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Abstract

The minimum rank of a simple graph G is defined to be the smallest possible rank over all
symmetric real matrices whose ijth entry (for i 6= j) is nonzero whenever {i, j} is an edge in
G and is zero otherwise. This paper surveys the current state of knowledge on the problem of
determining the minimum rank of a graph and related issues.
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1 Introduction

The minimum rank problem for a simple graph (the minimum rank problem for short) asks us
to determine the minimum rank among all real symmetric matrices whose zero-nonzero pattern of
off-diagonal entries is described by a given simple graph G; this problem has received considerable
attention (see references). Since the maximum rank is always the order of G (e.g., use a diagonally
dominant matrix), there is no interest in an analogous maximum rank problem. Furthermore, it
is straightforward (by considering rank one diagonal perturbations) that any rank between the
minimum and full rank can be achieved.

The zero-nonzero pattern described by the graph has tremendous influence on minimum
rank; for example, a matrix associated with a path on n vertices is a symmetric tridiagonal matrix
(up to labeling) with nonzero sub- and super-diagonal and thus has minimum rank n− 1, whereas
the complete graph on n vertices has minimum rank 1.

The solution to the minimum rank problem is equivalent to the determination of the max-
imum multiplicity of an eigenvalue among the same family of matrices. The inverse eigenvalue
problem of a graph has been an important motivation for the study of minimum rank. Given a
collection of real numbers, λ1, . . . , λn, the problem of finding a symmetric matrix A that satisfies
certain properties and has λ1, . . . , λn as its eigenvalues is called an Inverse Eigenvalue Problem.
The Inverse Eigenvalue Problem of a Graph (IEPG) asks us to determine, for a given graph G,
what eigenvalues are possible for a real symmetric matrix A having nonzero off-diagonal entries
determined by the adjacency of G.
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Perhaps the earliest result on multiplicities of eigenvalues of the family of real symmetric
matrices described by a graph is Parter’s 1960 paper [49] on trees, and most of the work on trees
since then has relied on this work and Wiener’s 1984 paper [52]. In 1996 Nylen [48] initiated the
study of minimum rank of the symmetric matrices described by a graph and gave a method for
its computation for a tree, subsequently improved by Johnson and Leal-Duarte [36], Johnson and
Saiago [41], and others, so the minimum rank of a tree is readily computable (see algorithms in
Subsection 2.1). In contrast, although the IEPG has been solved for some families of trees, for
most trees the IEPG is unsolved. Only limited progress on the minimum rank problem has been
made on graphs that are not trees, with most of the progress in the last few years.

The rank or minimum rank of a family of matrices associated with a graph has also played a
role in various other problems, including:

• singular graphs, nullity of the adjacency matrix;

• biclique decompositions and the biclique partition number (Graham-Pollack Theorem);

• Hermitian rank and inertia;

• eigensharp graphs;

• Lovász ϑ function and orthonormal labellings of graphs.

In spectral graph theory one of the most important tools is the (0,1) adjacency matrix (AG), and
a long-standing open problem is to characterize the graphs G whose adjacency matrix is singular;
such graphs are often called singular graphs (see also [17]). In addition, many people have studied
the nullspace of the adjacency matrix, paying particular attention to the nullity (or the dimension
of the nullspace). The nullity of a bipartite graph seems to be of interest in chemistry (see [19]).
The nullity of a tree has long been known (see [18]) and investigations about the nullity of various
more general graphs continues currently.

Partitioning the edges of a graph has been an important research area historically in graph
theory (see [25, 43, 47, 50]). One particular partition is a biclique partition — that is, a partition
of the edges of a graph into subgraphs in such a way that each subgraph is a complete bipartite
graph (or a biclique). The size of the smallest such partition is called the biclique partition number
of G and is denoted by bp(G) (see also [29]). In the seminal paper of Graham and Pollack [25] it
is proved that

bp(G) ≥ max{i+(AG), i−(AG)}, (1)

where AG is the (0,1) adjacency matrix of G and i+ (i−) is the number of positive (negative)
eigenvalues of a symmetric matrix. In the special case when G is a bipartite graph it follows easily
that bp(G) ≥ 1

2 rank(AG).
When equality holds in (1), the graph is called eigensharp (see [43]). Many graphs are known

to be eigensharp (e.g. trees, Cn, Kn), although a complete description of all eigensharp graphs is
still unknown.

Another connection to rank is seen through the variant notion of Hermitian rank. For any n×n
Hermitian matrix B, the Hermitian rank of B denoted by h(B), is the smallest k such that B =
XY ∗ +Y X∗ for n×k complex matrices X, Y . In [26] it is shown that h(B) = max{i+(B), i−(B)}.
So in particular, bp(G) ≥ h(AG).

Along similar lines, graph labellings is another prominent subject in graph theory that also has
ties to minimum rank. Suppose G = (V,E) is a graph. Then an orthonormal labeling of G of
dimension d is a function f : V −→ Rd such that f(u) · f(v) = 0 whenever vertices u and v are not
adjacent, and |f(u)| = 1 for all u ∈ V (see [22]). Let d(G) denote the smallest dimension d over all
orthonormal labellings of G. Then it is easy to see that d(G) is equal to the minimum rank of a

2



symmetric positive semidefinite matrix whose graph is given by G (see definition of G(B) below).
Furthermore, Lovász [45] has shown that

α(G) ≤ ϑ(G) ≤ d(G) ≤ χ(Ḡ),

where α(G) is the size of the largest independent set, ϑ(G) is the so-called Lovász ϑ function, and
χ(Ḡ) is the chromatic number of the complement of G (i.e., the clique cover number of G). It is
noted in [22], and is easy to verify, that d(G) is equal to the minimum rank of a matrix lying in
the set

{X : X ∈ S+
n , I −AG ≤ X ≤ I + AG},

where the ordering is entry-wise and S+
n denotes the set of real n×n positive semidefinite matrices.

Definitions, notation, and elementary results on the minimum rank problem are described in
this section. Section 2 summarizes the current state of knowledge of the minimum rank problem.
Section 3 surveys minimum rank problems for other families of matrices described by a graph.
Except when explicitly stated otherwise (primarily in Section 3), all matrices discussed are real
and symmetric and all graphs are simple (in fact, we will define “graph” to mean a simple graph).

We begin with the basic definitions and the association of matrices and graphs. A graph is a
pair G = (V,E), where V is the set of vertices (usually {1, . . . , n} or a subset thereof) and E is the
set of edges (an edge is a two-element subset of vertices). A general graph allows multiple edges
and/or loops. Every graph or general graph is finite (finite number of vertices and finite number
of edges) and has nonempty vertex set. The order of a graph G, denoted |G|, is the number of
vertices of G.

A path is a graph Pn = ({v1, . . . , vn}, E) such that E = {{vi, vi+1} : i = 1, . . . , n−1}. A cycle is
a graph Cn = ({v1, . . . , vn}, E) such that E = {{vi, vi+1} : i = 1, . . . , n−1}∪{{vn, v1}}. The length
of a path or cycle is the number of edges. A complete graph is a graph Kn = ({v1, . . . , vn}, E)
such that E = {{vi, vj} : i 6= j, i, j = 1, . . . , n}. A graph (V,E) is bipartite if the vertex set
V can be partitioned into two parts U,W , such that no edge of E has both endpoints in one
part. A complete bipartite graph is a graph Kp,q = (U ∪ W,E) such that |U | = p, |W | = q and
E = {{u, w} : u ∈ U,w ∈ W}.

Let Sn denote the set of real symmetric n × n matrices. For a matrix A ∈ Sn, the spectrum
of A is the multiset of the n roots of the characteristic polynomial, and is denoted by σ(A). For
B ∈ Sn, let multB(λ) denote the multiplicity of λ as a root of the characteristic polynomial of B
(i.e., the multiplicity of λ if λ is an eigenvalue of B and 0 otherwise).

For B ∈ Sn, the graph of B, denoted G(B), is the graph with vertices {1, . . . , n} and edges
{{i, j}| bij 6= 0 and i 6= j}. Note that the diagonal of B is ignored in determining G(B). In addition,
we let S(G) = {B ∈ Sn : G(B) = G}. The adjacency matrix AG of a graph G = ({1, . . . , n}, E)
is the 0,1-matrix defined by (AG)ij = 1 if and only if i 6= j and {i, j} ∈ E. The Laplacian
matrix of G is LG = diag(deg(1), . . . ,deg(n)) − AG and the signless Laplacian matrix of G is
|LG| = diag(deg(1), . . . ,deg(n)) + AG (here deg(v) denotes the degree, or the number of edges
incident with v). Clearly G(AG) = G(LG) = G(|LG|) = G.

Example 1.1. For the matrix B =


0 1 0 0
1 3.1 −1.5 2
0 −1.5 1 1
0 2 1 0

, G(B) is shown in Figure 1.

The minimum rank of G is defined to be

mr(G) = min{rank(B) : B ∈ Sn and G(B) = G}.

The maximum multiplicity of G is given as

M(G) = max{multB(λ) : λ ∈ R, B ∈ Sn and G(B) = G}.
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Figure 1: The graph G(B) for B in Example 1.1

Since maximum multiplicity of any eigenvalue is the same (by translation by a scalar matrix) as
maximum multiplicity of eigenvalue 0, maximum multiplicity is sometimes called maximum nullity
or maximum corank.

Observation 1.2. The following results are well-known and straightforward.

1. M(G) + mr(G) = |G|.

2. mr(G) ≤ |G| − 1.

3. mr(Pn) = n− 1.

4. mr(Kn) = 1, and if G is connected, mr(G) = 1 implies G = K|G|.

5. mr(Kp,q) = 2.

Example 1.3. Let G be the graph in Figure 1 and let A =


1 1 0 0
1 2 1 1
0 1 1 1
0 1 1 1

 . Since G(A) = G and

G 6= K4, mr(G) = 2. (The matrix A also illustrates Observation 1.8 below).

The fact that a path is the only graph having mr(G) = |G|−1 (cf. Observation 1.2.3), although
well-known, is nontrivial. It is a consequence of the following theorem.

Theorem 1.4. [23] (Fiedler’s Tridiagonal Matrix Theorem) If A is a real symmetric n×n matrix
such that for all real diagonal matrices D, rank(A + D) ≥ n− 1, then A is irreducible and there is
a permutation matrix P such that PT AP is tridiagonal.

Corollary 1.5. mr(G) = |G| − 1 if and only if G = P|G|.

If R ⊆ {1, 2, . . . , n} and B ∈ Sn, then B[R] denotes the principal submatrix of B whose rows
and columns are indexed by R, and B(R) is the complementary principal submatrix obtained from
B by deleting the rows and columns indexed by R. In the special case when R = {k}, we use B(k)
to denote B(R).

A graph G′ = (V ′, E′) is a subgraph of graph G = (V,E) if V ′ ⊆ V,E′ ⊆ E. The subgraph
G[R] of G = (V,E) induced by R ⊆ V is the subgraph with vertex set R and edge set
{{i, j} ∈ E | i, j ∈ R}; G(R) is used to denote G[V \ R]. The result G({v}) of deleting a vertex
v is also denoted by G − v. A graph G is connected if for any two vertices v, w, G contains as a
subgraph a path from v to w. Otherwise it is disconnected. (A graph of order one is connected
by definition.) A (connected) component of a graph is a maximum connected (induced) subgraph.
The distance between two vertices in a graph G is the number of edges in a shortest path between
them. The diameter of G, diam(G), is the maximum distance between any two vertices of G.
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Observation 1.6. Let B ∈ Sn. The following results are well-known and straightforward.

1. If the connected components of G are G1, . . . , Gt, then

mr(G) =
t∑

i=1

mr(Gi) and M(G) =
t∑

i=1

M(Gi).

2. If G′ is an induced subgraph of G then mr(G′) ≤ mr(G).

3. For the cycle on n vertices, mr(Cn) = n− 2 (see below).

4. For a connected graph G, diam(G) ≤ mr(G) (G contains Pdiam(G)+1 as an induced subgraph.).

5. rank(B)− 2 ≤ rank(B(k)) ≤ rank(B).

6. [48] For any vertex v of G, 0 ≤ mr(G)−mr(G− v) ≤ 2.

7. [48] Adding or removing an edge from a graph G can change minimum rank by at most 1.

8. If R ⊆ {1, . . . , n}, k ∈ {1, . . . , n}, then G(B[R]) = G(B)[R] and G(B(k)) = G(B)− k. (There
is a slight abuse of notation here- technically we need to index the entries of B[R] by R.)

For item 3 above, certainly mr(Cn) < n− 1 since Cn is not a path. However, Cn contains the
path on n− 1 vertices as an induced subgraph, so mr(Cn) ≥ n− 2.

To determine the minimum rank of a graph, it is sufficient to be able to determine minimum rank
of its connected components (cf. Observation 1.6.1). Hence it is customary to restrict consideration
to connected graphs.

The complement of a graph G = (V,E) is the graph G = (V,E), where E consists of all two
element sets from V that are not in E. The union of Gi = (Vi, Ei) is ∪h

i=1Gi = (∪h
i=1Vi,∪h

i=1Ei).
The intersection of Gi = (Vi, Ei) is ∩h

i=1Gi = (∩h
i=1Vi,∩h

i=1Ei) (provided the intersection of the
vertices is nonempty).

If G = ∪h
i=1Gi, a matrix A of rank at most

∑h
i=1 mr(Gi) having G(A) = G can be obtained

by choosing (for each i = 1, . . . , h) a matrix Ai that realizes mr(Gi), embedding Ai in a matrix
Ãi of size |G|, choosing ai ∈ R such that no cancellation of nonzero entries occurs, and letting
A =

∑h
i=1 aiÃi.

Observation 1.7. If G = ∪h
i=1Gi then mr(G) ≤

∑h
i=1 mr(Gi).

An induced subgraph G′ of a graph G is a clique if G′ has an edge between every pair of vertices
of G′ (i.e., G′ is isomorphic to K|G′|). A set of subgraphs of G, each of which is a clique and such
that every edge of G is contained in at least one of these cliques, is called a clique covering of G.
The clique covering number of G, denoted by cc(G), is the smallest number of cliques in a clique
covering of G. The next corollary, which is well-known, is a special case of Observation 1.7.

Observation 1.8. If G is a graph, mr(G) ≤ cc(G).

A vertex v of a connected graph G is a cut-vertex if G − v is disconnected. More generally, v
is a cut-vertex of a graph G if v is a cut-vertex of a component of G. A graph is 2-connected if
its order is at least 3 and it has no cut-vertex. A subset S of vertices of a connected graph G is a
cut-set if G(S) is disconnected. More generally, S is a cut-set of a graph G if S is contained in one
component of G and S a cut-set of that component of G.
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2 Minimum Rank of Symmetric Matrices described by a
Simple Graph

The minimum rank of a tree or unicyclic graph is easy to compute, and in Subsections 2.1
and 2.4 we include algorithms for computation of the minimum rank of a tree or unicyclic graph.
Progress on the minimum rank problem for graphs that are not trees has come through several
different approaches. Graphs having relatively extreme minimal rank have been characterized (see
Subsection 2.2). Minimum rank can sometimes be computed by a reduction operation that allows
computation of minimum rank from the minimum ranks of proper subgraphs. This has been done
by deleting cut-vertices (Subsection 2.3) or viewing the graph as a join (Subsection 2.5). The Colin
de Veridière type parameter ξ (see Subsection 2.6) can be used to bound minimum rank from above
(and induced subgraphs can be used to bound minimum rank from below).

At the AIM workshop [1], the minimum ranks of several families of graphs were computed,
and subsequently the minimum rank of all graphs of order less than or equal to six was computed.
This information is available on-line in the form of a minimum rank graph catalog [2], and will be
updated regularly.

2.1 Trees

A graph is acyclic if it does not contain a cycle. A tree is a connected acyclic graph. Throughout
this subsection, T will denote a tree.

A simple consequence of the Cauchy interlacing inequalities [28, Fact 8.2.5] is that for any real
symmetric matrix B,

multB(λ)− 1 ≤ multB(k)(λ) ≤ multB(λ) + 1.

One might expect that it is most common for multiplicity to decrease or perhaps remain the same,
but for trees, the work of Parter [49] and Wiener [52] shows that for a matrix whose pattern of
nonzero off-diagonal entries is described by a tree, for multiplicity greater than one there must
always be a vertex whose deletion raises the multiplicity; such a vertex is called a Parter-Wiener
(PW) vertex. Vertex k is a strong PW vertex of B for λ if k is a PW vertex of B for λ and λ is
an eigenvalue of at least three components of G(B)− k. What we refer to as a strong PW vertex
has also been called a Parter vertex or a Wiener vertex in the literature, and the term weak has
sometimes been applied to what is designated here as a PW vertex.

Theorem 2.1. [38, 49, 52] (Parter-Wiener Theorem) If T is a tree, G(B) = T and
multB(λ) ≥ 2, then there is a strong PW vertex of B for λ.

The minimum rank problem is a small part of the Inverse Eigenvalue Problem of a Graph, which
asks what spectra are possible among all the symmetric matrices described by the graph. With
the exception of results about maximum multiplicity of an eigenvalue, most of the progress on this
problem has been limited to specific families of trees. Much of this work is based on determination
of possible ordered list of multiplicities for the tree.

If the distinct eigenvalues of B ∈ Sn are β̆1 < · · · < β̆q with multiplicities m1, . . . ,mq, then
(m1, . . . ,mq) is called the ordered multiplicity list of B and the number of distinct eigenvalues of
B ∈ Sn is denoted q(B). In addition, The minimum number of distinct eigenvalues of a graph G is
q(G) = min{q(B) : B ∈ S(G)}.

In the works [4], [23], [37], and [39] the possible ordered multiplicity lists of matrices in S(T )
have been determined for the following families of trees:

• paths

• double paths
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• stars

• generalized stars

• double generalized stars

Furthermore, for T in any of these families above, if there is a matrix B ∈ S(T ) with distinct
eigenvalues β̆1 < · · · < β̆r having multiplicities m1, . . . ,mr, then for any real numbers γ1 < · · · < γr,
there is a matrix in S(T ) having eigenvalues γ1, . . . , γr with multiplicities m1, . . . ,mr. Thus for
any of these trees, determination of the possible ordered multiplicity lists of the graph is equivalent
to the solution of the Inverse Eigenvalue Problem of the graph, and that problem has been solved
in these cases.

In the paper [3] it was shown that there can be restrictions on which real numbers may appear
as the eigenvalues for an attainable ordered multiplicity list. That is, there exist trees for which
the determination of the ordered multiplicity list of the tree is not equivalent to the solution of the
Inverse Eigenvalue Problem of that tree.

In [44] it was shown that q(T ) ≥ diam(T )+1. Later Barioli and Fallat [3] gave the first example
showing that q(t) > diam(T ) + 1 is possible (the example is what is now called the (3,2)-whirl).
Kim and Shader [42] generalized this class and noted that the gap can be worse (as a function
of n). In their work, [42] they introduced the use of Smith Normal Form as a tool to study this
aspect of the IEPG.

The minimum rank of a tree T can be computed easily by computing one the parameters ∆(T )
or P (T ). For a graph G,

∆(G) = max{p− q : there is a set of q vertices whose deletion leaves p paths}.

(Note that an isolated vertex is a path of order 1.) The path cover number of G, P (G), is the
minimum number of vertex disjoint paths occurring as induced subgraphs of G that cover all the
vertices of G; such a set of paths realizing P (G) is called a minimal path cover. Note that some
authors do not require the paths to be induced; this distinction is irrelevant for trees, but relevant
for graphs that are not trees.

Theorem 2.2. [36] M(T ) = P (T ) = ∆(T ) = |T | −mr(T ).

The parameters ∆(T ), or P (T ), and hence M(T ) and mr(T ), can be computed by any of a
number of algorithms, including Algorithm 2.3, due to Johnson and Saiago [41], or its variant
Algorithm 2.5 below (see also [48] for an algorithm using appropriate vertices). A vertex of degree
at least 3 is called a high degree vertex. The set of high degree vertices of G is denoted H(G).

Algorithm 2.3. [28, Algorithm 34.1] Computation of mr(T ) and ∆(T ).
Input: A tree T .
Output: mr(T ),∆(T ), and a set Q of vertices of T whose deletion realizes ∆(T ).

1. Set Q = ∅ and T ′ = T .

2. While H(T ′) 6= ∅:

(a) Remove from T ′ the set Q′ of all vertices v ∈ H(T ′) such that
degT ′(v)− degH(T ′)(v) ≥ 2.

(b) Q = Q ∪Q′.

3. ∆(T ) = p− |Q| where p is the number of components (all of which are paths)
in T (Q).
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4. mr(T ) = |T | −∆(T ).

Algorithm 2.5 below is sometimes more useful than Algorithm 2.3. Algorithm 2.5 can be easily
adapted to compute path cover number and the minimum rank of a unicyclic graph (see Algorithm
2.16 in Subsection 2.4). Algorithm 2.5 can also be generalized to compute the minimum rank of a
tree that allows loops (see Section 3).

The method of computation of ∆(T ) in Algorithm 2.5 uses pendent generalized stars and works
from the outside in. A path P in G is a pendent path of vertex v if P is a component of G − v
and (in G) P is connected to v by one of its end-points. A tree is a generalized star if it has at
most one high degree vertex; if a generalized star has a high degree vertex, this vertex is called the
center. A pendent generalized star of G is a connected induced subgraph S of G such that: there
is exactly one high degree vertex v of G in S (v is called the center of S); degG(v) = k + 1 and
exactly k of the components of G − v are pendent paths of v; S is induced by the vertices of the
k pendent paths and v. The following result is known, but we are not aware of a source (it does
follow from [48] where it is shown that trees have appropriate vertices, since choosing an outermost
appropriate vertex will yield a pendent generalized star).

Lemma 2.4. Any tree T contains a pendent generalized star or is a generalized star.

Proof. If T has no high degree vertices, then T is a path, which is a generalized star (without
center). If T has at least one high degree vertex, define T1 to be the tree obtained from T by
removing all pendent paths. If |T1| = 1 then T is a generalized star. If |T1| > 1, let v be a vertex
of degree 1 in T1 (such a vertex must exist since T1 is a tree). Then v together with its pendent
paths forms a pendent generalized star.

Algorithm 2.5. Computation of mr(T ) and ∆(T ) for a tree T .
Input: A tree T .
Output: mr(T ),∆(T ), and a set Q of vertices of T whose deletion realizes ∆(T ).

1. Set Q = ∅ and T ′ = T .

2. While T ′ has a pendent generalized star:

(a) Let Q′ be the the centers all pendent generalized stars of T ′.

(b) Remove the vertices in Q′ from T ′.

(c) Q = Q ∪Q′.

3. If T ′ is a generalized star with center v, Q = Q ∪ {v}.

4. ∆(T ) = p− |Q| where p is the number of components in T (Q).

5. mr(T ) = |T | −∆(T ).

Example 2.6. We use Algorithm 2 to compute ∆(T ) = M(T ) and mr(T ) for the tree T shown
in Figure 2.
Step 2:

First iteration: Q = Q′ = {1, 3, 5, 9}.
Second iteration: Q′ = {4, 7} and Q = {1, 3, 4, 5, 7, 9}.

Step 3: The tree T (Q) is shown in Figure 3. ∆(T ) = M(T ) = 19− 6 = 13.
Step 4: mr(T ) = 32− 13 = 19.
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Figure 2: The tree T in Example 2.6

Figure 3: The forest T (Q) in Example 2.6

Unfortunately, the results of this subsection fail for graphs that are not trees. For example,
the cycle has mr(Cn) = n − 2 so there is a matrix B having G(B) = Cn and multB(0) = 2, but
there is no PW vertex, since the deletion of any vertex leaves Pn−1. For graphs that are not trees,
Theorem 2.2 need not be true either. In fact, P and M are non-comparable (see Example 2.7).
From the Cauchy interlacing theorem, for any simple graph G, ∆(G) ≤ M(G), and it is shown in
[6] that for any graph G, ∆(G) ≤ P (G). See [6] and [7] for more information about the relationship
between the parameters M,P,∆.

Example 2.7. The wheel on 5 vertices, W5, shown in Figure 4, has P (W5) = 2 by inspection,
and mr(W5) = 2 (by Theorem 2.8 below), so M(W5) = 3 > P (W5). The penta-sun, H5, which is

5
W

5
H

Figure 4: The wheel W5 and the penta-sun H5

shown in Figure 4, has P (H5) = 3 by inspection. By repeated application of Theorem 2.11 below,
it is shown in [6] that mr(H5) = 8 and thus that P (H5) > M(H5) = 2.
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2.2 Graphs having extreme minimum rank

As noted in Section 1, a graph G has minimum rank |G| − 1 if and only if G = P|G|, and a
connected graph G has minimum rank 1 if and only if G = K|G|. In the past few years the graphs
having minimum rank 2 and |G|−2 have been characterized. Unfortunately, the proofs are difficult
and do not appear to easily generalize (although progress along related lines continues currently).

Barrett, van der Holst and Loewy [10] characterized graphs having minimum rank 2 (and
initiated the study of minimum rank over fields other than the real numbers - see Subsection
3.1). They gave characterizations using forbidden induced subgraphs (Theorem 2.8) and the graph
complement (Theorem 2.9).

Theorem 2.8. [10] A connected graph G has mr(G) ≤ 2 if and only if G does not contain as
an induced subgraph any of P4, Dart, n, or K3,3,3 (the complete tripartite graph), all shown in
Figure 5.

Figure 5: Forbidden induced subgraphs for mr(G) ≤ 2

P4 Dart n K3,3,3

Theorem 2.9. [10] A graph G has mr(G) ≤ 2 if and only if the complement of G is of the form

(Ks1 ∪Ks2 ∪Kp1,q1 ∪ · · · ∪Kpk,qk
) ∨Kr

for appropriate nonnegative integers k, s1, s2, p1, q1, . . . , pk, qk, r with pi+qi > 0 for all i = 1, . . . , k.

The graph operation denoted by ∨ in Theorem 2.9 is referred to as the join and is formally
defined in Subsection 2.4 below.

Graphs G having minimum rank |G| − 2 have been characterized by Hogben and van der Holst
[31] using ξ (see Theorems 2.10 and 2.26) and independently (and for fields other than the real
numbers) by Johnson, Loewy, and Smith [40].

The dual of a plane embedding of a planar graph G is obtained as follows: Place a new vertex
in each face of the embedding; these are the vertices of the dual. Two dual vertices are adjacent
if and only if the two faces of G share an edge of G. A linear 2-tree is a 2-connected graph G
that can be embedded in the plane such that the graph obtained from the dual of G after deleting
the vertex corresponding to the infinite face is a path. Equivalently, a linear 2-tree is a “path” of
cycles built up one cycle at a time by identifying an edge of a new cycle with an edge of the most
recently added cycle. An example of a linear 2-tree is shown in Figure 6.

Theorem 2.10. [31] Let G be a 2-connected graph. Then mr(G) = |G| − 2 if and only if G is a
linear 2-tree.

As an application of these results (and Theorem 2.11 below), the minimum rank of any graph
of order six or less has been determined [2], because graphs having minimum rank 1, 2, 4, 5 are
characterized.

10



Figure 6: A linear 2-tree

2.3 Graphs with cut-vertices

The rank-spread of G at vertex v is defined to be

rv(G) = mr(G)−mr(G− v).

As noted in [48] (cf. Observation 1.6.6), for any vertex v of G, 0 ≤ rv(G) ≤ 2. The following
theorem can be used to reduce the problem of determining minimum rank of a graph that has a
cut-vertex to determining the minimum rank of several smaller order graphs.

Theorem 2.11. [6], [34] (cut-vertex reduction) If G has a cut-vertex, the problem of computing the
minimum rank of G can be reduced to computing minimum ranks of certain subgraphs. Specifically,
let v be a cut-vertex of G. For i = 1, . . . , h, let Wi ⊆ V (G) be the vertices of the ith component of
G− v and let Gi be the subgraph induced by {v} ∪Wi. Then

rv(G) = min

{
h∑
1

rv(Gi), 2

}

and thus

mr(G) =
h∑
1

mr(Gi − v) + min

{
h∑
1

rv(Gi), 2

}
.

The following corollary is an immediate consequence of Theorem 2.11, and tends to be a handy
fact.

Corollary 2.12. If rv(Gi) = 0 for all but at most one of the Gi, then

mr(G) =
h∑

i=1

mr(Gi).

Example 2.13. This example illustrates the use of Corollary 2.12. The graph G shown in Figure
7 has cut-vertex 4 and the induced subgraphs G[{1, 2, 3, 4}] and G1 = G[{4, 5, 6, 7, 8, 9, 10, 11, 12}]
associated with the two components.

5

1

2

3

4

6

7
8

910

12

11

Figure 7: A graph to which Corollary 2.12 can be applied to compute minimum rank
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By Corollary 1.5 and Observation 1.2.4, mr(G[{1, 2, 3, 4}]) = 2 = mr(G[{1, 2, 3}]), so
r4(G[{1, 2, 3, 4}]) = 0. Thus

mr(G) = mr(G1) + mr(G[{1, 2, 3, 4}]) = mr(G1) + 2.

The graph G1 has the cut-vertex 6 and induced subgraphs G[{4, 5, 6, 7, 8}], G[{6, 9, 10}], and
G[{6, 11, 12}]. Since complete graphs have rank 1, mr(G[{6, 9, 10}]) = mr(G[{9, 10}]) = 1, so
r6(G[{6, 9, 10}]) = 0, and similarly r6(G[{6, 11, 12}]) = 0. Thus,

mr(G1) = mr(G[{4, 5, 6, 7, 8}]) + mr(G[{6, 9, 10}]) + mr(G[{6, 11, 12}]) = 3 + 1 + 1 = 5.

Thus, mr(G) = mr(G1) + 2 = 5 + 2 = 7.

Analogous cut-set reduction results for cut-sets of size two have been observed recently by van
der Holst [32], although many more cases have to be considered and so its utility is unclear.

2.4 Unicyclic graphs

As noted in Subsection 2.1, for trees on n vertices, the minimum rank is equal to n minus the
path cover number; or equivalently the path cover number coincides with the maximum multiplicity.
In Example 2.7 it is demonstrated that this relation no longer persists for graphs in general.
However, for unicyclic graphs there is a still a weak relationship between the minimum rank and
path cover number, and this can be used to compute minimum rank easily (see Algorithm 2.16).
Just to be clear, for a graph G, the path cover number of G is defined to be the smallest number
of vertex disjoint induced paths that cover the vertices of G.

For the 5-sun in Example 2.7, mr(H5) = 8 and thus that P (H5) > M(H5) = 2, and in some
sense, this is the worst case for unicyclic graphs.

Let Cn be an n-cycle. The graph Hn obtained from Cn by appending a leaf to each vertex on
Cn is called an n-sun. Let U ⊆ V (Cn). The graph H obtained from Cn by appending a leaf to
each vertex in U is called a partial n-sun (see Figure 2.4).
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Figure 8: Partial 6-sun

In a effort to calculate the minimum rank of a unicyclic graph, in [7] a new parameter was
considered and defined as η(G) = P (G) − M(G). Of course, for a tree T , η(T ) = 0. Since
M(G) = |G| −mr(G), it follows that η(G) = P (G)− |G|+ mr(G), or

mr(G) = |G| − P (G) + η(G).

A type of graph surgery on unicyclic graphs was considered, which was referred to as “trimming
branches.”

A vertex v is said to be appropriate if there exist at least two pendent paths from v [48]. In
[6] it was shown that any appropriate vertex of a graph has rank-spread 2. A vertex v is called
a peripheral leaf if deg(v) = 1 and deg(u) 6 2 where u is the only neighbour of v. We consider
(induced) subgraphs of a given graph G, obtained by the following “trimming” procedures.
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1. Deletion of an appropriate vertex. If v is an appropriate vertex, G′ = G − v is said to be
obtained from G by deletion of an appropriate vertex.

2. Deletion of an isolated path. If one component of G is a path P , the graph G′ = G−V (P ) is
said to be obtained from G by deletion of an isolated path. In general, this process is required
after the deletion of an appropriate vertex, which leaves two or more isolated paths.

3. Deletion of a peripheral leaf. If v is a peripheral leaf, G′ = G− v is said to be obtained from
G by deletion of a peripheral leaf.

A trimmed form of a graph G is an induced subgraph, obtained by a sequence of the above
mentioned trimming operations, that does not contain peripheral leaves, isolated paths and/or
appropriate vertices. In [7] it was shown that the trimmed form of a graph is unique, and that
the parameter η is preserved under trimming. Consequently, a formula for both η and mr of a
unicyclic graph followed.

Corollary 2.14. [7] Let G be a unicyclic graph. Then

η(G) =
{

1 if Ğ is an n-sun, n > 3, odd;
0 otherwise.

Corollary 2.15. Let G be a unicyclic graph on n vertices. Then

mr(G) =
{

n− P (G) + 1 if Ğ is an n-sun, n > 3, odd
n− P (G) otherwise.

Algorithm 2.5 can be adapted to find a minimal path cover and thus to compute path cover
number and minimum rank of a tree or unicyclic graph.

Algorithm 2.16. Computation of mr(G) and P (G) for a tree or unicyclic graph G.
Input: A tree or unicyclic graph G.
Output: mr(G), P (G), η(G) and a minimal path cover P.

1. Set P = ∅, η(G) = 0, and G′ = G.

2. While G′ has a pendent generalized star:

(a) Let v be the the center of a pendent generalized star of G′; let the pendent paths be
denoted P1, P2, . . . , Pk.

(b) Let P0 be the path obtained by joining P1 and P2 to v by edges of G.
P = P ∪ {P0, P3, . . . , Pk}.

(c) Remove v from G′.

3. If G′ has a cycle C, then

(a) If C has a vertex v of degree ≥ 4 in G′:

i. Let the pendent paths of v be denoted P1, P2, . . . , Pk. Let P0 be the path obtained
by joining P1 and P2 to v by edges of T where P1, P2, . . . , Pk are the pendent paths.
P = P ∪ {P0, P3, . . . , Pk}.

ii. Remove v from G′.
iii. Go to Step 2.

(b) Else C does not have a vertex v of degree ≥ 4 in G′:

13



i. Select a minimal path cover for C and its pendent paths.
ii. If every vertex of C has a pendent path and the length of C is odd and greater than

3 then η(G) = 1.

4. If G′ is a generalized star with center v, then let P0 be the path obtained by joining P1 and
P2 to v by edges of T where P1, P2, . . . , Pk are the pendent paths. P = P ∪ {P0, P3, . . . , Pk}.

5. P (G) is the number of paths in P.

6. mr(G) = |G| − P(G) + η(G).

Example 2.17. We use Algorithm 2.16 to compute P (G) = M(G) and mr(G) for the unicyclic
graph G shown in Figure 9.

9

2

31
4 5

8

7 6

Figure 9: The graph G in Example 2.17

Initially we can choose any of {1, 3, 9} as the center of a pendent generalized star, and we
choose all of these before choosing any other center. (Although not required in the form of the
algorithm given here, the intent is to select all pendent generalized stars of the original graph first
and work from the outside in.) Then vertex 7 is the center of a pendent generalized star. All of
these vertices are removed from G′ and the paths shown in Figure 10 are in the path cover P.

9

2

31
4 5

8

7 6

Figure 10: Partial path cover for the graph G in Example 2.17

Since the component containing the cycle has a vertex without a pendent path, step 3(b)ii does
not happen and η = 0. Finally we cover the cycle and its pendent paths as shown in Figure 11.
Thus P (G) = 10 and mr(G) = 29− 10 + 0 = 19.

In [7] the trimming procedure was also applied to determine the minimum rank of any graph
in the family of so-called block-cycle graphs, that generalizes unicyclic graphs.
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Figure 11: Path cover for the graph G in Example 2.17

2.5 Joins of graphs

Considering Theorem 2.9 above it is evident that the graph operation “join” is both useful and
plays a role in the minimum rank of graphs.

The join G∨G′ of two disjoint graphs G = (V,E) and G′ = (V ′, E′) is the union of G∪G′ and
the complete bipartite graph with with vertex set V ∪ V ′ and partition {V, V ′}.

In [5] the minimum rank of the join of graphs was considered explicitly under the assumption
of a new property known as balanced inertia. A symmetric matrix A has balanced inertia if
i−(A) ≤ i+(A) ≤ i−(A) + 1, where i− (i+) is the number of negative (positive) eigenvalues of A.
In an analogous fashion we say that a graph G is inertia-balanced if there exists A ∈ S(G) that
satisfies

• rank(A) = mr(G), and

• A has balanced inertia.

Many graphs are known to be inertia-balanced such as trees, Kn, and Cn. Before we state the
main results in [5] on the minimum rank of the join of graphs, we need to lay out some prerequisite
terminology.

There were two items that played a key role in the analysis in [5]: isolated vertices; and
K3,3,3. We define the join minimum rank of G to be jmr(G) = mr(G ∨ K1), and note that
mr(G) ≤ jmr(G) ≤ mr(G) + 2 (cf. Observation 1.6.6).

Let G = G =
∨r

i=1 Gi be a join of r graphs. Then G is said to be anomalous if

1. for each i, jmr(Gi) 6 2; and

2. K3,3,3 = K3 ∨K3 ∨K3 is a subgraph of G.

Such a definition is essential, since, for the inertia-balanced graph G = K3,3,3 = K3 ∨K3 ∨K3,
we have 3 = mr(G) 6= max{jmr(Gi)} = 2.

One of the main results in [5] is the following

Theorem 2.18. [5] Let G =
∨r

i=1 Gi, r > 1, where each Gi is inertia-balanced. Then G is
inertia-balanced, and

mr(G) =
{

maxi{jmr(Gi)} if G is not anomalous;
3 if G is anomalous.

Example 2.19. (Complete multipartite graph) Let n1 ≥ n2 ≥ · · · ≥ nk ≥ 0. Then we let
G = Kn1,n2,...,nk

:= Kn1 ∨Kn2 ∨ · · · ∨Knk
. Using the result above and [5] it follows that
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mr(G) =


0 if k = 1;
1 if n1 = n2 = 1, n3 = 0;
2 if n1 > 1, n3 < 3;
3 if n3 ≥ 3;

Looking more closely at Theorem 2.8 we observe that P4 is a forbidden induced subgraph, so
any graph G that satisfies mr(G) ≤ 2 must not contain P4. The class of graphs that do not contain
P4 as an induced subgraph are well-studied and are known as decomposable graphs (or cographs).
An equivalent formulation of a decomposable graph is that it can be expressed as a sequence of
unions and joins of isolated vertices. In [5] the minimum rank of all decomposable graphs was
completely worked out and is given by

Theorem 2.20. [5] Let G =
∨r

i=1 Gi, r > 1, be a connected decomposable graph. Then G is
inertia-balanced, and

mr(G) =
{

maxi{jmr(Gi)} if G is not anomalous;
3 if G is anomalous.

As a consequence, another characterization of mr(G) = 2 graphs can be stated in the following
manner.

Corollary 2.21. [5] A connected graph G has minimum rank 2 if and only if G =
∨r

i=1 Gi, r > 1,
where either

1. Gi = Kmi
∪Kni

, for suitable mi > 1, ni > 0, or

2. Gi = Kmi , for a suitable mi > 3;

and option (2) occurs at most twice.

2.6 Colin de Verdière-type parameters

A graph parameter ζ is monotone on induced subgraphs if for any induced subgraph H of G,
ζ(H) ≤ ζ(G). Recall that minimum rank is monotone on induced subgraphs (cf. Observation
1.6.2). This property can be useful in bounding mr(G) from below; for example, the length of the
longest induced path in G is a lower bound for mr(G). Unfortunately, maximum multiplicity of
an eigenvalue is not monotone on induced subgraphs (the deletion of any vertex with rank-spread
equal to 2 increases M).

In 1990 Colin de Verdière ([15] in English) introduced the graph parameter µ which is equal
to the maximum multiplicity of eigenvalue 0 among all generalized Laplacian matrices having a
given graph and also satisfying the so-called Strong Arnold Hypothesis (defined below). Reference
[33] provides an excellent introduction to the parameter µ from a linear algebra perspective. The
parameter µ was the first of several related parameters that are minor monotone and bound the
maximum eigenvalue multiplicity from below. In this subsection we discuss several of these Colin
de Verdière-type parameters and their use for computing the maximum eigenvalue multiplicity (or
equivalently, the minimum rank) of a graph. These parameters are most useful when the graph
has a large number of edges (since a matrix with many nonzero entries is more likely to satisfy the
Strong Arnold Hypothesis), and least useful for trees, where a convenient method already exists for
evaluation of maximum multiplicity and minimum rank (see Algorithms 2.3 and 2.5 in Subsection
2.1).
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The computation of Colin de Verdière-type parameters is generally difficult, but once the value
of at least one of these parameters is known for a specific graph G, this information can be used
to obtain desirable bounds for any graph that has G as a minor. For the purpose of computing
minimum rank or maximum eigenvalue multiplicity, these parameters should be used only for
connected graphs (each component should be analyzed separately).

A symmetric real matrix M is said to satisfy the Strong Arnold Hypothesis provided there does
not exist a nonzero symmetric matrix X satisfying:

• MX = 0.

• M ◦X = 0.

• I ◦X = 0,

where ◦ denotes the Hadamard (entrywise) product and I is the identity matrix. The Strong
Arnold Hypothesis is equivalent to the requirement that certain manifolds intersect transversally
(see [15], [33]). An interesting short note on testing for the Strong Arnold Hypothesis can be found
at [24].

The Colin de Verdière number µ(G) (or µ for short) [15] is the maximum multiplicity of 0 as
an eigenvalue among matrices L that satisfy:

• L is a generalized Laplacian matrix of G, i.e., L ∈ Sn,G(L) = G and all off-diagonal entries
of L are non-positive (L is a Z-matrix).

• L has exactly one negative eigenvalue (of multiplicity 1).

• L satisfies the Strong Arnold Hypothesis.

The parameter µ is used to characterize planarity (see [33] for precise definitions).

Theorem 2.22. [15, 33, 46]

• µ(G) ≤ 1 if and only if G is a disjoint union of paths,

• µ(G) ≤ 2 if and only if G is outerplanar,

• µ(G) ≤ 3 if and only if G is planar,

• µ(G) ≤ 4 if and only if G is linklessly embeddable.

The planarity characterizations can be useful in determining µ, and hence in bounding minimum
rank. If G is not outerplanar, then µ(G) ≥ 3, so M(G) ≥ 3, and thus mr(G) ≤ |G| − 3. If G is not
planar, then µ(G) ≥ 4, so M(G) ≥ 4, and hence mr(G) ≤ |G| − 4.

The parameter ν(G) [16] is defined to be the maximum multiplicity of 0 as an eigenvalue among
matrices A ∈ Sn that satisfy:

• G(A) = G.

• A is positive semidefinite.

• A satisfies the Strong Arnold Hypothesis.

See Subsection 3.2 for more information on applications of ν(G) to positive semidefinite minimum
rank.

In [8] the parameter ξ(G) was introduced as the Colin de Verdière-type parameter specifically
designed for use in computing minimum rank, by removing any unnecessary restrictions (the Strong
Arnold Hypothesis seems to be necessary to obtain minor monotonicity). We define ξ(G) to be
the maximum multiplicity of 0 as an eigenvalue among matrices A ∈ Sn that satisfy:
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• G(A) = G.

• A satisfies the Strong Arnold Hypothesis.

Clearly, µ(G) ≤ ξ(G) ≤ M(G) and ν(G) ≤ ξ(G) ≤ M(G). An example in which both
µ(G) < ξ(G) and ν(G) < ξ(G) is given in [8]. Complete bipartite graphs provide immediate
examples of graphs G having ξ(G) < M(G) (cf. Theorem 2.23 below).

Theorem 2.23. [8] The values of ξ(G) are known for the following graphs.

1. ξ(Kp) = p− 1

2. ξ(Kp,q) = p + 1 if p ≤ q and 3 ≤ q.

3. ξ(Pn) = 1

4. If T is a tree that is not a path, then ξ(T ) = 2.

A contraction of G is obtained by identifying two adjacent vertices of G, suppressing any loops
or multiple edges that arise in this process. A minor of G arises by performing a series of deletions
of edges, deletions of isolated vertices, and/or contraction of edges. A graph parameter ζ is minor
monotone if for any minor G′ of G, ζ(G′) ≤ ζ(G).

Theorem 2.24. [8] The parameter ξ(G) is minor monotone.

Corollary 2.25.

1. If Kp is a minor of G, then mr(G) ≤ |G| − p + 1.

2. If p ≤ q, 3 ≤ q and Kp,q is a minor of G, then mr(G) ≤ |G| − p− 1.

The Strong Arnold Hypothesis seems to be essential to minor-monotonicity: any matrix real-
izing M(K1,4) = 3 does not satisfy the Strong Arnold Hypothesis. Obviously, a minor monotone
graph parameter is monotone on subgraphs and thus on induced subgraphs.

Theorem 2.26. [31] Let G be a 2-connected graph of order n. The following are equivalent:

1. ξ(G) = 2.

2. M(G) = 2.

3. mr(G) = n− 2.

4. G has no K4-, K2,3-, or T3-minor (see Figure 12).

5. G is a linear 2-tree.

Figure 12: Forbidden minors for mr(G) = n− 2 (for 2-connected graphs)

K4 K2,3 T3
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Example 2.27. This example shows how we can use monotonicity to compute minimum rank of
the graph G shown in Figure 13(a). Note that 3, 4, 5, 6 is an induced path of length four, so
3 = mr(P4) ≤ mr(G).

Figures 13(b),(c) show that K4 is a minor of G (delete vertex 6 in (b) and then contract on
edge {1, 5} in (c)). So 3 = ξ(K4) ≤ ξ(G) ≤ M(G). Thus mr(G) ≤ 6− 3 = 3, and so mr(G) = 3.

Figure 13: Using ξ to compute minimum rank
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3 Minimum Rank Problems for Other Families of Matrices

In this section we briefly survey the literature on other families of matrices described by a graph
for which the minimum rank question has been studied. Many basic facts are the same for all
the various types of minimum rank problem (although the value of minimum rank varies with the
family), so in this section we adopt the perspective that we are finding the minimum of the ranks
of the matrices in a given family F of matrices, and naturally define

mr(F) = min{rank(A) : A ∈ F}.

We begin by defining several families of matrices associated with a graph G, and give examples
showing that the minimum rank for these families may be different from the conventional minimum
rank of G, and observing basic facts that remain true for each of these classes.

One important generalization of the minimum rank problem is to consider symmetric matrices
over a field F other than the real numbers. Study of this problem was initiated by Barrett, van
der Holst and Loewy in [10]. The set of symmetric matrices of graph G over field F is given by

SF
G = {A ∈ Sn(F ) : G(A) = G},

where G(A) is defined in the same way as for real symmetric matrices and Sn(F ) denotes the class
of symmetric n× n matrices over F . Thus mr(G) = mr(SR

G). Minimum rank of a graph can vary
with the field, as the next example illustrates.

Example 3.1. When F = Z2 we have that mr(SZ2
K3,3,3

) = 2 by choosing all diagonal elements 0
(and hence mr(SF

K3,3,3
) = 2 for any field of characteristic 2), but mr(K3,3,3) = 3 by Example 2.19.

Over the complex numbers it is perhaps more natural to consider Hermitian matrices rather
than symmetric matrices; we denote the set of n × n Hermitian matrices by Hn. The set of
Hermitian matrices of graph G over C is denoted by

HG = {A ∈ Hn : G(A) = G},

where G(A) is defined in the same way as for real symmetric matrices.
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Example 3.2. From Example 2.19 we know that mr(K3,3,3) = 3, but mr(HK3,3,3) = 2, since it is
straightforward to verify that

rank



0 0 0 1 1 1 i i i
0 0 0 1 1 1 i i i
0 0 0 1 1 1 i i i
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
−i −i −i 1 1 1 0 0 0
−i −i −i 1 1 1 0 0 0
−i −i −i 1 1 1 0 0 0


= 2.

Two other families of matrices associated with a graph are subsets of the real n × n positive
semidefinite matrices, which we denote by S+

n , and the complex n×n positive semidefinite matrices,
which we denote by H+

n . The set of symmetric positive semidefinite matrices of graph G is

S+
G = {A ∈ S+

|G| : G(A) = G},

and the set of Hermitian positive semidefinite matrices of graph G is

H+
G = {A ∈ H+

|G| : G(A) = G}.

Note that translation by a diagonal matrix may not be possible when considering positive semidef-
inite matrices.

Example 3.3. Since no diagonal element can be 0 in a positive semidefinite matrix of a con-
nected graph, it follows that for any B ∈ H+

K1,3
, B(1) is a 3 × 3 invertible diagonal submatrix, so

mr(H+
K1,3

) ≥ 3. Let L =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 be the Laplacian of K1,3; since rank(L) = 3, we

have mr(H+
K1,3

) = 3. Note mr(K1,3) = 2.

Observation 3.4. Let G be a graph. The following statements are well-known and straightforward.

1. mr(HG) ≤ mr(G) ≤ mr(S+
G).

2. mr(HG) ≤ mr(H+
G) ≤ mr(S+

G).

Whereas the first three inequalities in Observation 3.4 can be strict (see Examples 3.2 and 3.3),
no example is known of a graph G in which mr(H+

G) < mr(S+
G).

Observation 3.5. Let G be a graph and let FG be one of SF
G ,HG,H+

G,S+
G . The following results

are well-known and straightforward.

1. mr(F) ≤ |G| − 1.

2. If G = Pn, then mr(FG) = n− 1.

3. If G = Kn, then mr(FG) = 1.

4. If G is connected and mr(FG) = 1, then G = K|G|.
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5. If the connected components of G are G1, . . . , Gt and FGi
denotes for Gi the same family as

FG, then

mr(FG) =
t∑

i=1

mr(FGi
).

6. mr(FG) ≤ |G| − c, where c is the number of connected components of G.

7. If G′ is an induced subgraph of G and FG′ denotes for G′ the same family as FG, then
mr(FG′) ≤ mr(FG).

The next two subsections survey results on the minimum rank over arbitrary fields and over
positive semidefinite matrices.

If G is a general graph that allows loops but not multiple edges, the minimum rank of the
family of matrices described by G was studied in [20], where Algorithm 2.5 was adapted to allow
computation of the minimum rank of a tree (with loops).

3.1 Minimum rank of matrices over other fields

The two distinctions that become immediately apparent as sources of variation in minimum rank
over arbitrary fields are the field characteristic (characteristic 2 versus everything else) and field
size ( especially finite versus infinite).

Example 3.6. For the graph G shown in Figure 14, mr(G) = 2, as can be seen by considering the

matrix A =


1 1 1 1 0 0
1 1 1 1 0 0
1 1 2 2 1 1
1 1 2 2 1 1
0 0 1 1 1 1
0 0 1 1 1 1

 , whereas mr(SZ2
G ) = 3 by computation with all possible diagonal

elements or by [10].

Figure 14: A graph G with mr(SZ2
G ) > mr(G).

Example 3.7. In [10], [11] it is established that for G = K2,2,2∨K1 given in Figure 15, mr(SZ3
G ) = 3

and mr(SF
G ) = 2 where F is an infinite field of characteristic 3 (see also Theorems 3.11 and 2.8).

Observation 3.8. Let G be a graph and let F be a field. The following results are well-known and
straightforward.

1. If F is a subfield of a field K, then mrF (G) ≥ mrK(G).

2. If F is infinite, mr(G) ≤ cc(G), and more generally, if G = ∪h
i=1Gi then mr(G) ≤

∑h
i=1 mr(Gi).

3. mr(SF
Kp,q

) = 2.
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Figure 15: A graph for which minimum rank over a subfield is strictly greater.

Fiedler’s Tridiagonal Matrix Theorem has been extended to arbitrary fields (with a few ex-
ceptional matrices each having the graph Kn) by Rheinboldt, Shepherd, Bento and Leal-Duarte,
thereby establishing the following corollary.

Corollary 3.9. [9], [51] mr(SF
G ) = |G| − 1 if and only if G = P|G|.

As a consequence, mr(SF
Cn

) = n − 2. For a tree T , the minimum rank is independent of field,
and it can be computed by Algorithm 2.3 or 2.5.

Theorem 3.10. [14] For a tree T and any field F , mr(SF
T ) = mr(T ).

Graphs having minimum rank at most 2 are characterized by forbidden subgraphs and also by
graph complements in [10] and [11] for every field (with the characterization depending on field
characteristic and size). It was shown in [10] that the graphs P4, Dart, n (see Figure 5) and
P3 ∪K2 and K2 ∪K2 ∪K2 all have minimum rank 3 over any field. The rank of K3,3,3 (see Figure
5) depends on the field.

Theorem 3.11. [10] Let F be any infinite field of characteristic not two. For any graph G,
mr(SF

G ) ≤ 2 if and only if mr(G) ≤ 2.

See Theorems 2.8 and 2.9 for the characterizations of minimum rank two over R. In [11] it was
shown that Example 3.7 is typical, in the sense that for any finite field F and infinite field of the
same characteristic, there is a graph G such that 2 = mr(SK

G ) < mr(SF
G ).

Wayne Barrett has observed that the proof of Theorem 2.11 remains valid over any field, so
cut-vertex reduction (or its corollary) can be applied. The rank-spread of SF

G at vertex v is defined
as rv(SF

G ) = mr(SF
G )−mr(SF

G−v).

Theorem 3.12. (cut-vertex reduction) If G has a cut-vertex, the problem of computing the mini-
mum rank of G can be reduced to computing minimum ranks of certain subgraphs. Specifically, let
v be a cut-vertex of G. For i = 1, . . . , h, let Wi ⊆ V (G) be the vertices of the ith component of
G− v and let Gi be the subgraph induced by {v} ∪Wi. Then

mr(SF
G ) =

h∑
1

mr(SF
Gi−v) + min

{
h∑
1

rv(SF
Gi

), 2

}
.

Corollary 3.13. If rv(SF
Gi

) = 0 for all but at most one of the Gi, then

mr(SF
G ) =

h∑
i=1

mr(SF
Gi

).

In [21] is is shown that for a finite field, the graphs having minimum rank ≤ k can always be
characterized by a finite set of forbidden induced subgraphs. In [40] all graphs having minimum
rank |G| − 2 over a field F are characterized.
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3.2 Positive semidefinite minimum rank

The following result essentially follows from Observations 1.8 and 3.5.3 and the fact that positive
semidefinite matrices are closed under addition.

Observation 3.14. mr(S+
G) ≤ cc(G), and more generally, if G = ∪h

i=1Gi then
mr(S+

G) ≤
∑h

i=1 mr(S+
Gi

) and mr(H+
G) ≤

∑h
i=1 mr(H+

Gi
).

As noted in Example 3.3, the positive definite or Hermitian positive definite minimum rank
can be larger than the minimum rank, and mr(H+

G) = |G| − 1 does not imply that G is a path.

Theorem 3.15. [12],[13] The following statements are equivalent

1. G is a tree;

2. hmr+(G) = |G| − 1;

3. mr+(G) = |G| − 1.

This theorem also follows from results and techniques of Colin de Verdière about the parameter
ν (and a version of ν for complex matrices). Just as mr(G) ≤ |G| − ξ(G), mr(S+

G) ≤ |G| − ν(G).
Thus mr(S+

G) = |G| − 1 implies ν(G) = 1 and G is connected. In [16] it is shown that for a
connected graph G, ν(G) = 1 if and only if G is a tree. If T is a tree, then mr(S+

T ) = |T | − 1 since
the least (and greatest) eigenvalue of T must be simple (see [37, 38]).

In the series of papers [12], [13], [27], [35], several interesting results are compiled on the
(Hermitian) positive definite minimum rank. Some important observations include: a myriad of
notions of linearly independent vertices; Hermitian positive definite minimum rank is reduced to
the bipartite case; positive definite minimum rank is computed for chordal graphs and for joins of
graphs.
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