
GEOMETRY OF, AND VIA, SYMMETRIES

KARSTEN GROVE

It is well known that Lie groups and homogeneous spaces provide a rich source of interesting
examples for a variety of geometric aspects. Likewise it is often the case that topological and
geometric restrictions yield the existence of isometries in a more or less direct way. The most
obvious example of this is the group of deck transformations of the universal cover of a non-
simply connected manifold. More subtle situations arise in the contexts of rigidity problems and
of collapsing with bounded curvature.

Our main purpose here is to present the view point that the geometry of isometry groups
provide a natural and useful link between theory and examples in Riemannian geometry. This
fairly unexplored territory is fascinating and interesting in its own right. At the same time
it enters naturally when such groups arise in settings as above. More importantly, perhaps,
this study also provides a systematic search for geometrically interesting examples, where the
group of isometries is short of acting transitively in contrast to the case of homogeneous spaces
mentioned above.

Although the general philosophy presented here applies to many different situations, we will
illustrate our point of view primarily within the context of manifolds with nonnegative or positive
curvature.

We have divided our presentation into five sections. The first section is concerned with basic
equivariant Riemannian geometry of smooth compact transformation groups, including a treat-
ment of Alexandrov geometry of orbit spaces. Section two is the heart of the subject. It deals
with the geometry and topology in the presence of symmetries. It is here we explain our guiding
principle which provides a systematic search for new constructions and examples of manifolds of
positive or nonnegative curvature. In the third section we exhibit all the known constructions
and examples of such manifolds. The topic of section four is geometry via symmetries. We
display three different types of problems in which symmetries are not immediately present from
the outset, but where their emergence is crucial to their solutions. In the last section we discuss
a number of open problems and conjectures related either directly, potentially or at least in
spirit to the subject presented here.

Our exposition assumes basic knowledge of Riemannian geometry, and a rudimentary famil-
iarity with Lie groups. Although we use Alexandrov geometry of spaces with a lower curvature
bound our treatment does not require prior knowledge of this subject. Our intentions have been
that anyone with these prerequisites will be able to get an impression of the subject, and guided
by the references provided here will be able to go as far as their desires will take them.

1. Geometry of Isometry Groups

When we talk about geometry of individual, or groups of isometries we think of geometric
entities associated with the isometry, or the group such as fixed point sets, invariant geodesics,
displacement functions, orbits, strata of orbits, orbit types, orbit space, etc.
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Let us begin by reviewing the most basic geometric aspects of compact transformation groups.
Throughout G will denote a compact Lie group which acts isometrically on a compact Riemann-
ian manifold M . (We choose to view this as a left action). We denote by Gx = {g ∈ G|gx = x}
the isotropy group at x ∈ M , and by Gx = {gx|g ∈ G} ' G/Gx the orbit of G through x.
The ineffective kernel of the action is the subgroup K = ∩x∈MGx. Unless otherwise stated we
assume that G acts effectively on M , i.e., K = {1} is the trivial group. The action is called
almost effective if K is finite. G is said to act freely, respectively almost freely if all isotropy
groups are trivial, respectively finite. In these cases the orbits of G are the leaves of a smooth
foliation of M . When the action is free, the space of orbits form a smooth manifold B = M/G
and the quotient map M → B is a principal bundle with group G.

The fixed point set of an element g ∈ G is denoted by Mg = {x ∈ M |gx = x}. Similarly,
ML = ∩g∈LMg will denote the fixed point set of a subgroup L ⊂ G. Note that Mg = M<g>,
where < g > denotes the subgroup of G generated by g. It is important that each ML is a finite
disjoint union of closed totally geodesic submanifolds of M . This and other simple facts stated
below are proved using that the exponential map exp : TM → M is equivariant relative to the
natural action of G on TM by the differentials.

Possibly the most crucial basic result in the theory of compact transformation groups is the
following so-called slice theorem:

Lemma 1.1 (Slice Theorem). For any x ∈ M , a sufficiently small tubular neighborhood D(Gx)
of Gx is equivariantly diffeomorphic to G×Gx D⊥

x .

Here D(Gx) is a suitable r-neighborhood of Gx and D⊥
x is the corresponding r-ball at the origin

of the normal space T⊥x to Gx at x. The usual tubular neighborhood theorem asserts that the
normal exponential map of Gx, provides a diffeomorphism between the normal r-discbundle of
Gx and D(Gx), when r is sufficiently small. Since the G-equivariance is automatic, the essence
of the slice theorem is the claim that the normal bundle of Gx is G-diffeomorphic to the bundle
G×Gx T⊥x = (G× T⊥x )/Gx with fiber T⊥x associated with the principal bundle G → G/Gx with
group Gx. (In this construction, note that Gx acts on T⊥x from the left, but on G from the
right.)

Note that the isotropy group Ggx = gGxg−1 is conjugate to Gx. Two orbits Gx and Gy are
said to be of the same type if Gx and Gy are conjugate subgroups in G. If a conjugate of Gx is
a subgroup of Gy, Gx is said to have at least as large type as Gy. This is equivalent to saying
that there a G-map from Gx ' G/Gx onto Gy ' G/Gy. It is easy to see that each component
of the collection of all orbits of the same type denoted (L), form a submanifold of M (typically
not closed). The codimension of an orbit Gx in such a component is the dimension of the fixed
point set of Gx in T⊥x . Since the mean curvature vector field of such a component is clearly fixed
under the action of G, it follows that

Proposition 1.2. Each component of orbits of the same type form a minimal submanifold of
M .

This is just one simple illustration of how the slice representation can be used to yield geometric
information.

For minimal geodesics between different orbits, the following simple but very useful fact was
found in Kleiner’s thesis [45].

Lemma 1.3 (Isotropy Lemma). Let c : [0, d] → M be a minimal geodesic between the orbits
Gc(0) and Gc(d). Then for any t ∈ (0, d), Gc(t) = Gc is a subgroup of Gc(0) and of Gc(1).

Using this one easily proves the following important and well known
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Theorem 1.4 (Principal Orbit Theorem). There is a unique maximal orbit type. These so-called
principal orbits form an open and dense subset of M .

The usual distance between compact subsets defines a natural metric on the space of G-orbits
in M denoted by M/G. By definition, this metric is a so-called length metric, indeed there
is even a shortest curve, a geodesic, between any two orbits. We now proceed to describe the
geometry of the orbit space M/G in more detail.

Throughout we will consider the orbit space M/G equipped with the above mentioned so-
called orbital metric, and denote the quotient map by π : M → M/G. When we view an orbit
Gx ⊂ M as a point in M/G, we will also use the notation π(x) = [x]. The following is immediate

Proposition 1.5. The orbit map π : M → M/G is a submetry, i.e., π(Bx(r)) = B[x](r) for all
x ∈ M and all r ≥ 0.

Here Bx(r) denotes the open r-ball centered at x. This has a very important consequence:

Theorem 1.6. The orbit space M/G has the structure of an Alexandrov space with locally totally
geodesic orbit strata.

The image under π of a component of orbits of the same type is what we call an orbit stratum.
That each of these are locally totally geodesic in M/G is an easy consequence of the slice theorem
(1.1).

A finite dimensional length space (X, dist) is called and Alexandrov space if it has curvature
bounded from below, say curv X ≥ k. For a Riemannian manifold M the property curv M ≥ k is
equivalent to saying that its sectional curvature is bounded below by k, or in short secM ≥ k. For
a general metric space (X, dist), the property curv X ≥ k can be expressed by the requirement
that any four tuple of points x = (x0, x1, x2, x3) ∈ X4 can be isometrically embedded in the
simply connected 3-manifold, S3

k(x) with constant curvature k(x) ≥ k. This is equivalent to the
statement

(1.7) ∠x1,x2(k) + ∠x2,x3(k) + ∠x3,x1(k) ≤ 2π

where ∠xi,xj (k), the so-called comparison angle, is the angle at x0(k) in the geodesic triangle in
S2

k with vertices (x0(k), xi(k), xj(k)) the isometric image of (x0, xi, xj) (see [6]). Using that π is
a submetry it is immediate to check that indeed M/G is an Alexandrov space with curv X ≥ k
if secM ≥ k.

Even general Alexandrov spaces have an amazingly rich structure (see [12], [53] for the basic
facts described here, and [49] for deeper developments). An important notion in this context is
that of the space of directions Sx at x ∈ X. By definition this space is the completion of the
space of geodesic directions at x, i.e., of germs of unit speed geodesics emanating from x = x0.
The curvature bound yields a natural notion of angle between geodesic directions represented by
c1 and c2, namely ∠(c1, c2) = limt→0 ∠c1(t),c2(t)(k). In M/G all directions are geodesic directions
and although not completely trivial one has the following natural

Proposition 1.8. The space of directions S[x] at [x] = π(x) ∈ M/G is isometric to S⊥x /Gx.

The euclidean cone CSx = TxX on Sx is called the tangent space to X at x. The metric on
CSx = (Sx × [0,∞))/{(u, 0) = (v, 0)} is defined so that the distance between (u, s) and (v, t)
is the distance in the euclidean plane between the end points of a hinge with sides of lengths u
and v and angle dist(u, v). One also has the characterization TxX = limλ→∞ λ(X, x), where this
limit refers to the so-called Gromov-Hausdorff limit (cf. [12]). In our case, T[x]M/G ' T⊥x /Gx.

In a general Alexandrov space X its boundary ∂X consists of those points x for which ∂Sx

is non-empty. This inductive definition is based on the fact that dimSx = dim X − 1, and that
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the only compact one-dimensional Alexandrov spaces are the circle without boundary and the
interval with two boundary points.

Let us now analyze the structure of M/G as an Alexandrov space a little closer. For simplicity
we will use the abbreviation Fx = (T⊥x )Gx and consider the orthogonal decomposition T⊥x =
Fx + F⊥

x . At the corresponding point [x] ∈ M/G we have T[x] ' Fx × (F⊥
x )/Gx. Here Fx is

canonically isomorphic to the tangent space at [x] of the orbit stratum containing [x]. The cone
(F⊥

x )/Gx should be viewed as the “normal space” of this stratum in M/G.
First note that for the regular part M0 of M consisting of all the principal orbits, i.e., orbits

of maximal type, we have Fx = T⊥x . Hence this set projects to exactly those points [x] ∈ M/G
for which T[x] ' T⊥x is euclidean. From the isotropy lemma (1.3) we see that this manifold
π(M0) = M0/G is a convex subset of M/G.
Now suppose Gx is an orbit of next largest type, i.e., only principal orbits have larger type. In
this case, the action of Gx on the unit sphere SF⊥

x of F⊥
x has only one orbit type. In particular

SF⊥
x /Gx is a smooth manifold and SF⊥

x → SF⊥
x /Gx is a locally trivial fiber bundle with fiber

Gx/H, where H is the principal isotropy group. It is well known that proper fibrations of spheres
with connected fibers have fibers with the homotopy type of either S1, S3 or S7 and that the
latter only occurs when the total space is S15 [11]. Since homogeneous manifolds homotopy
equivalent to spheres are spheres (cf. [10, p.195]), we know that in our case the connected
components of each fiber is a 1-,3- or 7-sphere unless Gx/H is finite or Gx acts transitively
on SF⊥

x . In all but the last case [x] is an interior point of M/G whose normal sphere of its
orbit stratum is either a complex projective space or the locally symmetric Z2 quotient of it, a
quaternion projective space, the Cayley plane, or a non-simply connected space form. In the
last case, however, where Gx acts transitively on SF⊥

x , the normal space of the stratum at [x]
is a halfline, and M/G near [x] is a manifold with totally geodesic boundary, the stratum of
[x]. We will view such an orbit stratum as a boundary face of M/G. It follows again from the
slice theorem, that if [x] is an arbitrary boundary point of M/G, then it is in the closure of a
boundary face. Thus, if M/G has non empty boundary it consists of a finite union of closures
of locally totally geodesic faces.

We will end this section by fixing some more or less standard terminology. The non-regular
part M −M0 of M is divided into the singular part Ms and the exceptional part Me. Here Ms

consists of those orbits Gx with dimGx > dimH, and Me consists of the non-principal orbits
with dimGx = dim H.

2. Structure and Classification Program

There is a rich theory of smooth transformation groups in which the existence of actions by a
compact group is related to differential topological properties of the manifold on which it acts.
Similarly in Riemannnian geometry one of the basic issues is to understand relations between
geometric properties of the manifold and the differential topological properties of it.

Except for the immense and beautiful work on geometry and topology of symmetric and
homogeneous spaces, only modest efforts have been devoted to the general topic of relations
between geometry, topology and symmetry.

Here we will primarily discuss manifolds of positive or nonnegative (sectional) curvature and
analyze the geometry and topology of such manifolds in the presence of groups of isometries.
Our guiding principle can be expressed as

Classify or determine the structure of positively/nonnegatively curved manifolds
with large isometry groups.
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By itself this opens a vast and interesting area of which we have so far only seen the beginning.
In addition, partial answers can help solve problems in which initially no isometries are present
(see section 4). Even more importantly perhaps, when pushed to the limit, the above principle
provides a systematic search for new and interesting examples (see section 3).

Let us mention some simple examples of what “large” isometry group G could mean:

• Big dim G ≥ 0, i.e., large degree of symmetry relative to M
• Big rank G ≥ 0, i.e., large symmetry rank relative to M
• Small dim M ≥ 0, relative to G
• Small dim M/G ≥ 0, i.e., low cohomogeneity
• Small dimM/G− dimMG ≥ 1, i.e., low fixed point cohomogeneity

For finite groups G, where all these notion make G small, other notions such as the order |G| of
G, or the minimal number of generators for G or similar invariants for say abelian subgroups of
G can be used to express largeness.

Before we discuss the above program in relation to any of these notions of “large”, we will
describe some useful tools based on the Alexandrov geometry of the orbit space M/G in the
context of positive or nonnegative curvature.

One has the following orbit space analog of the celebrated soul theorem by Cheeger and
Gromoll [16]:

Theorem 2.1 (Soul Theorem). If curv M/G ≥ 0 and ∂M/G 6= ∅, then there exists a totally
convex compact subset S ⊂ M/G with ∂S = ∅, which is a strong deformation retract of M/G.
If curv M/G > 0, then S = [s] is a point, and ∂M/G is homeomorphic to S[s]M/G ' S⊥s /Gs.

Note that curv M/G ≥ 0 or curv M/G > 0 are ensured if for example secM ≥ 0 or secM > 0.
The exact same statement is true in the general context of Alexandrov spaces (cf. [48]).

For orbit spaces, however, the proof is considerably simpler. Here one can essentially reduce
the proof to that of the original soul theorem, by noticing that geodesics in M/G are limits of
geodesics emanating from the open, dense, convex regular part (M/G)0 of M/G.

Similarly, Synge type techniques, yielding versions of Synge’s theorem and of Frankel’s the-
orem exist for general Alexandrov spaces (see [51]). By such techniques we refer to notions of
parallel transport, and the fact that exponentiating parallel fields of directions along geodesics
in a space of positive curvature yields shorter curves locally. We will not use these tools here,
nor will we use more subtle equivariant versions of them.

The key point in the utility of the orbit space is most frequently connected with the singu-
larities of it, as in the above soul theorem. This is expressed even more directly in the extent
lemma below which yields bounds for the number of singular points taking into account how
singular they are.

Recall that the q − extent of a compact metric space X (cf. [35]) is defined as

(2.2) xtqX =
1(
q
2

) max
(x1,...,xq)

∑

i<j

dist(xi, xj)

In other words, xtqX is the maximal average distance between points in q-touples in X. The
reason for taking the average rather than the sum is that then the sequence {xtqX} is decreasing
and hence has a limit called the infinity extent, or simply the extent xtX of X. Note that
xt2X = diamX and xtX ≥ 1

2 diamX.
We can now formulate the
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Lemma 2.3 (Extent Lemma). If curv M/G ≥ 0, then 1
q+1{xtq(S[x0]), . . . , xtq(S[xq ])} ≥ π/3 for

all (q+1) touples ([x0], . . . , [xq]) in M/G. If curv M/G > 0, then this average q-extent inequality
is strict as well.

The exact same statement holds in a general Alexandrov space with the same simple proof
(cf. [35, 37] and [44]): Pick arbitrary minimal geodesics between any two points in the (q + 1)
touple. At each point there are

(
q
2

)
angles, i.e., there is a total of (q + 1)

(
q
2

)
angles. The same

configuration has
(
q+1
3

)
triangles. Since the sum of angles in a triangle is at least π by curvature

comparison, the lemma follows from the definition of the extents.
The key point in the applications of this lemma is that the more singular a point is the smaller

its space of directions is, and hence the smaller its q-extents are. The lemma therefor limits the
number of very singular points.

We will now illustrate how these techniques can be used in the context of the classification
program. We begin by analyzing torus actions. These play a particularly important role for
various reasons including phenomena related to collapse (see section 4).

Without reference to curvature one has the following simple identity for the Euler character-
istic χ(M) of M due to Kobayashi (cf. [46])

Theorem 2.4. If a torus T acts effectively on M then χ(M) = χ(MT ).

Note that from simple representation theory the codimension of any component of MT in M
is even. When M has positive curvature, Berger observed that any Killing vector field on M
has a zero [7]. This has the following extension to isometric torus actions, which in essence may
be proved via Synge type techniques (cf. also [67]).

Lemma 2.5 (Isotropy rank Lemma). Suppose sec M > 0 and T acts isometrically on M . Then
MT is non-empty when dimM is even, and if dimM is odd either MT is non-empty, or T has
a circle orbit.

It is an immediate consequence of this lemma that if G acts isometrically on a manifold M
with positive curvature then there is a point x ∈ M such that rankGx = rankG if dimM is
even, or else rankG− rankGx ≤ 1. In particular, if G acts freely, M must be odd dimensional
and rankG ≤ 1. Let us now see how rankG itself is restricted in general when secM > 0.

Theorem 2.6 (Maximal rank Theorem). If a torus T acts isometrically on M and secM > 0
then dimT ≤ [(dimM + 1)/2], and equality holds if and only if M is a sphere, a lens space, or
a complex projective space.

This result from [36] illustrates the classification program when the notion of large is big or
rather maximal rank. The proof is carried out via induction on dimM for even and odd dimen-
sions separately. The key points are, that if dimT > [(dimM + 1)/2] then T acts ineffectively,
and if dimT = [(dimM + 1)/2] then there is a circle subgroup S1 ⊂ T with codimMS1

= 2.
In the latter case it is clear that a component of MS1

with codimension 2 project to boundary
faces of M/S1. It then follows from the soul theorem combined with critical point theory for
distance functions that there is exactly one such component, exactly one S1-orbit S1s at maxi-
mal distance to this fixed point component, and all other orbits are principal. The three cases
in the theorem then correspond to S1

s being trivial, cyclic, or all of S1 respectively.
Recently Rong [58] has obtained some partial results when dimT is almost maximal, i.e.,

when dimT = [(dimM + 1)/2] − 1. In particular, if M is a simply connected 5-manifold and
dimT = 2, then M is diffeomorphic to S5. When dimM = 4, almost maximal means T = S1.
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Here the beautiful work of Hsiang and Kleiner [44] (done before the development of Alexandrov
geometry) was one of the key inspirations to the material discussed in this section.

Theorem 2.7 (Hsiang-Kleiner). If S1 acts isometrically on a simply connected 4-manifold M
with secM > 0 then M is homeomorphic to either S4, or CP 2.

The proof of this result is based on Freedman’s topological classification of simply connected
4-manifolds (see [23]). It follows from this classification that it suffices to prove that under
the assumptions of the theorem χ(M) ≤ 3. By (2.4) this means that χ(MS1

) ≤ 3. But MS1

consists of isolated points and 2-dimensional components. If there are 2-dimensional components
the above discussion yields the conclusion even up to diffeomorphism. When the fixed point
set consists of isolated points only, the extent lemma (2.3) implies that there are at most three
isolated fixed points. The crucial point here is that xt3(S3/S1) ≤ π/3 whenever (S3)S1

is empty,
and this is indeed the case for the unit tangent sphere S3 at an isolated fixed point.

Note that this provides significant information concerning the classical Hopf conjecture which
asserts that there is no metric of positive curvature on S2×S2. Indeed if there is such a metric,
then the isometry group of this metric can at most be finite, i.e., its degree of symmetry would
be zero. When secM ≥ 0 the only additional manifolds one has to add in the above theorem
are S2×S2 and CP 2#±CP 2, as was proved in the unpublished part of Kleiner’s thesis and in [63].

There is no doubt that one of the most natural measurements for the group G being large is
that the orbit space is small, in particular in the sense that dimM/G is small. We will discuss
this in more detail in the next section. Here we will discuss a related idea which in turn is useful
also in other measurements for largeness.

If the fixed point set MG is non-empty, this already puts a constraint on M/G since we
can view MG it as a proper subset via the projection map π. In particular, the codimension
dimM/G − dimMG is at least one. When G has no fixed points, this codimension is just
dimM/G+1. Thus to analyze manifolds with minimal fixed point cohomogeneity has two parts:
(a) Homogeneous manifolds G/H, and (b) G-manifolds M with MG 6= ∅ of codimension one
in M/G. We will refer to manifolds in class (b) as fixed point homogeneous, since they are as
homogeneous as they can be given that G has fixed points. A circle action with fixed point
set of codimsion two as in the discussion above is an example of a fixed point homogeneous
manifold. If M has positive curvature, the arguments for circle actions extend to general fixed
point homogeneous manifolds via the soul theorem (2.1), and yields a complete classification
(see [37]). When M is simply connected, this classification is formulated in

Theorem 2.8. Any simply connected fixed point homogeneous manifold with positive curvature
is diffeomorphic to a compact rank one symmetric space.

This class of spaces, i.e., the spheres, complex or quaternionic projective spaces , or the Cayley
plane is simetimes denoted by CROSS. Since the classification of simply connected homogeneous
manifolds with positive curvature was completed already in 1976 (cf. section 3), this result
provides a complete classification of simply connected positively curved manifolds with minimal
fixed point cohomogeneity one. It also turns out to be useful (as would extensions to higher
fixed point homogeneity) in another classification problem, where large G means small M .

The idea here is to fix the group G and ask for a classification of all sufficiently low dimensional
manifolds of positive curvature on which G acts isometrically, and at least almost effectively.
When G = T is a torus, the maximal rank theorem (2.6) provides an answer: The lowest
dimensional manifolds of positive curvature on which T k can act isometrically are S2k−1 and
S2k−1/Zq. Moreover, if dimM = 2k, then M is either S2k, RP 2k or CP k. For manifolds
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with dimM > 2k, the problem is wide open. For dimM = 2k + 1 see [58] though. If G is
one of the simply connected classical groups Spin(n), SU(n) or Sp(n) classification through a
much larger dimension interval is known. Similar statements hold for G2 and for F4. The fact
is that through these ranges of dimensions (roughly up to twice the minimal dimension) only
homogeneous manifolds of positive curvature occur (cf. [37]). This kind of statement illustrates
very well the strategy in finding new examples: Suppose dimM exceeds this range by one. What
can be said about the structure of M if it exists, and is it then a new example? For the other
exceptional groups E6, E7 and E8 we do not even know the minimal dimension of a positively
curved manifold on which it acts isometrically. If this does not arise from the lowest dimensional
linear representation, it is indeed a new example!

This kind of problem has not been analyzed for products of groups other than for products
of circles as discussed above.

3. Constructions and Examples

In the previous section we presented various classification problems, any one of which poten-
tially constitutes a systematic search for new examples of manifolds with positive or nonnegative
curvature. In this section we will exhibit the known types of such manifolds and describe their
constructions.

The simplest of all construction, which however only works within the class of manifolds of
nonnegative curvature, is to take products V × W , where both V and W have nonnegative
curvature. For Alexandrov spaces there is an analogous construction of joins between positively
curved spaces, but in Riemannian geometry this is valid only between unit spheres. What is
important about these constructions is that they are dimension increasing.

The only construction so far by means of which manifolds of positive curvature are con-
structed, is based on the fact already touched upon in connection with Alexandrov spaces that
submetries are curvature nondecreasing. In the context of manifolds, the equations express-
ing this phenomenon for Riemannian or semi-Riemannian submersions are referred to as the
Gray-O’Neill formulas (see [47] and [24]). A special consequence of these equations is that if
π : M → N is a Riemannian submersion and secM ≥ 0 then secN ≥ 0, and sometimes even
secN > 0. On the other hand, to go in the opposite direction, i.e., to construct metrics on the
total space of a bundle with positive or nonnegative sectional curvature is exceedingly difficult
(for partial results see [74] and below).

Except for special gluing methods to be discussed below, these and combinations of them are
the only known methods for constructing manifolds with nonnegative or positive curvature.

The single basic source for manifolds with nonnegative/positive curvature is the class of
semisimple Lie groups. This is tied to the non-commutativity of the group. Indeed, if G is
equipped with a biinvariant metric then sec(span{X,Y }) = 1

4 ‖[X, Y ]‖2, where [X, Y ] is the Lie
bracket between X,Y ∈ g ' TeG.

A simple example of a Riemannian submersion is the quotient map π : M → M/G = N ,
when there is only one orbit type. In particular, any homogeneous space G/H arises in this
way and hence has a G-invariant metric with secG/H ≥ 0. The question whether G/H has a
G-invariant metric with positive curvature is much more involved and the complete answer (in
the simply connected case) is contained in the work of Berger [8], Wallach [68], Aloff-Wallach
[1], and Berard-Bergery [5].

Theorem 3.1 (Homogeneous Classification). Aside from the rank one symmetric spaces only
the following simply connected manifolds:
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• W 7
1,1 = (SU(3)× SO(3))/U(2), B7 = SO(5)/SO(3), B13 = SU(5)/(Sp(2)× S1)

• W 6 = SU(3)/T 2, W 12 = Sp(3)/Sp(1)3, W 24 = F4 /Spin(8)
• W 7

k,l = SU(3)/S1
k,l, gcd(k, l) = 1, kl(k + l) 6= 0

have a homogeneous metric with positive curvature.

We will not describe the precise embedding H ⊂ G in these examples other than saying that
SO(3) ⊂ SO(5) is maximal, T 2 ⊂ SU(3) is maximal and S1

k,l ⊂ T 2 is the obvious circle winding
k times around one S1-factor of T 2 = S1×S1 and l times around the other S1-factor. The first
three spaces in this theorem are normal homogeneous, i.e., the metric on G/H is the orbital
metric induced by a biinvariant metric of G. The first of these, however, was not on Berger’s
list [8], but was recognized in Wilking [72].

Note that the classification of homogeneous non-simply connected manifolds with homoge-
neous metrics of positive curvature is not to be found in the literature. Also, the difficult problem
of determining the space of all homogeneous metrics with positive curvature on the above ex-
amples is open. This is particularly interesting for determining optimal pinching constants for
these manifolds (cf. [56]).

More generally, a so-called biquotient denoted G//H is the orbit space of a Lie group G by
a subgroup H ⊂ G×G acting from left and right on G. Here we consider only those H which
act freely so that G//H is a manifold. The interest in these spaces began with the discovery
by Gromoll and Meyer [27] that one of the exotic Milnor spheres can be presented in this way.
Since obviously any biquotient admits a metric with nonnegative curvature, this exhibited for
the first time a metric of nonnegative curvature on an exotic sphere. Moreover, the particular
metric constructed by them had points with positive curvature. Several attempts to deform the
metric to have positive curvature have failed. To some extent these attempts were supported
by a general deformation conjecture proposing that a manifold with nonnegative curvature and
positive curvature at a point can be deformed to have positive curvature, in analogy to the case
of Ricci curvature (cf. [2, 18]). The first inhomogeneous biquotients with positive curvature
were found by Eschenburg [20, 19]. He found one example in dimension 6 and an infinite family
in dimension 7. More recently Bazaikin [3] found another similar infinite family in dimension 13.
It is a striking fact, that so far all known simply connected manifolds with positive curvature
(including the homogeneous ones above) are constructed in this way. It is also curious that
except for the rank one symmetric spaces they occur only in the dimensions 6, 7, 12, 13 and 24.
Just very recently, Wilking [71] made the remarkable discovery that there are biquotients with
positive curvature on an open and dense set in infinitely many dimensions. In particular all
the projective tangent bundles of the projective spaces admit such metrics. One of the striking
examples from this very interesting list is RP 2 × RP 3. By Synge’s theorem this manifold does
not carry a metric with positive curvature since it is odd dimensional but not orientable. There-
for this provides a counterexample to the deformation conjecture mentioned above. It is also
worth noticing that this most likely also will provide a simply connected counterexample to the
deformation conjecture. If not it will yield a counterexample to the generalized Hopf conjecture
asserting that higher rank symmetric spaces do not admit metrics with positive curvature. The
idea to investigate manifolds with quasipositive curvature, i.e., nonnegatively curved manifolds
with positive curvature at a point, and manifolds with almost positive curvature, i.e., with posi-
tive curvature on an open and dense set, as natural classes between nonnegatively and positively
curved manifolds was initiated and promoted by Wilhelm and Petersen (cf. e.g. [50]).

The first gluing construction of manifolds with nonnegative curvature was done by Cheeger.
He showed that the connected sum of any two rank one symmetric spaces admits a metric with
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nonnegative curvature. The key point in his construction [14] is to show that the complement
of a disc in a rank one symmetric space admits a metric of nonnegative curvature which near
the boundary sphere is a product metric. The specific description of this complement as a disc
bundle is crucial for the construction.

In this context it was shown by Guijarro [41] that the metric on any complete noncompact
manifold M with nonnegative curvature can be deformed near its soul S in such a way that
in the new metric with nonnegative curvature the metric is a product outside a tubular neigh-
borhood of the soul. In particular, if the boundaries of two such tubular neighborhoods are
isometric they can be glued together to form a compact manifold of nonnegative curvature. It
is this condition on the metrics of the boundaries which is difficult to achieve in general. Below
we will describe a different somewhat general situation in which this can be done.

Above we saw that any homogeneous space, i.e., space of cohomogeneity 0, admits a metric
of nonnegative curvature, and that those with positive curvature have been classified in the
simply connected case at least. Guided by the classification program of the previous section it
is natural to attempt to take the next step for this notion of large, i.e., to attempt to classify
those manifolds of cohomogeneity one admitting metrics of nonnegative or positive curvature.

When M/G is one dimensional, it is either a circle S1, or an interval, say I = [−1, 1]. In the
first case all G orbits are principal and hence π : M → M/G is a bundle map. In this case it
is easy to see that M admits a G-invariant metric with nonnegative curvature. Since, however,
the fundamental group π1(M) of M is infinite it cannot carry a metric with positive curvature
by the classical Bonnet-Myers theorem. In the second case there are precisely two non-principal
G-orbits corresponding to the endpoints ±1 of I, and M is decomposed as the union of two
tubular neighborhoods of the non-principal orbits, with common boundary a principal orbit.
Specifically, if x± ∈ M realize the distance between the non-principal orbits B± = π−1(±1)
relative to a G-invariant Riemannian metric on M ,then

(3.2) M = D(B−) ∪E D(B+) ,

and by the slice theorem D(B±) = G×K±D`±+1, where K± = Gx± . Here E = π−1(0), the orbit
Gx0 = G/H through the midpoint of a minimal geodesic c from x− to x+ is canonically identified
with the boundaries ∂D(B±) = G×K± S`± , via the maps G → G×S`± , g → (g,∓ċ(±1)). Note
also that ∂D`±+1 = S`± = K±/H. All in all we see that we can reconstruct M from G and the
isotropy subgroups H and K±.

In general, suppose G is a compact Lie group and H ⊂ K± ⊂ G are closed subgroups such
that K±/H = S`± are spheres. It is well known (cf. [10, p.195]) that a transitive action of a
compact Lie group K on a sphere S` is linear and is determined by its isotropy group H ⊂ K.
Thus the diagram of inclusions

B− = G/K−
G

j+

BB
BB

BB
BB

j−

||
||

||
|| B+ = G/K+

K−

i− BB
BB

BB
BB

K+

i+||
||

||
||

S`− = K−/H

H

S`+ = K+/H

(3.3)

determines a manifold

(3.4) M = G×K− D`−+1 ∪G/H G×K+ D`++1
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on which G acts by cohomogeneity one via the standard G action on
G ×K± D`±+1 in the first coordinate. Thus the diagram (3.3) defines a cohomogeneity one
manifold, and we will refer to it as a cohomogeneity one group diagram, which we sometimes
denote by H ⊂ {K−,K+} ⊂ G. We also denote the common homomorphism j+ ◦ i+ = j− ◦ i−
by j0 : H → G.

The above description of cohomogeneity one manifolds lends itself to the following simple but
crucial construction of principal bundles over cohomogeneity one manifolds in [40]:
Let L be any compact Lie group, and M any cohomogeneity one manifold with group diagram
H ⊂ {K−, K+} ⊂ G. For any Lie group homomorphisms φ± : K± → L, φ0 : H → L with
φ+ ◦ i+ = φ− ◦ i− = φ0, let P be the cohomogeneity one L×G-manifold with diagram

L×G
(φ+,j+)

GG
GG

GG
GG

G
(φ−,j−)

ww
ww

ww
ww

w

K−

i− HH
HH

HH
HH

H
K+

i+ww
ww

ww
ww

w

H

(3.5)

Clearly the subaction of L × G by L = L × {e} on P is free, and P/L = M since it has a
cohomogeneity one description H ⊂ {K−,K+} ⊂ G. It is also apparent that the non-principal
orbits in P have the same codimension as the non-principal orbits in M . In summary:

Proposition 3.6. For every cohomogeneity one manifold M as in (3.3) and every choice of
homomorphisms φ± : K± → L with φ+ ◦ i+ = φ− ◦ i−, the diagram (3.5) defines a principal L
bundle over M .

In view of the special structure of cohomogeneity one manifolds described above, it is tempting
to make the following

Conjecture. Any cohomogeneity one manifold supports an invariant metric of nonnegative
sectional curvature.

To prove this in general is impossible with gluing techniques as described above. However, it
is seems likely that combining such techniques with perturbations will yield metrics with almost
nonnegative curvature. In [40] where the above conjecture was made the following partial case
was settled.

Theorem 3.7. Any cohomogeneity one manifold with codimension two singular orbits admits a
nonnegatively curved invariant metric.

This class of manifolds is much larger than one might first anticipate. The most striking
immediate application of this is illustrated in

Theorem 3.8. Each of the four (oriented) diffeomorphism types homotopy equivalent to RP 5

support metrics with non-negative sectional curvature.

In fact, each of these manifolds (cf. [43, 40]) support infinitely many cohomogeneity one
actions with codimension two singular orbits descending from similar actions on S5 discovered
by Calabi.
More importantly, however, the above principal bundle construction yields many such examples
including all principal SO(3) and SO(4) bundles over S4 with its cohomogeneity one action given
by the maximal subgroup SO(3) of SO(5). When this is combined with the basic submersion-
construction, many associated bundles support such metrics as well. In particular this yields
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Theorem 3.9. The total space of every vector bundle and every sphere bundle over S4 admits
a complete metric of non-negative sectional curvature.

In Cheeger and Gromoll [16] it was asked whether every vector bundle over Sn admits a
metric of nonnegative curvature. This remains open for n ≥ 6. The statement about sphere
bundles is particularly interesting when the fiber is S3, since many exotic 7-spheres admit such
a description. In fact

Theorem 3.10. Ten of the 14 exotic spheres in dimension 7 admit metrics of non-negative
sectional curvature.

In this formulation we have used the fact that in the Kervaire-Milnor group, Z28 = Diff+(S6)/
Diff+(D7), of oriented diffeomorphism types of homotopy 7-spheres, a change of orientation cor-
responds to the inverse and hence the numbers 1 to 14 correspond to the distinct diffeomorphism
types of exotic 7-spheres.

4. Emergence of Isometries

The simplest case where isometries appear naturally is in the context of deck transformations.
For manifolds of negative or nonpositive curvature this is in fact the “bread and butter” of the
subject. As in the previous sections we will confine our attention to the “opposite classical”
subject of nonnegative or positive curvature.

We begin by illustrating size restrictions again. The following is due to Gromov:

Theorem 4.1. The fundamental group of any nonnegatively curved n-manifold can be generated
by a set of at most c(n) elements.

By the soul theorem it suffices to consider closed manifolds M . Now fix x in the universal
cover of M and minimize over all sets of generators {g1, . . . , gk} of π1(M) the sum of displace-
ments

∑
i=1,...,k dist(x, gi(x)). If we join x to each gi(x) by a minimal geodesic ci the claim is

that ∠(ci, cj) ≥ π/3 for i 6= j. If not the angle comparison theorem would imply that the sum
would be smaller when replacing say gi by gjg

−1
i . In other words the open π/6-balls centered

at ċi(0) in the unit tangent sphere Sn−1 at x are disjoint. A simple volume arguments now
completes the proof.

Another size restriction for the fundamental group π1(M) of a positively curved manifold
M was proposed by Chern, who in [17] asked if any abelian subgroup of π1(M) is cyclic. A
detailed analysis of the full isometry group of the examples in (3.1) (see [65]) reveals that there
are counterexamples to this so-called Chern conjecture. In particular [64, 38],

Theorem 4.2. W 7
1,1 admits a free isometric action by Z2 × Z2, and when 3 - kl(k + l) then

Z3 × Z3 acts freely and isometrically on W 7
k,l.

The first example follows directly from Wilking’s description (SU(3) × SO(3))/U(2) of the
Aloff-Wallach example W 7

1,1 as a normal homogeneous space (see [64]). Note that by (2.5) only
cyclic subgroups of tori can act freely on a positively curved manifold supporting the conjecture.
In retrospect, both cases stem from the fact that the isometry groups contain non-toral rank
two abelian subgroups, although this by itself of course not is sufficient (see [38] and also [4]).

A more subtle situation where isometries emerge from the geometric setting is often exhibited
in connection with rigidity problems. For positively curved manifolds this is illustrated very well
in the
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Theorem 4.3 (Diameter Rigidity Theorem). A manifold M with secM ≥ 1 and diamM = π/2
is either homeomorphic to a sphere or else isometric to a locally rank one symmetric space.

When M in the above theorem is not simply connected it is isometric either to a unique Z2-
quotient of an odd dimensional complex projective space, or else isometric to a spherical space
form whose fundamental group representation is reducible (see [25]). In the simply connected
case, the rigidity cases correspond to the following geometric description of M , which is derived
via comparison geometry methods and critical point theory [25]: There is a point x ∈ M ,
such that the set of all points A at maximal distance π/2 from x is a totally geodesic smooth
submanifold of M . Moreover, any geodesic of length π/2 emanating from x ends at A, and any
geodesic of length π/2 starting perpendicularly to A ends at x. The map defined in this way
from the unit tangent sphere at x onto A is a Riemannian submersion. The rigidity claim in the
above theorem then follows from the following metric classification of Riemannian submersions
from the euclidean sphere.

Theorem 4.4 (Characterization of Hopf fibrations). Any Riemannian submersion with domain
a sphere of constant curvature one and with connected fibers is metrically equivalent to a Hopf
fibration.

Topologically it is well known that fibrations of spheres with connected fibers must have fiber
dimension 1,3 or 7 [11]. Moreover the latter occurs only for fibrations of S15. This case was
settled very recently in Wilking [70] by means of an ingenious novel approach to Morse theory
for the space of closed curves on the base. The final conclusion obtained in this way is that the
fibers are all totally geodesic, in which case it is easy to see that it is a Hopf fibration. When
the fibers have dimension 1 or 3 a different approach was used in [26]. It is in this approach
where group actions emerge from the geometric constraints in the situation. Specifically, one
proves more generally that any Riemannian foliation of a unit sphere with leaf dimension k ≤ 3
is in fact the orbit foliation of an isometric almost free action of a k-dimensional Lie group. The
group is constructed via so-called local integrability vector fields of the foliation, and these in
turn are shown to form a Lie algebra of action (Killing) fields. This then leads to a complete
classification via representation theory.

A similar situation arises for Riemannian fibrations of euclidean spaces. Also here groups of
isometries emerge and a complete classification is achieved in [28].

In the remaining part of this section we will discuss problems for manifolds with bounded
curvature, in particular with pinched positive curvature.

Recall the differentiable sphere theorem which asserts that a simply connected n-manifold
M with δ ≤ secM ≤ 1 is diffeomorphic to Sn if δ is sufficiently close to 1. The non-simply
connected case is covered via deck transformations in [34] by

Theorem 4.5 (Equivariant Sphere Theorem). There is a 0 < δ < 1 such that for any simply
connected n-manifold M with δ ≤ sec M ≤ 1 there is a representation φ : Isom(M) → O(n + 1)
and a corresponding equivariant diffeomorphism F : M → Sn.

The “Gauss map” proof of the sphere theorem due to Ruh [60] yields in a natural way a map
φ0 : G → O(n), where G = Isom(M) is the isometry group of M . For each g ∈ G, the isometry
φ0(g) ∈ O(n + 1) is C1-close to the induced diffeomorphism FgF−1 of Sn, but the map φ0 is
not a homomorphism, only “almost”. The non-linear notion of center of mass developed in this
context (cf.[33] and below) can now be used in two different ways to provide a proof of the above
result: In the first step one constructs an actual Lie homomorphism φ : G → O(n + 1) close to
φ0, and in the second step one shows that this isometric G-action on Sn is smoothly conjugate
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to the induced G-action via F . Both of these steps are general in the sense that a sufficiently
almost homomorphism between any compact Lie groups can be perturbed to a homomorphism,
and any two sufficiently C1-close actions by a compact Lie group G on a compact manifold M
are smoothly conjugate.

The idea behind the center of mass is that a continuous almost constant map f : X → M
with domain a probability space (X, µ) is canonically close to a constant map C(f). In fact, the
collection of almost constant maps may be viewed as a tubular neighborhood of the submanifold
M interpreted as the set of constant maps in the Banach manifold C0(X, M). Specifically, if
f(X) is contained in a sufficiently small convex ball B ⊂ M , then the function c : B → R
defined by

c(p) =
∫
X dist2(p, f(x))dµ

is strictly convex on B and hence has a unique minimum denoted C(f). This construction has
two vital properties: It is invariant under measure preserving maps of X, and equivariant with
respect to the actions of Isom(M). In the special case where X consists of two points, the center
of mass of {p0, p1} is the midpoint of the unique minimal geodesic between p0 and p1 in M .

The two applications mentioned above come about as follows. That φ0 : G → H is an almost
homomorphism means that for each g ∈ G the map x 7→ φ0(gx)φ0(x)−1 is an almost constant
map from G to H. If we define φ1(g) as the center of mass of this map it turns out that
φ1 : G → H is a “better” almost homomorphism, and with care iteration leads to the desired
homomorphism φ. Similarly, the fact that two G-actions ?0 and ?1 on M are C0-close implies
that for each p ∈ M the map g 7→ g?0g−1?1p is close to the constant map p. If S(p) is the center
of mass of this map, and ?1 acts by isometries, one proves that S : M → M is diffeomorphism
which conjugates the two actions when they are sufficiently C1-close.

Let us conclude our illustrations of how groups of isometries arise naturally with the phe-
nomenon of collapse. First recall that according to Cheeger’s finiteness theorem [13] the class
of manifolds with say | secM | ≤ 1, diamM ≤ D and volM ≥ v contains at most finitely many
diffeomorphism types. This is no longer true without the last condition on the volume. Geomet-
rically, manifolds with bounded curvature and diameter, but with very small volume, will on a
definite scale appear to be of lower dimension. In fact, a sequence of manifolds with bounded
curvature and diameter, but with volume tending to zero, will have a subsequence which con-
verges to a lower dimensional space relative to the so-called Gromov-Hausdorff metric. It is
this phenomenon which is referred to as collapse. We will not elaborate further on this here,
only describe the fact that when manifolds with definite curvature and diameter bounds have
sufficiently small volume, then additional structure emerges.

In the context of bounded curvature there is a well developed theory for collapse due to
Cheeger, Fukaya, and Gromov. This is anchored in Gromov’s milestone theorem for almost flat
manifolds, i.e., manifolds with bounded diameter and (arbitrary) small curvature bounds [29] (or
equivalently having bounded curvature and (arbitrary) small diameter): Any such manifold is up
to a finite cover a quotient of a nilpotent Lie group by a discrete subgroup.For the ultimate result
see Ruh [61]. In general, the presence of nilpotent groups is immanent when collapse occurs with
bounded curvature. In vague terms such collapse yield a decomposition of the manifold into
submanifolds, a singular foliation, whose leaves in local covers are orbits by actions of nilpotent
groups. Moreover, the collapse takes place along these infra-nilmanifolds (see [15]). Aside from
the so-called Margulis lemma, which is behind the nilpotency properties, the center of mass
described above provides a useful tool in piecing this structure together.

When the collapsed manifold M is simply connected, the structure above is much simpler to
describe. In fact, in this case one has a global almost isometric and fixed point free torus action,
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which becomes isometric under a small perturbation of the metric (cf. [59]). This structure
and additional Gromov-Hausdorff convergence techniques has recently been used to obtain the
following remarkable analogue of Cheeger’s finiteness result for two-connected manifolds with
bounded curvature and diameter, but no restrictions on volume [52]:

Theorem 4.6. The class of simply connected closed Riemannian n-manifolds, M with finite
π2(M), | secM | ≤ C and diamM ≤ D contains at most finitely many diffeomorphism types.

The center of mass conjugation theorem and a modification of it applied to the induced torus
and principal group action on the principal bundle also plays a central role in the proof of the
result. When combined with Gromov’s Betti number theorem [30], one arrives at the following
amazing result [52]:

Theorem 4.7. For each n, C, and D, there exist a finite number of manifolds M1, . . . , Mk(n,C,D),
such that any simply connected n-manifold, M with | secM | ≤ C and diamM ≤ D is diffeo-
morphic to a torus quotient of one of the Mi’s.

If in (4.6) the lower curvature bound is positive, the same conclusion was obtained indepen-
dently by Fang and Rong [21] using a totally different approach. In their approach the principal
bundle is not used, but the maximal rank theorem (2.6) enters at an essential induction step.
An extension of (4.6) has recently been carried out by Fang and Rong [22].

We would also like to point out that collapsing methods have been applied by Rong to
investigate the structure of fundamental groups of positively curved manifolds (cf. e.g. [59]).
His work actually provides some partial support for the original Chern conjecture discussed
earlier in this section.

5. Open Problems

We would like to exhibit and discuss a list of problems some of which are directly related to
the philosophy presented here, others only in spirit.

Problem 5.1. Determine the lowest dimensional positively curved manifolds on which E6, E7 or
E8 can act isometrically and (almost) effectively.

For the other simple Lie groups the answer is known (cf. [37]) and corresponds to the real,
complex, quaternionic or Cayley projective space of the lowest dimensional linear representation.
All of these spaces are homogeneous in contrast to the answer to (5.1). Similarly, the same
problem for products of the classical groups has not been analyzed, and might well lead to
interesting examples.

Problem 5.2. Classify positively curved manifolds with fixed point cohomogeneity two.

In this formulation, we are primarily thinking of those manifold where the G-action has non-
empty fixed point set, i.e., we are looking for the next step of (2.8). However, in the case of
empty fixed point set, this problem is equivalent to the following

Problem 5.3. Classify positively curved manifolds of cohomogeneity one.

This was done in dimensions at most 6 in [62], and the answer is that only rank one sym-
metric spaces occur. For additional classification approaches above dimesion 6 see [54, 55]. In
dimension 7 infinitely many of the Eschenburg spaces are of cohomogeneity one (cf. [39]). Of
course cohomogeneity one manifolds will not in general have a homogeneous structure. It is
worth pointing out, however, that a homogeneous manifold need not have a cohomogeneity one
structure either.
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As mentioned earlier, so far all known manifolds of positive curvature can be exhibited as
biquotients, even as biquotients of Lie groups G with biinvariant metrics. To solve the above
problem it is clear that new constructions are needed. On the other hand, it is natural to wonder
how general the biquotient construction is. Some partial result about the following question can
be found in [57].

Problem 5.4. Determine the structure of all Riemannian fibrations of G, where G is a Lie
group equipped with a bi-invariant metric.

If G is replaced by the constant curvature sphere the answer is known as we saw in section 4.
When the group G is abelian, the work of Walschap and Gromoll in [69] and [28] should provide
a complete answer as well. In analogy to the case of the Gromoll-Meyer sphere [27], which is an
Sp(1) biquotient of Sp(2), the case where G = Spin(9) is particularly interesting. Potentially an
exotic 15-sphere could be the base of a Riemannian fibration of G = Spin(9).

Recall that in general, if M is a compact Riemannian G-manifold, then there is a family of
Riemannian metrics on M which collapse to M/G under a lower curvature bound [73]. Here, in
analogy to earlier, collapse means that in the (Gromov-Hausdorff) limit the limiting object is
of lower dimension. For manifolds with a lower curvature bound and an upper diameter bound
this is equivalent to having volume going to zero. Obviously, manifolds which scale to a point
with a lower curvature bound are precisely manifolds with nonnegative curvature. Manifolds
which collapse to a point under a lower curvature bound are by definition manifolds with almost
nonnegative curvature (Equivalently, such manifolds have metrics with lower curvature bound
arbitrarily close to zero and bounded diameter). It is tempting to

Conjecture (Collapsing Conjecture). Simply connected manifolds of nonnegative or more gen-
erally almost nonnegative curvature admit non-trivial collapse with a lower curvature bound.

Here by non-trivial we mean that the collapse is not to a point. Note that all known simply con-
nected examples with nonnegative curvature admit non-finite isometry groups. An affirmative
answer to the following question would of course resolve the conjecture.

Problem 5.5. Do simply connected manifolds of nonnegative or more generally almost nonneg-
ative curvature have positive symmetry degree?

In this formulation, the degree of symmetry of M is the maximal dimension of any compact
subgroup G of the diffeomorphism group of M . It should be pointed out that the classes of
manifolds with positive, nonnegative or almost nonnegative curvature are strictly contained
in each other. However, for simply connected manifolds no obstructions are known that can
distinguish these classes!

In view of this discussion and a possible strategy outlined below, we propose to extend the
so-called Bott conjecture (cf. [31] for a discussion of remarkable consequences) for manifolds of
positive/ nonnegative curvature to include almost nonnegative curvature.

Conjecture (Ellipticity Conjecture). All simply connected manifolds M of almost nonnegative
curvature are rationally elliptic, i.e., dimπ∗(M)⊗Q < ∞.

It is a simple fact in rational homotopy theory that rational ellipticity is equivalent to poly-
nomial growth of the rational Betti numbers of the loop space. The original conjecture of Bott
seemed to be based on Morse theory via the belief that on a positively curved manifold the
number of geodesics between generic points should grow at most polynomially with the length
(for a special case cf. [9]). The collapsing conjecture above could provide the initial step in a
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totally different approach to the Bott conjecture, where the extension suggested above is crucial.
Suppose for instance that the collapsing conjecture could be solved by giving a positive answer
to the following:

Problem 5.6. Do simply connected manifolds of almost nonnegative curvature collapse to an
interval with a lower curvature bound?

It is plausible that manifolds with this property, in analogy to the case of cohomogeneity one
manifolds, can be exhibited as a union of two discbundles, where their common sphere bundle
is almost nonnegatively curved. If this were true, then the main result of [32] (the union of two
disc bundles is elliptic if and only if their common sphere bundle is elliptic) in conjunction with
induction by dimension would almost provide a proof of the ellipticity conjecture. At the same
time it would provide a proof of the following

Conjecture (Double Soul Conjecture). Any closed simply connected manifold of nonnegative
(almost nonneagtive) curvature is the union of two discbundles.

Note that the latter conjecture is independent of the ellipticity conjecture. It is easy to check
that this is indeed true for all known simply connected examples of positively curved manifolds.
To check it for all homogeneous spaces, or more generally for all biquotients would be very
interesting.

The proper context for the discussion above concerning simply connected manifolds might
be manifolds with nilpotent fundamantal group. We point out that the double soul conjecture
is false for general non-simply connected manifolds. For example, it is not difficult to see that
the Poincare homology 3-sphere S3/I∗ is not the union of two disc bundles. It is, however, the
union of S1 × D2 and a 3-manifold W with boundary S1 × S1 and H∗(X) ∼= H∗(S1). Also
note that, according to the comprihensive treatment of 3-manifold collapse in [66], S3/I∗ does
not collapse to a one dimensional space, but since it is a Seifert fiber bundle with three ex-
ceptional fibers it does collapses to an S2 with three singular points. This collapse most likely
cannot occur under a positive lower curvature bound in view of Hamilton’s work [42], since the
Ricci flow preserves isometries, and no linear action on S3 induces the Seifert structure on S3/I∗.

Let us close our discussion by recalling that except for the locally rank one symmetric spaces,
no manifolds of positive curvature is known in dimensions above 24. One of the remarkable facts
in Wilking’s examples of almost positive curvature is indeed that they occur in infinitely many
dimensions. The following is of obvious fundamental importance:

Problem 5.7. Are there manifolds Mn other than locally rank one symmetric spaces with
secM > 0 and n →∞?

This question motivates the study of infinite dimensional manifolds with positive curvature.

Problem 5.8. Are there nontrivial infinite dimensional manifolds with positive curvature?

The precise notion of dimension and of curvature will depend on circumstances yet to be
investigated, as well as on its potential impact on the previous problem.

It is our pleasure to thank Xiaochun Rong for constructive comments on the first draft of this
survey in particularly pertaining to the problem section.
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Sci. École Norm. Sup. 20 (1987), 227–239.
[26] D. Gromoll and K. Grove, The low-dimensional metric foliations of Euclidean spheres, J. Differential Geom.

28 (1988), 143–156.
[27] D. Gromoll and W. Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. 100 (1974),

401–406.
[28] D. Gromoll and G. Walschap, Metric fibrations in Euclidean space, Asian J. Math. 1 (1997), 716–728; The

metric fibrations in Euclidean space, J. Differential Geom. , to appear.
[29] M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), 231–241.
[30] M. Gromov. Curvature, diameter and Betti numbers. Comment. Math. Helv. 56 (1981), 179–195.
[31] K. Grove and S. Halperin, Contributions of rational homotopy theory to global problems in geometry, Publ.

Math. I.H.E.S. 56 (1982), 171–177.
[32] K. Grove and S. Halperin, Dupin hypersurfaces, group actions and the double mapping cylinder, J. Differ-

ential Geom. 26 (1987), 429–459.
[33] K. Grove and H. Karcher, How to conjugate C1-close group actions, Math. Z. 132 (1973), 11–20.



GEOMETRY OF, AND VIA, SYMMETRIES 19

[34] K. Grove, H. Karcher, and E. A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31–48; Jacobi
fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems,
Math. Ann. 211 (1974), 7–21.

[35] K. Grove and S. Markvorsen, New extremal problems for the Riemannian recognition program via Alexandrov
geometry, J. Amer. Math. Soc. 8 (1995), 1–28.

[36] K. Grove and C. Searle, Positively curved manifolds with maximal symmetry-rank, J. Pure Appl. Algebra
91 (1994), 137–142.

[37] K. Grove and C. Searle, Differential topological restrictions by curvature and symmetry, J. Differential Geom.
47 (1997), 530–559.

[38] K. Grove and K. Shankar, Rank two fundamental groups of positively curved manifolds, J. Geom. Anal. 10
(2000), to appear.

[39] K. Grove and W. Ziller, Positive curvature, cohomogeneity, and fundamental groups, in preperation.
[40] K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. 152 (2000), 331–367.
[41] L. Guijarro, Improving the metric in an open manifold with nonnegative curvature, Proc. Amer. Math. Soc.

126 (1998), 1541–1545.
[42] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306.
[43] W.-C. Hsiang and W.-Y. Hsiang On compact subgroups of the diffeomorphism groups of Kervaire spheres,

Ann. of Math. 85 (1967), 359–369.
[44] W.-Y. Hsiang and B. Kleiner, On the topology of positively curved 4-manifolds with symmetry, J. Differential

Geom. 29 (1989), 615–621.
[45] B. Kleiner, Nonnegatively curved 4-manifolds with symmetry, thesis.
[46] S. Kobayashi, Fixed points of isometries, Nagoya Math. J. 13 (1958), 63–68.
[47] B. O’Neill The fundamental equations of a submersion Michigan Math. J. 13 (1966), 459–469.
[48] G. Perelman, Alexandrov spaces with curvature bounded below, ii, preprint.
[49] G. Perelman, Spaces with curvature bounded below, In Proceedings of the International Congress of Mathe-
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