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Workshop Summary

The workshop Spectra of Families of Matrices described by Graphs, Digraphs, and Sign
Patterns, held at the American Institute of Mathematics Research Conference Center on
Oct. 23-27, 2006, focused on three problems:

• Determination of the minimum rank, or equivalently maximum multiplicity of an
eigenvalue, of real symmetric matrices described by a graph.
• The 2n-conjecture for spectrally arbitrary sign patterns.
• The energy of graphs.

This report summarizes the mathematical results obtained at the workshop. For each of
the three problems, there is a section that summarizes what was accomplished and provides
background and notation used in the more detailed subsequent subsections, which are based
on the written reports submitted by the working groups.

Minimum Rank of Symmetric Matrices described by a Graph
This report is based on the work of the following people: Francesco Barioli, Wayne

Barrett, Avi Berman, Richard Brualdi, Steven Butler, Sebastian Cioaba, Dragoš Cvetković,
Jane Day, Louis Deaett, Luz DeAlba, Shaun Fallat, Shmuel Friedland, Chris Godsil, Jason
Grout, Willem Haemers, Leslie Hogben, In-Jae Kim, Steve Kirkland, Raphael Loewy, Judith
McDonald, Rana Mikkelson, Sivaram Narayan, Olga Pryporova, Uri Rothblum, Irene Sciriha,
Bryan Shader, Wasin So, Dragan Stevanović, Pauline van den Driessche, Hein van der Holst,
Kevin Vander Meulen, Amy Wangsness, Amy Yielding.

Results

The workshop has already extended knowledge of the minimum rank in a variety of
ways, and research continues in several directions developed at the workshop. The results
already obtained are described in more detail in the following subsections, and can be loosely
grouped into four types of results.

(1) Examples and computation (§, §, §). Minimum rank is regarded as a difficult graph
parameter to compute (except for trees). Minimum rank of more than ten additional
families of graphs was determined (beyond the few families for which minimum rank
was already known). Software allowing easy computation of minimum rank for small
graphs is being developed. A possible new upper bound, mr(G) ≤ |G| − δ(G) where
δ(G) is the minimum degree of G, is under investigation, and a better upper bound
for the minimum rank for a bipartite graph has already been established. and a
new upper bound for the minimum rank for a bipartite graph has already been
established. The results of these efforts are being incorporated into an on-line catalog
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listing graphs, minimum rank and other graph parameters. This catalog will facilitate
making and testing conjectures about minimum rank.

(2) Effect of graph operations on minimum rank (§, §). The relationship between the
minimum rank of a graph and its complement was investigated. All the examples in
the catalog satisfy mr(G)+mr(G) ≤ |G|+2. The relationship between minimum rank
of a graph and its powers was studied and several results were obtained, including
that for a tree T , mr(T ) − mr(T 2) ≥ 1, for a path the minimum rank of powers
decreases steadily until it stabilizes at 2, and for a star, the minimum rank of powers
oscillates.

(3) Graphs having balanced inertia (§). The ability to place the high multiplicity eigen-
value 0 in the middle of the spectrum played an important role in work on computing
the effect of certain graph operations such as joins on minimum rank. It is not known
whether all graphs are inertially balanced; all graphs in the catalog will be checked
for balanced inertia. Properties of a minimal non-inertially balanced graph were
determined. Related ideas involving raank strong vertices were investigated.

(4) Minimum rank over fields other than R (§). Before the workshop there was no known
example where minimum rank over R is different than minimum rank over Q or C. An
example of a graph G has been constructed such that mrQ(G) > mrR(G), and work
continues on a related complex example. The topic of minimum rank over arbitrary
fields received only limited attention and was delegated to a follow-up group that has
begun work.

Background and Notation

As used here, the term graph means a simple undirected graph. Let G be a graph,
denote the order of G by |G|, and let Sn denote the set of real symmetric n × n matrices.
The minimum rank of G is

mr(G) = min{rank(A) : A ∈ Sn and for i 6= j, aij 6= 0 if and only if ij is an edge of G}.
Related questions involving symmetric matrices over an arbitrary field F were also invses-
tigated in some cases. Let Sn(F ) denote the set of symmetric n × n matrices ove F ; the
minimum rank of G is

mr(G) = min{rank(A) : A ∈ Sn(F ) and for i 6= j, aij 6= 0 if and only if ij is an edge of G}.
The following two graph parameters are useful for a tree T : The path cover number P (T )
of T , is the minimum number of vertex disjoint paths occurring as induced subgraphs of T
that cover all the vertices of T , and
∆(T ) = max{p− q : there is a set of q vertices whose deletion leaves p paths}.

Prior to the workshop, the following information was available for computation of
minimum rank (for more information and original sources for these results, see the survey ar-
ticle on minimum rank being prepared by Shaun Fallat and Leslie Hogben based on workshop
notes and slides).

(1) Only connected graphs need be studied, as the minimum rank is the sum of the
minimum ranks of the connected components.

(2) For a tree T , mr(T ) = |T | − ∆(T ) = |T | − P (T ). There are good algorithms for
computing ∆(T ) and P (T ).

(3) mr(Pn) = n − 2, where Pn denotes the path on n vertices, and mr(G) = |G| − 1
implies G = P|G|.
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(4) mr(Kn) = 1, where Kn denotes the complete graph on n vertices. For a connected
graph G, mr(G) = 1 implies G = K|G|.

(5) mr(Cn) = n− 2, where Cn denotes the cycle on n vertices.
(6) mr(Kp,q) = 2, where Kp,q denotes the complete bipartite graph on p, q vertices.
(7) mr(G) ≤ 2 if and only if G does not contain one of a few specific graphs as an induced

subgraph.
(8) Graphs having minimum rank |G| − 2 have been characterized.
(9) If G has a cut-vertex, the problem of computing the minimum rank of G can be

reduced to computing minimum ranks of certain subgraphs.

The following notation will be used: The complement of a graph G = (V,E) is the
graph G = (V,E) whose set E of edges is the complement of E. The Cartesian product of
two graphs G and H, denoted by G � H, is the graph with vertex set V (G) × V (H) such
that (u, v) is adjacent to (u′, v′) if and only if (1) u = u′ and vv′ ∈ E(H), or (2) v = v′

and uu′ ∈ E(G). The strong product of two graphs G and H, denoted by G � H, is the
graph with vertex set V (G)× V (H) such that (u, v) is adjacent to (u′, v′) if and only if (1)
uu′ ∈ E(G) and vv′ ∈ E(H), or (2) u = u′ and vv′ ∈ E(H), or (3) v = v′ and uu′ ∈ E(G).
Let π(T ) denote the number of pendent vertices in a tree T .

Minimum rank of special graphs.

The following table will be part of an on-line catalog of minimum rank of selected
graphs.

Table 1. Minimum rank of special graphs found at AIM workshop

G mr(G)

1. Cn � K2 (n ≥ 4) |G| − 4

2. Möbius ladder (n ≥ 4) |G| − 4

3. Kn � K2 (n ≥ 2) n

4. Pm � Pn (m ≤ n) (n− 1)m if

m ≤ 4
n = m
n = k(m+ 1)− 1, k ∈ N

5. Pm � Pn (n− 1)(m− 1)

6. Qn 2n−1

7. Cn (n ≥ 5) n− 3

8. Pn n− 3

9. L(Kn) n− 2

10. L(G) n− 2 if G contains a Hamiltonian path, or G
contains a Kk,n−k with 1 < k < n− 1.

11. L(T ), T a tree |T | − π(T ).

12. H8 (below) 4
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Figure 1. The planar 4-regular graph H8

Computation of minimum rank.

The property that mrF (G) ≤ k can be described by existential statements, as in the
following know result.

Lemma 0.1. Let G be a graph with vertices 1, . . . , n and edge-set E, and let F be a field.
Then the following are equivalent:

(a) mrF (G) ≤ k.
(b) The following statement is true over F :

∃B = [bij] ∈ F n×n, x1, . . . , xk, y1, . . . , yk ∈ F n

n∧
i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)

∧
(B =

k∑
i=1

xi(yi)T ).

(c) The following statement is true over F :

∃B = [bij] ∈ F n×n,
n∧

i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)∧
(detB[α, β] = 0 ∀ α, β ⊆ 〈n〉 with |α| = |β| = k + 1).

(d) The following statement is true over F :

∃B = [bij] ∈ F n×n,
n∧

i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)∧
(detB[α, α] = 0 ∀ α ⊆ 〈n〉 with |α| ≥ k + 1).

Quantifier elimination allows one to verify the validity of statements of the form
that appear in Lemma 0.1. Tarski observed that quantifier elimination can be done over the
reals; in fact, Tarski produced an algorithm that does it. Quantifier elimination is even easier
over the complex numbers. Algorithms have been improved over the years and software for
verifying the validity of sentences (that are not too long) over the real or complex numbers
is available.

Both Mathematica and Maple provide commands to determine whether existential
statements are true. All these methods in Lemma 0.1 have been successfully implemented
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in Mathematica over the complex and real numbers for order 5 graphs, with the method
(d) being the method of choice, and the only method likely to be viable for order larger
than 5. We are consulting with an expert in high performance computing as to a better
implementation. After improvements and testing, the minimum rank computation software
will be made freely available on the web.

Minimum rank of over Q,R,C.

Since computations are easier to do over C than over R, it is desirable to know
whether mrC(G) = mrR(G) for all graphs. Clearly, mrR(G) ≥ mrC(G), but no example of a
graph where the minimum rank was lower over C was known. This led to examination of
the following question.

Question 0.2. Does there exist a graph for which mrR(G) > mrC(G)?

This lead also to a related question.

Question 0.3. Does there exist a graph for which mrQ(G) > mrR(G)?

The answers to these questions are also of interest in their own right. The following
partial result was obtained.

Proposition 0.4. Let G be a connected graph such that |G| ≤ 6 and let F be an infinite field
of characteristic not 2. Then mrF (G) = mr(G). In particular, mrQ(G) = mrR(G) = mrC(G).

Through use of matroids, an example has been found that answers Question 0.3 in the
affirmative, and work continues on a related example to answer Question 0.2.

In his early work on matroids, Saunders MacLane presented two interesting matrices.
Let

S1 =

 1 0 1 0 ω 1 0 1
0 1 1 0 1 1 1 0
0 0 0 1 1 1− ω 1 −ω

 ,
where ω = −1+

√
3i

2
. and let

S2 =

 1 0 0 1 1 1 0 1 1 1 0

0 1 0 1 1 0 1 0 0
√

2 1

0 0 1 1 0 1 −1 2
√

2
√

2 1−
√

2

 .
From a matrix A, a cycle matrix CA is constructed that describes the dependence relations
among the columns. A cycle matrix can be used to describe a zero-nonzero pattern for
a family of matrices. The cycle matrices of the matrices S1 and S2 are used to give an
example of a (not-symmetric) pattern such that the complex minimum rank of the family
of matrices described by the pattern is less than the real minimum rank of the family of
matrices described by the pattern, and an example of a (not-symmetric) pattern such that
the real minimum rank of the family of matrices described by the pattern is less than the
rational minimum rank of the family of matrices described by the pattern.

Lemma 0.5. There is no real matrix T such that CT = CS1.

Theorem 0.6. mrR(CS1) > mrC(CS1).

Lemma 0.7. There is no rational matrix T such that CT = CS2.
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Theorem 0.8. mrQ(CS2) > mrR(CS2).

Note that these patterns are not symmetric, but are used to construct symmetric
examples.

Upper and lower bounds for minimum rank and minimum degree.

Prior to the workshop, the following bounds were known:

(1) diam(G) ≤ mrF (G).
(2) If p is the length (= # of edges) of the longest induced path of G, then p ≤ mrF (G).
(3) If F is infinite, then mrF (G) ≤ cc(G) (where cc(G) is the clique cover number of G).
(4) If H is a minor of G and ξ(H) is known, then it can be used to bound minimum

rank: mrR(G) ≤ |G| − ξ(H). This includes the following graphs H:
(a) ξ(Kp) = p− 1
(b) ξ(Kp,q) = p+ 1 if p <= q and 3 <= q.

Item (2) gives a better bound than (1), which it implies, but (1) is easier to com-
pute, and diameter is a well-known graph parameter. Item (4) is a consequence of minor
monotonicity of the Colin de Verdière type parameter ξ but that applies only over the real
numbers.

Other possible bounds for minimum rank derived from certain easy to compute pa-
rameters of the graph were considered, leading to an investigation of the connection between
minimum degree of a vertex, δ(G), and minimum rank.

Conjecture 0.9. For any graph G and infinite field F ,

mrF (G) ≤ |G| − δ(G).

Note that Conjecture 0.9 can be false for finite fields:
mrZ2(K3 � K2) = 4 > 3 = |K3 � K2| − δ(K3 � K2).

We have obtained the following results relating minimum rank and δ.

Proposition 0.10. If δ(G) ≤ 3 or δ(G) ≥ |G| − 2 then mrF (G) ≤ |G| − δ(G).

Corollary 0.11. If |G| ≤ 6, then mr(SF (G)) ≤ |G| − δ(G).

The graph H8 in § is of interest. H8 satisfies Conjecture 0.9 for the real numbers,
but this is not a consequence of either Proposition 0.10 or the item 4, since δ(H8) = 4 but
H8 does not have a K5 or K3,3 minor.

Theorem 0.12. For any bipartite graph G having bipartition V (G) = U ∪W ,

mrF (G) ≤ 2(|U | − δW (G) + 1) and mrF (G) ≤ 2(|W | − δU(G) + 1).

where δW (G) = minw∈W{degG(w)}.
Corollary 0.13. For any bipartite graph G,mrF (G) ≤ |G| − δ(G).

Theorem 0.14. Let G be a connected graph with cut-vertex v and let Hi, i = 1, . . . , h be the
connected components of G− v. If mrF (Hi) ≤ |Hi| − δ(Hi) for all i = 1, . . . , h, then
mrF (G) ≤ |G| − δ(G).

Hence any possible counterexample to the δ-conjecture cannot be bipartite, and one
of minimal order cannot have a cut-vertex.
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Observation 0.15. (Cf. Subection ) If Conjecture 0.9 is true for regular graphs, a conse-
quence would be that for any regular graph G,

mrF (G) + mrF (G) ≤ |G|+ 1.

Minimum rank of not-necessesarily symmetric matrices described by a graph was
also investigated. A non -symmetric version of Conjecture 0.9 was established and used to
prove the results on bipartite graphs.

Graph complements and minimum rank.

The basic question considered concerning a graph and its complement is

Question 0.16. How large can mr(G) + mr(G) be? There are two possibilities:

(1) Does there exist a constant c ≥ 2 such that mr(G) + mr(G) ≤ |G|+ c? If so find the
smallest such c.

(2) If not, find the best constant d ≤ 2 such that mr(G) + mr(G) ≤ d|G|.

Note that c ≥ 2 by examination of a path (cf. §) and d ≤ 2 since mr(G) + mr(G) ≤
2|G| − 2. All the special graphs in Section for with the minimum rank of both G and G are
known satisfy mr(G) + mr(G) ≤ |G|+ 2. See also Observation 0.15.

Observation 0.17. If G is a strongly regular graph then,

mrF (G) + mrF (G) ≤ |G|+ 1.

Graphs having mr(G) + mr(G) ≤ 5 are characterized (|G| ≥ 4):

(1) mr(G) + mr(G) = 1: Trivially implies that G = Kn or Gn = Kn.
(2) mr(G) + mr(G) = 2: There can be no such G.
(3) mr(G) + mr(G) = 3: Without loss of generality, mr(G) = 1. Then G = Kp ∪Kn−p

for some integer p with 2 ≤ p ≤ n− 1, and G = Kp ∨Kn−p.
(4) mr(G)+mr(G) = 4: Since both a graph and its complement cannot be disconnected,

without loss of generality G is connected. Then

G = Ks1,s2 ∨Kp or (Ks1 ∪Ks2) ∨Kp.

and
G = (Ks1 ∪Ks2) ∪Kp or Ks1,s2 ∨Kp,

(5) mr(G) + mr(G) = 5: Without loss of generality, mr(G) = 2. There are 4 possibilities
for G:
(a) G = (Ks1 ∪ (Kp1 ∪Kq1) ∨Kt) ∪Kr),
(b) G = (Ks1 ∨Ks2 ∨Kt) ∨Kr, (note that Ks1 ∨Ks2 = Ks1,s2)
(c) G = ((Kp1 ∪Kq1) ∨Kt) ∪Kr,
(d) G = (Ks1 ∨Kt) ∪Ks.

Graph powers and minimum rank.

Definition 0.18. Let G = (V,E) be a graph with vertex set V = {1, 2, . . . , n} and edge set
E. The j-th power of G is the graph Gj = (V, F ) where {u, v} ∈ F if and only if there is a
walk of length j from u to v.
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The basic question considered is:

Question 0.19. What is the relationship between mr(G) and mr(Gj)?

Lemma 0.20. Let G be a graph. Then Gj ⊆ Gj+2.

We now focus our attention on trees.

Lemma 0.21. Let Pn be the path on n vertices. Then mr(P j
n) ≥ n− j for 1 ≤ j ≤ n− 2.

Theorem 0.22. Let Pn be the path on n vertices with n ≥ 4. Then mr(P j
n) = n − j when

1 ≤ j ≤ n − 2 and mr(P j
n) = 2 for j ≥ n − 2. Moreover, this minimum is achieved at a

nonnegative integer matrix.

It thus follows from this theorem that the minimum ranks of powers of Pn (n ≥ 4)
start at n−1 and decrease by 1 each time until it reaches 2 at the n−2 power (when P n−2

n is
Kn/2 ∪Kn/2 if n is even, and Kdn/2e,bn/2c when n is odd.) Notice that P3 = K1,2, the star on

3 vertices; the stars on n vertices, K1,n−1, are described below. We have mr(P j
2 ) is 0 when j

is even and 1 when j is odd.

It is well known that for a matrix M , rank(M j) ≥ rank(M j+1). The following
observation shows that mr(Gj) ≥ mr(Gj+1) need not always hold.

Observation 0.23. For the star on n vertices, mr(K1,n−1
j) is 2 when j is odd and 1 when

j is even.

Open Problem 0.24. Characterize the graphs G for which mr(Gj) ≥ mr(Gj+1), for all
j ≥ 1.

Theorem 0.25. Let T be a tree on n ≥ 3 vertices. Then mr(T 2) is less than or equal to the
number of non-pendent vertices.

Note that the minimum rank of the line graph of a tree is also given by the number of
non-pendent vertices (cf. §).

Theorem 0.26. For any tree T , π(T )− P (T ) ≥ 1.

Corollary 0.27. For any tree T , mr(T )−mr(T 2) ≥ 1.

The case of equality in the lower bound on π(T ) − P (T ) has yet to characterized.
It’s clear that any path will provide an example for which equality holds in the lower bound.

Theorem 0.28. Let T be a tree on at least 3 vertices; then π(T )− P (T ) ≤ |T |
3
.

Equality is attainable in the upper bound on π(T ) − P (T ), for example by the tree
on 3k vertices formed from Pk by adding 2k new vertices, and making each vertex of Pk

adjacent to exactly 2 of the new vertices. A characterization of all trees yielding equality in
the upper bound is still needed, however.

Conjecture 0.29. If T 6= K1,n−1, then mr(T 3) ≤ mr(T 2)− 1.

Question 0.30. Is it the case that for each tree T 6= K1,n−1, the sequence mr(T j) decreases
strictly until it hits its limit of 2?
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Inertially balanced graphs and rank spread.

In order to determine the minimum rank for several classes of graphs (decomposable
graphs, joins of graphs, . . . ) a central role is played by the relative position of the packet
of zero eigenvalues in the spectrum of an optimal matrix. This fact leads to the notion of
balanced inertia. More precisely, a matrix is said to be inertially balanced if i−(A) 6 i+(A) 6
i−(A) + 1, where i+(A) is the number of positive eigenvalues of A, etc. Similarly, a graph is
said to be inertially balanced if there exists an inertially balanced matrix A optimal for G,
where a matrix A ∈ S(G) is optimal for G if rankA = mr(G).

The following (classes of) graphs were known to be inertially balanced

(1) trees;
(2) n-cycles, n > 3;
(3) decomposable graphs;
(4) graphs with mr(G) 6 2;
(5) graphs with n 6 4 vertices.

Several new results were established:

Theorem 0.31. If the minimum rank of G equals the clique cover number, then G is iner-
tially balanced.

Question 0.32. Are all graphs inertially balanced?

At present there are no examples of graphs that fail to be inertially balanced, and we
suspect that the answer to Question 0.32 is yes.

Balanced inertia is strictly related to the notion of rank-spread of a graph G at a
vertex v. Recall that the rank-spread is defined as rv(G) = mr(G) − mr(G − v), and it is
well-known that 0 6 rv(G) 6 2. In particular a vertex v is said to be

• rank null if rv(G) = 0;
• rank weak if rv(G) = 1;
• rank strong if rv(G) = 2.

Efforts to show all graphs are inertially balanced focused on determining necessary
conditions for a minimal counter example. A graph G is minimal non-inertially-balanced
if G is not inertially balanced, while all proper induced subgraphs of G are. A partial
characterization of a minimal non-inertially balanced is provided by the following results.

Theorem 0.33. A minimal non-inertially-balanced graph cannot have a rank-strong vertex.

Theorem 0.34. A minimal non-inertially-balanced graph cannot have pendent vertices.

Theorem 0.35. Let G have a vertex v such that the graph induced by the neighbors of v
is a clique. If rv(G) > 1 and G − v is inertially balanced, then G is inertially balanced. In
particular, a minimal non-inertially-balanced graph cannot have such a vertex.

In view of Theorems 0.33 and 0.34, the existence of a sequence of rank-strong vertices
provides a method for the construction of optimal inertially balanced matrices. Therefore,
a natural question rises, namely, do there exist graphs with only rank-strong vertices? A
similar question can be posed for graphs with only rank-null or only rank-weak vertices. A
positive answer has been obtained for the last two questions. Indeed, in the complete graph
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Kn, n > 3, all vertices are rank-null, while an example of graph in which all the vertices are
rank-weak is the Dart.

At present, the existence of graphs with all rank-strong vertices is still unknown.

Spectrally Arbitrary Patterns and the 2n Conjecture
This report is based on the work of the following people: Francesco Barioli, Louis

Deaett, Luz DeAlba, David Farmer, Leslie Hogben, In-Jae Kim, Judith McDonald, Rana
Mikkelson, Sivaram Narayan, Olga Pryporova, Bryan Shader, Pauline van den Driessche,
Hein van der Holst, Kevin Vander Meulen, Amy Wangsness, and Amy Yielding.

Spectrally arbitrary sign patterns (or zero-nonzero patterns) allow every possible
spectrum of a real matrix, or, equivalently, allow every monic real polynomial as the charac-
teristic polynomial. Inertially arbitrary sign patterns (or zero-nonzero patterns) allow every
possible inertia.

The 2n-conjecture asserts that an n× n spectrally arbitrary pattern has at least 2n
nonzero entries. It is known that a spectrally arbitrary n× n pattern must contain at least
2n − 1 nonzero entries, and numerous examples of spectrally arbitrary n × n sign patterns
with 2n nonzero entries are known. The 2n-conjecture actually has four versions, the general
and the irreducible versions for sign patterns and zero-nonzero (znz) patterns.

Conjecture 0.36. (Irreducible 2n conjecture) Each irreducible n × n (sign or znz) pattern
has at least 2n nonzero entries.

Conjecture 0.37. (General 2n conjecture) Each n×n (sign or znz) pattern has at least 2n
nonzero entries.

Obviously the general conjecture implies the irreducible conjecture, and for either con-
jecture, if it is true for znz patterns then it is true for sign patterns.

A number of participants suspect that the general conjecture is not true, and in
fact one of the groups is working on a possible counterexample using a reducible pattern,
whereas the consensus is that the irreducible 2n conjecture is true. Spectrally arbitrary
patterns (SAPs) do not behave well under direct summation: The direct sum of two odd
order SAPs is not an SAP, and there is an example of an SAP that is the direct sum of a
non-SAP with an SAP.

It was suggested at the workshop that the general conjecture is incorrectly phrased.
In an irreducible pattern, n−1 nonzero entries can be assumed to equal to 1, and thus at least
2n−1 nonzero entries are needed to realize the n algebraically independent coefficients of the
characteristic polynomial. Thus the irreducible conjecture could be rephrased to say that
there is least one more nonzero entry than required to realize n algebraically independent
coefficients. For a sign pattern with c irreducible components, n − c of the entries can
be assumed to be equal 1, and n other entries are needed to a realized the n algebraically
independent coefficients. Thus the following revision of the general 2n-conjecture is proposed:

Conjecture 0.38. (Revised general 2n conjecture) Any n × n (sign or znz) pattern has at
least 2n− c+ 1 nonzero entries, where c is the number of irreducible components.

There were three work groups for spectrally arbitrary patterns and their general topics
were the following.

(1) The irreducible 2n conjecture was investigated by exploring the proofs that an n×n
irreducible, spectrally arbitrary sign (or zero-nonzero) pattern has at least 2n − 1
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nonzero entries, and by studying generalizations and relaxations of the notion of a
spectrally arbitrary pattern and the analogs of the 2n-conjecture in these settings.
An example of a zero-nonzero pattern that is a complex SAP but not a real SAP was
found.

(2) Reducibility issues: Construction of a possible counterexample to the general 2n
conjecture by taking the direct sum of an SAP with 2n entries with an non-SAP
with 2n− 1 entries was investigated, as was construction of possible examples of two
non-SAPs whose direct sum in an SAP.

(3) Full patterns that are SAPs or inertially arbitrary patterns (IAPs) were studied with
the goals of finding a relatively simple necessary and sufficient condition for a full
sign pattern to be spectrally (or inertially) arbitrary; and to find (if possible) a full
sign pattern that is not spectrally (inertially) arbitrary, but that has a spectrally
(inertially) arbitrary subpattern.

Irreducible patterns.

Work on irreducible patterns focused on

Developing a deeper understanding of the proofs that an n×n irreducible, spectrally
arbitrary sign (or zero-nonzero) pattern has at least 2n− 1 nonzero entries with the
hope that this would provide insight for a proof of the irreducible 2n conjecture.
Exploring generalizations and relaxations of the notion of a spectrally arbitrary pat-
tern and the analogs of the 2n-conjecture in these settings.

The crux of each known proof that an n × n irreducible, spectrally arbitrary sign
(or znz) pattern A has at least 2n − 1 nonzero entries is the simple fact that if a poly-
nomial function f : Rk → Rn is surjective, then necessarily k ≥ n. The particular poly-
nomial function of interest for A is constructed by choosing a collection of n − 1 nonze-
ros of A that correspond to a spanning tree in the graph of A; setting A(x1, . . . , xm) to
be the matrix with the chosen n − 1 entries equal to 1 and the remaining m − n + 1
nonzero entries being indeterminants x1, . . . , xm−n+1; and defining then fA(x1, . . . , xm−n+1) =
(p1(x1, . . . , xm−n+1), . . . , pn(x1, x2, . . . , xm−n+1)) where det(xI−A) = xn+p1(x1, . . . , xm−n+1)x

n−1+
· · ·+ pn(x1, x2, . . . , xm−n+1). Note if A has exactly m = 2n− 1 nonzero entries, then fA is a
polynomial map from Rn to Rn, and then validity of the irreducible 2n-conjecture is equiva-
lent to the assertion that no such fA is surjective. As there are surjective polynomial maps
from Rn to Rn, if the irreducible 2n-conjecture is true, then it must be that the polynomial
maps fA have special properties. Some special properties of the fA are listed in the following
proposition.

Proposition 0.39. Let A be an n×n irreducible, sign (or znz) pattern with 2n− 1 nonzero
entries, and let fA and p1, . . . , pn be defined as above. Then the following hold

(a) pi(0, 0, . . . , 0) = 0 for each i.
(b) deg(pi) ≤ i (i = 1, 2, . . . , n).
(c) The pre-image, f−1A ((0, 0, 0, . . . , 0)), of (0, 0, . . . , 0) has infinite cardinality.
(d) Any collection of k < n of p1, . . . , pn involves k + 1 or more indeterminants.
(e) Each pi is a sum or difference of distinct monomials.

Question 0.40. What are necessary and sufficient conditions for a polynomial function f
to equal fA for some A?
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Question 0.41.

Is there a surjective polynomial function f : Rn → Rn satisfying (a)-(e) of Proposition 0.39?

Question 0.42. Is there anything special about fA coming from det(xI − A(x1, . . . , xn))
rather than χ(xI − A(x1, . . . , xn)) where χ is an immanent (e.g. the permanent)?

To gain additional insight into the 2n-conjecture, the following related problem was
posed and studied. Let A be a n×n, sign (or zero-nonzero) pattern, and let β = {i1, . . . , ik}
be a subset of {1, 2, . . . , n} of cardinality k. Then A is a β-spectrally arbitrary pattern
provided for each k-tuple (r1, . . . , rk) of real numbers there is a realization A of A whose
characteristic polynomial xn +

∑n
i=1 αix

n−i satisfies αij = rj for j = 1, 2, . . . , k. Known
techniques can be extended to show that if A is an irreducible, n× n β-spectrally arbitrary
pattern, then A has at least n+ |β| − 1 nonzero entries.

Question 0.43. Let k be a integer with 1 ≤ k ≤ n. What is the minimum number of nonzero
entries in an irreducible n × n sign (or znz) pattern which is β-arbitrary for some β with
|β| = k?

The analog of the 2n-conjecture in this setting is:

Conjecture 0.44. If A is an n × n, β-spectrally arbitrary sign (or zero-nonzero) pattern,
then A has at least n+ |β| nonzero entries.

The notion of a spectrally arbitrary zero-nonzero pattern can be extended to an
arbitrary field as follows. The n× n, znz pattern A is a SAP over the field F provided that
every monic polynomial of degree n in F[x] is the characteristic polynomial of some matrix
with zero-nonzero pattern A and entries in F. Exploration of analogs of spectrally arbitrary
patterns and the 2n-conjecture in various settings, yielded some basic results.

Theorem 0.45. The 2n-conjecture is true for zero-nonzero patterns over finite fields.

The proof of Theorem 0.45 relies only on basic counting, and not on properties of
polynomial functions, but does not seem to extend to infinite fields of nonzero characteristic.

Question 0.46. Does every n × n zero-nonzero pattern over an infinite field of nonzero
characteristic have at least 2n nonzero entries?

Prior to the conference it was unknown whether or not the classes of spectrally
arbitrary zero-nonzero patterns over the reals and over the complexes were different. The
following example shows that they are different.

Example 0.47. The zero-nonzero pattern

A =


∗ ∗ 0 0
∗ 0 ∗ 0
0 0 ∗ ∗
∗ 0 0 ∗

 .
is an SAP over C, but is not SAP over R.

Reducible patterns.

Research in this subtopic was primarily concerned with two problems:
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(a) Find, if possible, a reducible n× n SAP with fewer than 2n nonzero entries.
(b) Find, if possible, an SAP which is the direct sum of two non-SAPs. .

The recent discoveries of very sparse, reducible inertially arbitrary patterns and an
SAP which is a direct sum of a non-SAP and an SAP, suggest that one might be able to use
direct sums of non-SAPs to construct an n× n SAP with fewer than 2n nonzero entries.

The group worked on 6 × 6 zero-nonzero patterns with 11 nonzero entries, trying
to determine whether any of them could be a component of a reducible SAP. Note if such a
matrix could be direct-summed with an m by m matrix with 2m nonzero entries to obtain
an SAP, then the desired example would be obtained.

An analysis of pattern

G1 =


? 0 0 0 0 ?
0 ? 0 0 0 ?
0 ? 0 ? 0 0
0 0 0 0 ? 0
0 0 0 ? 0 ?
? 0 ? 0 0 0


shows the only characteristic polynomials not realized by G1 have a very special form. At-
tempts to use this special form to show that G1 could be a component of an n× n reducible
SAP with 2n− 1 nonzero entries (to date) have fallen tantalizing short, and continue.

In another direction, the known example of a non-SAP⊕SAP that produces an SAP,
was studied with the hope of finding some characteristics of such non-SAP patterns. Consider
the sign-pattern

M4 =


+ + − 0
− − + 0
0 0 0 −
+ + 0 0


The characteristic polynomials that cannot be realized by M4 are p(x) = x4+b3x

3+b2x
2+b0,

where either b0 = 0 and b23 − 4b2 < 0, or b0 < 0 and b23 − 4b2 ≤ 0.

It was conjectured that all polynomials not realizable by M4 have the same type of
factorization over R, namely fg1g2, where f is an irreducible quadratic and g1 and g2 are
linear factors. In other words, the conjecture asserted that all polynomials not realizable
by M4 have exactly 2 real roots. However, the polynomial x4 + 1.95x3 + x2 − 0.05 is not
realizable by M4 and has 4 real roots.

Surprisingly, for the zero-nonzero pattern associated with M4, the conjecture is true,
because the only polynomial not realizable by zero-nonzero pattern associated with M4 is
x4 + b3x

3 + b2x
2 where b23− 4b2 < 0, which is the product of x2 and an irreducible quadratic.

A third direction of research focussed on finding a non-SAP zero-nonzero pattern
P , such that the direct sum of it with M4 is an SAP. One of the candidates for P was

C4 =


? ? 0 0
0 0 ? ?
0 0 ? ?
? ? 0 0

 .
However, it was shown that C4 ⊕M4 is not SAP.
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Based on comment made by the irreducible group in large group discussions (cf.
Question 0.42), this group also worked on the permanental analog of SAPs. More precisely,
an n × n sign pattern (or zero-nonzero pattern) A is permanentally SAP, provided every
monic, real polynomial of degree n is per(xI−A) for some A ∈ A. The possibility of finding
a permanentally arbitrary sign (or zero-non-zero) pattern that was not spectrally arbitrary
was explored, using Mathematica. It was shown that there was no such 4× 4 pattern, and
work continues on the 5× 5 patterns.

Full patterns.

Full patterns, that is patterns with no zeros, that are SAPs or inertially arbitrary
patterns (IAPs) were studied with the goals of finding a relatively simple necessary and
sufficient condition for a full sign pattern to be spectrally (or inertially) arbitrary; and to
find (if possible) a full sign pattern A such that A itself is not spectrally (inertially) arbitrary,
but A has a spectrally (inertially) arbitrary subpattern.

Two necessary conditions for a sign pattern A = [αij] to be inertially or spectrally
arbitrary are:

(N1) There exist indices i, j such that αii = + and αjj = −; and
(N2) For some i 6= j, αijαji = −.

Since a full sign pattern has so much freedom in choosing values for its nonzero
entries, it is natural to ask the following question:

Question 0.48. Let A be a full n × n sign pattern. If A satisfies the necessary conditions
(N1) and (N2), then is A spectrally arbitrary? inertially arbitrary?

When n = 2, the answers are yes. However, when n = 3, the full sign-pattern − + +
− + −
− − +

 .
satisifes (N1) and (N2) but is not potentially nilpotent, and the answers are no.

This leads to a modification of Question 0.48, which is yet to be resolved.

Question 0.49. Let A be a full n× n sign pattern for n ≥ 4. If A is a potentially nilpotent
sign pattern with the two necessary conditions, then is A spectrally arbitrary?, inertially
arbitrary?

The primary technique used to demonstrate that a sign pattern is spectrally arbi-
trary is the Nilpotent-Jacobian (N-J for short) method that when applicable proves that
every superpattern of the given pattern is spectrally arbitrary. It is not known in general
whether or not every superpattern of a spectrally (resp. inertially) arbitrary sign pattern
is spectrally (resp. inertially) arbitrary. However, it is known that a superpattern of an
inertially arbitrary zero-nonzero pattern need not be inertially arbitrary.

Question 0.50. Is there a spectrally (inertially) arbitrary sign pattern having a (full) su-
perpattern that is not spectrally (inertially) arbitrary?
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It is known that the reducible pattern T2 ⊕ T2 is spectrally arbitrary, where

T2 =

[
+ +
− −

]
.

However, the N-J method cannot be used to show that T2⊕T2 is spectrally arbitrary,
since, at every nilpotent realization of a reducible sign pattern, the last row of the Jacobian
corresponding to the constant term is always zero. Thus, it is not known whether or not every
superpattern of T2⊕T2 is spectrally arbitrary. However, by using similarity transformations
on matrices in T2 ⊕ T2 one can show that

B =


+ + − −
− − + +
+ + + +
− − − −


is spectrally arbitrary.

In the same way, Givens rotations appear useful in finding spectrally (inertially)
arbitrary superpatterns of a spectrally arbitrary pattern. Using Givens rotations, certain
superpatterns of T2 ⊕ T2 were shown to be inertially arbitrary.

If all of the (full) superpatterns of T2 ⊕ T2 turn out to be spectrally arbitrary, then
the next pattern to investigate is M4 ⊕ T2 in order to find a (full) superpattern that is not
spectrally arbitrary, where

M4 =


+ + − 0
− − + 0
0 0 0 −
+ + 0 0

 .
It is known that M4 is not spectrally arbitrary, but M4 ⊕ T2 is spectrally arbitrary.

Energy of Graphs
This report is based on the work of the following people: Wayne Barrett, Avi Berman,

Richard Brualdi, Steven Butler, Sebastian Cioaba, Dragoš Cvetković, Jane Day, Shaun Fal-
lat, Shmuel Friedland, Chris Godsil, Jason Grout, Willem Haemers, Steve Kirkland, Raphael
Loewy, Uri Rothblum, Irene Sciriha, Wasin So, Dragan Stevanović.

The energy of a graph (the sum of the absolute values of the eigenvalues of the ad-
jacency matrix) has applications to chemistry. Certain quantities of importance to chemists,
such as the heat of formation of a hydrocarbon, are related to pi-electron energy that can be
calculated as the energy of an appropriate “molecular” graph. Recently the Laplacian energy
of a graphs, the analogue of energy for the Laplacian matrix of G, has also been studied.
The workshop investigated both the energy of a graph and the Laplacian energy. Both kinds
of energy, depending as they do on all the eigenvalues of a matrix, are very difficult to work
with.

As used here, the term graph means a simple undirected graph. Let V (G) and E(G)
denote the vertex set and the edge set of a graph G.

1. Energy: This group focussed on the effect on energy of adding, removing, or subdi-
viding an edge of a graph. A general result was proved which implied that removing
an edge can change the energy by at most 2 and subdividing an edge can change it
by at most 4. Also considered was the energy per vertex and its maximum f(k) over
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all regular graphs of degree k with n vertices. If k is a prime power, then tight upper
and lower bounds were obtained for f(k + 1) (using combinatorial configurations).
Many new and interesting questions and conjectures arose, such as: (1) Are there
any graphs for which the energy goes up by 2 when some edge is removed?, and (2)
Is K2 the only connected graph with an edge whose removal decreases the energy by
2?

2. Laplacian Energy: This is a recent concept defined to be the sum of the absolute
values of the difference between the eigenvalues of the Laplacian matrix and the
average degree of a vertex (equivalently, the average value of the eigenvalues). The
group investigating Laplacian energy focussed on a conjecture that the vector of n
eigenalues is majorized by the conjugate (in the sense of number theory) of the degree
sequence, with equality for a class of extremal graphs known as threshold graphs,
and its implications for Laplacian energy. There was a conjecture that maximum
Laplacian energy was obtained by a special class of threshold graphs called pineapples.
A disconnected counterexample was discovered but the conjecture remains open for
connected graphs. The (strict) upper bound of 2m (m is the number of edges) was
obtained for Laplacian energy. Many related questions were posed and discussed
concerning this hard topic.

Energy.

The energy of a graph G on n vertices with eigenvalues λ1, . . . , λn is

E(G) =
n∑

i=1

|λi|

We analyzed the behavior of the energy when adding, removing or subdividing an edge.
By subdividing an edge we mean replacing it with a path of length 2.

Theorem 0.51. If G and H are graphs such that V (G) = V (H) and E(G) ∩ E(H) = ∅,
then

|E(G)− E(H)| ≤ E(G ∪H) ≤ E(G) + E(H)

The graph G ∪H has V (G) as vertex set and E(G) ∪ E(H) as edge set.

Corollary 0.52. If G is a graph and e ∈ E(G), then

|E(G)− E(G \ e)| ≤ 2

Corollary 0.53. If H is the graph obtained by subdividing an edge of a graph G, then

|E(G)− E(H)| ≤ 4

Lemma 0.54. If G ∈ {Kn, Pn, Cn}, then subdividing an edge of G increases the energy.

We are interested in determining

f(k) = max
E(G)

|V (G)|
(1)

where the maximum is taken over all k-regular graphs on n vertices.

Without loss of generality, we can restrict ourselves to bipartite k-regular graphs.
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Theorem 0.55. If q is a prime power, then

√
q +

1

q +
√
q + 1

≤ f(q + 1) <
√
q +

1√
q + 1−√q

The energy per vertex for the 3-regular graph obtained as a bipartite double cover of
the incidence graph of the projective plane of order 2 (also known as the Heawood graph)

is 6+3
√
2

7
= 1.64705. We have checked by computer that 6+3

√
2

7
is larger than the energy per

vertex of any other 3-regular graph on less than 22 vertices.

Open Problems

Conjecture 0.56. If e is an edge of a connected graph G such that E(G) = E(G \ e) + 2,
then G = K2.

Question 0.57. Are there any graphs G such that

E(G \ e) = E(G) + 2 (2)

for some edge e of G ?

Question 0.58. For what connected graphs G, is there an e ∈ E(G) such that E(G \ e) =
E(G)?

Definition 0.59. Let the diamond be the graph K4 minus an edge. The central edge of a
diamond is the edge between the two vertices of degree 3. If i is a vertex of a graph G, N(i)
(the closed neighborhood of i) denotes the set of vertices adjacent to i in G and includes i.

N(i) = {i} ∪
⋃

ij∈E(G)

{j}.

If V is a set of vertices in G, then G[V ] is the induced subgraph of G induced by the vertices
in V .

Conjecture 0.60. Let G be a graph, ij be an edge in G, and H be the graph obtained by
subdividing ij in G. If the graph energy of H is less than the graph energy of G, then one of
the following two things is true.

(1) The edge ij is the central edge in an induced diamond in G.
(2) Let W = N(i). Then N(i) = N(j) = W and G[W ] is a clique. Furthermore, each

vertex in W \{i, j} has degree greater than i (i.e., each vertex in W \{i, j} is adjacent
to at least one vertex outside of W in G).

This conjecture is true for connected graphs up through 9 vertices. There are 2
connected graphs on 7 vertices which satisfy the hypotheses and not item 1. There are 23
connected graphs on 8 vertices and 261 connected graphs on 9 vertices which satisfy the
hypotheses and not item 1. All of these graphs satisfy item 2. There are at least 1000
connected graphs on 10 vertices which satisfy the hypotheses and not item 1, but do satisfy
item 2. Currently we are checking all connected graphs on 10 vertices.

A particularly interesting graph is the graph shown in Figure 2. This is the only
graph on 8 or fewer vertices satisfying the hypotheses, but not item 1, such that subdividing
two different edges decreases the energy.
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1̀̀2̀3̀4̀5̀6̀7̀8

Figure 2. Subdividing 3—4 or 5—6 decreases the graph energy.

Conjecture 0.61. If q is a prime power, then

f(q + 1) =
√
q +

1

q +
√
q + 1

Question 0.62. Find k-regular graphs with high energy per vertex when k−1 is not a prime
power.

Question 0.63. Determine all 3-regular bipartite graphs with 5 or 6 distinct eigenvalues.

Laplacian energy.

Let G be a connected graph with n vertices {1, 2, . . . , n} and degrees d1 ≥ d2 ≥
· · · ≥ dn ≥ 1 where m = (d1 + d2 + · · ·+ dn)/2 is the number of edges. Let A(G) = A = [aij]
be the adjacency matrix of G, and let D be the diagonal matrix of order n with diagonal
entries d1, d2, . . . , dn. The matrix L(G) = L = D−A (a singular M-matrix) is the Laplacian
matrix of G and it has eigenvalues λ1 ≥ · · · ≥ λn−1 ≥ λn = 0. The average degree of the
vertices of G is 2m/n and

EL(G) = EL =
n∑

i=1

∣∣∣∣λi − 2m

n

∣∣∣∣
has been called the Laplacian energy of G.

Let d = (d1, d2, . . . , dn) and λ = (λ1, λ2, . . . , λn). Let d∗ = (d∗1, d
∗
2, . . . , d

∗
n) be the

conjugate (degree) sequence of d. Then R. Grone and R. Merris1 conjectured that λ is
majorized by the conjugate of d, written λ � d∗, that is,

k∑
i=1

λi ≤
k∑

i=1

d∗i (k = 1, 2, . . . , n)

with equality for k = n.

Since |x − a| is a convex function of x,
∑n

i=1 |x−ai| is also a convex function, and
from majorization we conclude that if the Grone-Merris conjecture is true, then

EL(G) ≤
n∑

i=1

∣∣∣∣d∗i − 2m

n

∣∣∣∣ .
There is a special class of graphs known as threshold graphs. These graphs admit a

number of characterizations:

(1) Uniquely determined (as labelled graphs) by degree sequence.
(2) Starting from one vertex, these are the graphs constructed recursively by adding an

isolated or dominating (connected to all previous vertices) vertex.
(3) The Laplacian eigenalues are d∗1, d

∗
2, . . . , d

∗
n.

1SIAM J. Discrete Math., 7 (2), 1994, 221–229.
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(4) di = d∗i − 1 for all i with 1 ≤ i ≤ fd where d is the largest k such that dk ≥ k (the
order of the so-called Durfee square in the Young diagram (Ferrers diagram) of d).2

(5) With respect to the partial order of majorization, the degree sequence is maximal
(no degree sequence of a graph properly majorizes the degree sequence of a threshold
graph).

Note that a connected threshold graph must have a dominating vertex (a vertex connected
to all the other vertices). Degree sequences of threshold graphs are called threshold degree
sequences. The generating function for the number tm of threshold graphs with m edges is

g(x) =
∑
m≥0

tmx
m =

∏
i≥1

(1 + xi),

the generating function for the number of strict partitions of m.. It is a known fact3 that the
extreme points of the convex hull of degree sequences of graphs with n vertices are precisely
the degree sequences of threshold graphs.

The problems of focus were to determine the maximal Laplacian energy for

(1) n (number of vertices) and m (number of edges) fixed.
(2) n fixed but number m of edges not specified (possibly restricting to threshold graphs

only).
(3) m fixed, but number of vertices not specified (possibly restricting to threshold graphs

only), and
(4) What are the extreme points of the convex hull of the n-tuples λ = (λ1, λ2, . . . , λn) of

of Laplacian eigenvalues of graphs with n vertices? (It was conjectured at first that
these are the λ’s for threshold graphs (so the conjugate degree vectors of threshold
graphs) but this was shown to be false.)

At first it had been conjectured that the maximum Laplace energy was attained
by pineapples. These are threshold graphs obtained by taking a complete graph Kp and
adjoining n− p other vertices and an edge from each of these vertices to one specified vertex
of Kp; the degree sequence is then n − 1, p − 1, . . . , p − 1, 1, . . . , 1 where there are p − 1
degrees equal to p − 1 and n − p degrees equal to 1, and the conjugate degree sequence
is n, p, . . . , p, 1, . . . , 1, 0 where there are (p − 2) p’s and (n − p) 1’s. But a disconnected
counterexample was found, still leaving the problem open for connected graphs.

Note that to maximize Laplacian energy, the Laplacian eigenvalues should be dis-
tributed in such a way to be far from their average 2m/n.

Our discussion of these questions led to the following additional problems:

(a) What is the maximum of
n∑

i=1

∣∣∣∣d∗i − 2m

n

∣∣∣∣ .
over all graphs on n vertices and m edges?

2See: The branching extent of graphs, E. Ruch and I. Gutman, J. Combin, Inform. System Sci., 4, 1979,
285-295. Also see: R. Merris and T. Roby, The lattice of threshold graphs, J. Inequal. Pure and Appl.
Math., 6 (1), 2005, 1–20.

3See: N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics, Annals Disc. Math., 56,
North-Holland, Amsterdam, 1995.
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(b) What is the maximum of
n∑

i=1

∣∣∣∣d∗i − 2m

n

∣∣∣∣ .
over all graphs on n vertices and with m not specified?

(c) What are the extreme points of the convex hull of the conjugates of the degree
sequences of graphs with n vertices? Characterize the graphs corresponding to the
extreme points.


