parent child child_depth certainty math math.la 0 0.99 Linear algebra math.la math.la.c.linsys 1 0.99 Linear systems of equations math.la.c.linsys math.la.c.linsys.terminology 2 0.99 Basic terminology math.la.c.linsys.terminology math.la.d.lineqn 3 0.99 Definition of linear equation math.la.c.linsys.terminology math.la.d.lineqn.coeff 3 0.98 Definition of coefficients of a linear equation math.la.c.linsys.terminology math.la.d.lineqn.soln 3 0.97 Definition of solution to a linear equation math.la.c.linsys.terminology math.la.d.linsys 3 0.96 Definition of system of linear equations math.la.c.linsys.terminology math.la.d.linsys.soln 3 0.95 Definition of solution to a system of linear equations math.la.c.linsys.terminology math.la.d.linsys.soln_set 3 0.94 Definition of solution set of a system of linear equations math.la.c.linsys math.la.c.linsys.soln_set.parameter 2 0.98 Parametric form of the solution set of a system of linear equations math.la.c.linsys math.la.c.linsys.soln_set.vec 2 0.97 Parametric vector form of the solution set of a system of linear equations math.la.c.linsys math.la.c.linsys.gauss 2 0.96 Gaussian elimination as a method to solve a linear system math.la.c.linsys math.la.d.linsys.echelon 2 0.95 Definition of echelon form of a linear system math.la.c.linsys math.la.t.linsys.echelon.free 2 0.94 All echelon forms of a linear system have the same free variables math.la.c.linsys math.la.d.linsys.op 2 0.93 Definition of equation operations on a linear system math.la.c.linsys math.la.t.linsys.op 2 0.92 Equation operations on a linear system give an equivalent system. math.la.c.linsys math.la.d.linsys.equiv 2 0.91 Definition of equivalent systems of linear equations math.la.c.linsys math.la.c.linsys.geometric 2 0.90 The geometry of linear systems math.la.c.linsys.geometric math.la.c.linsys.2x2.geometric 3 0.99 Geometric picture of a 2-by-2 linear system math.la.c.linsys.geometric math.la.c.lineqn.3.geometric 3 0.98 Geometric picture of the solution set of a linear equation in 3 unknowns math.la.c.linsys.geometric math.la.c.linsys.3x3.geometric 3 0.97 Geometric picture of a 3-by-3 linear system math.la.c.linsys math.la.d.linsys.consistent 2 0.89 Definition of consistent linear system math.la.c.linsys math.la.d.linsys.inconsistent 2 0.88 Definition of inconsistent linear system math.la.c.linsys math.la.d.linsys.homog 2 0.87 Definition of homogeneous linear system of equations math.la.c.linsys math.la.d.linsys.homog.consistent 2 0.86 Homogeneous linear systems are consistent. math.la.c.linsys math.la.d.linsys.homog.nontrivial 2 0.85 Definition of nontrivial solution to a homogeneous linear system of equations math.la.c.linsys math.la.d.linsys.homog.trivial 2 0.84 Definition of trivial solution to a homogeneous linear system of equations math.la.c.linsys math.la.t.linsys.homog.nontrivial 2 0.83 A homogeneous system has a nontrivial solution if and only if it has a free variable. math.la.c.linsys math.la.c.linsys.soln.number 2 0.82 The number of solutions to a linear system math.la.c.linsys.soln.number math.la.t.linsys.zoi 3 0.99 Linear systems have 0, 1, or infinitely many solutions. math.la.c.linsys.soln.number math.la.t.linsys.consistent.i 3 0.98 A consistent system with more variables than equations has infinitely many solutions. math.la.c.linsys.soln.number math.la.t.linsys.homog.i 3 0.97 A homogeneous system with more variables than equations has infinitely many solutions. math.la.c.linsys math.la.d.linsys.variable.dependent 2 0.81 Definition of basic/dependent/leading variable in a linear system math.la.c.linsys math.la.d.linsys.variable.independent 2 0.80 Definition of free/independent variable in a linear system math.la.c.linsys math.la.t.linsys.soln.vector 2 0.79 Theorem describing the vector form of sulutions to a linear system. math.la.c.linsys math.la.t.linsys.nonhomog.particular_plus_homog 2 0.78 The solutions to a nonhomogeneous system are given by a particular solution plus the solutions to the homogeneous system. math.la.c.linsys math.la.d.linsys.ill_conditioned 2 0.77 Definition of ill-conditioned linear system math.la math.la.c.mat 1 0.98 Matrices math.la.c.mat math.la.c.mat.basics 2 0.99 Basic terminology and notation math.la.c.mat.basics math.la.d.mat 3 0.99 Definition of matrix math.la.c.mat.basics math.la.d.mat.entry 3 0.98 Notation for entry of matrix math.la.c.mat.basics math.la.d.mat.size 3 0.97 Definition of size of a matrix math.la.c.mat.basics math.la.d.mat.m_by_n 3 0.96 Definition of m by n matrix math.la.c.mat.basics math.la.d.mat.m_by_n.set 3 0.95 Notation for the set of m by n matrices math.la.c.mat.basics math.la.d.mat.square 3 0.94 Definition of square matrix math.la.c.mat.basics math.la.d.mat.thediagonal 3 0.93 Definition of the (main) diagonal of a matrix math.la.c.mat.basics math.la.d.mat.diagonal 3 0.92 Definition of diagonal matrix math.la.c.mat.basics math.la.d.mat.identity 3 0.91 Definition of identity matrix math.la.c.mat.basics math.la.d.mat.z 3 0.90 Definition of 0 matrix math.la.c.mat.basics math.la.d.mat.equal 3 0.89 Definition of equality of matrices math.la.c.mat math.la.c.mat.operations 2 0.98 Operations on matrices math.la.c.mat.operations math.la.c.mat.sum 3 0.99 Addition math.la.c.mat.sum math.la.d.mat.sum 4 0.99 Definition of sum of matrices math.la.c.mat.sum math.la.t.mat.add.commut_assoc 4 0.98 Matrix addition is commutative and associative. math.la.c.mat.operations math.la.c.mat.conjugate 3 0.98 Conjugation math.la.c.mat.conjugate math.la.d.mat.conjugate 4 0.99 Definition of conjugate of a matrix math.la.c.mat.conjugate math.la.t.mat.conjugate.involution 4 0.98 Matrix conjugation is an involution. math.la.c.mat.conjugate math.la.t.mat.sum.conjugate 4 0.97 The conjugate of the sum of matrices is the sum of the conjugates. math.la.c.mat.conjugate math.la.t.mat.scalar.conjugate 4 0.96 The conjugate of a matrix-scalar product is the product of the conjugates. math.la.c.mat.conjugate math.la.t.mat.mult.conjugate 4 0.95 The conjugate of a product of matrices is the product of the conjugates. math.la.c.mat.operations math.lac.mat.scalar.mult 3 0.97 Scalar multiplication math.lac.mat.scalar.mult math.la.d.mat.scalar.mult 4 0.99 Definition of matrix-scalar multiplication math.lac.mat.scalar.mult math.la.t.mat.scalar.mult.commut_assoc 4 0.98 Matrix-scalar multiplication is commutative, associative, and distributive. math.lac.mat.scalar.mult math.la.t.mat.scalar.prod.commut 4 0.97 Matrix-scalar product is commutative math.la.c.mat.operations math.la.c.mat.row_op 3 0.96 Row operations math.la.c.mat.row_op math.la.d.mat.row_op 4 0.99 Definition of row operations on a matrix math.la.c.mat.row_op math.la.d.mat.pivot 4 0.98 Definition of pivot math.la.c.mat.row_op math.la.d.mat.pivot_col 4 0.97 Definition of pivot column math.la.c.mat.row_op math.la.d.mat.pivot_position 4 0.96 Definition of pivot position math.la.c.mat.row_op math.la.d.mat.row_equiv 4 0.95 Definition of row equivalent matrices math.la.c.mat.row_op math.la.t.mat.row_equiv.equiv 4 0.94 Row equivalence is an equivalence relation math.la.c.mat.row_op math.la.d.mat.row.leading 4 0.93 Definition of leading entry in a row of a matrix math.la.c.mat.operations math.la.c.mat.vec.prod 3 0.95 Matrix-vector products math.la.c.mat.vec.prod math.la.d.mat.vec.prod 4 0.99 Definition of matrix-vector product, as a linear combination of column vectors math.la.c.mat.vec.prod math.la.t.mat.vec.prod.unique 4 0.98 If two matrices have equal products with all vectors, then the matrices are equal. math.la.c.mat.vec.prod math.la.e.mat.vec.prod 4 0.97 Example of matrix-vector product, as a linear combination of column vectors math.la.c.mat.vec.prod math.la.d.mat.vec.prod.coord 4 0.96 Definition of matrix-vector product, each entry separately math.la.c.mat.vec.prod math.la.e.mat.vec.prod.coord 4 0.95 Example of matrix-vector product, each entry separately math.la.c.mat.vec.prod math.la.t.mat.vec.prod.assoc 4 0.94 Matrix-vector product is associative math.la.c.mat.operations math.la.c.mat.mult 3 0.94 Multiplication math.la.c.mat.mult math.la.d.mat.mult.col 4 0.99 Definition of matrix multiplication in terms of column vectors math.la.c.mat.mult math.la.d.mat.mult.coord 4 0.98 Definition of matrix multiplication, each entry separately math.la.c.mat.mult math.la.t.mat.mult.coord 4 0.97 Theorem describing matrix multiplication, each entry separately math.la.c.mat.mult math.la.t.mat.mult.z 4 0.96 Any matrix times the 0 matrix equals the 0 matrix. math.la.c.mat.mult math.la.e.mat.mult.2x2 4 0.95 Example of multiplying 2x2 matrices math.la.c.mat.mult math.la.e.mat.mult.3x3 4 0.94 Example of multiplying 3x3 matrices math.la.c.mat.mult math.la.e.mat.mult.nonsquare 4 0.93 Example of multiplying nonsquare matrices math.la.c.mat.mult math.la.e.mat.mult 4 0.92 Example of multiplying matrices math.la.c.mat.mult math.la.t.mat.mult.assoc 4 0.91 Matrix multiplication is associative. math.la.c.mat.mult math.la.t.mat.mult.distributive 4 0.90 Matrix multiplication is distributive over matrix addition. math.la.c.mat.mult math.la.t.mat.mult.identity 4 0.89 The identity matrix is the identity for matrix multiplication. math.la.c.mat.mult math.la.c.mat.mult.commut 4 0.88 Matrix multiplication is not commutative in general. math.la.c.mat.mult math.la.c.mat.mult.cancellation 4 0.87 For matrices, AB=AC does not imply B=C in general. math.la.c.mat.mult math.la.c.mat.mult.zero_divisor 4 0.86 For matrices, AB=0 does not imply A=0 or B=0 in general. math.la.c.mat.mult math.la.t.mat.mult.row.col 4 0.85 Matrix multiplication can be viewed as the dot product of a row vector of column vectors with a column vector of row vectors math.la.c.mat.operations math.la.c.mat.transpose 3 0.93 Transpose and adjoint math.la.c.mat.transpose math.la.d.mat.transpose 4 0.99 Definition of transpose of a matrix math.la.c.mat.transpose math.la.t.mat.transpose.involution 4 0.98 Matrix transpose is an involution. math.la.c.mat.transpose math.la.t.mat.transpose.conjugate 4 0.97 The conjugate of the transpose is the transpose of the conjugate. math.la.c.mat.transpose math.la.d.mat.adjoint 4 0.96 Definition of adjoint (conjugate transpose) math.la.c.mat.transpose math.la.t.mat.sum.adjoint 4 0.95 The adjoint of a sum is the sum of the adjoints. math.la.c.mat.transpose math.la.t.mat.scalar.adjoint 4 0.94 The adjoint of a matrix-scalar product is the product of the adjoint and the conjugate. math.la.c.mat.transpose math.la.t.mat.adjoint.involution 4 0.93 Matrix adjoint is an involution. math.la.c.mat.transpose math.la.t.mat.sum.transpose 4 0.92 The transpose of a sum of matrices is the sum of the transposes. math.la.c.mat.transpose math.la.t.mat.scalar.transpose 4 0.91 Transpose commutes with scalar multiplication. math.la.c.mat.transpose math.la.t.mat.mult.transpose 4 0.90 The transpose of a product of matrices is the product of the transposes in reverse order. math.la.c.mat.transpose math.la.t.mat.mult.adjoint 4 0.89 The adjoint of a product of matrices is the product of the adjoints in reverse order. math.la.c.mat.operations math.la.c.mat.inv 3 0.92 Inverse math.la.c.mat.inv math.la.d.mat.inv.left 4 0.99 Definition of left inverse of a matrix math.la.c.mat.inv math.la.d.mat.inv.right 4 0.98 Definition of right inverse of a matrix math.la.c.mat.inv math.la.d.mat.inv 4 0.97 Definition of inverse of a matrix math.la.c.mat.inv math.la.d.mat.invertible 4 0.96 Definition of invertible matrix math.la.c.mat.inv math.la.t.mat.inv.leftright 4 0.95 If a matrix has both a left and a right inverse, then the two are equal. math.la.c.mat.inv math.la.t.mat.inv.oneside 4 0.94 If a square matrix has a one-sided inverse, then it is a two-sided inverse. math.la.c.mat.inv math.la.t.mat.inv.2x2 4 0.93 Formula for the inverse of a 2-by-2 matrix. math.la.c.mat.inv math.la.t.mat.inv.involution 4 0.92 Matrix inverse is an involution. math.la.c.mat.inv math.la.t.mat.inv.shoesandsocks 4 0.91 For n-by-n invertible matrices A and B, the product AB is invertible, and (AB)^-1=B^-1 A^-1. math.la.c.mat.inv math.la.t.mat.prod.nonsingular 4 0.90 The product of square matrices is nonsingular if and only if each factor is nonsingular. math.la.c.mat.inv math.la.t.mat.inv.scalar 4 0.89 The inverse of a scalar multiple is the reciprocal times the inverse. math.la.c.mat.inv math.la.t.mat.inv.transpose 4 0.88 Matrix transpose commutes with matrix inverse. math.la.c.mat.inv math.la.t.mat.inv.augmented 4 0.87 The inverse of a matrix (if it exists) can be found by row reducing the matrix augmented by the identity matrix. math.la.c.mat.inv math.la.e.mat.inv.2x2.row_reduce 4 0.86 Example of finding the inverse of a 2-by-2 matrix by row reducing the augmented matrix math.la.c.mat.inv math.la.e.mat.inv.2x2.formula 4 0.85 Example of finding the inverse of a 2-by-2 matrix by using a formula math.la.c.mat.inv math.la.e.mat.inv.3x3.row_reduce 4 0.84 Example of finding the inverse of a 3-by-3 matrix by row reducing the augmented matrix math.la.c.mat.inv math.la.e.mat.inv.3x3.cramer 4 0.83 Example of finding the inverse of a 3-by-3 matrix by using Cramer's rule math.la.c.mat.inv math.la.t.eqn.mat.inv 4 0.82 The inverse of a matrix can be used to solve a linear system. math.la.c.mat.inv math.la.t.mat.inv.unique 4 0.81 Matrix inverses are unique: if A and B are square matrices, then AB=I implies that A=B^-1 and B=A^-1. math.la.c.mat.inv math.la.d.mat.inv.generalized 4 0.80 Definition of generalized inverse of a matrix math.la.c.mat math.la.c.mat.types 2 0.97 Particular types of matrices math.la.c.mat.types math.la.c.mat.echelon 3 0.99 Echelon matrices math.la.c.mat.echelon math.la.e.mat.echelon.of 4 0.99 Example of putting a matrix in echelon form math.la.c.mat.echelon math.la.e.mat.echelon.of.pivot 4 0.98 Example of putting a matrix in echelon form and identifying the pivot columns math.la.c.mat.echelon math.la.d.mat.echelon 4 0.97 Definition of (echelon matrix/matrix in (row) echelon form) math.la.c.mat.echelon math.la.c.mat.gaussjordan 4 0.96 Gauss-Jordan procedure to put a matrix into reduced row echelon form math.la.c.mat.echelon math.la.e.mat.echelon 4 0.95 Example of (echelon matrix/matrix in (row) echelon form) math.la.c.mat.echelon math.la.d.mat.echelon.of 4 0.94 Definition of (row) echelon form of a matrix math.la.c.mat.echelon math.la.d.mat.rref 4 0.93 Definition of matrix in reduced row echelon form math.la.c.mat.echelon math.la.d.mat.rref.of 4 0.92 Definition of reduced row echelon form of a matrix math.la.c.mat.echelon math.la.d.mat.row_reduce 4 0.91 Definition of row reduce a matrix math.la.c.mat.echelon math.la.e.mat.row_reduce.3x3 4 0.90 Example of row reducing a 3-by-3 matrix math.la.c.mat.echelon math.la.e.mat.row_reduce.4x4 4 0.89 Example of row reducing a 4-by-4 matrix math.la.c.mat.echelon math.la.t.mat.rref.exists 4 0.88 Every matrix is row-equivalent to a matrix in reduced row echelon form. math.la.c.mat.echelon math.la.t.mat.rref.unique 4 0.87 Every matrix is row-equivalent to only one matrix in reduced row echelon form. math.la.c.mat.echelon math.la.d.mat.erref.of 4 0.86 Definition of extended reduced row echelon form of a matrix math.la.c.mat.echelon math.la.t.mat.erref.of 4 0.85 Theorem describing properties of the block matrices of the extended reduced row echelon form of a matrix math.la.c.mat.echelon math.la.t.mat.erref.spaces 4 0.84 Theorem describing spaces associated to the block matrices of the extended reduced row echelon form of a matrix math.la.c.mat.echelon math.la.t.mat.erref.dimension 4 0.83 Theorem describing the dimension of spaces associated to the block matrices of the extended reduced row echelon form of a matrix math.la.c.mat.types math.la.d.mat.unit 3 0.98 Definition of unit matrix math.la.c.mat.types math.la.d.mat.permutation 3 0.97 Definition of permutation matrix math.la.c.mat.types math.la.c.mat.elementary 3 0.96 Elementary matrices math.la.c.mat.elementary math.la.d.mat.elementary 4 0.99 Definition of elementary matrix math.la.c.mat.elementary math.la.t.mat.elementary.prod 4 0.98 A nonsingular matrix can be written as a product of elementary matrices. math.la.c.mat.elementary math.la.t.mat.mult.elementary 4 0.97 Row operations are given by multiplication by elementary matrices. math.la.c.mat.elementary math.la.d.mat.elementary.inv 4 0.96 Elementary matrices are invertible/nonsingular. math.la.c.mat.types math.la.c.mat.triamgular 3 0.95 Triangular matrices math.la.c.mat.triamgular math.la.d.mat.triangular.upper 4 0.99 Definition of an upper triangular matrix math.la.c.mat.triamgular math.la.d.mat.triangular.lower 4 0.98 Definition of a lower triangular matrix math.la.c.mat.triamgular math.la.t.mat.triangular.prod 4 0.97 The product of upper/lower triangular matrices is upper/lower triangular. math.la.c.mat.triamgular math.la.t.mat.triangular.inv 4 0.96 The inverse of an invertible upper/lower triangular matrix is upper/lower triangular. math.la.c.mat.triamgular math.la.t.mat.triangular.unitary 4 0.95 Every square matrix is conjugate, via a unitary matrix, to an upper triangular matrix. math.la.c.mat.types math.la.c.mat.block 3 0.94 Block matrices math.la.c.mat.block math.la.d.mat.block 4 0.99 Definition of block/partitioned matrix math.la.c.mat.block math.la.c.mat.mult.block 4 0.98 Multiplication of block/partitioned matrices math.la.c.mat.block math.la.d.mat.block_diagonal 4 0.97 Definition of block diagonal matrix math.la.c.mat.types math.la.c.mat.symmetric 3 0.93 Symmetric matrices math.la.c.mat.symmetric math.la.d.mat.symmetric 4 0.99 Definition of symmetric matrix math.la.c.mat.symmetric math.la.t.mat.symmetric.square 4 0.98 Symmetric matrices are square. math.la.c.mat.symmetric math.la.t.mat.symmetric.eig.orthogonal 4 0.97 Eigenvectors of a symmetric matrix with different eigenvalues are orthogonal. math.la.c.mat.symmetric math.la.t.mat.symmetric.spectral 4 0.96 The spectral theorem for symmetric matrices math.la.c.mat.symmetric math.la.t.mat.symmetric.spectraldecomposition 4 0.95 Formula for the spectral decomposition for a symmetric matrix math.la.c.mat.symmetric math.la.d.mat.diagonalizable.orthogonally 4 0.94 Definition of orthogonally diagonalizable matrix math.la.c.mat.symmetric math.la.t.mat.diagonalizable.orthogonally 4 0.93 A matrix is orthogonally diagonalizable if and only if it is symmetric. math.la.c.mat.symmetric math.la.d.mat.skewsymmetric 4 0.92 Definition of skew-symmetric matrix math.la.c.mat.types math.la.c.mat.nilpotent 3 0.92 Nilpotent matrices math.la.c.mat.nilpotent math.la.d.mat.nilpotent 4 0.99 Definition of nilpotent matrix math.la.c.mat.nilpotent math.la.t.mat.nilpotent.zo 4 0.98 Every nilpotent matrix is similar to one with 1 on subdiagonal blocks and all other entries 0. math.la.c.mat.nilpotent math.la.t.mat.nilpotent.eig 4 0.97 A matrix is nilpotent if and only if its only eigenvalue is 0. math.la.c.mat.nilpotent math.la.d.nilpotent.index 4 0.96 Definition of index of nilpotency math.la.c.mat.nilpotent math.la.t.mat.jordan.sum 4 0.95 Every square matrix is similar the sum of a diagonal and a nilpotent matrix. math.la.c.mat.types math.la.d.mat.orthogonal 3 0.91 Definition of orthogonal matrix math.la.c.mat.types math.la.c.mat.unitary 3 0.90 Unitary matrices math.la.c.mat.unitary math.la.d.mat.unitary 4 0.99 Definition of unitary matrix math.la.c.mat.unitary math.la.t.mat.unitary.inv 4 0.98 Unitary matrices are invertible. math.la.c.mat.unitary math.la.t.mat.unitary.col.orthogonal 4 0.97 Unitary matrices have orthogonal (orthonormal) rows/columns. math.la.c.mat.unitary math.la.t.mat.unitary.innerproduct 4 0.96 Unitary matrices preserve inner products. math.la.c.mat.unitary math.la.t.mat.unitary.basis.orthogonal 4 0.95 Unitary matrices preserve orthogonal (orthonormal) bases. math.la.c.mat.types math.la.d.mat.band 3 0.89 Definition of band matrix math.la.c.mat.types math.la.d.mat.vandermonde 3 0.88 Definition of Vandermonde matrix math.la.c.mat.types math.la.d.mat.markov 3 0.87 Definition of Markov matrix math.la.c.mat.types math.la.c.mat.hermitian 3 0.86 Hermitian matrices math.la.c.mat.hermitian math.la.d.mat.hermitian 4 0.99 Definition of Hermitian/self-adjoint matrix math.la.c.mat.hermitian math.la.d.mat.hermitian.innerproduct.cn 4 0.98 Multiplication by a Hermitian matrix commutes with the standard inner product on C^n. math.la.c.mat.types math.la.c.mat.normal 3 0.85 Normal matrices math.la.c.mat.normal math.la.d.mat.normal 4 0.99 Definition of normal matrix math.la.c.mat.normal math.la.t.mat.normal.diagonalize 4 0.98 A matrix is orthogonally diagonalizable if and only if it is normal (The principal axis theorem). math.la.c.mat.normal math.la.t.mat.normal.eigenval 4 0.97 The eigenvectors of a normal matrix are an orthonormal basis. math.la.c.mat math.la.c.mat.equivalence 2 0.96 Matrix equivalence math.la.c.mat.equivalence math.la.d.mat.equiv 3 0.99 Definition of equivalent matrices math.la.c.mat.equivalence math.la.t.mat.equiv.map 3 0.98 Equivalent matrices represent the same linear transformation with resect to appropriate bases. math.la.c.mat.equivalence math.la.t.mat.equiv.diag 3 0.97 A matrix of rank k is equivalent to a matrix with 1 in the first k diagonal entries and 0 elsewhere. math.la.c.mat.equivalence math.la.t.mat.equiv.rank 3 0.96 Two matrices of the same size are equivalent if and only if they have the same rank. math.la.c.mat math.la.c.mat.form 2 0.95 Canonical forms of matrices math.la.c.mat.form math.la.c.mat.diagonalize 3 0.99 Matrix diagonalization math.la.c.mat.diagonalize math.la.d.mat.diagonalization 4 0.99 Definition of matrix diagonalization math.la.c.mat.diagonalize math.la.d.mat.diagonalizable 4 0.98 Definition of diagonalizable matrix math.la.c.mat.diagonalize math.la.t.mat.diagonalizable 4 0.97 An n-by-n matrix is diagonalizable if and only if it has n linearly independent eigenvectors. math.la.c.mat.diagonalize math.la.t.mat.diagonalizable.eigenspace 4 0.96 An n-by-n matrix is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n. math.la.c.mat.diagonalize math.la.t.mat.diagonalizable.charpoly 4 0.95 An n-by-n matrix is diagonalizable if and only if the characteristic polynomial factors completely, and the dimension of each eigenspace equals the (algebraic) multiplicity of the eigenvalue. math.la.c.mat.diagonalize math.la.t.mat.diagonalized_by 4 0.94 A diagonalizable matrix is diagonalized by a matrix having the eigenvectors as columns. math.la.c.mat.diagonalize math.la.t.mat.diagonalizable.basis 4 0.93 An n-by-n matrix is diagonalizable if and only if the union of the basis vectors for the eigenspaces is a basis for R^n (or C^n). math.la.c.mat.diagonalize math.la.t.mat.diagonalizable.distinct 4 0.92 An n-by-n matrix with n distinct eigenvalues is diagonalizable. math.la.c.mat.diagonalize math.la.t.mat.real.diagonalize.complex.2x2 4 0.91 Formula for diagonalizing a real 2-by-2 matrix with a complex eigenvalue. math.la.c.mat.form math.la.d.mat.hessenberg 3 0.98 Definition of Hessenberg form math.la.c.mat.form math.la.d.mat.jordan 3 0.97 Definition of Jordan form math.la.c.mat.form math.la.d.mat.rational 3 0.96 Definition of rational form math.la.c.mat math.la.c.mat.factor 2 0.94 Factorization of matrices math.la.c.mat.factor math.la.d.mat.svd 3 0.99 Definition of singular value decomposition (SVD) math.la.c.mat.factor math.la.c.mat.lu 3 0.98 LU decomposition math.la.c.mat.lu math.la.d.mat.lu 4 0.99 Definition of LU decomposition math.la.c.mat.lu math.la.t.mat.lu 4 0.98 Algorithm for computing an LU decomposition math.la.c.mat.lu math.la.d.mat.lu.reduced 4 0.97 Definition of reduced LU decomposition math.la.c.mat.factor math.la.d.mat.rank_factorization 3 0.97 Definition of rank factorization of a matrix math.la.c.mat.factor math.la.d.mat.cholesky 3 0.96 Definition of Cholesky decomposition math.la.c.mat.factor math.la.c.mat.qr 3 0.95 QR decomposition math.la.c.mat.qr math.la.d.mat.qr 4 0.99 Definition of QR decomposition math.la.c.mat.qr math.la.t.mat.qr 4 0.98 The QR decomposition of a nonsingular matrix exists. math.la.c.mat.factor math.la.d.mat.schur 3 0.94 Definition of Schur triangulation math.la.c.mat math.la.c.mat.similar 2 0.93 Similarity of matrices math.la.c.mat.similar math.la.d.mat.similar 3 0.99 Definition of similar matrices math.la.c.mat.similar math.la.t.mat.similar.equiv 3 0.98 Similarity of matrices in an equivalence relation. math.la.c.mat.similar math.la.d.mat.similar.transform 3 0.97 Definition of similarity transform math.la.c.mat.similar math.la.t.mat.similar.eig 3 0.96 Similar matrices have the same eigenvalues and the same characteristic polynomials. math.la.c.mat.similar math.la.t.mat.jordan 3 0.95 Every square matrix is similar to one in Jordan form. math.la.c.mat math.la.c.mat.nonsingular 2 0.92 Nonsingular matrices and equivalences math.la.c.mat.nonsingular math.la.d.mat.nonsingular.inv 3 0.99 Definition of nonsingular matrix: matrix is invertible math.la.c.mat.nonsingular math.la.d.mat.nonsingular.z 3 0.98 Definition of nonsingular matrix: the associated homogeneous linear system has only the trivial solution math.la.c.mat.nonsingular math.la.d.mat.singular 3 0.97 Definition of singular matrix (not nonsingular) math.la.c.mat.nonsingular math.la.p.equiv.multiple 3 0.96 Proof of several equivalences for nonsingular matrix math.la.c.mat.nonsingular math.la.t.equiv.mat.eqn.unique 3 0.95 Equivalence theorem for nonsingular matrices: the equation Ax=b has a unique solution for all b. math.la.c.mat.nonsingular math.la.t.equiv.mat.eqn 3 0.94 Equivalence theorem for nonsingular matrices: the equation Ax=b has a solution for all b. math.la.c.mat.nonsingular math.la.t.equiv.mat.eqn.homog 3 0.93 Equivalence theorem for nonsingular matrices: the equation Ax=0 has only the trivial solution. math.la.c.mat.nonsingular math.la.t.equiv.row.span 3 0.92 Equivalence theorem for nonsingular matrices: the rows of A span R^n (or C^n). math.la.c.mat.nonsingular math.la.t.equiv.col.span 3 0.91 Equivalence theorem for nonsingular matrices: the columns of A span R^n (or C^n). math.la.c.mat.nonsingular math.la.t.equiv.row.linindep 3 0.90 Equivalence theorem for nonsingular matrices: the rows of A are linearly independent. math.la.c.mat.nonsingular math.la.t.equiv.col.linindep 3 0.89 Equivalence theorem for nonsingular matrices: the columns of A are linearly independent. math.la.c.mat.nonsingular math.la.t.equiv.row.basis 3 0.88 Equivalence theorem for nonsingular matrices: the rows of A are a basis for R^n (or C^n). math.la.c.mat.nonsingular math.la.t.equiv.col.basis 3 0.87 Equivalence theorem for nonsingular matrices: the columns of A are a basis for R^n (or C^n). math.la.c.mat.nonsingular math.la.t.equiv.col.dim 3 0.86 Equivalence theorem for nonsingular matrices: the dimension of the column space of A is n. math.la.c.mat.nonsingular math.la.t.equiv.row.pivot 3 0.85 Equivalence theorem for nonsingular matrices: there is a pivot position in every row of A. math.la.c.mat.nonsingular math.la.t.equiv.identity 3 0.84 Equivalence theorem for nonsingular matrices: the matrix A row-reduces to the identity matrix. math.la.c.mat.nonsingular math.la.t.equiv.inv 3 0.83 Equivalence theorem for nonsingular matrices: the matrix A has an inverse. math.la.c.mat.nonsingular math.la.t.equiv.inv.left 3 0.82 Equivalence theorem for nonsingular matrices: the matrix A has a left inverse. math.la.c.mat.nonsingular math.la.t.equiv.inv.right 3 0.81 Equivalence theorem for nonsingular matrices: the matrix A has a right inverse. math.la.c.mat.nonsingular math.la.t.equiv.transpose.inv 3 0.80 Equivalence theorem for nonsingular matrices: the transpose of the matrix A has an inverse. math.la.c.mat.nonsingular math.la.t.equiv.lintrans.injective 3 0.79 Equivalence theorem for nonsingular matrices: the linear transformation given by T(x)=Ax is one-to-one/injective. math.la.c.mat.nonsingular math.la.t.equiv.lintrans.surjective 3 0.78 Equivalence theorem for nonsingular matrices: the linear transformation given by T(x)=Ax is onto/surjective. math.la.c.mat.nonsingular math.la.t.equiv.lintrans.inv 3 0.77 Equivalence theorem for nonsingular matrices: the linear transformation given by T(x)=Ax has an inverse. math.la.c.mat.nonsingular math.la.t.equiv.lintrans.isomorphism 3 0.76 Equivalence theorem for nonsingular matrices: the linear transformation given by T(x)=Ax is an isomorphism. math.la.c.mat.nonsingular math.la.t.equiv.det 3 0.75 Equivalence theorem for nonsingular matrices: the determinant of A is nonzero. math.la.c.mat.nonsingular math.la.t.equiv.rank 3 0.74 Equivalence theorem for nonsingular matrices: the matrix A has rank n. math.la.c.mat.nonsingular math.la.t.equiv.nullspace 3 0.73 Equivalence theorem for nonsingular matrices: the null space of the matrix A is {0}. math.la.c.mat.nonsingular math.la.t.equiv.nullity 3 0.72 Equivalence theorem for nonsingular matrices: the nullity of the matrix A is 0. math.la.c.mat.nonsingular math.la.t.equiv.eig 3 0.71 Equivalence theorem for nonsingular matrices: the matrix A does not have 0 as an eigenvalue. math.la.c.mat.nonsingular math.la.t.equiv.change_of_basis 3 0.70 Equivalence theorem for nonsingular matrices: the matrix A is a change-of-basis matrix. math.la.c.mat.nonsingular math.la.t.equiv.identitymap 3 0.69 Equivalence theorem for nonsingular matrices: the matrix A represents the identity map with respect to some pair of bases. math.la.c.mat math.la.c.mat.rank 2 0.91 Rank and mullity math.la.c.mat.rank math.la.d.mat.rank.column 3 0.99 Definition of column rank of a matrix math.la.c.mat.rank math.la.d.mat.rank 3 0.98 Definition of rank of a matrix math.la.c.mat.rank math.la.d.mat.nullity 3 0.97 Definition of nullity of a matrix math.la.c.mat.rank math.la.t.mat.rank.pivot 3 0.96 The rank of a matrix equals number of pivots in a reduced row echelon form. math.la.c.mat.rank math.la.t.mat.lintrans.rank 3 0.95 The rank of a matrix equals the rank of the linear transformation it represents. math.la.c.mat.rank math.la.t.mat.row_space.col_space 3 0.94 The row space and the column space of a matrix have the same dimension. math.la.c.mat.rank math.la.t.mat.ranknullity 3 0.93 If A is a matrix, then the rank of A plus the nullity of A equals the number of columns of A. math.la.c.mat math.la.c.mat.eig 2 0.90 Eigenvalues and eigenvectors math.la.c.mat.eig math.la.d.mat.eig 3 0.99 Definition of eigenvalue of a matrix math.la.c.mat.eig math.la.d.mat.eigvec 3 0.98 Definition of eigenvector of a matrix math.la.c.mat.eig math.la.c.mat.eigsp 3 0.97 Eigenspaces math.la.c.mat.eigsp math.la.d.mat.eigsp 4 0.99 Definition of eigenspace of a matrix math.la.c.mat.eigsp math.la.t.mat.eigsp.subsp 4 0.98 An eigenspace of a matrix is a nontrivial subspace. math.la.c.mat.eigsp math.la.t.mat.eigsp.nullspace 4 0.97 An eigenspace of a matrix is the null space of a related matrix. math.la.c.mat.eig math.la.t.mat.eig.exists 3 0.96 Every matrix has an eigenvalue over the complex numbers. math.la.c.mat.eig math.la.d.mat.eig.operations 3 0.95 Eigenvalues and operations on matrices math.la.d.mat.eig.operations math.la.t.mat.eig.scalar 4 0.99 The eigenvalues of a scalar multiple of a matrix are the scalar multiples of the eigenvalues. math.la.d.mat.eig.operations math.la.t.mat.eig.power 4 0.98 The eigenvalues of a power of a matrix are the power the eigenvalues. math.la.d.mat.eig.operations math.la.t.mat.eig.polynomial 4 0.97 The eigenvalues of a polynomial of a matrix are the polynomial of the eigenvalues. math.la.d.mat.eig.operations math.la.t.mat.eig.inv 4 0.96 The eigenvalues of the inverse of a nonsingular matrix are the reciprocals of the eigenvalues. math.la.d.mat.eig.operations math.la.t.mat.eig.transpose 4 0.95 A matrix and its transpose have the same eigenvalues/characteristic polynomial. math.la.c.mat.eig math.la.t.mat.eigvec.linindep 3 0.94 Eigenvectors with distinct eigenvalues are linearly independent. math.la.c.mat.eig math.la.c.mat.eig.multiplicity 3 0.93 Multiplicity math.la.c.mat.eig.multiplicity math.la.d.mat.eig.multiplicity.algebraic 4 0.99 Definition of (algebraic) multiplicity of an eigenvalue math.la.c.mat.eig.multiplicity math.la.d.mat.eig.multiplicity.geometric 4 0.98 Definition of geometric multiplicity of an eigenvalue math.la.c.mat.eig.multiplicity math.la.d.mat.eig.number 4 0.97 An n-by-n matrix nas n (complex) eigenvalues, counted according to algebraic multiplicity. math.la.c.mat.eig math.la.c.mat.polynomial 3 0.92 Characteristic and minimal polynomials math.la.c.mat.polynomial math.la.d.mat.polynomial.apply 4 0.99 Definition of applying a polynomial to a square matrix math.la.c.mat.polynomial math.la.d.mat.charpoly 4 0.98 Definition of characteristic polynomial of a matrix math.la.c.mat.polynomial math.la.d.mat.charpoly.eqn 4 0.97 Definition of characteristic equation of a matrix math.la.c.mat.polynomial math.la.d.mat.minpoly 4 0.96 Definition of minimal polynomial of a matrix math.la.c.mat.polynomial math.la.d.mat.minpoly.exists 4 0.95 The minimal polynomial of a square matrix exists and is unique. math.la.c.mat.polynomial math.la.t.mat.charpoly.eig 4 0.94 The eigenvalues of a matrix are the roots/solutions of its characteristic polynomial/equation. math.la.c.mat.polynomial math.la.t.mat.charpoly.z 4 0.93 The characteristic polynomial applied to the matrix gives the 0 matrix. math.la.c.mat.polynomial math.la.d.mat.cayleyhamilton 4 0.92 The Cayley-Hamilton theorem for a matrix. math.la.c.mat.eig math.la.t.mat.eig.multiplicity.eigenspace 3 0.91 The dimension of a eigenspace is less than or equal to the (algebraic) multiplicity of the eigenvalue. math.la.c.mat.eig math.la.c.mat.eig.types 3 0.90 Particular types of matrices math.la.c.mat.eig.types math.la.t.mat.eig.triangular 4 0.99 The eigenvalues of a triangular matrix are the entries on the main diagonal. math.la.c.mat.eig.types math.la.t.mat.real.eig.cn 4 0.98 A matrix with real entries has eigenvalues occurring in conjugate pairs. math.la.c.mat.eig.types math.la.t.mat.hermitian.eig.real 4 0.97 Hermitian matrices have real eigenvalues. math.la.c.mat.eig.types math.la.t.mat.hermitian.eigvec.orthogonal 4 0.96 Distinct eigenvalues of a Hermitian matrix have orthogonal eigenvectors. math.la.c.mat.eig.types math.la.d.mat.positive_definite 4 0.95 Definition of positive-definite matrix math.la.c.mat math.la.c.mat.det 2 0.89 Determinants math.la.c.mat.det math.la.d.mat.trace 3 0.99 Definition of trace of a matrix math.la.c.mat.det math.la.c.mat.cofactor 3 0.98 Cofactors math.la.c.mat.cofactor math.la.d.mat.cofactor 4 0.99 Definition of cofactor/submatrix of a matrix math.la.c.mat.cofactor math.la.d.mat.det.cofactor 4 0.98 Definition of determinant of a matrix as a cofactor expansion across the first row math.la.c.mat.cofactor math.la.t.mat.det.cofactor.row 4 0.97 The determinant of a matrix can be computed as a cofactor expansion across any row. math.la.c.mat.cofactor math.la.t.mat.det.cofactor.col 4 0.96 The determinant of a matrix can be computed as a cofactor expansion down any column. math.la.c.mat.cofactor math.la.t.mat.inv.cofactors 4 0.95 The inverse of a matrix can be expressed in terms of its matrix of cofactors. math.la.c.mat.cofactor math.la.t.cramer 4 0.94 Cramer's rule math.la.c.mat.det math.la.c.mat.det.operations 3 0.97 Determinants and operations on matrices math.la.c.mat.det.operations math.la.d.mat.det.echelon 4 0.99 Definition of determinant of a matrix as a product of the diagonal entries in a non-scaled echelon form. math.la.c.mat.det.operations math.la.t.mat.det.echelon 4 0.98 The determinant of a matrix can be expressed as a product of the diagonal entries in a non-scaled echelon form. math.la.c.mat.det.operations math.la.d.mat.det.elementaryoperations 4 0.97 Definition of the determinant in terms of the effect of elementary row operations math.la.c.mat.det.operations math.la.d.mat.det.permutation 4 0.96 The permutation expansion for determinants math.la.c.mat.det.operations math.la.t.mat.det.transpose 4 0.95 A matrix and its transpose have the same determinant. math.la.c.mat.det.operations math.la.t.mat.det.product 4 0.94 If A and B are n-by-n matrices, then det(AB)=det(A)det(B). math.la.c.mat.det.operations math.la.t.mat.det.inv 4 0.93 The determinant of the inverse of A is the reciprocal of the determinant of A. math.la.c.mat.det.operations math.la.t.mat.det.block 4 0.92 The determinant of a block diagonal matrix is the product of the determinants of the blocks. math.la.c.mat.det math.la.c.mat.det.axiomatic 3 0.96 Determinants axiomatically math.la.c.mat.det.axiomatic math.la.d.multilinear 4 0.99 Definition of multilinear function math.la.c.mat.det.axiomatic math.la.t.mat.det.exists 4 0.98 The determinant function exists. math.la.c.mat.det.axiomatic math.la.t.mat.det.unique 4 0.97 The determinant function is unique. math.la.c.mat.det.axiomatic math.la.t.det.multilinear 4 0.96 A determinant is a multilinear function math.la.c.mat.det.axiomatic math.la.t.mat.det.add_mult 4 0.95 Adding a multiple of one row to another row does not change the determinant. math.la.c.mat.det.axiomatic math.la.t.mat.det.switch 4 0.94 Switching two rows multiplies the determinant by -1. math.la.c.mat.det.axiomatic math.la.t.mat.det.scalar 4 0.93 Multiplying a row by a scalar multiplies the determinant by that scalar. math.la.c.mat.det.axiomatic math.la.t.mat.row.equal 4 0.92 A matrix with two equal rows/columns has determinant 0 math.la.c.mat.det.axiomatic math.la.t.mat.row.z 4 0.91 A matrix with a 0 row/column has determinant 0 math.la.c.mat.det math.la.c.mat.det.types 3 0.95 Particular types of matrices math.la.c.mat.det.types math.la.t.mat.det.2x2 4 0.99 Formula for the determinant of a 2-by-2 matrix. math.la.c.mat.det.types math.la.t.mat.det.3x3 4 0.98 Formula for the determinant of a 3-by-3 matrix. math.la.c.mat.det.types math.la.t.mat.det.trianglar 4 0.97 The determinant of a triangular matrix is the product of the entries on the diagonal. math.la.c.mat.det.types math.la.t.mat.elementary.det 4 0.96 Theorem describing the determinants of elementary matrices. math.la.c.mat.det math.la.t.mat.det.col.volume 3 0.94 The determinant of a matrix measures the area/volume of the parallelogram/parallelipiped determined by its columns. math.la.c.mat.det math.la.t.lintrans.det.volume 3 0.93 The determinant of the matrix of a linear transformation is the factor by which the area/volume changes. math.la.c.mat.det math.la.d.mat.classicaladjoint 3 0.92 Definition of adjugate/classical adjoint of a matrix math.la.c.mat.det math.la.c.mat.illconditioned 3 0.91 A matrix is called ill-conditioned if it is nearly singular math.la.c.mat.det math.la.c.mat.conditionnumber 3 0.90 The condition number of matrix measures how close it is to being singular math.la math.la.c.linsys.mat 1 0.97 Linear systems and matrices math.la.c.linsys.mat math.la.t.linsys.vec 2 0.99 A linear system is equivalent to a vector equation. math.la.c.linsys.mat math.la.t.linsys.mat 2 0.98 A linear system is equivalent to a matrix equation. math.la.c.linsys.mat math.la.c.linsys.mat.terminology 2 0.97 Terminology math.la.c.linsys.mat.terminology math.la.d.mat.augmented 3 0.99 Definition of augmented matrix (of a linear system) math.la.c.linsys.mat.terminology math.la.d.mat.coeff 3 0.98 Definition of coefficient matrix of a linear system math.la.c.linsys.mat.terminology math.la.d.vec.constant 3 0.97 Definition of constant vector of a linear system math.la.c.linsys.mat.terminology math.la.d.vec.solution 3 0.96 Definition of solution vector of a linear system math.la.c.linsys.mat.terminology math.la.d.linsys.mat.repn 3 0.95 Definition of matrix representation of a linear system math.la.c.linsys.mat math.la.c.linsys.mat.solve 2 0.96 Using matrices to solve linear systems math.la.c.linsys.mat.solve math.la.e.linsys.3x3.soln.row_reduce.o 3 0.99 Example of solving a 3-by-3 system of linear equations by row-reducing the augmented matrix, in the case of one solution math.la.c.linsys.mat.solve math.la.e.linsys.3x3.soln.row_reduce.z 3 0.98 Example of solving a 3-by-3 system of linear equations by row-reducing the augmented matrix, in the case of no solutions math.la.c.linsys.mat.solve math.la.e.linsys.3x3.soln.row_reduce.i 3 0.97 Example of solving a 3-by-3 system of linear equations by row-reducing the augmented matrix, in the case of infinitely many solutions math.la.c.linsys.mat.solve math.la.e.linsys.3x3.soln.homog.row_reduce.o 3 0.96 Example of solving a 3-by-3 homogeneous system of linear equations by row-reducing the augmented matrix, in the case of one solution math.la.c.linsys.mat.solve math.la.e.linsys.3x3.soln.homog.row_reduce.i 3 0.95 Example of solving a 3-by-3 homogeneous system of linear equations by row-reducing the augmented matrix, in the case of infinitely many solutions math.la.c.linsys.mat math.la.c.mat.eqn 2 0.95 Matrix equations math.la.c.mat.eqn math.la.d.mat.eqn 3 0.99 Definition of matrix equation math.la.c.mat.eqn math.la.e.mat.eqn.3x3.solve 3 0.98 Example of solving a 3-by-3 matrix equation math.la.c.mat.eqn math.la.e.mat.eqn.3x3.homog.solve 3 0.97 Example of solving a 3-by-3 homogeneous matrix equation math.la.c.mat.eqn math.la.t.mat.eqn.linsys 3 0.96 A matrix equation is equivalent to a linear system math.la.c.mat.eqn math.la.t.mat.eqn.lincomb 3 0.95 The matrix equation Ax=b has a solution if and only if b is a linear combination of the columns of A. math.la.c.linsys.mat math.la.t.mat.row_equiv.linsys 2 0.94 Row equivalent matrices represent equivalent linear systems math.la.c.linsys.mat math.la.c.linsys.mat.echelon 2 0.93 Linear systems and echelon matrices math.la.c.linsys.mat.echelon math.la.t.echelon.consistent 3 0.99 The echelon form can be used to determine if a linear system is consistent. math.la.c.linsys.mat.echelon math.la.e.echelon.consistent 3 0.98 Example of using the echelon form to determine if a linear system is consistent. math.la.c.linsys.mat.echelon math.la.t.rref.pivot.oi 3 0.97 The number of pivots in the reduced row echelon form of a consistent system determines whether there is one or infinitely many solutions. math.la.c.linsys.mat.echelon math.la.t.rref.pivot.free 3 0.96 The number of pivots in the reduced row echelon form of a consistent system determines the number of free variables in the solution set. math.la math.la.c.vsp 1 0.96 Vector spaces math.la.c.vsp math.la.c.vsp.coord 2 0.99 Coordinate vector spaces math.la.c.vsp.coord math.la.c.vec.rncn 3 0.99 Algebraic properties of R^n (or C^n) math.la.c.vec.rncn math.la.d.scalar.coord 4 0.99 Definition of scalar, coordinate vector space math.la.c.vec.rncn math.la.d.vec.coord 4 0.98 Definition of vector, coordinate vector space math.la.c.vec.rncn math.la.d.vec.col.coord 4 0.97 Definition of column vector, coordinate vector space math.la.c.vec.rncn math.la.d.vec.rncn 4 0.96 Definition of R^n (or C^n) math.la.c.vec.rncn math.la.d.vec.size.coord 4 0.95 Definition of size of a vector, coordinate vector space math.la.c.vec.rncn math.la.d.vec.component.coord 4 0.94 Definition of entry/component of a vector, coordinate vector space math.la.c.vec.rncn math.la.d.vec.z.coord 4 0.93 Definition of 0 vector, coordinate vector space math.la.c.vec.rncn math.la.d.vec.equal.coord 4 0.92 Definition of equality of vectors, coordinate vector space math.la.c.vec.rncn math.la.d.vec.sum.coord 4 0.91 Definition of vector sum/addition, coordinate vector space math.la.c.vec.rncn math.la.t.vec.sum.coord 4 0.90 Vector sum/addition is commutative and associative, coordinate vector space math.la.c.vec.rncn math.la.d.vec.conjugate.cn 4 0.89 Definition of conjugate of a vector in C^n math.la.c.vec.rncn math.la.d.vec.real.cn 4 0.88 Definition of the real part of a vector in C^n math.la.c.vec.rncn math.la.d.vec.imaginary.cn 4 0.87 Definition of the imaginary part of a vector in C^n math.la.c.vec.rncn math.la.t.vec.sum.conjugate.cn 4 0.86 The conjugate of a sum of vectors in C^n is the sum of the conjugates math.la.c.vec.rncn math.la.d.vec.scalar.mult.coord 4 0.85 Definition of vector-scalar multiplication, coordinate vector space math.la.c.vec.rncn math.la.t.vec.scalar.mult.conjugate.cn 4 0.84 The conjugate of vector-scalar multiplication in C^n is the product of the conjugates. math.la.c.vec.rncn math.la.e.vec.scalar.mult.r2 4 0.83 Example of vector-scalar multiplication in R^2 math.la.c.vsp.coord math.la.c.vec.rncn.geom 3 0.98 Geometric properties of R^n (or C^n) math.la.c.vec.rncn.geom math.la.e.vec.sum.geometric.r2 4 0.99 Example of a sum of vectors interpreted geometrically in R^2 math.la.c.vec.rncn.geom math.la.t.vec.sum.geometric.rncn 4 0.98 Vector sum/addition interpreted geometrically in R^n (or C^n) math.la.c.vsp.coord math.la.d.vsp.axioms.coord 3 0.97 Axioms of a vector space, coordinate vector space math.la.c.vsp.coord math.la.c.vec.lincomb.coord 3 0.96 Linear combinations math.la.c.vec.lincomb.coord math.la.d.vec.lincomb.coord 4 0.99 Definition of linear combination of vectors, coordinate vector space math.la.c.vec.lincomb.coord math.la.e.vec.lincomb.r2 4 0.98 Example of linear combination of vectors in R^2 math.la.c.vec.lincomb.coord math.la.d.vec.lincomb.weight.coord 4 0.97 Definition of weights in a linear combination of vectors, coordinate vector space math.la.c.vec.lincomb.coord math.la.e.vec.lincomb.weight.solve.r3 4 0.96 Example of writing a given vector in R^3 as a linear combination of given vectors math.la.c.vsp.coord math.la.c.vec.span.coord 3 0.95 Spans math.la.c.vec.span.coord math.la.d.vec.span.coord 4 0.99 Definition of span of a set of vectors, coordinate vector space math.la.c.vec.span.coord math.la.c.vec.span.geometric.rncn 4 0.98 Geometric description of span of a set of vectors in R^n (or C^n) math.la.c.vec.span.coord math.la.e.vec.span.r3 4 0.97 Determine if a particular set of vectors spans R^3 math.la.c.vec.span.coord math.la.e.vec.span.of 4 0.96 Determine if a particular vector is in the span of a set of vectors math.la.c.vec.span.coord math.la.e.vec.span.of.r2 4 0.95 Determine if a particular vector is in the span of a set of vectors in R^2 math.la.c.vec.span.coord math.la.e.vec.span.of.r3 4 0.94 Determine if a particular vector is in the span of a set of vectors in R^3 math.la.c.vsp.coord math.la.c.vsp.subspace.coord 3 0.94 Subspaces math.la.c.vsp.subspace.coord math.la.d.vsp.subspace.coord 4 0.99 Definition of subspace, coordinate vector space math.la.c.vsp.subspace.coord math.la.d.vec.span.subspace.coord 4 0.98 Definition of subspace spanned by a set of a set of vectors, coordinate vector space math.la.c.vsp.subspace.coord math.la.d.vsp.subspace.z.coord 4 0.97 Definition of the 0/trivial subspace math.la.c.vsp.coord math.la.c.vec.lindep 3 0.93 Linear (in)dependence math.la.c.vec.lindep math.la.d.vec.lindep.relation 4 0.99 Definition of linear dependence relation on a set of vectors math.la.c.vec.lindep math.la.d.vec.lindep.relation.trivial 4 0.98 Definition of trivial linear dependence relation on a set of vectors math.la.c.vec.lindep math.la.e.vec.linindep.r3 4 0.97 Determine if a particular set of vectors in R^3 in linearly independent math.la.c.vec.lindep math.la.d.vec.linindep.coord 4 0.96 Definition of linearly independent set of vectors: if a linear combination is 0, then every coefficient is 0, coordinate vector space. math.la.c.vec.lindep math.la.t.vec.lindep.coord 4 0.95 Theorem: a set of vectors is linearly dependent if and only if one of the vectors can be written as a linear combination of the other vectors, coordinate vector space. math.la.c.vec.lindep math.la.d.vec.lindep.coord 4 0.94 Definition of linearly dependent set of vectors: one of the vectors can be written as a linear combination of the other vectors, coordinate vector space. math.la.c.vec.lindep math.la.t.vec.linindep.coord 4 0.93 Theorem: a set of vectors is linearly independent if and only if whenever a linear combination is 0, then every coefficient is 0, coordinate vector space. math.la.c.vec.lindep math.la.t.vec.linindep.homog 4 0.92 A set of vectors is linearly independent if and only if the homogeneous linear system corresponding to the matrix of column vectors has only the trivial solution. math.la.c.vec.lindep math.la.t.vec.linindep.pivot 4 0.91 A set of vectors is linearly independent if and only if the matrix of column vectors in reduced row-echelon form has every column as a pivot column. math.la.c.vec.lindep math.la.t.vec.lindep.z 4 0.90 If a set of vectors contains the 0 vector, then the set is linearly dependent. math.la.c.vec.lindep math.la.t.vec.lindep.two 4 0.89 A set of two vectors is linearly dependent if and only if neither is a scalar multiple of the other. math.la.c.vec.lindep math.la.t.vec.lindep.more.rncn 4 0.88 If a set of vectors in R^n (or C^n) contains more than n elements, then the set is linearly dependent. math.la.c.vsp.coord math.la.c.vsp.basis.coord 3 0.92 Bases math.la.c.vsp.basis.coord math.la.d.vsp.basis.coord 4 0.99 Definition of basis of a vector space (or subspace), coordinate vector space math.la.c.vsp.basis.coord math.la.d.vsp.basis.standard.rncn 4 0.98 Definition of the standard/natural basis of R^n (or C^n) math.la.c.vsp.basis.coord math.la.t.vsp.basis.standard.rncn 4 0.97 The standard/natural basis of R^n (or C^n) is a basis. math.la.c.vsp.basis.coord math.la.d.vsp.basis.coord.change.rncn 4 0.96 Definition of change-of-coordinates matrix relative to a given basis of R^n (or C^n) math.la.c.vsp.basis.coord math.la.d.vsp.basis.standard.leq_n 4 0.95 Definition of the standard basis of the polynomials of degree at most n math.la.c.vsp.basis.coord math.la.d.vsp.basis.standard.m_by_n 4 0.94 Definition of the standard basis of the m by n matrices math.la.c.vsp.basis.coord math.la.d.vsp.basis.relative.coord 4 0.93 Definition of coordinates relative to a given basis, coordinate vector space math.la.c.vsp.coord math.la.c.vsp.dim.coord 3 0.91 Dimension math.la.c.vsp.dim.coord math.la.d.vsp.dim.coord 4 0.99 Definition of dimension of a vector space (or subspace), coordinate vector space math.la.c.vsp.dim.coord math.la.t.vsp.dim.span.coord 4 0.98 If a vector space has dimension n, then any subset set of n vectors that spans the space must be a basis, coordinate vector space. math.la.c.vsp.dim.coord math.la.t.vsp.dim.linindep.coord 4 0.97 If a vector space has dimension n, then any subset of n vectors that is linearly independent must be a basis, coordinate vector space. math.la.c.vsp.coord math.la.d.lintrans.coord 3 0.90 Linear transformations math.la.d.lintrans.coord math.la.c.lintrans.basic.coord 4 0.99 Terminology math.la.c.lintrans.basic.coord math.la.d.lintrans.coord 5 0.99 Definition of linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.domain.coord 5 0.98 Definition of domain of a linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.codomain.coord 5 0.97 Definition of codomain of a linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.image.coord 5 0.96 Definition of image (of a point) under a linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.preimage.coord 5 0.95 Definition of pre-image (of a point) under a linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.surjective.coord 5 0.94 Definition of onto/surjective linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.injective.coord 5 0.93 Definition of one-to-one/injective linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.range.coord 5 0.92 Definition of range of linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.kernel.coord 5 0.91 Definition of kernel of linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.invertible.coord 5 0.90 Definition of invertible linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.d.lintrans.inv.coord 5 0.89 Definition of inverse of a linear transformation, coordinate vector space math.la.c.lintrans.basic.coord math.la.e.lintrans.not 5 0.88 Non-example of a linear transformation math.la.d.lintrans.coord math.la.c.lintrans.geometric 4 0.98 Geometric properties of linear transformations math.la.c.lintrans.geometric math.la.c.lintrans.r2.region 5 0.99 Visualise a linear transformation on R^2 by looking at the image of a region math.la.c.lintrans.geometric math.la.c.lintrans.geometric.r2 5 0.98 Geometric properties of linear transformations on R^2 math.la.d.lintrans.coord math.la.c.mat.transformation 4 0.97 Matrices as linear transformations math.la.c.mat.transformation math.la.c.transformation.matrix 5 0.99 Matrices act as a transformation by multiplying vectors math.la.c.mat.transformation math.la.t.mat.vec.mult.lintrans 5 0.98 Matrix-vector multiplication is a linear transformation. math.la.c.mat.transformation math.la.d.lintrans.mat.basis.standard.coord 5 0.97 Definition of the standard matrix for a linear transformation, coordinate setting math.la.c.mat.transformation math.la.t.lintrans.mat.basis.standard.coord 5 0.96 A linear transformation is given by a matrix whose columns are the images of the standard basis vectors, coordinate setting. math.la.c.mat.transformation math.la.t.lintrans.mat.basis 5 0.95 A linear transformation is given by a matrix with respect to a given basis. math.la.c.mat.transformation math.la.d.lintrans.nilpotent 5 0.94 Definition of nilpotent linear transformation math.la.c.mat.transformation math.la.d.lintrans.mat.repn.coord 5 0.93 Definition of matrix representation of a linear transformation, coordinate vector space math.la.c.mat.transformation math.la.t.lintrans.mat_repn.composition.coord 5 0.92 Matrix representation of a composition of linear transformations is given by a matrix product, coordinate vector space math.la.d.lintrans.coord math.la.c.lintrans.basic 4 0.96 Basic properties of linear transformations math.la.c.lintrans.basic math.la.t.lintrans.z 5 0.99 A linear transformation maps 0 to 0. math.la.c.lintrans.basic math.la.t.lintrans.lincomb 5 0.98 A linear transformation of a linear combination is the linear combination of the linear transformation math.la.c.lintrans.basic math.la.t.lintrans.basis 5 0.97 A linear transformation is determined by its action on a basis. math.la.c.lintrans.basic math.la.d.lintrans.basis.extension 5 0.96 Definition of how the action of a linear transformation on a basis extends to the whole space math.la.c.lintrans.basic math.la.t.linsys.homog.soln_preimage 5 0.95 The solutions of a homogeneous system are the pre-image (of 0) of a linear transformation. math.la.d.lintrans.coord math.la.t.mat.null_space.rref.span 4 0.95 Description of a spanning set for the null space of a matrix from the reduced row-echelon form. math.la.d.lintrans.coord math.la.t.mat.null_space.rref.basis 4 0.94 Description of a basis for the null space of a matrix from the reduced row-echelon form. math.la.d.lintrans.coord math.la.d.mat.echelon.linindep 4 0.93 The nonzero rows of an echelon form of a matrix are linearly independent. math.la.d.lintrans.coord math.la.c.mat.subspace 4 0.92 Subspaces associated to a matrix math.la.c.mat.subspace math.la.d.mat.null_space.right 5 0.99 Definition of matrix null space (right) math.la.c.mat.subspace math.la.d.mat.null_space.left 5 0.98 Definition of matrix null space (left) math.la.c.mat.subspace math.la.d.mat.col_space 5 0.97 Definition of column space of a matrix math.la.c.mat.subspace math.la.t.mat.col_space.rncn 5 0.96 The column space of an m-by-n matrix is a subspace of R^m (or C^m) math.la.c.mat.subspace math.la.t.mat.col_space.pivot 5 0.95 The pivot columns of a matrix are a basis for the column space. math.la.c.mat.subspace math.la.c.mat.col_space.row_reduce 5 0.94 Row operations do not necessarily preserve the column space. math.la.c.mat.subspace math.la.t.mat.row_space.pivot 5 0.93 The nonzero rows of the reduced row-echelon form of a matris are a basis for the row space. math.la.c.mat.subspace math.la.d.mat.row_space 5 0.92 Definition of row space of a matrix math.la.c.mat.subspace math.la.d.mat.row_space.row_equiv 5 0.91 Row equivalent matrices have the same row space. math.la.d.lintrans.coord math.la.c.lintrans.rank 4 0.91 Rank and nullity math.la.c.lintrans.rank math.la.d.lintrans.rank 5 0.99 Definition of rank of a linear transformation math.la.c.lintrans.rank math.la.d.lintrans.nullity 5 0.98 Definition of nullity of a linear transformation math.la.c.lintrans.rank math.la.t.lintrans.surjective.span 5 0.97 A linear transformation is surjective if and only if the columns of its matrix span the codomain. math.la.d.lintrans.coord math.la.c.litrans.example 4 0.90 Examples math.la.c.litrans.example math.la.t.mat.rotation 5 0.99 Matrix describing a rotation of the plane math.la.c.litrans.example math.la.e.lintrans.generic.r2 5 0.98 Example of a linear transformation on R^2: generic math.la.c.litrans.example math.la.e.lintrans.shear.r2 5 0.97 Example of a linear transformation on R^2: shear math.la.c.litrans.example math.la.e.lintrans.rotation.r2 5 0.96 Example of a linear transformation on R^2: rotation math.la.c.litrans.example math.la.e.lintrans.projection.r2 5 0.95 Example of a linear transformation on R^2: projection math.la.c.litrans.example math.la.e.lintrans.rotation.r3 5 0.94 Example of a linear transformation on R^3: rotation math.la.c.vsp.coord math.la.c.vec.orthog_proj.coord 3 0.89 Orthogonality and projection math.la.c.vec.orthog_proj.coord math.la.c.innerproduct.coord 4 0.99 Inner products in coordinate spaces math.la.c.innerproduct.coord math.la.d.innerproduct.rn 5 0.99 Definition of inner/dot product on R^n, in terms of coordinates math.la.c.innerproduct.coord math.la.d.innerproduct.cn 5 0.98 Definition of inner/dot product on C^n, in terms of coordinates math.la.c.innerproduct.coord math.la.t.innerproduct.commutative.rn 5 0.97 The standard inner product on R^n is commutative. math.la.c.innerproduct.coord math.la.t.innerproduct.commutative.cn 5 0.96 The standard inner product on C^n is anticommutative. math.la.c.innerproduct.coord math.la.t.innerproduct.commutative.scalar.rn 5 0.95 The standard inner product on R^n commutes with (real) scalar multiplication. math.la.c.innerproduct.coord math.la.t.innerproduct.commutative.scalar.cn 5 0.94 The standard inner product on C^n commutes/anticommutes with scalar multiplication. math.la.c.innerproduct.coord math.la.t.innerproduct.distributive.rncn 5 0.93 The standard inner product on R^n (or C^n) distributes over addition. math.la.c.innerproduct.coord math.la.t.innerproduct.self.positive.coord 5 0.92 The standard inner product of a vector with itself is non-negative, coordinate setting. math.la.c.innerproduct.coord math.la.t.innerproduct.self.z.coord 5 0.91 The standard inner product of a vector with itself is 0 only for the 0 vector, coordinate setting. math.la.c.innerproduct.coord math.la.t.innerproduct.mat.rn 5 0.90 The standard inner product on R^n can be written as the product of a vector and the transpose of a vector. math.la.c.innerproduct.coord math.la.t.innerproduct.mat.cn 5 0.89 The standard inner product on C^n can be written as the product of a vector and the adjoint of a vector. math.la.c.innerproduct.coord math.la.t.innerproduct.adjoint.cn 5 0.88 A matrix turns into its adjoint when moved to the other side of the standard inner product on C^n. math.la.c.vec.orthog_proj.coord math.la.c.vec.norm.coord 4 0.98 Norm and length math.la.c.vec.norm.coord math.la.d.vec.norm.coord 5 0.99 Definition of norm/length of a vector, coordinate setting math.la.c.vec.norm.coord math.la.d.vec.unit.coord 5 0.98 Definition of unit vector, coordinate setting math.la.c.vec.norm.coord math.la.t.vec.innerproduct.norm 5 0.97 The inner product of a vector with itself is the square of its norm/length. math.la.c.vec.norm.coord math.la.d.distance.coord 5 0.96 Definition of distance, coordinate setting math.la.c.vec.norm.coord math.la.t.vec.triangle.coord 5 0.95 The triangle inequality, coordinate setting math.la.c.vec.norm.coord math.la.t.vec.cauchyschwartz.coord 5 0.94 The Cauchy-Schwartz inequality, coordinate setting math.la.c.vec.orthog_proj.coord math.la.c.vec.orthogonal.coord 4 0.97 Orthogonality math.la.c.vec.orthogonal.coord math.la.d.vec.angle.coord 5 0.99 Definition of angle between vectors, coordinate setting math.la.c.vec.orthogonal.coord math.la.d.vec.orthogonal.coord 5 0.98 Definition of orthogonal vectors, coordinate setting math.la.c.vec.orthogonal.coord math.la.d.vec.parallel.coord 5 0.97 Definition of parallel vectors, coordinate setting math.la.c.vec.orthogonal.coord math.la.t.vec.orthogonal 5 0.96 Two vectors are orthogonal if and only if the Pythagorean Theorem holds. math.la.c.vec.orthogonal.coord math.la.d.vec.subspace.orthogonal 5 0.95 Definition of a vector being orthogonal to a subspace math.la.c.vec.orthogonal.coord math.la.d.subspace.orthogonal_complement 5 0.94 Definition of orthogonal complement of a subspace math.la.c.vec.orthogonal.coord math.la.t.subspace.orthogonal_complement 5 0.93 The orthogonal complement of a subspace is a subspace. math.la.c.vec.orthogonal.coord math.la.t.subspace.orthogonal_complement.sum 5 0.92 The direct sum of a subspace and its orthogonal complement is the whole space. math.la.c.vec.orthogonal.coord math.la.t.subspace.orthogonal_complement.basis 5 0.91 A vector is in the orthogonal complement of a subspace if and only if it is orthogonal to every vector in a basis of the subspace. math.la.c.vec.orthogonal.coord math.la.t.mat.row.null.orthogonal_complement 5 0.90 The null space of a matrix is the orthogonal complement of the column space. math.la.c.vec.orthogonal.coord math.la.d.vec.orthogonal_set 5 0.89 Definition of orthogonal set of vectors math.la.c.vec.orthogonal.coord math.la.d.vec.orthonormal_set 5 0.88 Definition of orthonormal set of vectors math.la.c.vec.orthogonal.coord math.la.t.vec.orthogonal_set.linindep 5 0.87 An orthogonal set of nonzero vectors is linearly independent. math.la.c.vec.orthogonal.coord math.la.d.subspace.basis.orthogonal 5 0.86 Definition of orthogonal basis of a (sub)space math.la.c.vec.orthogonal.coord math.la.d.subspace.basis.orthonormal 5 0.85 Definition of orthonormal basis of a (sub)space math.la.c.vec.orthogonal.coord math.la.t.mat.col.orthonormal.inv.rn 5 0.84 A matrix A with real entries has orthonormal columns if and only if A inverse equals A transpose. math.la.c.vec.orthogonal.coord math.la.t.mat.col.orthonormal.norm.rn 5 0.83 A matrix with real entries and orthonormal columns preserves norms. math.la.c.vec.orthogonal.coord math.la.t.mat.col.orthonormal.dot.rn 5 0.82 A matrix with real entries and orthonormal columns preserves dot products. math.la.c.vec.orthogonal.coord math.la.t.subspace.basis.orthogonal 5 0.81 Formula for the coordinates of a vector with respect to an orthogonal/orthonormal basis. math.la.c.vec.orthogonal.coord math.la.t.vec.projection.subspace 5 0.80 A vector can be written uniquely as a sum of a vector in a subspace and a vector orthogonal to the subspace. math.la.c.vec.orthogonal.coord math.la.d.gramschmidt 5 0.79 Description of the Gram-Schmidt process math.la.c.vec.orthogonal.coord math.la.t.gramschmidt 5 0.78 The Gram-Schmidt process converts a linearly independent set into an orthogonal set. math.la.c.vec.orthog_proj.coord math.la.c.vec.proj.coord 4 0.96 Projection math.la.c.vec.proj.coord math.la.d.vec.projection 5 0.99 Definition of (orthogonal) projection of one vector onto another vector math.la.c.vec.proj.coord math.la.t.vec.projection 5 0.98 Formula for the (orthogonal) projection of one vector onto another vector math.la.c.vec.proj.coord math.la.d.vec.projection_arbitrary.subspace 5 0.97 Definition of (not necessarily orthogonal) projection onto a component of a direct sum math.la.c.vec.proj.coord math.la.d.vec.projection.subspace 5 0.96 Definition of (orthogonal) projection onto a subspace math.la.c.vec.proj.coord math.la.t.vec.projection.element 5 0.95 The projection of a vector which is in a subspace is the vector itself. math.la.c.vec.proj.coord math.la.t.vec.projection.closest 5 0.94 The (orthogonal) projection of a vector onto a subspace is the point in the subspace closest to the vector. math.la.c.vec.proj.coord math.la.t.subspace.basis.orthonormal 5 0.93 Formula for the coordinates of the projection of a vector onto a subspace, with respect to an orthonormal basis. math.la.c.vec.orthog_proj.coord math.la.c.linsys.leastsquares 4 0.95 Least squares math.la.c.linsys.leastsquares math.la.d.linsys.leastsquares 5 0.99 Definition of least-squares solution to a linear system math.la.c.linsys.leastsquares math.la.d.linsys.leastsquares.error 5 0.98 Definition of least-squares error of a linear system math.la.c.linsys.leastsquares math.la.t.linsys.leastsquares 5 0.97 Formula for computing the least squares solution to a linear system. math.la.c.linsys.leastsquares math.la.t.linsys.leastsquares.qr 5 0.96 Formula for computing the least squares solution to a linear system, in terms of the QR factorization of the coefficient matrix. math.la.c.linsys.leastsquares math.la.t.linsys.leastsquares.unique 5 0.95 The least squares solution to a linear system is unique if and only if the columns of the coefficient matrix are linearly independent. math.la.c.linsys.leastsquares math.la.d.leastsquares.line 5 0.94 Definition of the least-squares linear fit to 2-dimensional data math.la.c.linsys.leastsquares math.la.t.leastsquares.line 5 0.93 Formula for the least-squares linear fit to 2-dimensional data math.la.c.vsp math.la.c.vsp.abs 2 0.98 Abstract vector spaces math.la.c.vsp.abs math.la.c.vsp.abs.defn 3 0.99 Definition and terminology math.la.c.vsp.abs.defn math.la.d.vec.arb 4 0.99 Definition of vector, arbitrary vector space math.la.c.vsp.abs.defn math.la.d.scalar.arb 4 0.98 Definition of scalar, arbitrary vector space math.la.c.vsp.abs.defn math.la.d.vec.add.arb 4 0.97 Definition of vector addition, arbitrary vector space math.la.c.vsp.abs.defn math.la.d.vec.scalar.mult.arb 4 0.96 Definition of vector-scalar multiplication, arbitrary vector space math.la.c.vsp.abs.defn math.la.d.vsp.axioms.arb 4 0.95 Axioms of a vector space, arbitrary vector space math.la.c.vsp.abs.defn math.la.d.vsp.vector.negative 4 0.94 The additive inverse of a vector is called the negative of the vector. math.la.c.vsp.abs math.la.c.vsp.abs.basic 3 0.98 Basic properties math.la.c.vsp.abs.basic math.la.t.vsp.z.unique 4 0.99 The 0 vector is unique. math.la.c.vsp.abs.basic math.la.d.vsp.vector.negative.unique 4 0.98 The additive inverse of a vector is unique. math.la.c.vsp.abs.basic math.la.t.vsp.scalar.mult.z 4 0.97 The 0 scalar multiplied by any vector equals the 0 vector. math.la.c.vsp.abs.basic math.la.t.vsp.vector.mult.z 4 0.96 The 0 vector multiplied by any scalar equals the 0 vector. math.la.c.vsp.abs.basic math.la.t.vsp.mult.z 4 0.95 If the product of a vector and a scalar is 0, then one of them is 0. math.la.c.vsp.abs.basic math.la.t.vsp.vector.negative 4 0.94 The additive inverse of a vector equals the vector multiplied by -1. math.la.c.vsp.abs math.la.c.vsp.subspace.arb 3 0.97 Subspaces math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.arb 4 0.99 Definition of subspace, arbitrary vector space math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.z.arb 4 0.98 Definition of 0/trivial subspace, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.lincomb.arb 4 0.97 A nonempty subset of a vector space is a subspace if and only if it is closed under linear combinations, arbitrary vector space math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.intersection.arb 4 0.96 Definition of intersection of subspaces, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.intersection.arb 4 0.95 The intersection of subspaces is a subspace, arbitrary vector space. math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.sum.arb 4 0.94 Definition of sum of subspaces, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.sum.arb 4 0.93 The sum of subspaces is a subspace, arbitrary vector space. math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.sum.direct.arb 4 0.92 Definition of direct sum of subspaces, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.sum.direct.dim 4 0.91 The dimension of a direct sum of subspaces is the sum of the dimensions of the subspaces. math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.independent.arb 4 0.90 Definition of independent subspaces, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.independent.lincomb 4 0.89 A vector can be written uniquely as a linear combination of vectors from independent subspaces. math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.independent.basis 4 0.88 The union of bases from independent subspaces is a basis for the space. math.la.c.vsp.subspace.arb math.la.d.vsp.subspace.complement.arb 4 0.87 Definition of complement of a subspace, arbitrary vector space math.la.c.vsp.subspace.arb math.la.t.vsp.subspace.complement.arb 4 0.86 Theorem characterizing when a space is the direct sum of two subspaces math.la.c.vsp.abs math.la.c.vec.lincomb.abs 3 0.96 Linear combinations math.la.c.vec.lincomb.abs math.la.d.vec.lincomb.arb 4 0.99 Definition of linear combination of vectors, arbitrary vector space math.la.c.vsp.abs math.la.c.vec.span.coord 3 0.95 Spans math.la.c.vec.span.coord math.la.d.vec.span.arb 4 0.99 Definition of span of a set of vectors, arbitrary vector space math.la.c.vec.span.coord math.la.t.vec.span.subspace.arb 4 0.98 The span of a set of vectors is a subspace, arbitrary vector space math.la.c.vec.span.coord math.la.d.vsp.span.set.arb 4 0.97 Definition of spanning/generating set for a space or subspace, arbitrary vector space math.la.d.vsp.span.set.arb math.la.t.vsp.dim.less.span.arb 5 0.99 A set of vectors containing fewer elements than the dimension of the space cannot span, arbitrary vector space. math.la.c.vsp.abs math.la.c.vec.lindep.arb 3 0.94 Linear (in)dependence math.la.c.vec.lindep.arb math.la.d.vec.linindep.arb 4 0.99 Definition of linearly independent set of vectors: if a linear combination is 0, then every coefficient is 0, arbitrary vector space. math.la.c.vec.lindep.arb math.la.t.vec.lindep.arb 4 0.98 Theorem: a set of vectors is linearly dependent if and only if one of the vectors can be written as a linear combination of the other vectors, arbitrary vector space. math.la.c.vec.lindep.arb math.la.d.vec.lindep.arb 4 0.97 Definition of linearly dependent set of vectors: one of the vectors can be written as a linear combination of the other vectors, arbitrary vector space. math.la.c.vec.lindep.arb math.la.t.vec.linindep.arb 4 0.96 Theorem: a set of vectors is linearly independent if and only if whenever a linear combination is 0, then every coefficient is 0, arbitrary vector space. math.la.c.vec.lindep.arb math.la.t.vsp.linindep.subset 4 0.95 A subset of a linearly independent set is linearly independent. math.la.c.vec.lindep.arb math.la.t.vsp.linindep.coord 4 0.94 A set is linearly independent if and only if the set of coordinate vectors with respect to any basis is linearly independent. math.la.c.vec.lindep.arb math.la.t.vsp.span.lindep 4 0.93 Removing a linearly dependent vector from a set does not change the span of the set. math.la.c.vec.lindep.arb math.la.t.vsp.linindep.extend 4 0.92 Adjoining an element not in the span of a linearly independent set gives another linearly independent set. math.la.c.vec.lindep.arb math.la.t.vsp.linindep.basis.arb 4 0.91 Any linearly independent set can be expanded to a basis for the (sub)space, arbitrary vector space. math.la.c.vsp.abs math.la.c.vsp.basis.arb 3 0.93 Bases math.la.c.vsp.basis.arb math.la.d.vsp.basis.arb 4 0.99 Definition of basis of a vector space (or subspace), arbitrary vector space math.la.c.vsp.basis.arb math.la.t.vsp.span.basis 4 0.98 A set of nonzero vectors contains (as a subset) a basis for its span. math.la.c.vsp.basis.arb math.la.t.vsp.span.basis.rref 4 0.97 The reduced row-echelon form of a matrix determines which subset of a spanning set is a basis. math.la.c.vsp.basis.arb math.la.t.vsp.basis.coord.unique 4 0.96 Each vector can be written uniquely as a linear combination of vectors from a given basis. math.la.c.vsp.basis.arb math.la.t.vsp.basis.span.unique 4 0.95 A set is a basis if each vector can be written uniquely as a linear combination. math.la.c.vsp.basis.arb math.la.c.vsp.coord.arb 4 0.94 Coordinates math.la.c.vsp.coord.arb math.la.d.vsp.basis.relative.arb 5 0.99 Definition of coordinates relative to a given basis, arbitrary vector space math.la.c.vsp.coord.arb math.la.d.vsp.basis.exchange.arb 5 0.98 If B is a basis containing b and the b coordinate of c is nonzero, the replacing b with c gives another basis. math.la.c.vsp.coord.arb math.la.d.vsp.basis.coord.vector.arb 5 0.97 Definition of coordinate vector/mapping/representation relative to a given basis, arbitrary vector space math.la.c.vsp.coord.arb math.la.t.vsp.basis.coord.lin.arb 5 0.96 The coordinate vector relative to a given basis is a linear mapping to R^n (or C^n). math.la.c.vsp.coord.arb math.la.t.vsp.basis.coord.injective.arb 5 0.95 The coordinate vector relative to a given basis is an injective linear mapping to R^n (or C^n). math.la.c.vsp.coord.arb math.la.t.vsp.basis.coord.surjective.arb 5 0.94 The coordinate vector relative to a given basis is a surjective linear mapping to R^n (or C^n). math.la.c.vsp.coord.arb math.la.d.vsp.change_of_basis.arb 5 0.93 Definition of change of coordinates matrix between two bases, arbitrary vector space math.la.c.vsp.coord.arb math.la.t.vsp.change_of_basis.exists.arb 5 0.92 The change of coordinates matrix between two bases exists and is unique, arbitrary vector space. math.la.c.vsp.coord.arb math.la.t.vsp.change_of_basis 5 0.91 Multiplication by a change of coordinates matrix converts representations for different bases. math.la.c.vsp.coord.arb math.la.t.vsp.change_of_basis.inv 5 0.90 Change of coordinates matrices are invertible, and the inverse changes coordinates in the other direction. math.la.c.vsp.coord.arb math.la.t.vsp.change_of_basis.conjugate 5 0.89 Conjugating by a change of coordinates matrix converts matrix representations with respect to different bases. math.la.c.vsp.abs math.la.c.vsp.isomorphism 3 0.92 Isomorphism math.la.c.vsp.isomorphism math.la.d.vsp.isomorphism 4 0.99 Definition of isomorphic/isomorphism between vector spaces math.la.c.vsp.isomorphism math.la.t.vsp.isomorphism.inv 4 0.98 The inverse of an isomorphism is an isomorphism. math.la.c.vsp.isomorphism math.la.t.vsp.isomorphism.equiv 4 0.97 Vector space isomorphism is an equivalence relation. math.la.c.vsp.isomorphism math.la.t.vsp.isomorphic.dim 4 0.96 Isomorphic vector spaces have the same dimension. math.la.c.vsp.isomorphism math.la.t.vsp.dim.isomorphic 4 0.95 Vector spaces with the same dimension are isomprphic. math.la.c.vsp.isomorphism math.la.t.vsp.isomorphic.rncn 4 0.94 Every finite dimensional vector space over R (or C) is isomorphic to R^n (or C^n) for some n. math.la.c.vsp.isomorphism math.la.d.vsp.automorphism 4 0.93 Definition of automorphism of a vector space math.la.c.vsp.abs math.la.c.vsp.dim.coord 3 0.91 Dimension math.la.c.vsp.dim.coord math.la.t.vsp.dim.arb 4 0.99 Every basis for a vector space contains the same number of elements, arbitrary vector space. math.la.c.vsp.dim.coord math.la.d.vsp.dim.finite_infinite.arb 4 0.98 Definition of dimension of a vector space (or subspace) being finite or infinite, arbitrary vector space math.la.c.vsp.dim.coord math.la.d.vsp.dim.arb 4 0.97 Definition of dimension of a vector space (or subspace), arbitrary vector space math.la.c.vsp.dim.coord math.la.t.vsp.dim.arb 4 0.96 The dimension of a vector space (or subspace) is well-defined, arbitrary vector space. math.la.c.vsp.dim.coord math.la.t.vsp.subspace.dim.arb 4 0.95 The dimension of a subspace is less than or equal to the dimension of the whole space, arbitrary vector space. math.la.c.vsp.dim.coord math.la.t.vsp.subspace.dim.equal 4 0.94 If two finite dimensional subspaces have the same dimension and one is contained in the other, then they are equal. math.la.c.vsp.dim.coord math.la.t.vsp.dim.span.linindep.arb 4 0.93 If a vector space has dimension n, then any subset set of n vectors is linearly independent if and only if it spans, arbitrary vector space. math.la.c.vsp.dim.coord math.la.t.vsp.dim.span.arb 4 0.92 If a vector space has dimension n, then any subset set of n vectors that spans the space must be a basis, arbitrary vector space. math.la.c.vsp.dim.coord math.la.t.vsp.dim.linindep.arb 4 0.91 If a vector space has dimension n, then any subset of n vectors that is linearly independent must be a basis, arbitrary vector space. math.la.c.vsp.dim.coord math.la.t.vsp.dim.more.lindep.arb 4 0.90 A set of vectors containing more elements than the dimension of the space must be linearly dependent, arbitrary vector space. math.la.c.vsp.abs math.la.c.lintrans.arb 3 0.90 Linear transformations math.la.c.lintrans.arb math.la.c.lintrans.basic.arb 4 0.99 Terminology math.la.c.lintrans.basic.arb math.la.d.lintrans.arb 5 0.99 Definition of linear transformation/homomorphism, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.identity 5 0.98 Definition of identity linear transformation math.la.c.lintrans.basic.arb math.la.d.lintrans.sum.arb 5 0.97 Definition of sum of linear transformations, arbitrary vector space math.la.c.lintrans.basic.arb math.la.t.lintrans.sum.arb 5 0.96 The sum of linear transformations is a linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.scalar.arb 5 0.95 Definition of scalar multiple of a linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.t.lintrans.scalar.arb 5 0.94 A scalar multiple of a linear transformation is a linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.preimage.arb 5 0.93 Definition of pre-image of linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.surjective.arb 5 0.92 Definition of onto/surjective linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.range.arb 5 0.91 Definition of range of a linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.invertible.arb 5 0.90 Definition of invertible/nonsingular linear transformation, arbitrary vector space math.la.c.lintrans.basic.arb math.la.d.lintrans.inv.arb 5 0.89 Definition of inverse of a linear transformation, arbitrary vector space math.la.c.lintrans.arb math.la.c.lintrans.composition.arb 4 0.98 Composition math.la.c.lintrans.composition.arb math.la.d.lintrans.composition.arb 5 0.99 Definition of composition of linear transformations, arbitrary vector space. math.la.c.lintrans.composition.arb math.la.t.lintrans.composition.arb 5 0.98 The composition of linear transformations is a linear transformation, arbitrary vector space. math.la.c.lintrans.composition.arb math.la.t.lintrans.composition.injective.arb 5 0.97 The composition of injective linear transformations is injective, arbitrary vector space. math.la.c.lintrans.composition.arb math.la.t.lintrans.composition.surjective.arb 5 0.96 The composition of surjective linear transformations is surjective, arbitrary vector space. math.la.c.lintrans.composition.arb math.la.t.lintrans.composition.invertible.arb 5 0.95 The composition of invertible linear transformations is invertible, arbitrary vector space. math.la.c.lintrans.composition.arb math.la.t.lintrans.inv.arb 5 0.94 The inverse of a linear transformation is a linear transformation, arbitrary vector space math.la.c.lintrans.composition.arb math.la.t.lintrans.inv.involution.arb 5 0.93 The inverse of the inverse of a linear transformation is the original linear transformation, arbitrary vector space math.la.c.lintrans.composition.arb math.la.t.lintrans.inv.shoesandsocks 5 0.92 For invertible linear transformations A and B, the composition AB is invertible, and (AB)^-1=B^-1 A^-1. math.la.c.lintrans.arb math.la.t.lintrans.preimage.translation.arb 4 0.97 The preimage of a vector is a translation of the kernel of the linear transformation, arbitrary vector space math.la.c.lintrans.arb math.la.t.lintrans.injective.linindep 4 0.96 The image of a linearly independent set under an injective linear transformation is linearly independent. math.la.c.lintrans.arb math.la.t.lintrans.injective.dim 4 0.95 The dimension of the domain of an injective linear transformation is at most the dimension of the codomain. math.la.c.lintrans.arb math.la.t.lintrans.surjective.dim 4 0.94 The dimension of the domain of a surjective linear transformation is at least the dimension of the codomain. math.la.c.lintrans.arb math.la.t.lintrans.surjective.rank 4 0.93 A linear transformation is surjective if and only if the rank equals the dimension of the codomain. math.la.c.lintrans.arb math.la.t.lintrans.range.subsp.arb 4 0.92 The range of a linear transformation is a subspace, arbitrary vector space math.la.c.lintrans.arb math.la.t.lintrans.range.span.arb 4 0.91 The the image of a spanning set is a spanning set for the range space, arbitrary vector space math.la.c.lintrans.arb math.la.t.lintrans.basis.span.surjective.arb 4 0.90 A linear transformation is surjective if and only if the image of a basis is a spanning set, arbitrary vector space math.la.c.lintrans.arb math.la.d.lintrans.range.generalized.arb 4 0.89 Definition of generalized range space of a linear transformation, arbitrary vector space math.la.c.lintrans.arb math.la.d.lintrans.range.generalized.injective 4 0.88 A linear transformation is injective on its generalized range space. math.la.c.lintrans.arb math.la.d.lintrans.diagonalizable 4 0.87 Definition of diagonalizable linear transformation math.la.c.lintrans.arb math.la.c.lintrans.eig.arb 4 0.86 Eigenvalues and eigenvectors math.la.c.lintrans.eig.arb math.la.d.lintrans.eig 5 0.99 Definition of eigenvalue/characteristic value of a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.eigvec 5 0.98 Definition of eigenvector/characteristic vector of a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.charpoly 5 0.97 Definition of characteristic polynomial of a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.minpoly 5 0.96 Definition of minimal polynomial of a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.cayleyhamilton 5 0.95 The Cayley-Hamilton theorem for a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.minpoly.exists 5 0.94 The minimal polynomial of a linear transformation exists and is unique. math.la.c.lintrans.eig.arb math.la.d.lintrans.polynomial.apply 5 0.93 Definition of applying a polynomial to a linear transformation math.la.c.lintrans.eig.arb math.la.t.lintrans.eig.exists 5 0.92 A linear transformation on a finite dimentional nontrivial vector space has at least one eigenvalue. math.la.c.lintrans.eig.arb math.la.d.lintrans.eigsp 5 0.91 Definition of eigenspace of a linear transformation math.la.c.lintrans.eig.arb math.la.d.lintrans.eigsp.subspace 5 0.90 The eigenspace of a linear transformation is a nontrivial subspace. math.la.c.lintrans.eig.arb math.la.d.lintrans.invariantsubspace 5 0.89 Definition of invariant subspace of a linear transformation. math.la.c.lintrans.eig.arb math.la.d.lintrans.invariantsubspace.block 5 0.88 If a space is the direct sum of invariant subspaces, then the linear transformation has a block diagonal representation. math.la.c.lintrans.arb math.la.t.lintrans.diagonalizable.basis 4 0.85 A linear transformation is diagonalizable if there is a basis such that each element is an eigenvector of the transformation. math.la.c.lintrans.arb math.la.c.lintrans.subspace.arb 4 0.84 Subspaces associated to a linear transformation math.la.c.lintrans.subspace.arb math.la.t.lintrans.range.vsp 5 0.99 The range/image of a linear transformation is a subspace. math.la.c.lintrans.subspace.arb math.la.t.lintrans.inv.vsp 5 0.98 The inverse image of a subspace under a linear transformation is a subspace. math.la.c.lintrans.subspace.arb math.la.d.lintrans.kernel.arb 5 0.97 Definition of kernel/null space of linear transformation, arbitrary vector space math.la.c.lintrans.subspace.arb math.la.t.lintrans.kernel.arb 5 0.96 The kernel/null space of a linear transformation is a subspace, arbitrary vector space math.la.c.lintrans.subspace.arb math.la.d.lintrans.kernel.generalized.arb 5 0.95 Definition of generalized kernel/null space of linear transformation, arbitrary vector space math.la.c.lintrans.subspace.arb math.la.d.lintrans.generalized.sum 5 0.94 Any vector space is the direct sum of the generalized kernel and gneralized range of a linear transformation on that space. math.la.c.lintrans.subspace.arb math.la.t.lintrans.power.kernel 5 0.93 The kernels of powers of a linear transformation form an ascending chain, with proper containment up to a particular power and then equality for all subsequent powers. math.la.c.lintrans.subspace.arb math.la.t.lintrans.power.range 5 0.92 The range spaces of powers of a linear transformation form a descending chain, with proper containment up to a particular power and then equality for all subsequent powers. math.la.c.lintrans.arb math.la.t.lintrans.ranknullity 4 0.83 The rank plus the nullity of a linear transformation equals the dimension of the domain. math.la.c.lintrans.arb math.la.t.lintrans.lindep 4 0.82 The image of a linearly dependent set under a linear transformation is linearly dependent. math.la.c.lintrans.arb math.la.t.lintrans.onto.rank 4 0.81 A linear transformation is onto if and only if its rank equals the number of rows in any matrix representation. math.la.c.lintrans.arb math.la.t.lintrans.invertible.arb 4 0.80 A linear transformation is invertible if and only if it is injective and surjective, arbitrary vector space math.la.c.lintrans.arb math.la.d.lintrans.mat.repn.arb 4 0.79 Definition of matrix representation of a linear transformation with respect to bases of the spaces, arbitrary vector space math.la.c.lintrans.arb math.la.t.lintrans.mat.repn.arb 4 0.78 A linear transformation is given by multiplying by its matrix representation with respect to bases of the spaces, arbitrary vector space. math.la.c.lintrans.arb math.la.d.lintrans.mat.repn.self.arb 4 0.77 Definition of matrix representation of a linear transformation from a vector space to itself, with respect to basis of the space, arbitrary vector space math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.scalar 4 0.76 The matrix representation of a scalar multiple of linear transformations is the scalar multiple of the matrix. math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.sum 4 0.75 The matrix representation of a sum of linear transformations is the sum of the matrices. math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.composition 4 0.74 The matrix representation of a composition of linear transformations is the product of the matrices. math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.inv 4 0.73 The matrix representation of the inverse of linear transformations is the inverse of the matricix. math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.eig 4 0.72 A linear transformation has the same eigenvalues and eigenvectors as any matrix representation. math.la.c.lintrans.arb math.la.t.lintrans.mat_repn.triangular 4 0.71 A linear transformation has a representation as an upper triangular matrix. math.la.c.lintrans.arb math.la.c.lintrans.equiv 4 0.70 Equivalence theorems for injective transformations math.la.c.lintrans.equiv math.la.d.lintrans.injective.arb 5 0.99 Definition of one-to-one/injective linear transformation, arbitrary vector space math.la.c.lintrans.equiv math.la.t.lintrans.equiv.inv 5 0.98 Equivalence theorem for injective linear transformations: The inverse of T is a linear transformation on its range. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.nullspace 5 0.97 Equivalence theorem for injective linear transformations: The null space of T is 0. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.nullity 5 0.96 Equivalence theorem for injective linear transformations: The nullity of T is 0. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.kernel 5 0.95 Equivalence theorem for injective linear transformations: The kernel of T is 0. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.z 5 0.94 Equivalence theorem for injective linear transformations: T(x)=0 only for x=0. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.rank 5 0.93 Equivalence theorem for injective linear transformations: The rank of T is n. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.rank.col 5 0.92 Equivalence theorem for injective linear transformations: The rank of T is equals the number of columns in any matrix representation.. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.basis 5 0.91 Equivalence theorem for injective linear transformations: The image of a basis for V is a basis for the range of T. math.la.c.lintrans.equiv math.la.t.lintrans.equiv.linindep 5 0.90 Equivalence theorem for injective linear transformations: The columns of the matrix of T are linearly independent. math.la.c.vsp.abs math.la.c.vec.orthog_proj.arb 3 0.89 Orthogonality and projection math.la.c.vec.orthog_proj.arb math.la.c.innerproduct.arb 4 0.99 Inner products math.la.c.innerproduct.arb math.la.d.vec.innerproduct.arb 5 0.99 Definition of inner product, arbitrary setting math.la.c.innerproduct.arb math.la.d.vsp.innerproduct.arb 5 0.98 Definition of inner product space, arbitrary setting math.la.c.vec.orthog_proj.arb math.la.c.vec.norm.coord 4 0.98 Norm and length math.la.c.vec.norm.coord math.la.d.vec.norm.arb 5 0.99 Definition of length/norm of a vector, arbitrary setting math.la.c.vec.norm.coord math.la.d.vec.distance.arb 5 0.98 Definition of distance between vectors, arbitrary setting math.la.c.vec.norm.coord math.la.t.vec.cauchyschwarz.arb 5 0.97 The Cauchy-Schwarz inequality, arbitrary setting math.la.c.vec.norm.coord math.la.t.vec.triangle.arb 5 0.96 The triangle inequality, arbitrary setting math.la.c.vec.orthog_proj.arb math.la.c.vec.orthogonal.arb 4 0.97 Orthogonality math.la.c.vec.orthogonal.arb math.la.d.vec.orthogonal.arb 5 0.99 Definition of orthogonal vectors, arbitrary setting math.la.c.vec.orthogonal.arb math.la.d.vec.parallel.arb 5 0.98 Definition of parallel vectors, arbitrary setting math.la.c.vec.orthogonal.arb math.la.d.gramschmidt.arb 5 0.97 Definition of Gram-Schmidt process, arbitrary setting math.la.c.vec.orthogonal.arb math.la.d.vsp.orthogonal.arb 5 0.96 Definition of orthogonal subspaces, arbitrary setting math.la.c.vec.orthog_proj.arb math.la.c.vec.proj.arb 4 0.96 Projection math.la.c.vsp math.la.c.vsp.example 2 0.97 Examples of vector spaces math.la.c.vsp.example math.la.e.vsp.z 3 0.99 The set containing only 0 is a vector space. math.la.c.vsp.example math.la.e.vsp.rn 3 0.98 R^n is a vector space. math.la.c.vsp.example math.la.e.vsp.cn 3 0.97 C^n is a vector space. math.la.c.vsp.example math.la.e.vsp.fn 3 0.96 F^n is a vector space. math.la.c.vsp.example math.la.e.vsp.function 3 0.95 The set of all functions on a set is a vector space. math.la.c.vsp.example math.la.e.vsp.linsys.homog 3 0.94 The solutions to a homogeneous system of linear equations is a vector space. math.la.c.vsp.example math.la.e.vsp.de.homog 3 0.93 The solutions to a homogeneous linear differential equation is a vector space. math.la.c.vsp.example math.la.e.vsp.polynomial 3 0.92 The set of all polynomials is a vector space. math.la.c.vsp.example math.la.e.vsp.polynomial.leq_n 3 0.91 The set of all polynomials of degree at most n is a vector space. math.la.c.vsp.example math.la.e.vsp.mat.m_by_n 3 0.90 The set of m by n matrices is a vector space. math.la.c.vsp.example math.la.e.vsp.sequence 3 0.89 The set of all sequences is a vector space. math.la.c.vsp.example math.la.e.vsp.function 3 0.88 The set of all functions on a set is a vector space. math.la.c.vsp.example math.la.e.vsp.crazy 3 0.87 The crazy vector space is a vector space. math.la.c.vsp.example math.la.e.vsp.row 3 0.86 The row space of a matrix is a vector space math.la.c.vsp.example math.la.e.vsp.col 3 0.85 The column space of a matrix is a vector space math.la.c.vsp.example math.la.t.mat.null_space.rncn 3 0.84 The null space of a matrix is a subspace of R^n (or C^n). math.la.c.vsp.example math.la.t.mat.null_space.left.rncn 3 0.83 The left null space of a matrix is a subspace of R^m (or C^m). math.la.c.vsp.example math.la.t.lintrans.vsp 3 0.82 The set of linear transformations between two vector spaces is a vector space. math.la math.la.c.applications 1 0.95 Applications math.la.c.applications math.la.a.differentialequation 2 0.99 Applications to differential equations math.la.c.applications math.la.a.markovchain 2 0.98 Applications to Markov chains math.la.c.applications math.la.a.bandmatrix 2 0.97 Applications of band matrices math.la.c.applications math.la.a.errorcorrectingcode 2 0.96 Applications to error-correcting code math.la.c.applications math.la.a.inputoutput 2 0.95 Application Leontief input-output analysis math.la.c.applications math.la.a.voting 2 0.94 Applications to voting and social choice math.la.c.applications math.la.a.cubicspline 2 0.93 Applications to cubic spline math.la math.la.c.other 1 0.94 Other math.la.c.other math.la.d.crossproduct 2 0.99 Definition of cross product math.la.c.other math.la.d.quadraticform 2 0.98 Definition of quadratic form, orthonormal diagonalization, principal axes