Throttling for Cops & Robbers, zero forcing, and power domination

Leslie Hogben

Iowa State University and American Institute of Mathematics

8th Graph Searching in Canada (GRASCan) Workshop The Fields Institute August 6, 2019

Cops & Robbers, zero forcing, power domination

Cops and Robbers Throttling

Cops and Robbers Capture time and throttling Trees and chordal graphs Meyniel's conjecture and throttling bounds Product throttling

Zero forcing throttling

Standard zero forcing PSD zero forcing

Power domination throttling

Relationships between throttling numbers

Cops and Robbers, zero forcing and power domination (and their variants) are games played on graphs.

Cops and Robbers:

- In (standard) Cops and Robbers, the cops and one robber alternate turns moving along the edges of the graph.
- The cops capture the robber when a cop occupies the robber's vertex.
- Cops and Robbers is a form of graph searching with applications to computer science.

Zero forcing and power domination

Zero forcing is a coloring game in which each vertex is initially blue or white and the goal is to color all vertices blue.

- The standard color change rule for zero forcing on a graph G is that a blue vertex v can change the color of a white vertex w to blue if w is the only white neighbor of v in G.
- There are many variants of zero forcing, each of which uses a different color change rule.
- Zero forcing has applications to combinatorial matrix theory and mathematical physics.

Power domination is zero forcing applied to the set of initial vertices and all their neighbors.

- Power domination was defined before zero forcing.
- A minimum power dominating set gives the optimal placement of monitoring units in an electric network.

Throttling minimizes a combination of the resources used to accomplish a task and the time needed to accomplish the task.

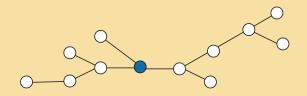
- Throttling originated with a question of Richard Brualdi to Michael Young in a talk about zero forcing and propagation time at the 2011 International Linear Algebra Society Conference in Brauschweig, Germany.
- Butler and Young initiated the study of throttling, for (standard) zero forcing in 2013.
- [Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle Martinez, 2019] studied throttling for positive semidefinite (PSD) zero forcing.

- [Breen, Brimkov, Carlson, H, Perry, Reinhart, 2019] and [Bonato, Breen, Brimkov, Carlson, English, Geneson, H, Perry, Reinhart, 2019+] studied cop throttling.
- [Carlson, 2018+] introduced a universal theory of of throttling for variants of zero forcing.
- [Brimkov, Carlson, Hicks, Patel, Smith, 2019+] studied power domination throttling.

- Cops and Robbers is a game played on a graph.
- Cops are placed on vertices first (they may share a vertex) and then the one robber chooses a vertex.
- Cops and the robber can all see each other's positions.
- Cops and robber alternate turns, with each staying put or moving along one edge (as many cops as desired may move in one cop turn).
- Robber is caught when a cop occupies the robber's vertex.
- A round is one turn for cops followed by one turn for robber.

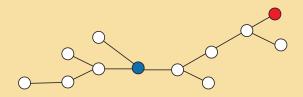
Example

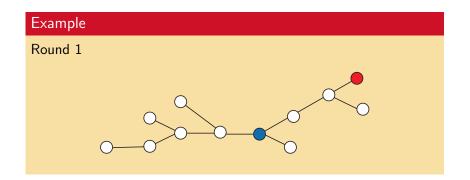
Round 0: Cop is placed

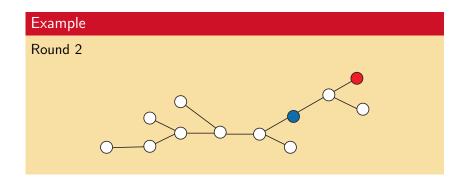


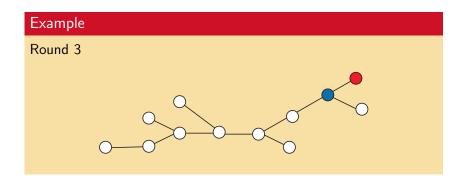
Example

Round 0: Robber is placed



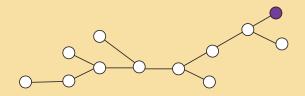






Example

Round 4: Robber is caught

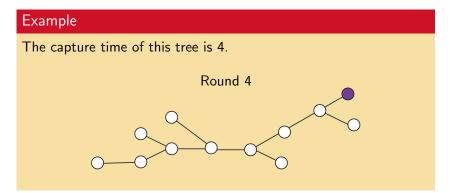


- ► Minimum number of cops needed to capture the robber is the cop number, c(G), of the graph G.
- Cop number of any tree is 1.
- Cop number of any cycle is 2.
- ► A set *S* of vertices dominates *G* if every vertex of *G* is adjacent to a vertex in *S*.
- ▶ The domination number of *G* is

 $\gamma(G) = \min\{|S| : S \text{ is a dominating set of } G\}.$

►
$$c(G) \leq \gamma(G)$$
.

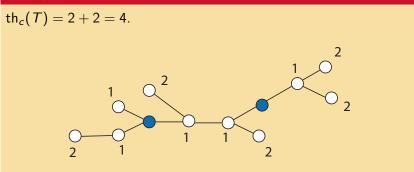
► The capture time of G is the number of rounds needed to capture the robber using c(G) cops, with each side playing optimally.



Throttling involves minimizing the sum of the number of resources used to accomplish a task (e.g., cops) and the time needed to accomplish the task (e.g., capture time).

- Capture time of a multiset S, capt(G; S), is the number of rounds needed to capture the robber (playing optimally) when the cops initially occupy vertices in S.
- If |S| < c(G), then capt $(G; S) = \infty$.
- Cops and Robbers throttling number of G is th_c(G) = min_{S⊆V(G)}(|S| + capt(G; S)).

Example



- ► The k-capture time of graph G is capt_k(G) = min capt(G; S).
- The k-throttling number of graph G is th_c(G, k) = min th_c(G; S) = k + capt_k(G).
 th_c(G) = min th_c(G, k) = min(k + capt_k(G)).

The k-center radius of a graph G is $\operatorname{rad}_k(G) = \min_{|S|=k} \max_{v \in V} \operatorname{dist}(v, S)$.

Theorem (Bonato, Pérez-Gimnez, Pralat, Reiniger, 2017)

For a tree T, $capt_k(T) = rad_k(T)$.

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 2019)

Let T denote a tree and P_n denote the path on n vertices.

- $\operatorname{th}_c(T) = \min_k(k + \operatorname{rad}_k(T)).$
- $\operatorname{th}_{c}(T) \leq 2 \lfloor \sqrt{n} \rfloor$.

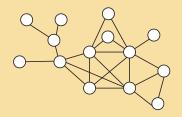
•
$$\operatorname{th}_c(P_n) = \left\lceil \sqrt{2n} - \frac{1}{2} \right\rceil$$
.

Chordal graphs

- A graph is chordal if every cycle of length 4 or more has a chord.
- A chordal graphs can be built from cliques.
- c(H) = 1 for a chordal graph H.

Example

A chordal graph



Theorem (Bonato, Breen, Brimkov, Carlson, English, Geneson, H, Perry, Reinhart, 2019+)

For a chordal graph H,

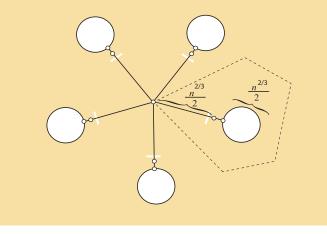
- $\operatorname{capt}_k(H) = \operatorname{rad}_k(H)$.
- $\operatorname{th}_c(H) \leq 2\sqrt{n}$.

Let G be a connected graph of order n

- Meyniel's Conjecture states that c(G) = O(√n), i.e., there exists b such that c(G) ≤ b√n for graphs G of order n.
- ▶ It was asked in [Breen, Brimkov, Carlson, H, Perry, Reinhart, 2019] whether th_c(G) = $O(\sqrt{n})$.
- th_c(G) = O(√n) would imply Meyniel's Conjecture, since c(G) ≤ th_c(G).
- ► It was shown in [BBCHPR2019] that th_c(G) = O(√n) for incidence graphs of finite projective planes, a family of cop-win graphs with maximum capture time, grids, hypercubes, and unicyclic graphs, in addition to trees.
- However it is not true in general.

$\operatorname{th}_{c}(H_{n}) = \Omega(n^{2/3})$, i.e., $\operatorname{th}_{c}(H_{n}) \geq bn^{2/3}$

Example (Bonato, Breen, Brimkov, Carlson, English, Geneson, H, Perry, Reinhart, 2019+)



▶ For
$$S \subseteq V(G)$$
, $th_c^{\times}(G; S) = |S|(1 + capt(G; S))$

The product throttling number is

$$\operatorname{th}_{c}^{\times}(G) = \min_{S \subseteq V(G)} \{\operatorname{th}_{c}^{\times}(G; S)\} = \min_{k} \{k (1 + \operatorname{capt}_{k}(G))\}$$

For
$$S \subseteq V(G)$$
, $\operatorname{th}_c(G; S) \leq \operatorname{th}_c^{\times}(G; S)$. Thus

$$\operatorname{th}_c(G) \leq \operatorname{th}_c^{\times}(G).$$

• If $\operatorname{th}_c(G) = \operatorname{th}_c(G, 1)$, then $\operatorname{th}_c^{\times}(G) = \operatorname{th}_c(G)$.

Theorem (Bonato, Breen, Brimkov, Carlson, English, Geneson, H, Perry, Reinhart, 2019+)

For a chordal graph H,

 $\operatorname{th}_{c}^{\times}(H) = 1 + \operatorname{rad}(H).$

Zero forcing and its variants

- Each type of zero forcing is a coloring game in which each vertex is initially blue or white.
- A color change rule allows white vertices to be colored blue under certain conditions.
- The type of zero forcing is determined by the color change rule used.
- Let R be a color change rule.
 - The set of initially blue vertices is $B^{[0]} = B$.
 - ► The set of blue vertices B^[t] after time step t (under R) is the set of blue vertices in G after the color change rule is applied in B^[t-1] to every white vertex independently.
 - An initial set of blue vertices B = B^[0] is an R zero forcing set if there exists a t such that B^[t] = V(G) using the R color change rule.

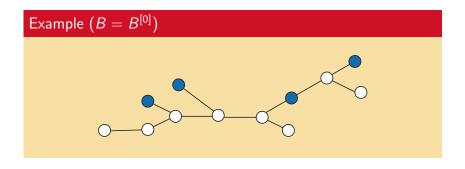
Let R be a color change rule.

- ► The *R*-propagation time for a set *B* = *B*^[0] of vertices, pt_R(*G*; *B*), is the smallest *t* such that *B*^[t] = *V*(*G*) using the *R* color change rule (and is infinity if this never happens).
- ► The *R*-propagation time of *G* is

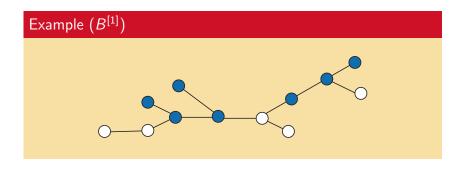
 $pt_R(G) = min\{pt_R(G; B) : B \text{ is a minimum } R\text{-forcing set.}\}$

The *R*-throttling number of *G* for zero forcing is th_R(G) = min_{B⊆V(G)}(|B| + pt_R(G; B)).

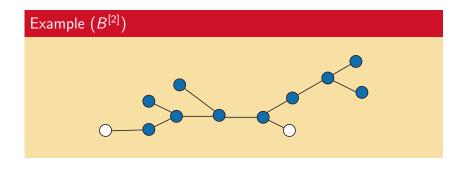
$$N_G(v) \cap W = \{w\}.$$



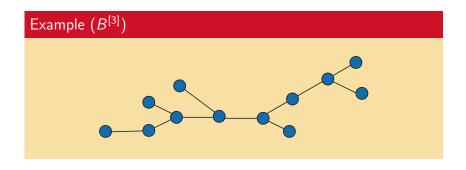
$$N_G(v) \cap W = \{w\}.$$



$$N_G(v) \cap W = \{w\}.$$

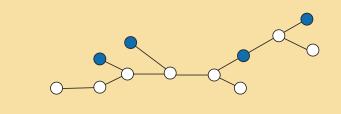


$$N_G(v) \cap W = \{w\}.$$



(Standard) zero forcing, propagation, and throttling

- ► The propagation time for a set B = B^[0] of vertices, pt(G; B), is the smallest t such that B^[t] = V(G) using the (standard) zero forcing color change rule.
- The propagation time of G is pt(G) = min{pt(G; B) : B is a minimum zero forcing set}.
- ► The throttling number of G for zero forcing is th(G) = min_{B⊆V(G)}(|B| + pt(G; B)).



Theorem (Butler, Young, 2013)

Let G be a graph of order n. Then

$$\operatorname{th}(G) \geq \left\lceil 2\sqrt{n} - 1 \right\rceil$$

and this bound is tight.

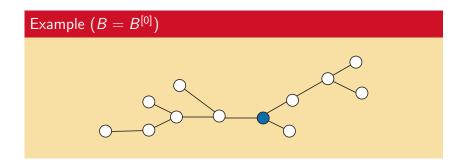
Theorem

- [Butler, Young, 2013] th $(P_n) = \lfloor 2\sqrt{n} 1 \rfloor$.
- $\begin{aligned} & \quad [\text{Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle} \\ & \quad \text{Martinez, 2019]} \\ & \quad \text{th}(C_n) = \begin{cases} \lceil 2\sqrt{n} 1 \rceil & \textit{unless } n = (2k+1)^2 \\ 2\sqrt{n} & \textit{if } n = (2k+1)^2 \end{cases}. \end{aligned}$

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_i be the set of vertices of the *i*th component. A blue vertex v can change the color of a white vertex w to blue if

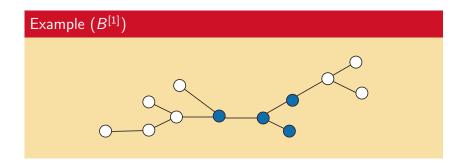
$$N_G(v) \cap W_i = \{w\}.$$



PSD color change rule

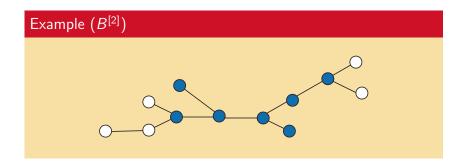
PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_i be the set of vertices of the *i*th component. A blue vertex v can change the color of a white vertex w to blue if

$$N_G(v) \cap W_i = \{w\}.$$



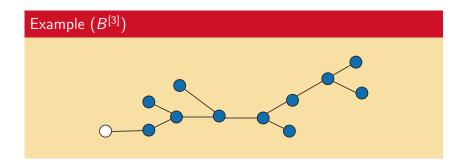
PSD color change rule

$$N_G(v) \cap W_i = \{w\}.$$



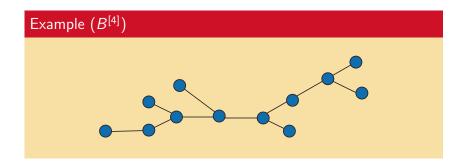
PSD color change rule

$$N_G(v) \cap W_i = \{w\}.$$



PSD color change rule

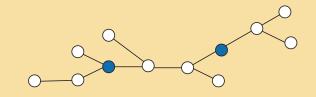
$$N_G(v) \cap W_i = \{w\}.$$



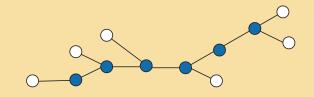
$$N_G(v) \cap W_i = \{w\}.$$

- ► The PSD propagation time for a set B = B^[0] of vertices, pt₊(G; B), is the smallest t such that B^[t] = V(G) using the PSD color change rule.
- The PSD propagation time of G is pt₊(G) = min{pt₊(G; B) : B is a minimum PSD forcing set}.
- The PSD throttling number of G for zero forcing is the th₊(G) = min_{B⊆V(G)}(|B| + pt₊(G; B)).

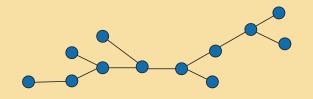
 $Z_+(T) = 1$, but using a PSD zero forcing set B of 2 vertices, pt₊(G; B) = 2 and th₊(T) = 2 + 2 = 4.



 $Z_+(T) = 1$, but using a PSD zero forcing set B of 2 vertices, pt₊(G; B) = 2 and th₊(T) = 2 + 2 = 4.



 $Z_+(T) = 1$, but using a PSD zero forcing set B of 2 vertices, pt₊(G; B) = 2 and th₊(T) = 2 + 2 = 4.



Lower bounds on $th_+(G)$

Proposition (Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle Martinez, 2019)

Let $\Delta(G) = 2$. Then

$$\operatorname{th}_+(G) \ge \left\lceil \sqrt{2n} - \frac{1}{2} \right\rceil$$

and this bound is tight.

Theorem (Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle Martinez, 2019)

Let G be a graph of order n with $\Delta(G) \ge 3$. Then $th_+(G) \ge \left[1 + \log_{(\Delta(G)-1)}\left(\frac{(\Delta(G)-2)n+2}{\Delta(G)}\right)\right]$

and this bound is tight.

Theorem (Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle Martinez, 2019)

$$\operatorname{th}_+(P_n) = \left\lceil \sqrt{2n} - \frac{1}{2} \right\rceil$$

 $\operatorname{th}_+(C_n) = \left\lceil \sqrt{2n} - \frac{1}{2} \right\rceil$

[Brimkov, Carlson, Hicks, Patel, Smith, 2019+] initiated the study of power domination throttling.

- A power dominating set is a set S ⊆ V(G) such that N[S] is a zero forcing set for G.
- ► The power domination number \(\gamma_P(G)\) of G is the minimum size of a power dominating set.
- ► The power propagation time of S is pt_{γp}(G; S) = 1 + pt(G; N[S])
- The power propagation time of G is pt_{γ_P}(G) = min{pt_{γ_P}(G; B) : B is a minimum power dominating set.}
- ► The power domination throttling number of G is $th_{\gamma_P}(G) = min_{S \subseteq V(G)}(|S| + pt_{\gamma_P}(G; S)).$

Observation

Let $B \subseteq V(G)$ be a zero forcing set. Then,

- B is a PSD zero forcing set.
- ► $Z_+(G) \leq Z(G)$
- $pt_+(G; B) \leq pt(G; B)$
- $\operatorname{th}_+(G; B) \leq \operatorname{th}(G; B)$.
- $\operatorname{th}_+(G) \leq \operatorname{th}(G)$.
- pt₊(G) and pt(G) are noncomparable (minimum values can differ).

 $th(K_{1,n}) = n$ but $th_+(K_{1,n}) = 2$.

Observation

Let $S \subseteq V(G)$ be a zero forcing set. Then,

- S is a power dominating set.
- $\gamma_P(G) \leq \mathsf{Z}(G)$
- $\mathsf{pt}_{\gamma_P}(G;S) \leq \mathsf{pt}(G;S)$
- $\operatorname{th}_{\gamma_P}(G;S) \leq \operatorname{th}(G;S).$
- ▶ $\operatorname{th}_{\gamma_P}(G) \leq \operatorname{th}(G)$
- ▶ pt_{γP}(G) and pt(G) are noncomparable (minimum values can differ).

 $\operatorname{th}(K_n) = n$ but $\operatorname{th}_{\gamma_P}(K_n) = 2$.

PSD throttling and Cops & Robbers throttling

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 19)

Let $S \subseteq V(G)$ be a PSD zero forcing set. Then,

- S is a capture set.
- ► $c(G) \leq Z_+(G)$.
- $\operatorname{capt}(G; S) \leq \operatorname{pt}_+(G; S)$.
- $\operatorname{th}_c(G; S) \leq \operatorname{th}_+(G; S).$
- $\operatorname{th}_c(G) \leq \operatorname{th}_+(G)$.

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 19)

Suppose T is a tree. Then for $S \subseteq V(T)$,

•
$$\operatorname{capt}(T; S) = \operatorname{pt}_+(T; S)$$

•
$$\operatorname{th}_c(T; S) = \operatorname{th}_+(T; S).$$

Furthermore, $th_c(T) = th_+(T)$.

Differences between $th_c(G)$ and $th_+(G)$

Observation

$$\operatorname{th}_{c}(G) \leq \gamma(G) + 1.$$

Example

$$\operatorname{th}_c(K_n) = 2$$
 but $\operatorname{th}_+(K_n) = n$.

Observation

 $pt_+(G)$ and capt(G) are noncomparable (minimum values can differ).

Thank you!

References

- A. Bonato, J. Breen, B. Brimkov, J. Carlson, S. English, J. Geneson, L. Hogben, K.E. Perry. Cop throttling number: Bounds, values, and variants. https://arxiv.org/abs/1903.10087
- S. Butler, M. Young. Throttling zero forcing propagation speed on graphs. *Australas. J. Combin.*, 57 (2013), 65–71.
- J. Carlson, L. Hogben, J. Kritschgau, K. Lorenzen, M.S. Ross, V. Valle Martinez. Throttling positive semidefinite zero forcing propagation time on graphs. *Discrete Appl. Math.*, 254 (2019), 33-46.
- J. Breen, B. Brimkov, J. Carlson, L. Hogben, K.E. Perry, C. Reinhart. Throttling for the game of Cops and Robbers on graphs. *Discrete Math.*, 341 (2018) 2418–2430.