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Cops & Robbers, zero forcing and power domination

Cops and Robbers, zero forcing and power domination (and their
variants) are games played on graphs.

Cops and Robbers:

I In (standard) Cops and Robbers, the cops and one robber
alternate turns moving along the edges of the graph.

I The cops capture the robber when a cop occupies the robber’s
vertex.

I Cops and Robbers is a form of graph searching with
applications to computer science.
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Zero forcing and power domination

Zero forcing is a coloring game in which each vertex is initially blue
or white and the goal is to color all vertices blue.

I The standard color change rule for zero forcing on a graph G
is that a blue vertex v can change the color of a white vertex
w to blue if w is the only white neighbor of v in G .

I There are many variants of zero forcing, each of which uses a
different color change rule.

I Zero forcing has applications to combinatorial matrix theory
and mathematical physics.

Power domination is zero forcing applied to the set of initial
vertices and all their neighbors.

I Power domination was defined before zero forcing.

I A minimum power dominating set gives the optimal
placement of monitoring units in an electric network.
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Overview of throttling

Throttling minimizes a combination of the resources used to
accomplish a task and the time needed to accomplish the task.

I Throttling originated with a question of Richard Brualdi to
Michael Young in a talk about zero forcing and propagation
time at the 2011 International Linear Algebra Society
Conference in Brauschweig, Germany.

I Butler and Young initiated the study of throttling, for
(standard) zero forcing in 2013.

I [Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle
Martinez, 2019] studied throttling for positive semidefinite
(PSD) zero forcing.
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Overview of throttling (continued)

I [Breen, Brimkov, Carlson, H, Perry, Reinhart, 2019] and
[Bonato, Breen, Brimkov, Carlson, English, Geneson, H, Perry,
Reinhart, 2019+] studied cop throttling.

I [Carlson, 2018+] introduced a universal theory of of throttling
for variants of zero forcing.

I [Brimkov, Carlson, Hicks, Patel, Smith, 2019+] studied power
domination throttling.
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Cops and Robbers

I Cops and Robbers is a game played on a graph.

I Cops are placed on vertices first (they may share a vertex) and
then the one robber chooses a vertex.

I Cops and the robber can all see each other’s positions.

I Cops and robber alternate turns, with each staying put or
moving along one edge (as many cops as desired may move in
one cop turn).

I Robber is caught when a cop occupies the robber’s vertex.

I A round is one turn for cops followed by one turn for robber.
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Cops and Robbers Example

Example

Round 0: Cop is placed
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Cops and Robbers Example

Example

Round 0: Robber is placed
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Cops and Robbers Example

Example

Round 1
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Cops and Robbers Example

Example

Round 2
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Cops and Robbers Example

Example

Round 3
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Cops and Robbers Example

Example

Round 4: Robber is caught
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Cop number

I Minimum number of cops needed to capture the robber is the
cop number, c(G ), of the graph G .

I Cop number of any tree is 1.

I Cop number of any cycle is 2.

I A set S of vertices dominates G if every vertex of G is
adjacent to a vertex in S .

I The domination number of G is

γ(G ) = min{|S | : S is a dominating set of G}.

I c(G ) ≤ γ(G ).
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Capture time

I The capture time of G is the number of rounds needed to
capture the robber using c(G ) cops, with each side playing
optimally.

Example

The capture time of this tree is 4.

Round 4
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Cops and Robbers throttling

Throttling involves minimizing the sum of the number of resources
used to accomplish a task (e.g., cops) and the time needed to
accomplish the task (e.g., capture time).

I Capture time of a multiset S , capt(G ; S), is the number of
rounds needed to capture the robber (playing optimally) when
the cops initially occupy vertices in S .

I If |S | < c(G ), then capt(G ;S) =∞.

I Cops and Robbers throttling number of G is
thc(G ) = min

S⊆V (G)
(|S |+ capt(G ;S)).
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Cops and Robbers throttling example

Example

thc(T ) = 2 + 2 = 4.

1

1 1

1

1

2

2

2

2

2
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k-capture time and k-throttling

I The k-capture time of graph G is
captk(G ) = min

|S |=k
capt(G ;S).

I The k-throttling number of graph G is
thc(G , k) = min

|S|=k
thc(G ; S) = k + captk(G ).

I thc(G ) = min
k

thc(G , k) = min
k

(k + captk(G )).
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Cops and Robbers throttling for trees

The k-center radius of a graph G is radk(G ) = min
|S |=k

max
v∈V

dist(v , S).

Theorem (Bonato, Pérez-Gimnez, Pralat, Reiniger, 2017)

For a tree T , captk(T ) = radk(T ).

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 2019)

Let T denote a tree and Pn denote the path on n vertices.

I thc(T ) = mink(k + radk(T )).

I thc(T ) ≤ 2
⌊√

n
⌋
.

I thc(Pn) =
⌈√

2n − 1
2

⌉
.
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Chordal graphs

I A graph is chordal if every cycle of length 4 or more has a
chord.

I A chordal graphs can be built from cliques.

I c(H) = 1 for a chordal graph H.

Example

A chordal graph
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Cops and Robbers throttling for chordal graphs

Theorem (Bonato, Breen, Brimkov, Carlson, English, Geneson,
H, Perry, Reinhart, 2019+)

For a chordal graph H,

I captk(H) = radk(H).

I thc(H) ≤ 2
√
n.
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Throttling and Meyniel’s Conjecture

Let G be a connected graph of order n

I Meyniel’s Conjecture states that c(G ) = O(
√
n), i.e., there

exists b such that c(G ) ≤ b
√
n for graphs G of order n.

I It was asked in [Breen, Brimkov, Carlson, H, Perry, Reinhart,
2019] whether thc(G ) = O(

√
n).

I thc(G ) = O(
√
n) would imply Meyniel’s Conjecture, since

c(G ) ≤ thc(G ).

I It was shown in [BBCHPR2019] that thc(G ) = O(
√
n) for

incidence graphs of finite projective planes, a family of
cop-win graphs with maximum capture time, grids,
hypercubes, and unicyclic graphs, in addition to trees.

I However it is not true in general.
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thc(Hn) = Ω(n2/3), i.e., thc(Hn) ≥ bn2/3

Example (Bonato, Breen, Brimkov, Carlson, English, Geneson,
H, Perry, Reinhart, 2019+)

2/3 2/3
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Product throttling

I For S ⊆ V (G ), th×c (G ;S) = |S |(1 + capt(G ;S))

I The product throttling number is

th×c (G ) = min
S⊆V (G)

{th×c (G ;S)} = min
k
{k (1 + captk(G ))}

I For S ⊆ V (G ), thc(G ;S) ≤ th×c (G ;S). Thus

thc(G ) ≤ th×c (G ).

I If thc(G ) = thc(G , 1), then th×c (G ) = thc(G ).
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Product throttling for chordal graphs

Theorem (Bonato, Breen, Brimkov, Carlson, English, Geneson,
H, Perry, Reinhart, 2019+)

For a chordal graph H,

th×c (H) = 1 + rad(H).
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Zero forcing and its variants

I Each type of zero forcing is a coloring game in which each
vertex is initially blue or white.

I A color change rule allows white vertices to be colored blue
under certain conditions.

I The type of zero forcing is determined by the color change
rule used.

Let R be a color change rule.

I The set of initially blue vertices is B [0] = B.

I The set of blue vertices B [t] after time step t (under R) is the
set of blue vertices in G after the color change rule is applied
in B [t−1] to every white vertex independently.

I An initial set of blue vertices B = B [0] is an R zero forcing set
if there exists a t such that B [t] = V (G ) using the R color
change rule.
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Propagation time and throttling

Let R be a color change rule.

I The R-propagation time for a set B = B [0] of vertices,
ptR(G ;B), is the smallest t such that B [t] = V (G ) using the
R color change rule (and is infinity if this never happens).

I The R-propagation time of G is

ptR(G ) = min{ptR(G ;B) : B is a minimum R-forcing set.}

I The R-throttling number of G for zero forcing is
thR(G ) = min

B⊆V (G)
(|B|+ ptR(G ;B)).
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(Standard) zero forcing color change rule

Let W be the set of (currently) white vertices. A blue vertex v can
change the color of vertex w ∈W to blue if

NG (v) ∩W = {w}.

Example (B = B [0])
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(Standard) zero forcing color change rule

Let W be the set of (currently) white vertices. A blue vertex v can
change the color of vertex w ∈W to blue if

NG (v) ∩W = {w}.

Example (B [1])
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(Standard) zero forcing color change rule

Let W be the set of (currently) white vertices. A blue vertex v can
change the color of vertex w ∈W to blue if

NG (v) ∩W = {w}.

Example (B [2])
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(Standard) zero forcing color change rule

Let W be the set of (currently) white vertices. A blue vertex v can
change the color of vertex w ∈W to blue if

NG (v) ∩W = {w}.

Example (B [3])
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(Standard) zero forcing, propagation, and throttling

I The propagation time for a set B = B [0] of vertices, pt(G ;B),
is the smallest t such that B [t] = V (G ) using the (standard)
zero forcing color change rule.

I The propagation time of G is
pt(G ) = min{pt(G ;B) : B is a minimum zero forcing set}.

I The throttling number of G for zero forcing is
th(G ) = minB⊆V (G)(|B|+ pt(G ;B)).

Example (Z(T ) = 4, pt(T ) = 3, th(T ) = 7)
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Lower bounds on th(G )

Theorem (Butler, Young, 2013)

Let G be a graph of order n. Then

th(G ) ≥
⌈
2
√
n − 1

⌉
and this bound is tight.
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Paths and cycles

Theorem

I [Butler, Young, 2013] th(Pn) =
⌈
2
√
n − 1

⌉
.

I [Carlson, H, Kritschgau, Lorenzen, Ross, Selken, Valle
Martinez, 2019]

th(Cn) =

{
d2
√
n − 1e unless n = (2k + 1)2

2
√
n if n = (2k + 1)2

.
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B = B [0])
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B [1])
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B [2])
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B [3])
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B [4])
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PSD propagation and throttling

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

I The PSD propagation time for a set B = B [0] of vertices,
pt+(G ;B), is the smallest t such that B [t] = V (G ) using the
PSD color change rule.

I The PSD propagation time of G is
pt+(G ) = min{pt+(G ;B) : B is a minimum PSD forcing set}.

I The PSD throttling number of G for zero forcing is the
th+(G ) = minB⊆V (G)(|B|+ pt+(G ;B)).
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PSD throttling

Example

Z+(T ) = 1, but using a PSD zero forcing set B of 2 vertices,
pt+(G ;B) = 2 and th+(T ) = 2 + 2 = 4.
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PSD throttling

Example

Z+(T ) = 1, but using a PSD zero forcing set B of 2 vertices,
pt+(G ;B) = 2 and th+(T ) = 2 + 2 = 4.
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PSD throttling

Example

Z+(T ) = 1, but using a PSD zero forcing set B of 2 vertices,
pt+(G ;B) = 2 and th+(T ) = 2 + 2 = 4.
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Lower bounds on th+(G )

Proposition (Carlson, H, Kritschgau, Lorenzen, Ross, Selken,
Valle Martinez, 2019)

Let ∆(G ) = 2. Then

th+(G ) ≥
⌈√

2n − 1

2

⌉
and this bound is tight.

Theorem (Carlson, H, Kritschgau, Lorenzen, Ross, Selken,
Valle Martinez, 2019)

Let G be a graph of order n with ∆(G ) ≥ 3. Then

th+(G ) ≥
⌈

1 + log(∆(G)−1)

(
(∆(G )− 2)n + 2

∆(G )

)⌉
and this bound is tight.
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Paths & cycles

Theorem (Carlson, H, Kritschgau, Lorenzen, Ross, Selken,
Valle Martinez, 2019)

th+(Pn) =

⌈√
2n − 1

2

⌉
.

th+(Cn) =

⌈√
2n − 1

2

⌉
.
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Power domination

[Brimkov, Carlson, Hicks, Patel, Smith, 2019+] initiated the study
of power domination throttling.

I A power dominating set is a set S ⊆ V (G ) such that N[S ] is
a zero forcing set for G .

I The power domination number γP(G ) of G is the minimum
size of a power dominating set.

I The power propagation time of S is
ptγP (G ;S) = 1 + pt(G ;N[S ])

I The power propagation time of G is ptγP (G ) =
min{ptγP (G ;B) : B is a minimum power dominating set.}

I The power domination throttling number of G is
thγP (G ) = minS⊆V (G)(|S |+ ptγP (G ; S)).
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(Standard) throttling and PSD throttling

Observation

Let B ⊆ V (G ) be a zero forcing set. Then,

I B is a PSD zero forcing set.

I Z+(G ) ≤ Z(G )

I pt+(G ;B) ≤ pt(G ;B)

I th+(G ;B) ≤ th(G ;B).

I th+(G ) ≤ th(G ).

I pt+(G ) and pt(G ) are noncomparable (minimum values can
differ).
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Differences between th+(G ) and th(G )

Example

th(K1,n) = n but th+(K1,n) = 2.
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(Standard) throttling and power domination

Observation

Let S ⊆ V (G ) be a zero forcing set. Then,

I S is a power dominating set.

I γP(G ) ≤ Z(G )

I ptγP (G ;S) ≤ pt(G ; S)

I thγP (G ;S) ≤ th(G ; S).

I thγP (G ) ≤ th(G )

I ptγP (G ) and pt(G ) are noncomparable (minimum values can
differ).
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Differences between thγP(G ) and th(G )

Example

th(Kn) = n but thγP (Kn) = 2.
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PSD throttling and Cops & Robbers throttling

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 19)

Let S ⊆ V (G ) be a PSD zero forcing set. Then,

I S is a capture set.

I c(G ) ≤ Z+(G ).

I capt(G ;S) ≤ pt+(G ;S).

I thc(G ;S) ≤ th+(G ;S).

I thc(G ) ≤ th+(G ).

Theorem (Breen, Brimkov, Carlson, H, Perry, Reinhart, 19)

Suppose T is a tree. Then for S ⊆ V (T ),

I capt(T ;S) = pt+(T ;S).

I thc(T ;S) = th+(T ; S).

Furthermore, thc(T ) = th+(T ).
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Differences between thc(G ) and th+(G )

Observation

thc(G ) ≤ γ(G ) + 1.

Example

thc(Kn) = 2 but th+(Kn) = n.

Observation

pt+(G ) and capt(G ) are noncomparable (minimum values can
differ).
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Thank you!
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