
Thursday afternoon discussion 1

Thursday afternoon discussion

Geometric perspectives in mathematical quantum field theory
American Institute of Mathematics, Palo Alto

11 April 2013

1 Alice: BRST

Alice: Here is a meta problem. I seem to be one of the few people with her feet still in the 50s,
working on the relationship between Hamiltonian and path integral pictures. I work with BRST
methods, supermanifold methods, and generalization of stochastic calculus on such things, and I
get my hands dirty. I will begin with a pedagogical discussions: things happen when you integrate
over anticommuting variables (the Berezinian rules, which were invented to give the relationship
between kernels and traces and so on) scale the other way as they do for ordinary variables, so you
can often get results from scaling arguments. This is linked to theories with symmetries.

To begin, let me say just a little bit about the non-BRST setting that I will try to handle via
BRST. This is the situation in which you have quantum mechanics on a symplectic manifold with
symmetries, and so you should do the Marsden–Weinstein reduction. The actual key thing is the
supertrace, which has the ability to project onto the cohomology.

The basic setting that you start with is a symplectic manifold P of dimension 2n (R2n or T∗M),
which you do know how to quantize — how to represent your ps and qs. Suppose also that you
have a Lie group G of dimension m ≤ n, and for pedagogical reasons let’s suppose that it acts
freely by symplectomorphisms on P .

The moment map, or rather its transpose, is a function T : Lie(G) → Fun(P ), and we demand
that Lρ̃f = {Tρ, f} for ρ ∈ Lie(G). The other thing is that Tρ(gy) = TAdg(ρ)(y) for y ∈ P and
ρ ∈ Lie(G) and g ∈ G. This is given to you by Noether’s theorem.

Define C to be the vanishing locus of Tρ, with ρ ranging over Lie(G). This C is not symplectic — it is
of dimension 2n−m — but G still acts on C, and the quotient C/G, called the Marsden–Weinstein
reduction P//G, is symplectic of dimension 2(n−m).

The problem is that P//G is generally very complicated, and so you don’t know how to quantize it.
The idea will be to take the quotient cohomologically, and then you still know how to quantize.

Recall Lie algebra homology: You take Fun(P )⊗
∧

(LieG), and you will try to define a differential
δ of degree −1. It will be defined by δf = 0 for f ∈ Fun(P ), and for ρ ∈ LieG you set δρ = Tρ.
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You extend this by declaring that δ must be an (odd super)derivative: δ(ab) = δa b + (−1)|a|a δb.
You can check directly that δ2 = 0.

Jonathon: This is not the Weil complex. Alice: No, it isn’t. G still acts everywhere, and you can
do this equivariantly, but I am not an expert.

If we look at H0(δ) = ker0 δ/ im0 δ = Fun(P )/{faTa}, where {ρa} is a basis of Lie(G) and Ta = Tρa .
Optimistically, δ(LieG) = {f ∈ Fun(P ) s.t. f |C = 0}, and so H0 = Fun(C).

Let us furthermore introduce a differential d on L⊗
∧

(LieG)∗ for any LieG space K, by defining
dk : ξ 7→ ξ . k for k ∈ K, ξ ∈ LieG, and . is the action. Now, we can think of (LieG)∗ as
left-invariant one-forms on G, and so we make d act via the exterior derivative. Tim: So d acts by
precomposing with the bracket (perhaps up to some numerical factor). Alice: Yes.

Moreover, d and δ supercommute on Fun(P )⊗
∧

(LieG)⊗
∧

(LieG)∗, and so you can form a double
complex, which we can totalize by putting LieG in degree −1 and (LieG)∗ in degree 1, so that we
will work in cohomological degrees.

What is this cohomology? There are a number of nontrivial algebraic conditions that must be
satisfied, but what you find is that H0

d are the G-invariant elements of K. What would we
like to use for K? We could use the whole complex Fun(P ) ⊗

∧
(LieG), or we could use its

Fun(C) = H0(Fun(P ) ⊗
∧

(LieG), δ). The argument that we know must perform is a spectral
sequence convincing you that the double cohomology Hi

d(H
j
δ(Fun(P ) ⊗

∧
(LieG) ⊗

∧
(LieG)∗)) is

the cohomology of the total complex.

This all has an interpretation in supermanifolds. We have introduces already a basis {ρa} for LieG,
and let’s take the dual basis ηa for (LieG)∗. Then you can think of Fun(P )⊗

∧
(LieG)⊗

∧
(LieG)∗

as P × R0,2m, and give it a symplectic form ω = dpi ∧ dqi + dρa ∧ dηa. This gives the Poisson
brackets {ρa, ηb} = δba = {ηb, ρa} (the sign is correct).

Finally, the miracle is that Ω = d + δ we can think of as a function on the extended phase space
P × R0,2m. What you find is that {Ω, f} = (d+ δ)f . In coordinates,

Ω = ηaTa −
1

2
Ccabη

aηbρc

Now, because we have a simple symplectic form, we can declare that our states will be functions
ψ(q, η), and represent pi = −i~ ∂

∂qi
and ρa = −i~ ∂

∂ηa , when for example P = R2n. It is essentially
just as easy when P = T∗M .

Finally, let’s talk a bit about dynamics. In ordinary settings, we want to work with exp(−iHt),
and we will quickly drop the i and look at the kernel exp(−Ht)(xF , xI). Perhaps we then want to
integrate over xF = xI , which will calculate a trace. In the super situation, we can do the same,
but now we end up computing a supertrace over the space of states.

LetH be the space of states, and split it asH = G⊕F⊕E where G = im Ω and G⊕E = ker Ω. Then
E is the cohomology, and Ω : F• → G•+1 is an isomorphism. The condition on the Hamiltonian is
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that it respects the symmetry, which is that {H,Ω} = 0, and it follows from this that the supertrace
of (any function of) H is its supertrace on E.

The last thing to do is to gauge fix, which is when you add to the Hamiltonian H something that
looks homologically trivial of the form [Ω, χ], to improve the analytic properties of the heat kernel.
What happens practically is that you add in extra quadratic terms, but fermionic gaussians scale
the other way than ordinary gaussians.

In particular, there are various results, in particular in Witten’s susy qm and Morse theory, where
you can button up every mathematical detail. In QFT, this builds on what Reshetikhin was saying
yesterday. Another example is when you extend your phase space by a new parameter t and its
conjugate E, and then H−E is the infinitesimal generator of paths, so that Ht is part of your BRST
extended action. This turns out to be a powerful technique when the standard BRST techniques
do not work because the symmetry has a secondary constraint.
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