What does the LaTeX macro \be mean?

The following are actual definitions of \be, taken from papers in the Cornell preprint arXiv. The point of this list is to illustrate the importance of using meaningful macros, if you want other people to be able to understand your LaTeX source.

There are 83 examples in 16 equivalence classes.

\begin{equation}
\begin {equation}
\begin{equation*}
\begin{equation}\begin{array}{l}
\setcounter{equation}{\value{theorem}} \begin{equation}
\protect\setcounter{equation}{\value{subsubsection}}
\begin{displaymath}
\begin{equs}
\protect\[
$$

\begin{eqnarray}
 \begin{eqnarray} # note: there is a space before and after
\begin{eqnarray*}
\begin{eqnarray}\label{#1}
\begin{eqnarray} \label{#1}
\begin{eqnarray#1}

\begin{gather}

\begin{enumerate}

\begin{exmple}
\begin{example}\rm\label{#1}
\begin{Example}

\beta
\beta # note: there is a space after the beta
{\beta}
\ensuremath{\beta}
\overrightarrow{\beta}
\boldsymbol \beta
\widehat{\beta}
$\beta\text{ }$
\beta_{\ep}
{\bar \beta}
\smash{\mkern2mu\overline{\mkern-2mu\phantom{\eta}}\mkern-9.583mu}\eta

\mathbf{e}
{\mathbf e}
{\mathbf e }
{\mathbf{e}}
\mbox{\boldmath$\displaystyle e$}
{\bf b}
\boldsymbol b
\boldsymbol e
\boldsymbol{e}
{\boldsymbol e}
{\boldsymbol{e}}
\boldsymbol{\epsilon}
\mbox{\boldmath $e$}
\mbox{\boldmath{$e$}}
\bm{e}
{\bm{e}}
{\bf e}
 {\bf e} # note: there is a space before and a space after
{\bf{e}}
\mathrm{\bf e}
\mbox{\bf e}
\mbox{$\bf E$}
{\bold {\hat{e}}}

\mathbb E
\mathbb{E}
\mathbf E
\breve{E}
\boldsymbol{\mathcal{E}}
{\boldsymbol{\mathsf{E}}}

\mathbf{1}
\bar{5}

\bar e
\bar{e}
{\bar{e}}
\bar{\e}
\bar{\varepsilon}
{\bm{\varepsilon}}
\mathfrak b
\mathfrak{s}
\mathsf{o}
\vec{e}
\mtx{e}
b^{(e)}

{\bf \textbf{e}}
\textfrak{B}
{\rm B}

\ba       # that expands to \begin{equation}\new\begin{array}{c}

\mbox{}\hskip10pt

\partial B_\lambda

\Bord_n(H_n)

\alpha
\gamma

\infty

broken ergodicity