 1)

(1, 1, 1)

(2, 1)
(1, 2)

(1, 1, 1, 1)

(1, 2, 1)

(2, 1, 1)
(1, 1, 2)

(2, 2)

(3, 1)
(1, 3)

(1, 1, 1, 1, 1)

(1, 2, 1, 1)
(1, 1, 2, 1)

(2, 1, 1, 1)
(1, 1, 1, 2)

(2, 2, 1)
(1, 2, 2)

(2, 1, 2)

(1, 3, 1)

(1, 3, 1)

(3, 1, 1)
(1, 1, 3) (3, 1, 1)

(1, 3, 1)
(1, 1, 3)

(3, 2)
(2, 3)

(4, 1)
(1, 4)
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IEP-G solution for order ≤ 5

I The diagram shows the connected graphs of order at most 5
with their ordered multiplicity lists.

I If a box is joined to another box by a line then the graphs in
the upper box can realize every ordered multiplicity list of the
graphs in the lower box (including other boxes below
connected with lines to lower boxes).

I Every ordered multiplicity list is spectrally arbitrary for the
graphs that attain it.

I The proof uses the subgraph monotonicity of SSP and
minimal subgraphs for each ordered multiplicity list, together
with spectrally arbitrary matrices for each ordered multiplicity
list/graph.

Theorem (Barrett, Butler, Fallat, Hall, H, Lin, Shader, Young)

The diagram is correct (it lists all ordered multiplicity lists for each
connected graph of order n ≤ 5).
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OMLP solution for order ≤ 6

I 26 equivalence classes:
I Those in blue have one graph.
I Those in yellow have their full membership given in the boxes.

I To determine attainable ordered multiplicity lists of a graph
G :

I Find the number of G in Atlas of Graphs.
I Find equivalence class of G in the diagram.
I Take any (directed) path to ∅.
I The multiplicity lists (and their reversals) that occur on the

edges of the path are the only ones attainable.

Theorem (Ahn, Alar, Bjorkman, Butler, Carlson, Goodnight,
Knox, Monroe, Wigal)

The diagram is correct (it lists all ordered multiplicity lists for each
connected graph of order n ≤ 6).
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Minimum number of distinct eigenvalues

I For a matrix A, q(A) is the number of distinct eigenvalues of
A.

I For a graph G , the minimum number of distinct eigenvalues
of G is

q(G ) := min{q(A) : A ∈ S(G )}.
I Minimum Number of Distinct Eigenvalues Problem:

Determine q(G ).

I Determining q(G ) is a subproblem if IEP-G .
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Minimum number of distinct eigenvalues

qSMP(G ) := min{q(A) : A ∈ S(G ) and A has SMP}

qSSP(G ) := min{q(A) : A ∈ S(G ) and A has SSP}.
q(G ) ≤ qSMP(G ) ≤ qSSP(G ).

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

If G is a subgraph of Ĝ , |G | = n, and |Ĝ | = n̂, then:

q(Ĝ ) ≤ qSSP(Ĝ ) ≤ n̂ − (n − qSSP(G )).

q(Ĝ ) ≤ qSMP(Ĝ ) ≤ n̂ − (n − qSMP(G )).

If n̂ = n,
q(Ĝ ) ≤ qSMP(G ).
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High minimum number of distinct eigenvalues

Proposition

Let G be a graph. Then the following are equivalent:

(a) q(G ) = |G |,
(b) M(G ) = 1,

(c) G is a path.

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

A graph G has q(G ) ≥ |G | − 1 if and only if G is one of the
following:

(a) a path,

(b) the disjoint union of a path and an isolated vertex,

(c) a path with one leaf attached to an interior vertex,

(d) a path with an extra edge joining two vertices at distance 2.
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Key ideas for the proof of q(G ) ≥ |G | − 1 theorem

Proposition (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

Let G be one of the graphs H-tree, campstool, S(2, 2, 2)-tree, or
3-sun shown below. Then qSSP(G ) ≤ |G | − 2.

3-sun S(2,2,2)campstool H-tree

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

Let Cn be the cycle on n ≥ 3 vertices. Then

qSMP(Cn) =
⌈n

2

⌉
.
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Forbidden minors for at most one multiple eigenvalue

Theorem (Barrett, Butler, Fallat, Hall, H, Lin, Shader, Young)

If G is a connected graph and none of the eleven graphs shown
below is a minor of G, then any matrix A ∈ S(G ) has at most one
multiple eigenvalue.

C4 Campstool

3-sun K1,6 S(2,1,1,1,1)

H-tree

S(2,2,1,1)

K3 U K3

.
K3 U K1,3

.
K1,3 U K1,3

.

S(2,2,2)
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Verification: Show matrix A has SSP (naively)

Example

A =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


XT = X , A ◦ X = 0, I ◦ X = O imply

X =


0 0 0 0
0 0 u v
0 u 0 w
0 v w 0

.
[A,X ] = 0 implies X has all row sums and column sums equal to
zero, which in turn implies X = O. Thus, A has SSP.

In general, one can start with a matrix X of variables that satisfies
A ◦ X = O = I ◦ X and show [A,X ] = O implies X = O.
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Verification matrix for SSP

I Eij is the n × n matrix with a 1 in position (i , j) and 0
elsewhere.

I Kij is the n × n skew-symmetric matrix Eij − Eji .
I Let H be a graph of order n with edge set {e1, . . . , ep} where

ek = ik jk . For B = (bij) ∈ Sn(R), vecH(A) is the p-vector
whose k-th coordinate is bik ,jk .

I Let A ∈ Sn(R), let p be the number of off-diagonal zero pairs
in A (so p = # edges in G(A)). The SSP verification matrix
of A, ΨS(A), is the p ×

(n
2

)
submatrix whose columns are

vecG(A) (AKij − KijA) for 1 ≤ i < j ≤ n.

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

Let A ∈ S(G ) and let p be the number of edges in G. Then A has
SSP if and only if ΨS(A) has rank p.

There is an analogous verification matrix ΨM for SMP.
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Verification of SSP for matrix A

Example

A =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

. [A,K1,2] =


−2 0 0 0
0 2 1 1
0 1 0 0
0 1 0 0

,

[A,K1,3] =


−2 0 0 0
0 0 1 0
0 1 2 1
0 0 1 0

, [A,K1,4] =


−2 0 0 0
0 0 0 1
0 0 0 1
0 1 1 2


rank

1 1 0
1 0 1
0 1 1

 = 3 so A has SSP.
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SSP, SMP, and manifolds

Theorem (Barrett, Fallat, Hall, H, Lin, Shader, 2017)

I Matrix A has the SSP if and only if the manifolds S(G(A))
and Espec(A) intersect transversally at A.

I Matrix A has the SMP if and only if the manifolds S(G(A))
and Um(A) intersect transversally at A.
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Differences between SSP and SMP

It is easy to find a graph where one matrix has the SMP but not
the SSP, but the next example is more interesting.

Example

Here is a graph and ordered multiplicity list m such that there
exists B ∈ S(G ) with m(B) = m and B has the SMP, but no
matrix A ∈ S(G ) with m(A) = m has the SSP:

m = (3, 5, 4)
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Rigid linkages

G is a graph and α, β ⊆ V (G ).

I A linkage in G is a subgraph whose connected components
are paths.

I The order of a linkage is its number of components.

I A linkage P is an (α, β)-linkage if α consists of one endpoint
of each path in P and β consists of the other endpoints of the
paths. (If the path is a single vertex v , then v ∈ α ∩ β.

I A linkage P is (α, β)-rigid if P is the unique (α, β)-linkage in
G . A linkage P is rigid if P is (α, β)-rigid for some α and β
such that P is an (α, β)-linkage.
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Rigid linkages and other graph parameters

I Rigid linkages have connections to the unique linkages of
Robertson and Seymour in the classic work on graph minors.

I Rigid linkages can be thought of as forcing chains produced
by partial zero forcing.

I Rigid linkages have applications to the IEP-G .

Theorem (Ferrero, Flagg, Hall, H, Lin, Meyer, Nasserasr, Shader, 2019)

If G is a graph, P is an order t spanning rigid linkage in G, then
tw(G ) ≤ t.

Theorem (Ferrero, Flagg, Hall, H, Lin, Meyer, Nasserasr, Shader, 2019)

A set of forcing chains is a rigid linkage in G.
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Application of rigid linkages to the IEP-G

Theorem (Ferrero, Flagg, Hall, H, Lin, Meyer, Nasserasr, Shader, 2019)

Let P be an (α, β)-rigid linkage of order t in a graph G. Then, for
any A ∈ S(G ) and eigenvalue λ of A

multA(V (P))(λ) ≥ multA(λ)− t.

This result can be viewed as a generalization of eigenvalue
interlacing.
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Proposition (Ferrero, Flagg, Hall, H, Lin, Meyer, Nasserasr, Shader, 2019)

Let k ≥ 2. If B is the matrix obtained from the adjacency matrix
of Tk by replacing its (1, 1)-entry by

√
2, then

spec(B) = {0(3k+2), (
√

2)(3k−2), (−
√

2)(3k−3), (
√
k + 2)(2), (−

√
k + 2)(2), λ

(1)
6 , λ

(1)
7 , λ

(1)
8 }

where λ6 + λ7 + λ8 = 0.
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Application of rigid linkages to the IEP-G

Theorem (Ferrero, Flagg, Hall, H, Lin, Meyer, Nasserasr, Shader, 2019)

Let k ≥ 3, and suppose that B ∈ S(Tk) has spectrum

{λ(3k+2)
1 , λ

(3k−2)
2 , λ

(3k−3)
3 , λ

(2)
4 , λ

(2)
5 , λ

(1)
6 , λ

(1)
7 , λ

(1)
9 }.

Then
λ1 + 3λ2 + 3λ3 = 2λ4 + 2λ5 + λ6 + λ7 + λ8.

This result generalizes results of Barioli and Fallat, 2003, that
shows that the solution of the OML Problem is not equivalent to
the IEP-G for trees.
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Parameters related to zero forcing

I Zero forcing has applications to mathematical physics,
monitoring electric power networks, graph searching etc.

I There are many types of zero forcing, including PSD forcing,
an upper bound to the PSD IEP-G .

I Related parameters:

I Propagation time (the time needed to color all vertices blue
performing independent forces simultaneously).

I Throttling (minimizing the sum of the number of blue vertices
and the time propagation time of the set of blue vertices).

I MS-21 Zero Forcing, Propagation, Throttling:
II This afternoon, III Tomorrow afternoon.
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Thank you!
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I AMS Mathematics Research Community 2020
Finding Needles in Haystacks: IEP-G and Zero Forcing etc.

I June 14-21, 2020, near Providence, RI, USA

I Support limited to US-based participants not more than 5
years post-PHD or 2 years pre-PhD.

www.ams.org/programs/research-communities/mrc-20
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