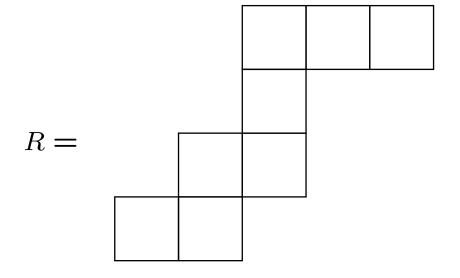
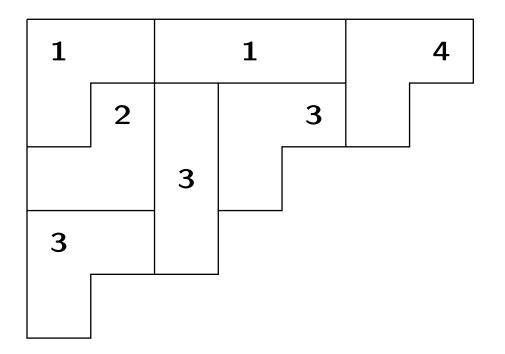
Introduction to LLT-polynomials

Thomas Lam

August 1, 2005



A ribbon R with 8 boxes, 4 rows and spin(R) = 4 - 1 = 3.



A semistandard 3-ribbon tableau with shape (7,6,4,3,1), weight (2,1,3,1) and spin 7. The spin of a ribbon tableau is the sum of the spins of its component ribbons.

Ribbon Functions. Lascoux, Leclerc and Thibon's ribbon tableaux generating functions (LLT polynomials):

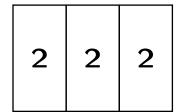
$$\mathcal{G}_{\lambda/\mu}^{(n)}(X;q) = \sum_{T} q^{\mathsf{spin}(T)} \mathbf{x}^{T}$$

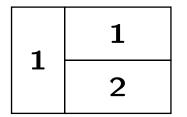
where the sum is over semistandard n-ribbon tableaux of shape λ .

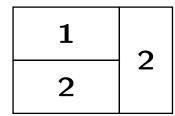
- 1. $\mathcal{G}_{\lambda/\mu}^{(n)}(X;q)$ is symmetric.
- 2. $\mathcal{G}_{\lambda/\mu}^{(n)}(X;1)$ is a product of Schur functions.
- 3. Write $\mathcal{G}^{(n)}_{\lambda}(X;q) = \sum_{\mu} c^{\mu}_{\lambda}(q) s_{\lambda}(X)$. Then $c^{\mu}_{\lambda}(q) \in \mathbb{N}[q]$.

Example. Let n=2 and $\lambda=(3,3)$. Then we have

$$\mathcal{G}_{(3,3)}^{(2)}(x_1, x_2; q) = q^3(x_1^3 + x_1^2x_2 + x_1x_2^2 + x_2^3) + q(x_1^2x_2 + x_2^2x_1).$$







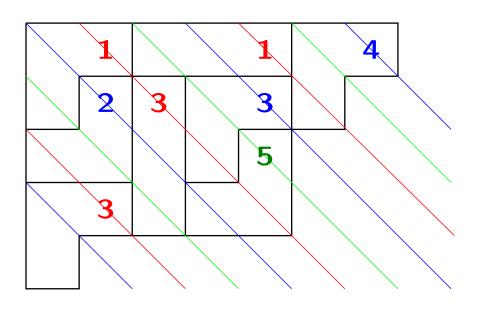
In fact,

$$\mathcal{G}_{(3,3)}^{(2)}(X;q) = qs_{2,1}(X) + q^3s_3(X).$$

Note that the symmetry is already quite non-obvious. Note also that

$$\mathcal{G}_{(3,3)}^{(2)}(X;1) = s_1 s_2.$$

n-quotient bijection.



1	1
3	3

Some Known Things.

- The functions $\mathcal{G}_{\lambda}^{(n)}(X;q)$ generalise the Hall-Littlewood polynomials (LLT).
- There are "ribbon Pieri" and "ribbon Cauchy" formulae (Lam).
- There is a "ribbon insertion" algorithm, which behaves like Schensted insertion and preserves the spin (van Leeuwen).

Some Unknown Things.

- There is no closed formula (determinantal, Jacobi-Trudi) for $\mathcal{G}_{\lambda/\mu}^{(n)}(X;q)$ or $\mathcal{G}_{\lambda/\mu}^{(n)}(X;q)$.
- The general Schur positivity of the skew functions $\mathcal{G}_{\lambda/\mu}^{(n)}(X;q)$ is not known except for n=2.
- How they multiply (ribbon Littlewood-Richardson rule) is unknown.