Problem Session Notes

AIM Workshop on Descriptive Inner Model Theory

June 2-6, 2014

These notes were compiled by Per Stinchcombe.

- 1. Let λ be a singular cardinal of cof $> \omega$, and $\{\kappa < \lambda | 2^{\kappa} = \kappa^{+}\}$ is stationary, costationary. Must $AD^{L(\mathbb{R})}$ or stronger forms of determinacy hold? (PD is known as a lower bound (Gitik, Shelah, Schindler), and a supercompact is a known upper bound (preprint Gitik).)
- 2. Does $(\aleph_3, \aleph_2) \twoheadrightarrow (\aleph_2, \aleph_1)^1$ imply that there is an inner model with a Woodin cardinal?

Upper bound: Huge (Foreman)

Lower bound:

- $\kappa^{+\omega}$ -strong (Schindler, assuming CH)
- Repeat point (Cox)
- 3. What is the consistency strength of an \aleph_3 -saturated ideal on ω_2 ?

Upper bound: almost huge (Magidor)

Lower bound: Assume \exists an ideal $I \subseteq \omega_2$ such that

 $\{X \prec H_{\theta} | X \text{ is self-generic wrt } I, X \cap \omega_3 \text{ is } \omega\text{-closed below its supremum}\}$

is stationary.² (This is weaker than saturation.) Assume further that $2^{\aleph_1} \leq \aleph_3.$ Then PD holds.

4. Consider the sequence

$$\langle \aleph_n \cap \operatorname{cof}(\aleph_{i_n}) | n \geq 2 \rangle$$

where $i_{3k+1} = 1$, $i_n = 0$ otherwise.

What is the consistency strength of the mutual stationarity of this sequence?

 $^{^{1}\}mathrm{every}$ structure of one type has an elementary substructure of the other type.

²Ralf Schindler supplied the following definition: X is self-generic with respect to I if the following holds true. Let $\sigma: H \to X \prec H_{\theta}$ be the inverse of the transitive collapse, let α be the critical point of σ so that $\sigma(\alpha) = \omega_2$. Write $\bar{I} = \sigma^{-1}(I)$, and write $U = \{x \in H : x \subset \alpha \text{ and } \alpha \in \sigma(x)\}$. Then U is the filter given by a generic w.r.t. forcing with \bar{I} over H.

Upper bound: ω -many supercompacts. (Cummings, Foreman, Magidor, "Canonical Structures II")

Lower bound: $0^{\#}$? Sharps for bounded subsets of \aleph_{ω} .

5. Is it consistent that for every sequence $\langle S_n | n \in \omega \rangle$ with each $S_n \subseteq \aleph_{n+2} \cap \operatorname{cof}(\omega_1)$, each S_n , the sequence is mutually stationary?

Lower bounds are known: inner model with infinitely many cardinals κ_n such that for all m the class of measurables $\lambda < \kappa_n$ with Mitchell order at least κ_m is stationary in V for n > m. (Koepke-Welch)

6. Is $MM(c^+)$ consistent with Woodin's Axiom (*)?

Known: Assume MM^{++} for arbitrary partial orders, weak UBH (a proper class of Woodins, extender sequences witnessing Woodinness; then UBH holds for those extender sequences.); let Γ_{∞} be the universally Baire sets. Suppose $\theta_{uB} > \aleph_1$. Then (*) holds. (Schindler-Woodin)

7. Does

$$\operatorname{Th}(L(\Gamma_{uB})) = \operatorname{Th}(L(\Gamma_{uB}))^{V^{\mathbb{P}}}$$

(with constant symbols for each uB set) for all \mathbb{P} , plus a proper class of Woodin cardinals, plus MM^{++} , imply $cof(\theta_{uB}) > \aleph_1$?

Known: MM^{++} + weak UBH + proper class of Woodins \implies TFAE:

- (a) $cof(\theta_{uB}) > \aleph_1$
- (b) \exists semiproper \mathbb{P} adding uB A such that $A>_w B$ for all uB B in V

(conjecture: both are true)

Remark 1. $(*)^+$: For every $A \subseteq \mathbb{R}$ there is an AD^+ -model $M \supseteq \mathbb{R}, g \subseteq \mathbb{P}_{\max}$ generic, $A \in M[g]$.

$$(*)^{++}: M \models AD_{\mathbb{R}} + \Theta \text{ is regular.}$$

$$MM^{++} + (*)^{++} \implies \theta_{uB} = \omega_3.$$

8. What is the consistency strength of MM(c)?

Upper bound: $AD_{\mathbb{R}} + \Theta$ is regular (Woodin: \mathbb{P}_{max} book)

Lower bound: $AD^{L(\mathbb{R})}$ is safe (Steel-Zoble), more may be known.

9. What is the consistency strength of $\neg \Box_{\omega_2} + \neg \Box(\omega_2) + 2^{\omega_1} = \omega_2$?

Upper bound: weaker than $AD_{\mathbb{R}} + \Theta$ is Mahlo.

 $\{\alpha | \operatorname{cof}(\theta_{\alpha}) \geq \aleph_2 + \theta_{\alpha} \text{ regular in HOD} \}$

Lower bound: PD (maybe $AD^{L(\mathbb{R})}$?)

³Take an elementary substructure where the cofinalities alternate. It never projects in L; get an elementary embedding $L \to L$.

10. What is the consistency strength of " \aleph_2 and \aleph_3 both have the tree property"?

Upper bound: weakly compact above a supercompact. (Abraham) Lower bound: nowadays the argument in Foreman-Magidor-Schindler would

11. Is there a unique model $L(\mathbb{R}, \mu)$ such that $L(\mathbb{R}, \mu)$ satisfies μ is a normal fine measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$? What is the consistency strength of such a pair? Lower bound: ω^2 Woodins.

Known: If $L(\mathbb{R}, \mu)$ and $L(\mathbb{R}, \nu)$ are two such models, then $\mathcal{P}(\mathbb{R}) \cap L(\mathbb{R}, \mu) \subseteq L(\mathbb{R}, \nu)$ or vice versa.

12. Does BMM $\implies 0^{\P}$ exists?

give a Woodin cardinal. (2 is open)

Upper bound: BMM gives an inner model with a strong cardinal. (Schindler) Lower bound: BMM is consistent from $\omega + 1$ Woodins plus a measurable. (Woodin)

13. "Dual covering theorem" for (M, λ, δ) is the statement: For every λ , there is $f: \lambda^{<\omega} \to \lambda$ such that $\forall X \subseteq \text{Ord closed under } f, X$ is a union of δ -many sets in M.

For reasonable inner models M, can you get the failure of dual covering for (M, \aleph_3, \aleph_1) from some large cardinals?

E.g.:

- (a) Assuming no proper class model with a Woodin cardinal, M is the one-Woodin K.
- (b) Assuming no proper class model with a strong cardinal, M is the one-Woodin K?
- 14. The Axiom of Strong Condensation: $\forall \kappa > \omega$ there is a bijection $h : \kappa \to H(\kappa)$ such that for all $X \prec (H(\kappa), h)$, $\pi[X \cap h] = h \upharpoonright ot(X \cap \kappa)$, for π the uncollapse.

Suppose N is an inner model satisfying strong condensation, and covering fails relative to N. Must $N^{\#}$ exist?⁴

15. Suppose there is no inner model with a Woodin cardinal, and let κ be a singular cardinal in K. Suppose κ is a singular cardinal in V. Must κ be measurable in K?

For K below 0^{\P} this is known (Cox).

 $^{^4}$ If N is a model of condensation there is a function which witnesses it uniformly for all κ – so indiscernibles relative to that would do.

16. Suppose there is no inner model with a Woodin cardinal, and κ is a singular strong limit of uncountable cofinality, with $2^{\kappa} = \lambda$, some regular $\lambda > \kappa^+$. Must $o(\kappa)^K \geq \lambda$?

A negative answer may have applications in pcf theory.

Known below 0^{\P} (Gitik-Mitchell).