\( \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Modular forms from three perspectives

David W. Farmer

American Institute of Mathematics

Three worlds

Automorphic representations

\(\pi\) is a tempered balanced cuspidal automorphic representation of $GL(d, A_\Q)$.

Modular forms

\(f\) is a function on a symmetric space, with particular analytic and invariance properties
(adjectives omitted!)

L-functions

\(L\) is a Dirichlet series with a functional equation and an Euler product
(adjectives omitted!)

$\Gamma_\R(s) = \pi^{-s/2}\Gamma(s/2)$

$\Gamma_\C(s) = (2\pi)^{-s} \Gamma(s)$

Functional equations only involve \[ \Gamma_\R(s + \mu) \ \ \ \text{for}\ \ \ \mu\in \{0,1\} \] \[ \Gamma_\C(s + \nu) \ \ \ \text{for}\ \ \ \nu\in \left\{\frac12,\ 1,\ \frac32,\ 2,\ \frac52,\ 3, \dots\right\} \] and also "shifted": $\Gamma_\R(s + \mu + it)$ and $\Gamma_\C(s + \nu + it)$ for $t\in\R$.










Degree 1

Dirichlet characters:
     $N^{s/2}\Gamma_\R(s)$ for even characters
     $N^{s/2}\Gamma_\R(s+1)$ for odd

Degree 2

Two cases: $2=2$ and $2 = 1+1$.

$N^{s/2}\Gamma_\C\left(s+\frac{\ell}{2}\right)$ for $\ell \in \{1,\ 2,\ 3,\ldots\}$

equivalently

$\displaystyle f(z) = \sum_{n\ge 1} a_n n^{\ell/2} e^{2 \pi i n z} $

or

$N^{s/2} \Gamma_\R(s + \mu_1 + i\lambda)\Gamma_\R(s + \mu_2 - i\lambda)$
So 3 sub-cases.

equivalently

$\displaystyle f(x,y) = \sum_{n \not = 0} a_n y K_{i\lambda} (2\pi |n|y)e^{2 \pi i n x} $
Classify as even/odd, and $+1/-1$ under Fricke



How to construct examples?

What do they look like?

First few examples from the LMFDB
Degree 3

Two cases: $3=2+1$ and $3 = 1+1+1$.

$N^{s/2}\Gamma_\R(s+\mu+ i\lambda)\Gamma_\C\left(s+\frac{\ell}{2} - i\lambda/2\right)$ for $\mu\in \{0,1\}$ and $\ell \in \{1,\ 2,\ 3,\ldots\}$

or

$N^{s/2} \Gamma_\R(s + \mu_1 + i\lambda_1)\Gamma_\R(s + \mu_2 + i\lambda_2)\Gamma_\R(s + \mu_2 + i\lambda_3)$
4 sub-cases from the $\mu_j$.
2 parameters because $\lambda_1 + \lambda_2 + \lambda_3 = 0$.
Can assume $0\le \lambda_1 \le \lambda_2$

equivalently $\displaystyle f(x_1, x_2, x_3,y_1, y_2) = \text{a very complicated sum} $

Examples in the LMFDB

Degree 4

Three cases: $4=2+2$, $4=2+1+1$, and $4 = 1+1+1+1$.

$N^{s/2}\Gamma_\C\left(s+\frac{\ell_1}{2}+ i\lambda\right)\Gamma_\C\left(s+\frac{\ell_2}{2} - i\lambda\right)$ for $\ell_j \in \{1,\ 2,\ 3,\ldots\}$

$\lambda=0$, $\ell_1=\ell_2 = 1$ come from:
Genus 2 curves, elliptic curves over quadratic fields, abelian surfaces,
Hilbert modular forms, Bianchi modular forms, and Siegel paramodular cusp forms.
Every example with integer coefficients and conductor up to 600.

or

$N^{s/2} \Gamma_\C(s + \mu_1 + i\lambda_1)\Gamma_\R(s + \mu_1 + i\lambda_2)\Gamma_\R(s + \mu_2 + i\lambda_3)$
4 sub-cases from the $\mu_j$.
2 parameters because $2\lambda_1 + \lambda_2 + \lambda_3 = 0$.

or

$N^{s/2} \Gamma_\R(s + \mu_1 + i\lambda_1)\Gamma_\R(s + \mu_2 + i\lambda_2)\Gamma_\R(s + \mu_3 + i\lambda_3)\Gamma_\R(s + \mu_4 + i\lambda_4)$
5 sub-cases from the $\mu_j$.
2 parameters because $\lambda_1 + \lambda_2 + \lambda_3 = 0$.
Can assume $0\le \lambda_1 \le \lambda_2$
Examples in the LMFDB




Theorem. (Stephen D. Miller) Every L-function of real archimedean type has a zero with imaginary part in $[0,\ 14.135]$.

In other words, the Riemann $\zeta$-function has the "highest lowest zero".

A "Maass form on $Sp(4, \Z)$": LMFDB

Some topics of interest

What exists?

How to find examples?

How to look at examples?

What are the connections between different types of objects?

Which objects have special properties?

How to make new objects?

How to translate questions to other objects?
(RH, Sato-Tate, modularity, ...)

How to persuade other people to find it interesting?