Paving Small Matrices and The Kadison-Singer Extension Problem
AIM Workshop Notes

Gary Weiss
Vrej Zarikian

University of Cincinnati
United States Naval Academy
Contents

Part 1. Pavings 5

Chapter 1. Notation 7

Chapter 2. 2-Pavings 9
 1. Selfadjoint 9
 2. Real Symmetric 12

Chapter 3. 3-Pavings 15
 1. General 16
 2. Selfadjoint 19
 3. Nonnegative 23

Chapter 4. 2,3-Pavings Summary Table 25

Part 2. Supplementary Material and Tools 27

Chapter 5. Supplementary Material: 2-Pavings 29

Chapter 6. Supplementary Material: 3-Pavings 31
 1. 4×4 General 31

Chapter 7. Tools 35
 1. Universal Selfadjoint 3-Identity and consequences 35
 2. Universal Selfadjoint 4-Identity and consequences 36
 3. Operator Norm/p-Norm Comparisons 37
 4. Operator Norm/Hilbert-Schmidt Norm Comparisons 40
 5. Averaging and Constrained Averaging 43

Bibliography 45
Part 1

Pavings
CHAPTER 1

Notation

\(\mathbb{M}_n = n \times n \) complex matrices
\(\mathbb{M}_n^0 = n \times n \) complex matrices with zero diagonal
\(\mathbb{M}_{n,sa} = n \times n \) selfadjoint complex matrices
\(\mathbb{M}_n^{0,sa} = n \times n \) selfadjoint complex matrices with zero diagonal
\(\mathbb{M}_n^{0,sym} = n \times n \) real symmetric matrices
\(\mathbb{M}_n^{0,sym} = n \times n \) real symmetric matrices with zero diagonal
\(\mathbb{M}_n^{++} = n \times n \) non-negative matrices
\(\mathbb{M}_n^{0,++} = n \times n \) non-negative matrices with zero diagonal
\(\mathbb{D}_n = n \times n \) diagonal matrices

If \(A \in \mathbb{M}_n \), define
\[
\alpha_k(A) = \min_{\text{diagonal projections } P_1 + \cdots + P_k = I_n} \max_{1 \leq j \leq k} ||P_jAP_j||
\]

If \(0 \neq A \in \mathbb{M}_n \), define
\[
\tilde{\alpha}_k(A) = \frac{\alpha_k(A)}{\|A\|}.
\]

If \(S \subset \mathbb{M}_n \), define
\[
\tilde{\alpha}_k(S) = \sup_{0 \neq A \in S} \tilde{\alpha}_k(A).
\]
CHAPTER 2

2-Pavings

Theorem 2.1 (2-pavings).

<table>
<thead>
<tr>
<th>n</th>
<th>$\tilde{\alpha}_2(M^0_n)$</th>
<th>$\tilde{\alpha}2(M^0{n,sa})$</th>
<th>$\tilde{\alpha}2(M^0{n, sym})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>$\frac{\sqrt{3}}{3}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{\sqrt{3}}{3}$</td>
<td>$\frac{1}{2}$</td>
<td>$[0.5493, 0.5773]$</td>
</tr>
<tr>
<td>5</td>
<td>0.5773</td>
<td>0.5000</td>
<td>$[0.8944, 0.8944]$</td>
</tr>
</tbody>
</table>

1. Selfadjoint

Proposition 2.2 (3 × 3 selfadjoint). $\tilde{\alpha}_2(M^0_{3,sa}) = \frac{1}{\sqrt{3}} \approx 0.5773$.

Proof. Suppose $A \in M^0_{3,sa}$ with $\alpha_2(A) = 1$.

Then $|a|, |b|, |c| \geq 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$1 = \frac{|a|^2 + |b|^2 + |c|^2}{\|A\|^2} + \frac{2|Re(abc)|}{\|A\|^3} \geq \frac{3}{\|A\|^2}.$$

Thus, $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{3}}$. This bound is attained by

$$A = \begin{bmatrix} 0 & 1 & i \\ 1 & 0 & 1 \\ -i & 1 & 0 \end{bmatrix}$$

because $\alpha_2(A) = 1$ and $\|A\| = \sqrt{3}$ by Corollary 7.2. \qed

Proposition 2.3 (4 × 4 selfadjoint). $\tilde{\alpha}_2(M^0_{4,sa}) = \frac{1}{\sqrt{3}}$.

Proof. Suppose $A \in M^0_{4,sa}$, with $\alpha_2(A) = 1$. Create a graph $G = (V, E)$ as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $|a_{ij}| < 1$. We have the following axioms:

1. $G11$ is not a subgraph of G. Otherwise, A admits a 2-2 paving of norm < 1, violating the assumption $\alpha_2(A) = 1$.

2. For all i, the degree of i is greater than 0. Otherwise, row i of A has three entries of absolute value $\geq 1 \Rightarrow \|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}}$.

3. By removing a vertex from G, one cannot arrive at $G4$. Otherwise, A has a 3-compression of norm $\geq \sqrt{3} \Rightarrow \|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{3}}$.
This exhausts all possible 4-graphs and hence proves the inequality.

Proposition 2.4 (5 × 5 selfadjoint). Let \(\tilde{\alpha}_2(M_{5,sa}^0) = \frac{2}{\sqrt{5}} \approx 0.8944 \).

Proof. Suppose \(A \in M_{5,sa}^0 \) with \(\alpha_2(A) = 1 \). Create a graph \(G = (V,E) \) as follows: \(V = \{1, 2, 3, 4, 5\} \) and \((i, j) \in E\) if \(|a_{ij}| < 1 \). We may assume the following axiom:

1. For all \(i \), \(\deg(i) \geq 3 \). Otherwise, row \(i \) of \(A \) has at least two entries of absolute value \(\geq 1 \) \(\Rightarrow \|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{2}} \approx 0.7071 \).

This leaves graphs \(G_{50}, G_{51}, \) and \(G_{52} \).

Case G50: Only two 2-compressions have norm \(\geq 1 \), and they are disjoint. Without loss of generality, \(\|A_{12}\|, \|A_{34}\| \geq 1 \). We claim that every 3-compression has norm \(\geq 1 \). Indeed, \(\|A_{123}\| \geq \|A_{12}\| \geq 1, \|A_{345}\| \geq \|A_{34}\| \geq 1 \), and the remaining 3-compressions have norm \(\geq 1 \) because their complementary 2-compressions have norm \(< 1 \). It follows that \(\|A\| \geq \frac{\sqrt{2}}{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{2}{\sqrt{5}} \).

Case G51: Only one 2-compression has norm \(\geq 1 \). Without loss of generality, \(\|A_{12}\| \geq 1 \). It follows that

\[
\|A\|^2 \geq \frac{1}{4} \|A\|_{HS}^2
= \frac{1}{4} \left[\|A_{12}\|_{HS}^2 + \frac{1}{2} \sum_{1 \in B, 1 \not\in B} \|B\|_{HS}^2 + \frac{1}{2} \sum_{2 \in B, 1 \not\in B} \|B\|_{HS}^2 \right]
\geq \frac{1}{4} \left[2 + \frac{1}{2} \cdot 3 \cdot \frac{3}{2} + \frac{1}{2} \cdot 3 \cdot \frac{3}{2} \right] = \frac{13}{8}.
\]

Thus, \(\|A\| \geq \sqrt{\frac{13}{8}} \Rightarrow \tilde{\alpha}_2(A) \leq \sqrt{\frac{13}{8}} \approx 0.7845 \).

Case G52: Every 2-compression has norm \(< 1 \) \(\Rightarrow \) every 3-compression has norm \(\geq 1 \) \(\Rightarrow \|A\| \geq \frac{\sqrt{2}}{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{2}{\sqrt{5}} \).

The matrix

\[
A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & -1 \\
1 & 1 & 0 & -1 & 1 \\
1 & 1 & -1 & 0 & -1 \\
1 & -1 & 1 & -1 & 0
\end{bmatrix}
\]

shows that the inequality is sharp. The unimodular circulant

\[
B = \begin{bmatrix}
0 & e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} \\
e^{-2\pi i/5} & 0 & e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} \\
e^{2\pi i/5} & e^{-\pi i/5} & 0 & e^{2\pi i/5} & e^{\pi i/5} \\
e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} & 0 & e^{2\pi i/5} \\
e^{2\pi i/5} & e^{-\pi i/5} & e^{\pi i/5} & e^{-2\pi i/5} & 0
\end{bmatrix}
\]

also works. Note: \(A \) and \(B \) are unitarily equivalent.

\(\square \)
Alternate Proof. Suppose $A \in \mathbb{M}_n^{sa}$, with $\alpha_2(A) = 1$.

(1) Assume that all 3-compressions of A have norm ≥ 1. Then $\tilde{\alpha}_2(A) \leq \frac{2}{\sqrt{5}}$ (see the previous proof).

(2) Assume that exactly one 3-compression, say A_{345}, has norm < 1, then $\|A_{12}\| \geq 1 \Rightarrow \tilde{\alpha}_2(A) \leq \sqrt{\frac{8}{13}}$ (see the previous proof).

(3) Assume that exactly two 3-compressions have norm < 1. We may assume that the complementary 2-compressions are disjoint. Otherwise, $\|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{3}}$. Without loss of generality, $\|A_{12}\|, \|A_{34}\| \geq 1$ and $\|A_{345}\|, \|A_{125}\| < 1$. This is a contradiction.

(4) Assume that more than two 3-compressions have norm < 1. Then their complementary 2-compressions cannot be disjoint. Thus, $\|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{\sqrt{2}}$.

\[\square\]
2. Real Symmetric

PROPOSITION 2.5 (3×3 real symmetric). $\tilde{\alpha}_2(M_{3,\text{sym}}^0) = \frac{1}{2}$.

PROOF. Suppose

$$A = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix} \in M_{3,\text{sym}}^0 \text{ with } \alpha_2(A) = 1.$$

Then $|a|, |b|, |c| \geq 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$1 = \frac{a^2 + b^2 + c^2}{\|A\|^2} + \frac{\sum |abc|}{\|A\|^3} \geq \frac{3}{\|A\|^2} + \frac{2}{\|A\|^3} \quad \text{which implies } \|A\| \geq 2,$$

hence $\tilde{\alpha}_2(A) \leq \frac{1}{2}$. This bound is attained by

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \in M_{3,\text{sym}}^0$$

since $\alpha_2(A) = 1$ and $\|A\| = 2$ by Corollary 7.2. □

Lemma 2.6. Let

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & d \\ e & 0 & f \end{bmatrix} \in M_{3,\text{sym}}.$$

If

$$\left\| \begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix} \right\| \geq 1,$$

then $\|A\| \geq (9.75)^{1/4} \approx 1.767$.

PROOF. Let $x = [1 \quad 1 \quad 1]$ and

$$B = \begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix}.$$

Then

$$A = \begin{bmatrix} 0 & x \\ x^* & B \end{bmatrix} \Rightarrow A^*A = \begin{bmatrix} xx^* & xB \\ B^*x & x^*x + B^*B \end{bmatrix}.$$

Thus

$$\|A\|^4 = \|A^*A\|^2 \geq \left\| \begin{bmatrix} xx^* & xB \end{bmatrix} \right\|^2$$

$$= 9 + (d + e)^2 + (d + f)^2 + (e + f)^2.$$

We claim that

$$(d + e)^2 + (d + f)^2 + (e + f)^2 \geq d^2 + e^2 + f^2.$$

Indeed, let $F(d, e, f) = (d + e)^2 + (d + f)^2 + (e + f)^2$ and $G(d, e, f) = d^2 + e^2 + f^2$. Using the Method of Lagrange Multipliers, we minimize $F(d, e, f)$ subject to the constraint $G(d, e, f) = r^2$.
2. REAL SYMMETRIC

\[2(d + e) + 2(d + f) = 2\lambda d \]
\[2(d + e) + 2(e + f) = 2\lambda e \]
\[2(d + f) + 2(e + f) = 2\lambda f \]

\[\Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \lambda \begin{bmatrix} d \\ e \\ f \end{bmatrix} \]

\[\Rightarrow \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x \\ x \\ x \end{bmatrix} \text{ or } \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \\ -2x \end{bmatrix}. \]

In the former case,
\[3x^2 = d^2 + e^2 + f^2 = r^2 \Rightarrow (d + e)^2 + (d + f)^2 + (e + f)^2 = 12x^2 = 4r^2. \]

In the later case,
\[(x + y)^2 + (x - y)^2 + (-2x)^2 = d^2 + e^2 + f^2 = r^2 \]
\[\Rightarrow (d + e)^2 + (d + f)^2 + (e + f)^2 = (2x)^2 + (-x + y)^2 + (-x - y)^2 = r^2. \]
Thus,
\[r^2 \leq (d + e)^2 + (d + f)^2 + (e + f)^2 \leq 4r^2, \] which proves the claim. Now
\[\|B\| \geq 1 \Rightarrow \|B\|^2_{HS} \geq 1.5 \Rightarrow d^2 + e^2 + f^2 \geq 0.75. \]

Hence, \(\|A\|^4 \geq 9.75, \) which proves the lemma.

\[\Box \]

Proposition 2.7 (4 × 4 real symmetric). \(\tilde{\alpha}_2(M^0_{4,\text{sym}}) \in [0.5493, 0.5773]. \)

Proof. Suppose \(A \in M^0_{4,\text{sym}}, \) with \(\alpha_2(A) = 1. \) Create a graph \(G = (V, E) \) as follows: \(V = \{1, 2, 3, 4\} \) and \((i, j) \in E \) if \(|a_{ij}| < 1. \) We have the following axioms:

1. \(G11 \) is not a subgraph of \(G. \) Otherwise, \(A \) admits a 2-2 paving of norm \(< 1, \) violating the assumption \(\alpha_2(A) = 1. \)
2. By removing a vertex from \(G, \) one cannot arrive at \(G4. \) Otherwise, \(A \) has a 3-compression of norm \(\geq 2 \) \(\Rightarrow \|A\| \geq 2 \Rightarrow \tilde{\alpha}_2(A) \leq \frac{1}{2}. \)

This leaves only graph \(G12. \) Thus,
\[
A = \begin{bmatrix} 0 & a & b & c \\ a & 0 & d & e \\ b & d & 0 & f \\ c & e & f & 0 \end{bmatrix},
\]

where \(|a|, |b|, |c| \geq 1, |d|, |e|, |f| < 1, \) and
\[
\begin{bmatrix} 0 & d & e \\ d & 0 & f \\ e & f & 0 \end{bmatrix} \geq 1.
\]

Lower bound:
\[
A = \begin{bmatrix} 0 & 1 & -0.3946 & 0.6854 \\ 1 & 0 & -0.3946 & 0.6854 \\ -0.3946 & 0 & -0.3986 & 0 \\ 0.6854 & -0.3986 & 0 & -0.3946 \end{bmatrix}.
\]

\[\Box \]
CHAPTER 3

3-Pavings

In 1987 the 3-paving problem was posed: whether or not 3-pavings suffice for Anderson’s Paving Conjecture and hence for Kadison-Singer. To date we have heard of no refutation to this. Recall also the 3/3-challenge from then: whether or not \(\hat{\alpha}_3(M_n^0) \leq \frac{2}{3} \), which the following table refutes.

Theorem 3.1 (3-pavings).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{\alpha}_3(M_n^0))</th>
<th>(\hat{\alpha}3(M{n,sa}^0))</th>
<th>(\hat{\alpha}3(M{n,+}^0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(\frac{1}{1+\sqrt{5}}) 0.6180</td>
<td>(\frac{1}{\sqrt{3}}) 0.5773</td>
<td>(\kappa) 0.5550</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>"</td>
<td>([\kappa, \frac{2}{1+\sqrt{5}}]) [0.5550, 0.6180]</td>
</tr>
<tr>
<td>6</td>
<td>(\frac{1}{\sqrt{3}}) 0.7071</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>([?, 1]) [0.8231, 1]</td>
<td>(\frac{2}{3}, \frac{2}{\sqrt{3}}) [0.6667, 0.7559]</td>
<td>([\kappa, \frac{2}{3}]) [0.5550, 0.6667]</td>
</tr>
<tr>
<td>8</td>
<td>([?, 1]) [0.8231, 1]</td>
<td>(\frac{2}{3}, \frac{2}{\sqrt{3}}) [0.6667, 0.8944]</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>(\frac{2}{3}) [0.7454, 1]</td>
<td>"</td>
</tr>
</tbody>
</table>

where

\[
\kappa = \sqrt{\frac{3}{5 + 2\sqrt{7}\cos(\tan^{-1}(3\sqrt{3}/3))}}
\]

boldface signifies what we feel are the most interesting facts, "?" signifies a lack of a closed form, and "ditto from above".
1. **General**

Lemma 3.2. Let

\[A = \begin{bmatrix} r_1 e^{i\theta_1} & r_2 e^{i\theta_2} & r_3 e^{i\theta_3} \end{bmatrix} \in \mathbb{M}_2. \]

Then there exist unitaries \(U, V \in \mathbb{D}_2 \) such that

\[UAV = \begin{bmatrix} r_1 & r_2 & 0 \\
0 & r_3 & 0 \end{bmatrix}. \]

Proof. Let

\[U = \begin{bmatrix} e^{-i\theta_2} & 0 \\
0 & e^{-i\theta_3} \end{bmatrix}, \quad V = \begin{bmatrix} e^{i(\theta_2 - \theta_1)} & 0 \\
0 & 1 \end{bmatrix}. \]

\[\square \]

Corollary 3.3. Let

\[A = \begin{bmatrix} a & b \\
0 & c \end{bmatrix} \in \mathbb{M}_2. \]

If \(|a|, |b|, |c| \geq 1\), then \(\|A\| \geq \frac{1 + \sqrt{5}}{2} \).

Proof. By the previous lemma,

\[\|A\| = \left\| \begin{bmatrix} a & b \\
0 & c \end{bmatrix} \right\| \geq \left\| \begin{bmatrix} 1 & 1 \\
0 & 1 \end{bmatrix} \right\| = \frac{1 + \sqrt{5}}{2}. \]

\[\square \]

Proposition 3.4 (4 \times 4 general). \(\tilde{\alpha}_3(\mathbb{M}_4) = \frac{2}{1 + \sqrt{5}} \approx 0.6180. \)

Proof. Let

\[A = \begin{bmatrix} 0 & 1 & 1 & -\frac{2}{1 + \sqrt{5}} \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \end{bmatrix} \in \mathbb{M}_4. \]

Then \(\tilde{\alpha}_3(A) = \frac{2}{1 + \sqrt{5}} \) (\(\alpha_3(A) = 1 \) and \(\|A\| = \frac{1 + \sqrt{5}}{2} \) by applying to the upper-right 3 \times 3 corner either Parrott’s Completion Lemma with Formula, or factoring the characteristic polynomial of the square of its absolute value, or Matlab).

Now suppose \(A \in \mathbb{M}_4^0 \), with \(\alpha_3(A) = 1 \). Create a digraph \(D = (V, E) \) as follows: \(V = \{1, 2, 3, 4\} \) and \((i, j) \in E \) if \(|a_{ij}| \geq 1 \). We may assume the following axioms:

(1) For all \(i \neq j \), either \((i, j) \in E \) or \((j, i) \in E \). Otherwise \(A \) admits a 1-1-2 paving of norm \(< 1\), violating the assumption \(\alpha_3(A) = 1 \).

(2) For all \(i \), the in-degree of \(i \) and the out-degree of \(i \) are less than 3. Otherwise, \(\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \approx 0.5774 \).

This leaves only digraphs \(D_{149}, D_{185}, D_{186}, \) and \(D_{218} \) as labeled in [1]. Now each of these digraphs has \(D_{12} \) as a subgraph [ibid.]. Thus, \(\|A\| \geq \frac{1 + \sqrt{5}}{2} \) (Corollary 3.3) \(\Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1 + \sqrt{5}}. \)

\[\square \]
PROPOSITION 3.5 (5 × 5 general). \(\tilde{\alpha}_3(M^0_5) = \frac{2}{1 + \sqrt{5}} \approx 0.6180. \)

PROOF. Clearly,

\[\tilde{\alpha}_3(M^0_5) \geq \tilde{\alpha}_3(M^0_4) = \frac{2}{1 + \sqrt{5}}. \]

Now let \(A \in M^0_5 \), with \(\alpha_3(A) = 1 \). Construct a graph \(G = (V, E) \) as follows:

1. \(G \) is not a subgraph of \(G \). Otherwise, \(G \) has a 1-2-2 paving of norm < 1, violating the fact that \(\alpha_3(A) = 1 \).

2. By removing a vertex from \(G \) one cannot arrive at \(G^8 \). Otherwise, there exists a 4-compression \(B \) of \(A \) such that \(\alpha_3(B) \geq 1 \). Since \(\alpha_3(M^0_4) = \frac{2}{1 + \sqrt{5}} \),

this would imply \(\|B\| \geq \frac{1 + \sqrt{5}}{2} \Rightarrow \|A\| \geq \frac{1 + \sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1 + \sqrt{5}} \).

This leaves \(G^{23} \). After permuting indices, we may assume that

\[
A = \begin{bmatrix}
0 & s_{12} & s_{13} & b_{14} & b_{15} \\
s_{21} & 0 & s_{23} & b_{24} & b_{25} \\
s_{31} & s_{32} & 0 & b_{34} & b_{35} \\
b_{41} & b_{42} & b_{43} & 0 & b_{45} \\
b_{51} & b_{52} & b_{53} & b_{54} & 0
\end{bmatrix},
\]

where \(s_{ij} < 1 \) and \(\max\{|b_{ij}|, |b_{ji}|\} \geq 1 \) for all \(i \neq j \). Permuting the indices 4 and 5, if necessary, we may assume \(|b_{15}| \geq 1 \). If \(b_{51}, b_{52}, b_{53} \) have magnitude \(\geq 1 \), then \(\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1 + \sqrt{5}}{2} \).

Thus, we may assume that one of them has magnitude < 1 \(\Rightarrow \) either \(b_{15}, b_{25}, \) or \(b_{35} \) has magnitude \(\geq 1 \). Permuting the indices 1, 2, and 3, if necessary, we may assume \(|b_{35}| \geq 1 \). If \(|b_{34}| \geq 1 \), then

\[\|A\| \geq \| \begin{bmatrix} b_{34} & b_{35} \\ 0 & b_{45} \end{bmatrix} \| \geq \frac{1 + \sqrt{5}}{2}. \]

Likewise, if \(|b_{43}| \geq 1 \), then

\[\|A\| \geq \| \begin{bmatrix} 0 & b_{35} \\ b_{43} & b_{45} \end{bmatrix} \| \geq \frac{1 + \sqrt{5}}{2}. \]

It follows that \(\tilde{\alpha}_3(A) \leq \frac{2}{1 + \sqrt{5}} \). \(\square \)

PROPOSITION 3.6 (6 × 6 general). \(\tilde{\alpha}_3(M^0_6) = \frac{1}{\sqrt{2}} \approx 0.7071 \).

PROOF. Construct a graph \(G = (V, E) \) as follows: \(V = \{1, 2, 3, 4, 5, 6\} \) and \((i, j) \in E \) if \(|a_{ij}|, |a_{ji}| < 1 \). We may assume the following axioms:

1. \(G \) is not a subgraph of \(G \). Otherwise \(A \) would have a 2-2-2 paving of norm < 1, violating the fact that \(\alpha_3(A) = 1 \).

2. By removing vertices from \(G \), one cannot arrive at \(G^8 \). Otherwise \(A \) would have a 4-compression \(B \) such that \(\alpha_3(B) \geq 1 \). Since \(\alpha_3(M^0_4) = \frac{2}{1 + \sqrt{5}} \),

this would imply \(\|B\| \geq \frac{1 + \sqrt{5}}{2} \Rightarrow \|A\| \geq \frac{1 + \sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1 + \sqrt{5}} \).

3. For all vertices \(i, \deg(i) \geq 3 \). Otherwise, if \(\deg(i) \leq 2 \), then either row \(i \) or column \(i \) of \(A \) would have at least two entries of magnitude \(\geq 1 \Rightarrow \|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{2}} \).
This eliminates all graphs. Now let
\[
A = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 1 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
-\frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & -\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & 0 \\
\end{bmatrix} \in M_6^0.
\]
Then \(\alpha_3(A) = 1 \) and \(A^\ast A = 2I \). \(\square \)

Proposition 3.7 (7 \times 7 general). \(\tilde{\alpha}_3(M_7^0) \in [0.8231, 1) \).

Proof. The following matrix was discovered by searching among 7 \times 7 unitary circulants for bad pavers. The starting point for the search was a 7 \times 7 unitary circulant with the eigenvalue distribution \((1, e^{\pi i/3}, e^{-\pi i/3}, i, -i, -1, -1)\).

\[
A = \begin{bmatrix}
a & b & c & d & e & f \\
f & 0 & a & b & c & d \\
e & f & 0 & a & b & c \\
d & e & f & 0 & a & b \\
c & d & e & f & 0 & a \\
a & b & c & d & e & f
\end{bmatrix},
\]

where
\[
a = -0.19104830537481 - 0.1857143276728i \\
b = 0.03404378754044 + 0.00110165928527i \\
c = -0.13926357252448 + 0.42165365488402i \\
d = 0.21474405201775 - 0.42217403069332i \\
e = -0.2833739310887 - 0.48101315713848i \\
f = 0.29151538363540 - 0.33115367910212i.
\]

Then \(\alpha_3(A) = 0.82305627367962 \) and \(A^\ast A = I \), i.e. \(\tilde{\alpha}_3(A) = 0.82305627367962 \).

It remains to show that \(\tilde{\alpha}_3(M_7^0) \neq 1 \). To that end, let \(A \in M_7^0 \), with \(\alpha_3(A) = 1 \). If every 3-compression of \(A \) has norm \(\geq 1 \), then \(\|A\| > 1 \) (Corollary 7.10). If, on the other hand, some 3-compression of \(A \) has norm \(< 1 \), then the complementary 4-compression \(B \) satisfies \(\alpha_2(B) \geq 1 \). In particular, every 2-2 paving of \(B \) has norm \(\geq 1 \). By Lemma 7.11, we may assume that
\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 & * & * \\
0 & a & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 \\
0 & c & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & * & * \\
* & 0 & 0 & 0 & * & 0 \\
* & 0 & 0 & 0 & * & 0
\end{bmatrix},
\]

where \(|a| = |b| = |c| = 1 \) and \(\|A_{567}\| < 1 \). Since \(\|A_{12}\| = \|A_{35}\| = 0, \|A_{467}\| = 1 \Rightarrow \|A_{67}\| = 1 \Rightarrow \|A_{567}\| = 1 \), a contradiction. \(\square \)
2. Self-adjoint

Proposition 3.8 (4 × 4 self-adjoint). \(\tilde{\alpha}_3(M_{4, sa}^0) = \frac{1}{\sqrt{3}} \approx 0.5773. \)

Proof. Suppose \(A \in M_{4, sa}^0 \), with \(\alpha_3(A) = 1 \). Then \(|a_{ij}| \geq 1 \) for all \(i \neq j \). Thus, \(||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \). Now let

\[
A = \begin{bmatrix}
0 & i & 1 & 1 \\
-i & 0 & 1 & -1 \\
1 & 1 & 0 & i \\
1 & -1 & -i & 0
\end{bmatrix} \in M_{4, sa}^0.
\]

Then \(\tilde{\alpha}_3(A) = \frac{1}{\sqrt{3}} (\alpha_3(A) = 1 \text{ and } A^*A = 3I) \). \(\square \)

Proposition 3.9 (5 × 5 self-adjoint). \(\tilde{\alpha}_3(M_{5, sa}^0) = \frac{1}{\sqrt{3}} \).

Proof. Clearly,

\[
\tilde{\alpha}_3(M_{5, sa}^0) \geq \tilde{\alpha}_3(M_{4, sa}^0) = \frac{1}{\sqrt{3}}.
\]

Now let \(A \in M_{5, sa}^0 \), with \(\alpha_3(A) = 1 \). Construct a graph \(G = (V, E) \) as follows:
\(V = \{1, 2, 3, 4, 5\} \) and \((i, j) \in E \) if \(|a_{ij}| < 1 \) \((\Rightarrow |a_{ji}| < 1) \). We may assume the following axioms:

1. **G11** is not a subgraph of \(G \). Otherwise, \(A \) would have a 1-2-2 paving of norm \(< 1 \), violating the assumption \(\alpha_3(A) = 1 \).
2. By removing a vertex from \(G \), one cannot arrive at **G8**. Otherwise, \(A \) would have a 4-compression \(B \) such that \(\alpha_3(B) \geq 1 \). Since \(\tilde{\alpha}_3(M_{4, sa}^0) = \frac{1}{\sqrt{3}} \), this would imply \(||B|| \geq \sqrt{3} \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \).
3. For every vertex \(i, \text{deg}(i) \geq 2 \). Otherwise, if \(\text{deg}(i) \leq 1 \), then row \(i \) of \(A \) has at least three entries of magnitude \(\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \). This eliminates all graphs. \(\square \)

Proposition 3.10 (6 × 6 self-adjoint). \(\tilde{\alpha}_3(M_{6, sa}^0) = \frac{1}{\sqrt{3}} \).

Proof. Clearly,

\[
\tilde{\alpha}_3(M_{6, sa}^0) \geq \tilde{\alpha}_3(M_{5, sa}^0) = \frac{1}{\sqrt{3}}.
\]

Now let \(A \in M_{6, sa}^0 \), with \(\alpha_3(A) = 1 \). Construct a graph \(G = (V, E) \) as follows:
\(V = \{1, 2, 3, 4, 5, 6\} \) and \((i, j) \in E \) if \(|a_{ij}| < 1 \) \((\Rightarrow |a_{ji}| < 1) \). We may assume the following axioms:

1. **G61** is not a subgraph of \(G \). Otherwise, \(A \) would have a 2-2-2 paving of norm \(< 1 \), violating the assumption \(\alpha_3(A) = 1 \).
2. By removing a vertex from \(G \), one cannot arrive at **G8**. Otherwise, \(A \) would have a 4-compression \(B \) such that \(\alpha_3(B) \geq 1 \). Since \(\tilde{\alpha}_3(M_{4, sa}^0) = \frac{1}{\sqrt{3}} \), this would imply \(||B|| \geq \sqrt{3} \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \).
3. For every vertex \(i, \text{deg}(i) \geq 3 \). Otherwise, if \(\text{deg}(i) \leq 2 \), then row \(i \) of \(A \) has at least three entries of magnitude \(\geq 1 \Rightarrow ||A|| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \). This eliminates all graphs. \(\square \)
Preliminaries for 7×7 Selfadjoints

Notation: $F = [1 - \delta_{ij}] \in \mathbb{M}^0_{n,sa}$ (the “fat” operator)

Lemma 3.11. Let $0 \neq A \in \mathbb{M}^0_{n,sa}$. Then the following are equivalent:

i. $\|A\|^2 = \frac{n-1}{n}\|A\|^2_{HS}$.

ii. There exists a nonzero $\alpha \in \mathbb{R}$ such that

$$
\sigma(\alpha^{-1}A) = \left(1, -\frac{1}{n-1}, -\frac{1}{n-1}, ..., -\frac{1}{n-1}\right).
$$

iii. There exists a diagonal unitary $U \in \mathbb{D}_n$ and a nonzero $\beta \in \mathbb{R}$ such that

$$
U^*A U = \beta F.
$$

Proof. (i \Leftrightarrow ii): We have seen that $\|A\|^2 = \frac{n-1}{n}\|A\|^2_{HS}$ if and only if

$$
\sigma(A) = \pm \|A\| \left(1, -\frac{1}{n-1}, -\frac{1}{n-1}, ..., -\frac{1}{n-1}\right).
$$

(ii \Leftrightarrow iii): Set $\tilde{A} = \alpha^{-1}A$. If $\sigma(\tilde{A}) = \left(1, -\frac{1}{n-1}, -\frac{1}{n-1}, ..., -\frac{1}{n-1}\right)$, then there exists a unitary $U \in \mathbb{M}_n$ such that

$$
\tilde{A} = V \begin{bmatrix}
1 & 0 & 0 & \hdots & 0 \\
0 & \frac{1}{n-1} & 0 & \hdots & 0 \\
0 & 0 & -\frac{1}{n-1} & \hdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \hdots & -\frac{1}{n-1}
\end{bmatrix} V^*.
$$

Letting v stand for the first column of V, we have that

$$
A = \frac{n}{n-1} \|v\|^2 - \frac{1}{n-1} I = \left[\frac{n}{n-1}v_i v_j - \frac{1}{n-1}\delta_{ij}\right].
$$

Since $\tilde{A} \in \mathbb{M}^0_{n,sa}$,

$$
\frac{n}{n-1}|v_i|^2 - \frac{1}{n-1} = 0 \Rightarrow v_i = \frac{1}{\sqrt{n}} e^{i\theta_i}
$$

for some $\theta_i \in \mathbb{R}$. It follows that

$$
\tilde{A} = \frac{1}{n-1} \left[e^{i(\theta_i - \theta_j)} - \delta_{ij}\right] = \frac{1}{n-1} UFU^*,
$$

where

$$
U = \text{diag}(e^{i\theta_1}, e^{i\theta_2}, ..., e^{i\theta_n}) \in \mathbb{D}_n.
$$

Thus, $U^*AU = \beta F$, where $\beta = \frac{n}{n-1}$. (iii \Rightarrow ii): Clearly

$$
F = nE - I,
$$

where all the off-diagonal entries of $E \in \mathbb{M}_n$ equal $\frac{1}{n}$. Since E is a rank-one projection,

$$
\sigma(F) = (n-1, -1, -1, ..., -1).
$$

The result follows. \qed
LEMMA 3.12. Let 0 ≠ A ∈ \(M^0_{n,sa} \). Fix k ≥ 3 and assume \(\|B\|^2 = \frac{k-1}{k} \|B\|^2_{HS} \) for all k-compressions B of A. Then there exists a diagonal unitary \(U \in \mathbb{D}_n \) and an \(\alpha > 0 \) such that
\[U^* AU = \alpha S, \]
where all the off-diagonal entries of \(S \in M^0_{n,sa} \) equal \(\pm 1 \).

PROOF. Let B be a k-compression of A. By Lemma 3.11, all the off-diagonal entries of B have the same modulus. It follows that all the off-diagonal entries of A have the same modulus, say \(\alpha \) (here we use \(k \geq 3 \)). Set \(C = \alpha^{-1} A \). Then all the off-diagonal entries of C have modulus 1, and \(\|B\|^2 = \frac{k-1}{k} \|B\|^2_{HS} \) for all k-compressions B of C. We claim that \(c_{rs}c_{st} = \pm c_{rt} \) for all \(r < s < t \). Indeed, this follows from Lemma 3.11 applied to any k-compression B of C containing \(r, s, \) and \(t \) (again we use \(k \geq 3 \)). Now let \(\phi_1, \phi_2, \ldots, \phi_{n-1} \in \mathbb{R} \) be such that \(c_{i,i+1} = e^{i\phi_i} \), \(i = 1, 2, \ldots, n-1 \). For \(j = 1, 2, \ldots, n \), define \(\theta_j = -\sum_{i=1}^{j-1} \phi_i \). We claim that
\[c_{rs} = \pm e^{i(\theta_r - \theta_s)}, \quad r < s. \]
Indeed,
\[c_{rs} = \pm c_{r,r+1}c_{r+1,r+2} \cdots c_{s-1,s} = \pm e^{i\phi_r}e^{i\phi_{r+1}} \cdots e^{i\phi_{s-1}} \]
\[= \pm e^{i\sum_{i=r}^{s-1} \phi_i} = \pm e^{i(\sum_{i=1}^{s} \phi_i - \sum_{i=1}^{r-1} \phi_i)} = \pm e^{i(\theta_s - \theta_r)}. \]
Setting
\[U = \text{diag}(e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i\theta_n}) \in \mathbb{D}_n, \]
we have that \(U^* C U = S \in M^0_{n,sa} \), where all the off-diagonal entries of S are \(\pm 1 \). \(\Box \)

PROPOSITION 3.13 (7 × 7 selfadjoint). \(\tilde{\alpha}_3(M^0_{7,sa}) \in \left[\frac{2}{3}, \frac{2}{\sqrt{7}} \right] \approx [0.6667, 0.7559]. \)

PROOF. Let
\[A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 0 & -1 & 1 & 1 \\ 1 & 1 & 1 & -1 & 0 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 1 & 1 & 0 & 1 \end{bmatrix} \in M^0_{7,sa}. \]

Then \(\tilde{\alpha}_3(A) = \frac{2}{3} \) (\(\alpha_3(A) = 2 \) and \(\|A\| = 3 \)). Thus, \(\tilde{\alpha}_3(M^0_{7,sa}) \geq \frac{2}{3} \). Now let \(A \in M^0_{7,sa} \), with \(\alpha_3(A) = 1 \).

If every 3-compression B of selfadjoint A has norm \(\geq 1 \), then \(\|B\|^2 \geq \frac{2}{3} \|B\|^2 \) by selfadjointness using Proposition 7.5 (\(p = 2, n = 3 \)).

General identity: \(\sum_{B} \|B\|^2_{HS} = 5\|A\|^2_{HS} \) by a counting argument.

From general selfadjoint trace zero inequality for odd rank: \(\|A\|^2_{HS} \leq 6\|A\|^2 \) by Corollary 7.4 (\(n = 7 \)). Thus
\[35 \leq \sum_{B} \|B\|^2 \leq \frac{2}{3} \sum_{B} \|B\|^2_{HS} = \frac{10}{3}\|A\|^2_{HS} \leq 20\|A\|^2 \]
and hence \(\|A\| \geq \frac{\sqrt{7}}{2} \) ⇒ \(\tilde{\alpha}_3(A) \leq \frac{2}{\sqrt{7}} \).

That \(\|A\| \geq \frac{\sqrt{7}}{2} \) is a special case of Corollary 7.6 (\(n = 7, k = 3 \)), so the above internal proof of this can alternatively be referenced.
If, on the other hand, some 3-compression of A has norm < 1, then the complementary 4-compression B satisfies $\alpha_2(B) \geq 1$. Since $\tilde{\alpha}_2(M_{4,sa}^0) = \frac{1}{\sqrt{3}}$, $\|B\| \geq \sqrt{3}$ implies $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{3}{\sqrt{3}} < \frac{2}{\sqrt{7}}$.

Now assume $\alpha_3(A) = 1$ and $\|A\| = \frac{2\sqrt{7}}{3}$. By the previous discussion, every 3-compression B of A has norm ≥ 1. Thus

\[35 \leq \sum_B \|B\|^2 \leq \frac{2}{3} \sum_B \|B\|_{HS}^2 = \frac{10}{3} \|A\|_{HS}^2 \leq 20 \|A\|^2 = 35. \]

It follows that $\|B\|^2 = \frac{2}{3} \|B\|_{HS}^2$ for all 3-compressions B of A. By Lemma 5.6, there exists a diagonal unitary $U \in \mathbb{D}_n$ and an $\alpha > 0$ such that $U^*AU = \alpha S$, where all the off-diagonal entries of $S \in M_{n,sa}^0$ are ± 1. Searching exhaustively among all such S, we see that $\tilde{\alpha}_3(A) \leq \frac{2}{\sqrt{7}} < \frac{2}{\sqrt{3}}$, a contradiction.

\[\text{□} \]

Proposition 3.14 (8 × 8 selfadjoint). $\tilde{\alpha}_3(M_{8,sa}^0) \in \left[\frac{2}{3}, \frac{2\sqrt{7}}{3}\right] \approx [0.6667, 0.8944].$

Proof. Clearly,

\[\tilde{\alpha}_3(M_{8,sa}^0) \geq \tilde{\alpha}_3(M_{7,sa}^0) \geq \frac{2}{3}. \]

Now let $A \in M_{8,sa}^0$ with $\alpha_3(A) = 1$. If every 3-compression of A has norm ≥ 1, then $\|A\| \geq \frac{2\sqrt{7}}{3}$ (by proof of 3.13 every 7-compression has norm $\geq \frac{2\sqrt{7}}{3}$) $\Rightarrow \tilde{\alpha}_3(A) \leq \frac{3}{\sqrt{7}} < \frac{2}{\sqrt{3}}$. If, on the other hand, some 3-compression of A has norm < 1, then the complementary 5-compression B satisfies $\alpha_2(B) \geq 1$. Since $\tilde{\alpha}_2(M_{5,sa}^0) = \frac{2}{\sqrt{5}}$, $\|B\| \geq \frac{2\sqrt{7}}{3} \Rightarrow \|A\| \geq \frac{2\sqrt{7}}{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{\sqrt{5}}$. \[\text{□} \]

Proposition 3.15 (10 × 10 selfadjoint). $\tilde{\alpha}_3(M_{10,sa}^0) \in \left[\frac{2\sqrt{5}}{3}, 1\right] \approx [0.7454, 1].$

Proof. Let

\[A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & -1 & -1 & -1 & -1 \\
1 & 1 & 0 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 0 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 0 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 0 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 0 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 0 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 0 \\
\end{bmatrix} \in M_{10,sa}^0. \]

Then $\tilde{\alpha}_3(A) = \frac{2\sqrt{5}}{3}$ ($\alpha_3(A) = \sqrt{5}$ and $A^*A = 9I$). \[\text{□} \]

Remark: A is a conference matrix.
3. Nonnegative

Lemma 3.16. Let $A \in M_{4,+}^{0}$. If $\alpha_3(A) = 1$ and a row or column of A has three entries ≥ 1, then $\|A\| \geq 2$. This inequality is sharp.

Proof. We may assume the first row of A has three entries ≥ 1. Then

$$\|A\| \geq \left\| \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & b_{23} & b_{24} \\ 0 & b_{32} & 0 & b_{34} \\ 0 & b_{42} & b_{43} & 0 \end{bmatrix} \right\|,$$

where $\max\{b_{ij}, b_{ji}\} \geq 1$ for all $i \neq j$. Since

$$\min \left\{ \left\| \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & \delta_{23} & \delta_{24} \\ 0 & 1 - \delta_{23} & 0 & \delta_{34} \\ 0 & 1 - \delta_{24} & 1 - \delta_{34} & 0 \end{bmatrix} \right\| : \delta_{23}, \delta_{24}, \delta_{34} \in \{0, 1\} \right\} = 2,$$

we have that $\|A\| \geq 2$. A sharp example is furnished by the matrix

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Proposition 3.17 (4 × 4 nonnegative). $\tilde{\alpha}_3(M_{4,+}^{0}) = \kappa \approx 0.5550.$

Proof. Suppose $A \in M_{4,+}^{0}$, with $\alpha_3(A) = 1$. Create a digraph $D = (V, E)$ as follows: $V = \{1, 2, 3, 4\}$ and $(i, j) \in E$ if $a_{ij} \geq 1$. We may assume the following axioms:

1. For all $i \neq j$, either $(i, j) \in E$ or $(j, i) \in E$. Otherwise, A admits a 1-1-2 paving of norm < 1, violating the assumption $\alpha_3(A) = 1$.
2. For all vertices i, the in-degree of i and the out-degree of i are less than 3. Otherwise, row i or column i of A has three entries $\geq 1 \Rightarrow \|A\| \geq 2$ (Lemma 3.16) $\Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{3} < \kappa$.

This leaves digraphs D_{149}, D_{185}, D_{186}, and D_{218}, which all have D_{149} as a subgraph. Thus,

$$\|A\| \geq \left\| \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right\| = \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_3(A) \leq \kappa.$$

Now let

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Then $\tilde{\alpha}_3(A) = \kappa \Rightarrow \tilde{\alpha}_3(M_{4,+}^{0}) \geq \kappa.$

□
Proposition 3.18 (6×6 nonnegative). \(\tilde{\alpha}_3(\mathbb{M}_{6,+,+}^0) \in \left[\kappa, \frac{2}{1+\sqrt{5}} \right] \approx [0.5550, 0.6180]. \)

Proof. Suppose \(A \in \mathbb{M}_{6,+,+}^0 \), with \(\alpha_3(A) = 1 \). Create a graph \(G = (V, E) \) as follows: \(V = \{1, 2, 3, 4, 5, 6\} \) and \((i, j) \in E \) if \(a_{ij}, a_{ji} < 1 \). We may assume the following axioms:

1. \(G_61 \) is not a subgraph of \(G \). Otherwise, \(A \) has a 2-2-2 paving of norm \(< 1 \), violating the assumption \(\alpha_3(A) = 1 \).
2. By removing vertices, one cannot arrive at \(G_8 \). Otherwise, \(A \) has a 4-compression \(B \) with \(\alpha_3(B) \geq 1 \Rightarrow \|B\| \geq \frac{1}{\kappa} \Rightarrow \|A\| \geq \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_3(A) \leq \kappa \).
3. \(G \) has no isolated vertices. Otherwise, if vertex \(i \) is isolated, then either row \(i \) or column \(i \) of \(A \) has at least three entries \(\geq 1 \) \(\Rightarrow \|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{3}} \).
4. There does not exist a partition \(V = \{i, j, k\} \uplus \{i', j', k'\} \) such that \((r, s') \notin E, r, s \in \{i, j, k\}\). Otherwise, some \(3 \times 3 \) submatrix of \(A \) has at least five entries \(\geq 1 \) \(\Rightarrow \|A\| \geq \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_3(A) \leq \kappa \) (by exhaustive search of 0-1 \(3 \times 3 \) matrices with five 1’s).

This leaves \(G_{114} \) and \(G_{133} \), both of which have a 5-compression of the form

\[
\begin{bmatrix}
0 & * & * & * & \\
* & 0 & * & * & \\
* & * & 0 & * & \\
* & * & * & 0 & \\
* & * & * & * & \\
\end{bmatrix},
\]

where a “*” in the \((i, j)\) position indicates that \(a_{ij} \geq 1 \) or \(a_{ji} \geq 1 \), and a “*” in the \((i, j)\) position indicates that \(a_{ij} < 1 \). Searching exhaustively over all 0-1 \(5 \times 5 \) matrices satisfying this pattern yields \(\|A\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_3(A) \leq \frac{2}{1+\sqrt{5}}. \) \(\square \)
2,3-Pavings Summary Table

<table>
<thead>
<tr>
<th>n</th>
<th>$\alpha_2(M^0_n)$</th>
<th>$\alpha_2(M^0_{n,s=0})$</th>
<th>$\alpha_2(M^0_{n,sym})$</th>
<th>$\alpha_3(M^0_n)$</th>
<th>$\alpha_3(M^0_{n,s=0})$</th>
<th>$\alpha_3(M^0_{n,s=0})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>.5773</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>[.5493, .5773</td>
<td>.6180</td>
<td></td>
<td>.5773</td>
<td>.5550</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>.8944</td>
<td>.8944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>[.5, 1]</td>
<td>.7071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>[.8231, 1]</td>
<td>.6667, .7559</td>
<td>[.5, .7071]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>[.8231, 1]</td>
<td>.6667, .8944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>[.7071, 1]</td>
<td>.7454, 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part 2

Supplementary Material and Tools
CHAPTER 5

Supplementary Material: 2-Pavings
CHAPTER 6

Supplementary Material: 3-Pavings

1. 4 × 4 General

Lemma 6.1. Let \(A \in M_4^0 \). If \(\alpha_3(A) = 1 \) and \(\|A\| < \sqrt{3} \), then there exists a permutation matrix \(U \in M_4 \) such that

\[
U^*AU = \begin{bmatrix}
0 & \hat{a} & b & \hat{c} \\
\hat{a} & 0 & \hat{d} & \hat{e} \\
b & \hat{d} & 0 & \hat{f} \\
\hat{c} & \hat{e} & \hat{f} & 0
\end{bmatrix},
\]

where \(|\hat{x}| \leq |\hat{x}| \) for all \(x \in \{a, b, c, d, e, f\} \). The result remains true if \(A \gg 0 \) and \(\|A\| < 2 \).

Proof. Let

\[
A = \begin{bmatrix}
0 & a_{12} & a_{13} & a_{14} \\
a_{21} & 0 & a_{23} & a_{24} \\
a_{31} & a_{32} & 0 & a_{34} \\
a_{41} & a_{42} & a_{43} & 0
\end{bmatrix}.
\]

The condition \(\alpha_3(A) = 1 \) implies that \(\max \{|a_{ij}|, |a_{ji}|\} \geq 1 \) for all \(i < j \). The condition \(\|A\| < \sqrt{3} \) (resp. \(A \gg 0 \) and \(\|A\| < 2 \)) ensures that each row and each column has at most two entries of magnitude greater than or equal to 1 (see Lemma 6.1). Conjugating by \(U_{(12)} \), if necessary, we may assume that \(|a_{12}| \geq |a_{21}| \), which we indicate as follows:

\[
A = \begin{bmatrix}
0 & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\tilde{a}_{31} & a_{32} & 0 & a_{34} \\
\tilde{a}_{41} & a_{42} & a_{43} & 0
\end{bmatrix}.
\]

Case 1: Suppose \(|a_{13}| \geq |a_{31}| \). Then

\[
A = \begin{bmatrix}
0 & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\tilde{a}_{31} & a_{32} & 0 & a_{34} \\
\tilde{a}_{41} & a_{42} & a_{43} & 0
\end{bmatrix}.
\]

Conjugating by \(U_{(23)} \), if necessary, we may assume that \(|a_{23}| \geq |a_{32}| \). Then

\[
A = \begin{bmatrix}
0 & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \tilde{a}_{23} & \tilde{a}_{24} \\
\tilde{a}_{31} & \tilde{a}_{32} & 0 & \tilde{a}_{34} \\
\tilde{a}_{41} & \tilde{a}_{42} & \tilde{a}_{43} & 0
\end{bmatrix}.
\]
If $|a_{24}| \geq |a_{42}|$, then we are done. Thus, we may assume the opposite. That is,

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & \hat{a}_{23} & \hat{a}_{24} \\ \hat{a}_{31} & \hat{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \hat{a}_{43} & 0 \end{bmatrix}.$$

Conjugating by $U = U_{(1432)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \hat{a}_{14} & \hat{a}_{21} & \hat{a}_{32} \\ \hat{a}_{14} & 0 & \hat{a}_{12} & \hat{a}_{13} \\ \hat{a}_{24} & \hat{a}_{21} & 0 & \hat{a}_{23} \\ \hat{a}_{34} & \hat{a}_{31} & \hat{a}_{32} & 0 \end{bmatrix}.$$

Case 2: Suppose $|a_{13}| < |a_{31}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ \hat{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Case 2.1: If $|a_{14}| \geq |a_{41}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ \hat{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Conjugating by $U_{(34)}$ yields

$$U_{(34)}^*AU_{(34)} = \begin{bmatrix} 0 & \hat{a}_{14} & \hat{a}_{12} \\ \hat{a}_{21} & 0 & a_{24} \\ \hat{a}_{31} & a_{32} & 0 \\ \hat{a}_{41} & a_{42} & a_{43} \end{bmatrix},$$

and we may proceed as in Case 1.

Case 2.2: If $|a_{14}| < |a_{41}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & a_{34} \\ \hat{a}_{41} & a_{42} & a_{43} & 0 \end{bmatrix}.$$

Conjugating by $U_{(34)}$ if necessary, we may assume that $|a_{34}| \geq |a_{43}|$. Then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & a_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \hat{a}_{43} & 0 \end{bmatrix}.$$

Case 2.2.1: If $|a_{24}| \geq |a_{42}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & a_{23} & a_{24} \\ \hat{a}_{31} & \hat{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \hat{a}_{43} & 0 \end{bmatrix}.$$
Conjugating by $U = U_{(1234)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \hat{a}_{23} & \hat{a}_{24} & \tilde{a}_{21} \\ \tilde{a}_{32} & 0 & \hat{a}_{34} & \hat{a}_{31} \\ \hat{a}_{42} & \hat{a}_{43} & 0 & \tilde{a}_{41} \\ \tilde{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} & 0 \end{bmatrix}.$$

Case 2.2.2: If $|a_{24}| < |a_{42}|$, then

$$A = \begin{bmatrix} 0 & \hat{a}_{12} & \hat{a}_{13} & \hat{a}_{14} \\ \hat{a}_{21} & 0 & \hat{a}_{23} & \hat{a}_{24} \\ \hat{a}_{31} & \hat{a}_{32} & 0 & \hat{a}_{34} \\ \hat{a}_{41} & \hat{a}_{42} & \hat{a}_{43} & 0 \end{bmatrix}.$$

Conjugating by $U = U_{(13)(24)}$ yields

$$U^*AU = \begin{bmatrix} 0 & \tilde{a}_{34} & \tilde{a}_{31} & \tilde{a}_{32} \\ \tilde{a}_{43} & 0 & \tilde{a}_{41} & \tilde{a}_{42} \\ \tilde{a}_{13} & \tilde{a}_{14} & 0 & \tilde{a}_{12} \\ \tilde{a}_{23} & \tilde{a}_{24} & \tilde{a}_{21} & 0 \end{bmatrix}.$$

D149: breadth-first labeling 2134

\[
\begin{bmatrix} 0 & * & * & . \\ . & 0 & * & * \\ . & . & 0 & * \\ * & * & . & 0 \end{bmatrix}
\]

$$\inf \left\{ \begin{bmatrix} 0 & 1 & 1 & . \\ . & 0 & 1 & 1 \\ . & . & 0 & 1 \\ 1 & . & . & 0 \end{bmatrix} \right\} = \begin{bmatrix} 0 & 1 & 1 & -\frac{2}{1+\sqrt{5}} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \leq \frac{1+\sqrt{5}}{2} \approx 1.6180$$

D185: breadth-first labeling 2341

\[
\begin{bmatrix} 0 & * & * & . \\ . & 0 & * & * \\ . & . & 0 & * \\ * & * & . & 0 \end{bmatrix}
\]

$$\inf \left\{ \begin{bmatrix} 0 & 1 & 1 & . \\ . & 0 & 1 & 1 \\ . & 1 & 0 & 1 \\ 1 & . & . & 0 \end{bmatrix} \right\} = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \approx \sqrt{3} \approx 1.7321$$

Remark 6.2. Although this example doesn’t satisfy the hypotheses of Lemma 6.1, it satisfies the conclusion. Also, the extreme example doesn’t satisfy the graph theory, since $|.| < 1$.

D186: breadth-first labeling 3124

\[
\begin{bmatrix} 0 & * & * & . \\ . & 0 & * & * \\ * & . & 0 & * \\ * & * & . & 0 \end{bmatrix}
\]
Remark 6.3. Notice that this is a circulant. Best among circulants?
CHAPTER 7

Tools

1. Universal Selfadjoint 3-Identity and consequences

Lemma 7.1 (Universal Selfadjoint 3-Identity). Arbitrary 3×3 selfadjoint trace zero matrices S satisfy:

$$\frac{|S|^2}{2||S||^2} + \frac{|\text{Det } S|}{||S||^3} = 1$$

Proof. Since all trace zero finite (or trace class) matrices have a basis in which their representation has zero diagonal, without loss of generality we can assume S has the form:

$$S = \begin{pmatrix} 0 & a & b \\ \pi & 0 & c \\ b & \pi & 0 \end{pmatrix}$$

and by computation, the characteristic polynomial:

$$c_\lambda(S) = \text{det}(\lambda - S) = \lambda^3 - 2 \text{Re } \pi bc - \lambda(|a|^2 + |b|^2 + |c|^2)$$

$$= \lambda^3 - (|a|^2 + |b|^2 + |c|^2)\lambda - 2 \text{Re } a bc$$

$$= \lambda^3 - \frac{|S|^2}{2}\lambda - \text{Det } S.$$

An alternative way to see this is that the characteristic polynomial has the form $\lambda^3 + p\lambda^2 + q\lambda + r$, with $p = 0$ because the sum of the roots is the trace of S, the latter also implying

$$q = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3 = \frac{1}{2}((\lambda_1 + \lambda_2 + \lambda_3)^2 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)) = -\frac{|S|^2}{2}$$

where λ_j, $j = 1, 2, 3$ denotes its roots, and $r = -\lambda_1\lambda_2\lambda_3 = -\text{det } S$.

Since S is selfadjoint, $\lambda = \pm||S||$ is an eigenvalue of S. Also, because this is the largest eigenvalue in modulus and S has trace zero, the other two real eigenvalues are opposite this in sign making their product, $\text{Det } S$, the same sign as λ. Hence $(\pm ||S||)^3 = \frac{|S|^2}{2}(\pm ||S||) + (\pm |\text{Det } S|)$, whence the Universal Selfadjoint 3-Identity in either case. □

Corollary 7.2 (Universal Selfadjoint 3-Identity consequences). For arbitrary 3×3 selfadjoint trace zero matrices S,

$$||S|| = 1 \iff \frac{|S|^2}{2} + |\text{Det } S| = 1.$$

For greater or less than 1, the respective conditions are equivalent. A necessary condition for equality is $3/2 \leq ||S||^2 \leq 2$.

35
7. TOOLS

Proof. The Universal Selfadjoint 3-Identity, \(\frac{\|S\|^2}{2\|S\|^2} + \frac{|\text{Det } S|}{3\|S\|^3} = 1 \), implies that if \(\|S\| > 1 \) then \(\frac{\|S\|^2}{2\|S\|^2} + |\text{Det } S| > 1 \), and likewise, if \(\|S\| < 1 \) then \(\frac{\|S\|^2}{2\|S\|^2} + |\text{Det } S| < 1 \). Therefore \(\|S\| = 1 \) if and only if \(\frac{\|S\|^2}{2\|S\|^2} + |\text{Det } S| = 1 \).

Moreover, if \(\frac{\|S\|^2}{2\|S\|^2} + |\text{Det } S| = 1 \), then \(\|S\| = 2 \). Also in this case when \(\|S\| = 1 \), \(\|S\| \geq \frac{2}{3} \), \(\|S\|^2 = \frac{2}{3} \) is the \(n = 3 \), \(p = 2 \) case of Proposition 7.5.

2. Universal Selfadjoint 4-Identity and consequences

Universal Selfadjoint 4-Identity (for \(4 \times 4 \) selfadjoint zero-trace):

\[
\frac{\|S\|^2}{2\|S\|^2} + \frac{|\text{Tr } S^3|}{3\|S\|^3} - \frac{|\text{Det } S|}{4\|S\|^4} = 1
\]

Unpolished and unverified work (for proofs see file UniversalIdentities.Tex):

Consequence: Since \(\frac{|\text{Det } S|}{4\|S\|^4} \leq 1 \)

\[
\frac{\|S\|^2}{2\|S\|^2} + \frac{|\text{Tr } S^3|}{3\|S\|^3} \leq 2
\]

Separate Fact (\(\|S\|^3 \geq \frac{n}{2}\|S\|^2 \)): \(\|S\|^3 \geq \frac{4}{3}\|S\|^2 \) so \(\frac{\|S\|^2}{2\|S\|^2} \geq \frac{2}{3} \)

Implying: \(\frac{|\text{Tr } S^3|}{3\|S\|^3} \leq \frac{4}{3} \)

(Trivially also follows generally from Hölder: \(|\text{Tr } S^3|^{1/3} \leq \|S\|_3 \leq 4^{1/3}\|S\|) \)

Development of Universal Selfadjoint 4-Identity:

Let \(S \) denote a \(4 \times 4 \) selfadjoint zero-trace matrix with eigenvalues

\[
1 = \lambda_1 \geq |\lambda_2| \geq |\lambda_3| \geq |\lambda_4|.
\]

\(c_\lambda(S) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)(\lambda - \lambda_4) \)

\[
= \lambda^4 - (\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)\lambda^3 + (\sum_{i<j} \lambda_i\lambda_j)\lambda^2 - (\sum_{i<j<k} \lambda_i\lambda_j\lambda_k)\lambda + \lambda_1\lambda_2\lambda_3\lambda_4
\]

\[
= \lambda^4 + p\lambda^2 - q\lambda + r
\]

SUMMARY: NASC for \(\|S\| = 1 \) (unverified)

1. \(p \geq \frac{2}{3} \)
2. \(p + |q| + r = 1 \)
3. \(0 \leq p + |q| \leq 2 \) (equivalent to \(\text{product of roots} \leq 1 \))
4. When \(p < 1, \frac{20}{27} - \frac{3}{3}p - \frac{2}{27}(3p - 2)^{3/2} \leq q \leq \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2} \).
5. When \(p \geq 1, 0 \leq q \leq \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2} \).

(4-5: \(\max(0, \frac{20}{27} - \frac{3}{3}p - \frac{2}{27}(3p - 2)^{3/2}) \leq q \leq \frac{20}{27} - \frac{2}{3}p + \frac{2}{27}(3p - 2)^{3/2} \))
3. Operator Norm/p-Norm Comparisons

Proposition 7.3 (Operator Norm/p-Norm). If A is a finite rank selfadjoint trace 0 matrix and

$$k = \# \text{ strictly positive eigenvalues} - \# \text{ strictly negative eigenvalues},$$

then for $p \geq 1$,

$$||A||_p \leq (\text{rank } A - k)^{1/p} ||A||$$

(Sharp example: $\text{diag} (-1, 1)$)

(Sharp asymptotically: $\text{diag}(\pm 1, \ldots, \pm 1(\frac{\text{rank } A - k - 2}{2} \text{ pairs of them}), 1, -\frac{k}{k+1}, -\frac{1}{k(k+1)}$, \ldots, $-\frac{1}{k(k+1)}$; note: $\text{rank } A - k \text{ must be even}$)

Proof. Easy proof for $p = 2$ case:

If $<\lambda_j>$ are the (real) eigenvalues of A, then

$$\sum_{1}^{n} |\lambda_j|^p = \sum_{1}^{n} |\lambda_j|^{p-2} |\lambda_j|^2 \leq |\lambda_1|^{p-2} \sum_{1}^{n} |\lambda_j|^2 \leq |\lambda_1|^{p-2} (n - k) |\lambda_1|^2 = (n - k) |\lambda_1|^p.$$

For all $p \geq 1$, we describe informally the following variational approach:

Maximize $\sum |\lambda_j|^p$ subject to $\lambda_1 + \cdots + \lambda_n = 0$.

Without loss of generality, $A \neq 0$, $||A|| \leq 1$ and $tr A \neq 0$ implies that for some $n > m \geq 1$ the eigenvalues of A have the $[-1, 1]$ distribution:

$$-1 \leq \lambda_n \leq \cdots \leq \lambda_{m+1} < 0 < \lambda_m \leq \cdots \leq \lambda_1 \leq 1,$$

We induct on $n - k$. Since $A \neq 0$, $n - k > 0$ and is even and so $n - k \geq 2$.

Increase λ_1 and decrease λ_n equally so to preserve the trace, until one of them reaches 1 or -1, respectively. (Increasing both moduli increases the sum $\sum |\lambda_j|^p$ and so permits reduction of the proof to this case.) If they both reach 1 or -1, then dropping them leaves k invariant and reduces to the $n - k - 2$ case.

If now $\lambda_1 = 1$ and $\lambda_n > -1$ (handle the reverse case the same), decrease λ_n and increase λ_{n-1} equally to preserve their sum. Elementary calculus shows that this will increase $|\lambda_n|^p + |\lambda_{n-1}|^p$. Continue this until either λ_n reaches -1 or λ_{n-1} reaches λ_{n-2}. If the former, then drop λ_n and λ_1, and again apply the induction hypothesis. If the latter, then decrease both until λ_n reaches -1 or both λ_{n-1} and λ_{n-2} reaches λ_{n-3}, and so on. This process will increase $\sum |\lambda_j|^p$ and unless $m = 1$, one has $m > 1$ or equivalently, $\lambda_n + \cdots + \lambda_{m+1} < -1$ implying that eventually in this process λ_n will reach -1 so we can apply again the induction hypothesis while preserving k. If $m = 1$, then this process ends in one pair of $+1$ with sum 2 so $\sum_1^n |\lambda_j|^p \leq 2 \leq n - k$.

Corollary 7.4. If A is an $n \times n$ selfadjoint trace 0 matrix with n odd, then $||A||_2 \leq \sqrt{n - 1} ||A||$.

Proposition 7.5. If A is an $n \times n$ selfadjoint trace 0 matrix and $p \geq 1$ (or more generally rank $A = n$), then

$$||A||_p \geq [1 + \frac{1}{(n-1)^{p-1}}]^{1/p} ||A||$$

with equality iff $A = c \text{diag}(-1, \frac{1}{n-1}, \ldots, \frac{1}{n-1})$.

Proof. Suffices to show the sequence analog for $\lambda_1 + \cdots + \lambda_n = 0$, all λ_j real. Since the inequality is obvious for $p = 1$, needing selfadjoint with trace 0 to see it, we can assume without loss of generality that $p > 1$. Then

$$|\lambda_1| = \left| - \sum_{2}^{n} \lambda_j \right| \leq ||\mathbf{1}||_p' ||\lambda||_p$$

where $\lambda := < \lambda_j >_{2 \leq j \leq n}$, $\mathbf{1} := < 1 >_{2 \leq j \leq n}$, and $\frac{1}{p} + \frac{1}{p'} = 1$, i.e., $\frac{p}{p'} = p - 1$. Equality holds if and only if λ is a constant multiple of $\mathbf{1}$. (This is the p-case for Cauchy-Schwartz equality which I presume holds true for $p \neq 2$ like it does for $p = 2$—except I don’t know a reference.) So

$$|\lambda_1|^p \leq (n-1)^{p/p'} \sum_{2}^{n} |\lambda_j|^p = (n-1)^{p-1} \sum_{2}^{n} |\lambda_j|^p.$$

Adding $(n-1)^{p-1}|\lambda_1|^p$ to both sides yields: $[1 + (n-1)^{p-1}]||A||^p \leq (n-1)^{p-1}||A||^p$, from which (iii) follows. The case for equality also follows from the previous comment about equality. □
3. OPERATOR NORM/P-NORM COMPARISONS 39

COROLLARY 7.6. If every \(k \)-compression of \(A \in \mathbb{M}_{n,sa}^0 \) has norm \(\geq 1 \), then

\[
\|A\| \geq \begin{cases}
\frac{\sqrt{n-1}}{\sqrt{n}} & n \text{ even} \\
\frac{\sqrt{n}}{n} & n \text{ odd}
\end{cases}
\]

Proof. Denote by \(\Pi_k \) the set of all \(k \)-compressions of \(A \).

Then \(\|B\|^2 \leq \frac{k-1}{k} \|B\|^2 \) for all \(B \in \Pi_k \) by Proposition 7.5 (\(p = 2 \) & take \(n \) to be \(k \)).

Then

\[
\left(\begin{array}{c} n \\ k \end{array} \right) \leq \sum_{B \in \Pi_k} \|B\|^2 \leq \frac{k-1}{k} \sum_{B \in \Pi_k} \|B\|^2_{HS} = \frac{k-1}{k} \left(\frac{n-2}{k-2} \right) \|A\|^2_{HS} \leq (n \text{ or } n-1) \frac{k-1}{k} \left(\frac{n-2}{k-2} \right) \|A\|^2.
\]

Thus,

\[
\|A\|^2 \geq \left(\begin{array}{c} n \\ k \end{array} \right) \frac{(n-1)}{k} \frac{(n-2)}{k-2} = \frac{\sqrt{n-1}}{k-1} \text{ or } \frac{\sqrt{n}}{k-1}.
\]

\(\square \)

COROLLARY 7.7. If \(\bar{\alpha}_2(\mathbb{M}_{n-k,sa}^0) < \bar{\alpha}_3(\mathbb{M}_{n,sa}^0) \) and

\[
\bar{\alpha}_3(\mathbb{M}_{n,sa}^0) \cap \{ \text{all zero-diagonals with } \pm 1 \text{ off diagonal entries} \} \left(\begin{array}{c} k-1 \\ \sqrt{n-1} \end{array} \right), \quad n \text{ even} \\
\left(\begin{array}{c} k-1 \\ \sqrt{n} \end{array} \right), \quad n \text{ odd}
\]

then

\[
\bar{\alpha}_3(\mathbb{M}_{n,sa}^0) \left(\begin{array}{c} k-1 \\ \sqrt{n-1} \end{array} \right), \quad n \text{ even} \\
\left(\begin{array}{c} k-1 \\ \sqrt{n} \end{array} \right), \quad n \text{ odd}.
\]

Proof. Fix an extremal \(A = A_n \), that is, \(\bar{\alpha}_3(\mathbb{M}_{n,sa}^0) = \frac{\alpha_3(A)}{\|A\|} \) and without loss of generality assume \(\alpha_3(A) = 1 \) and \(\|A\| = \frac{1}{\bar{\alpha}_3(\mathbb{M}_{n,sa}^0)} \).

Either \(\|B\| < 1 \) for some \(k \)-compression or every \(k \)-compression \(B \) of \(A \) has norm \(\geq 1 \).

Assume first \(\|B\| < 1 \) for some \(k \)-compression \(B = PAQ \). Because \(\alpha_3(A) = 1 \), every 3-paving has norm \(\geq 1 \) and by definition, \(\bar{\alpha}_2(\mathbb{M}_{n-k,sa}^0) \geq \frac{\alpha_2((I-P)A(I-P))}{\|A\|} \) so

\[
\|(I-P)A(I-P)\| \geq \frac{\alpha_2((I-P)A(I-P))}{\bar{\alpha}_2(\mathbb{M}_{n-k,sa}^0)}.
\]

So if additionally \(\|B\| < 1 \) and \(\alpha_3(A) = 1 \), then \(\alpha_2((I-P)A(I-P)) = 1 \) so all 2-pavings of \((I-P)A(I-P) \) have norm \(\geq 1 \), in which case

\[
\|A\| \geq \|(I-P)A(I-P)\| \geq \frac{1}{\bar{\alpha}_2(\mathbb{M}_{n-k,sa}^0)} > \frac{1}{\bar{\alpha}_3(\mathbb{M}_{n,sa}^0)}.
\]

The last \(> \) by hypothesis, contradicting \(\bar{\alpha}_3(\mathbb{M}_{n,sa}^0) = \frac{\alpha_3(A)}{\|A\|} = \frac{1}{\bar{\alpha}_3(\mathbb{M}_{n,sa}^0)} \).

On the other hand, if every \(k \)-compression \(B \) of \(A \) has norm \(\geq 1 \), then the displayed inequality in Corollary 7.6 becomes equality throughout:

\[
\left(\begin{array}{c} n \\ k \end{array} \right) \leq \sum_{B \in \Pi_k} \|B\|^2 \leq \sum_{B \in \Pi_k} \|B\|^2_{HS} = \frac{k-1}{k} \left(\frac{n-2}{k-2} \right) \|A\|^2_{HS} = (n \text{ or } n-1) \frac{k-1}{k} \left(\frac{n-2}{k-2} \right) \|A\|^2.
\]

So each \(\|B\|^2 = \frac{k-1}{k} \|B\|^2_{HS} \). Now apply Lemma 3.12 so that

\[
A \equiv S \in \mathbb{M}_{n,sa}^0 \cap \{ \text{all zero-diagonals with } \pm 1 \text{ off diagonal entries} \}
\]

and apply the hypothesis to \(S \) to contradict the extremality of \(A \). \(\square \)
4. Operator Norm/Hilbert-Schmidt Norm Comparisons

Lemma 7.8. Let \(A \in \mathbb{M}_n \). Then
\[
\| A \| \leq \| A \|_{HS} \leq \sqrt{n} \| A \|.
\]

Furthermore,
1. \(\| A \| = \| A \|_{HS} \) if and only if \(\text{rank}(A) \leq 1 \).
2. \(\| A \|_{HS} = \sqrt{n} \| A \| \) if and only if \(A \) is a scalar multiple of a unitary.

Proof. The inequalities are well-known and easy to prove. Now let
\[
A = U\Sigma V^*
\]
be a singular value decomposition of \(A \) (i.e. \(U, V \) are unitary and \(\Sigma = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_n) \), where \(\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0 \)). Assume \(\| A \| = \| A \|_{HS} \). Then
\[
\sigma_1^2 = \| A \|^2 = \| A \|_{HS}^2 = \sum_{i=1}^{n} \sigma_i^2 \Rightarrow \sigma_2 = \sigma_3 = ... = \sigma_n = 0.
\]
Thus, \(A = \sigma_1 u_1 v_1^* \), where \(u_1 \) and \(v_1 \) are the first columns of \(U \) and \(V \), respectively.

Hence, \(\text{rank}(A) \leq 1 \). Conversely, if \(\text{rank}(A) \leq 1 \), then
\[
\sigma_2 = \sigma_3 = ... = \sigma_n = 0 \Rightarrow \| A \| = \| A \|_{HS}.
\]

Now assume \(\| A \|_{HS} = \sqrt{n} \| A \| \). Then
\[
\sum_{i=1}^{n} \sigma_i^2 = \| A \|^2_{HS} = n \| A \|^2 = n \sigma_1^2 \Rightarrow \sigma_1 = \sigma_2 = ... = \sigma_n.
\]
Thus, \(A = \sigma_1 U V^* \), which is a scalar multiple of a unitary. Conversely, if \(A = \alpha W \), where \(\alpha \in \mathbb{C} \) and \(W \) is a unitary, then
\[
\| A \|^2_{HS} = \text{Tr}(A^* A) = |\alpha|^2 \text{Tr}(W^* W) = |\alpha|^2 \text{Tr}(I) = n|\alpha|^2 = n \| A \|^2.
\]

Corollary 7.9. If every 3-compression of \(A \in \mathbb{M}_7^0 \) has norm \(\geq 1 \), then
\[
\| A \| \geq \sqrt{n - 1} \frac{1}{k(k - 1)}.
\]
Equality occurs if and only if \(A \) is a multiple of a unitary and every \(k \)-compression of \(A \) has rank one.

Proof. Denote by \(\Pi_k \) the set of all \(k \)-compressions of \(A \). Then
\[
\binom{n}{k} \leq \sum_{B \in \Pi_k} \| B \|^2 \leq \sum_{B \in \Pi_k} \| B \|_{HS}^2 = \binom{n - 2}{k - 2} \| A \|_{HS}^2 \leq n \binom{n - 2}{k - 2} \| A \|^2.
\]
Thus,
\[
\| A \|^2 \geq \frac{\binom{n}{k}}{\binom{n - 2}{k - 2}} = \frac{n - 1}{k(k - 1)}.
\]
The stated equality condition follows immediately from Lemma 7.8.

Corollary 7.10. If every 3-compression of \(A \in \mathbb{M}_7^0 \) has norm \(\geq 1 \), then \(\| A \| > 1 \).
Proof. By Lemma 7.9, \[\|A\|_2^2 \geq \frac{7 - 1}{3(3 - 1)} = 1. \]

Suppose \(\|A\| = 1 \). Again by Lemma 7.9, \(A \) is unitary and every 3-compression of \(A \) has rank one. It follows that every 3-compression of \(A \) has exactly two zero columns or exactly two zero rows. Consider \(A_{123} \), the \(\{1, 2, 3\} \)-compression of \(A \).

Without loss of generality, we may assume that the second and third columns of \(A_{123} \) are zero. It follows that the first column of \(A_{123} \) has norm 1. Thus,

\[
A = \begin{bmatrix}
0 & 0 & 0 & * & * & * \\
0 & 0 & * & * & * & *\\
0 & * & * & 0 & * & * \\
0 & * & * & * & 0 & * \\
0 & * & * & * & 0 & *
\end{bmatrix},
\]

where \(|a_{21}|^2 + |a_{31}|^2 = 1 \). Conjugating by \(U_{(23)} \), if necessary, we may assume that \(a_{21} \neq 0 \). Case 1: Suppose \(|a_{21}| = 1 \). By considering, in order, \(A_{123} \), \(A_{124} \), \(A_{125} \), \(A_{126} \), and \(A_{127} \), we have that

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & * & * & * & * \\
0 & 0 & * & 0 & * & * \\
0 & 0 & * & * & 0 & * \\
0 & 0 & * & * & 0 & 0
\end{bmatrix}.
\]

Considering \(A_{234} \), we have that either \(|a_{34}| = 1 \) or \(|a_{43}| = 1 \). Conjugating by \(U_{(34)} \), if necessary, we may assume the former. Considering, in order, \(A_{234} \), \(A_{345} \), \(A_{346} \), and \(A_{347} \), we have that

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & 0 & * & 0
\end{bmatrix}.
\]

But then \(\|A_{235}\| = 0 \), a contradiction.

Case 2: Suppose \(|a_{21}| < 1 \). By considering, in order, \(A_{124} \), \(A_{234} \), and \(A_{345} \), we have that

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 & * & * \\
0 & 0 & a_{24} & 0 & 0 & 0 \\
0 & 0 & a_{34} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & *
\end{bmatrix}.
\]
where \(|a_{21}|^2 + |a_{24}|^2 = 1\) and \(|a_{24}|^2 + |a_{44}|^2 = 1\). But then \(\|A_{345}\| < 1\), a contradiction.

Lemma 7.11. Let \(A \in M_4^0\). If every 2-2 paving of \(A\) has norm \(\geq 1\), then either \(\|A\| > 1\) or, up to permutation,

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & b \\
0 & c & 0 & 0
\end{bmatrix},
\]

where \(|a| = |b| = |c| = 1\).

Proof. Assume \(\|A\| = 1\). Create a graph \(G = (V, E)\) as follows: \(V = \{1, 2, 3, 4\}\) and \((i, j) \in E\) if \(|a_{ij}|, |a_{ji}| < 1\). We may assume the following axioms:

1. \(G_{11}\) is not a subgraph of \(G\). Otherwise, \(A\) has a 2-2 paving of norm \(< 1\).
2. For all \(i, \deg(i) > 0\). Otherwise, either row \(i\) or column \(i\) of \(A\) has at least two entries of modulus \(\geq 1 \Rightarrow \|A\| \geq \sqrt{2}\).

This leaves \(G_{13}\), which proves the result. \(\square\)
5. Averaging and Constrained Averaging

Let $A^* = A = (a_{ij})$, $E(A) = 0$, with the reduction assumption for $M_{7,s,a}^0$ that the B's range over all the 3×3 zero-diagonal matrices with norm at least 1 (in which case each Hilbert-Schmidt norm is at least $\frac{2}{3}$) or in the case of constrained averaging, all the B's with diagonal projection not containing prescribed i, j pairs.

The following weighted formulas for the Hilbert-Schmidt norm of a 7×7 zero-diagonal selfadjoint matrix in terms of the Hilbert-Schmidt norms of some or all of its 3-diagonal compressions PAP for averaging and constrained averaging are obtained by careful groupings of triplet integer subsets of $[1, 7]$ to compensate for overcounting due to multiple occurrences, analogous to the elementary counting formula for finite sets: $|A \cup B| = |A| + |B| - |A \cap B|$. (0)

\[
6||A||^2 \geq ||A||^2_{HS} = \frac{1}{5} \sum_{all} \frac{35}{2} ||B||^2_{HS} \quad \text{(Averaging)}
\]

(12)

\[
6||A||^2 \geq ||A||^2_{HS} = 2|a_{12}|^2 + \left(\frac{1}{4} \sum_{134-267} + \frac{1}{6} \sum_{345-567} \right) ||B||^2_{HS} \quad \text{(Constrained Averaging here and below)}
\]

(row)

\[
6||A||^2 \geq ||A||^2_{HS} = 2||Ac_1||^2 + \frac{1}{4} \sum_{1 \notin B} \frac{20}{4} ||B||^2_{HS}
\]

(12,23)

\[
6||A||^2 \geq ||A||^2_{HS} = 2|a_{12}|^2 + 2|a_{23}|^2 + \left(\frac{1}{4} \sum_{1 \in B, 2 \notin B} + \frac{1}{3} \sum_{1 \notin B, 2 \notin B} + \frac{1}{6} \sum_{1 \notin B, 3 \notin B} + \frac{1}{12} \sum_{1,2 \notin B, 3 \notin B} \right) ||B||^2_{HS}
\]

(12,13)

\[
6||A||^2 \geq ||A||^2_{HS} = 2|a_{12}|^2 + 2|a_{13}|^2 + \left(\frac{1}{3} \sum_{1 \in B, 2 \notin B} + \frac{1}{4} \sum_{1 \notin B, 2 \notin B} + \frac{1}{6} \sum_{1 \notin B, 2 \notin B} \right) ||B||^2_{HS}
\]

(12,23,34)

\[
6||A||^2 \geq ||A||^2_{HS} = 2|a_{12}|^2 + 2|a_{23}|^2 + 2|a_{34}|^2 + \left(\frac{1}{3} \sum_{135-147, all B \notin B'} + \frac{1}{6} \sum_{156-167, 456-467} + \frac{1}{6} \sum_{567} \right) ||B||^2_{HS}
\]
Application of constrained averaging:

If $|a_{ij}| \geq 1$ (wlog $i, j = 1, 2$) and A satisfies the 3-compression reduction given above, then by (12),

$$6\|A\|^2 \geq \|A\|_{HS}^2 = 2|a_{12}|^2 + \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10} \right) \|B\|_{HS}^2$$

$$\geq 2 + \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10} \right) \frac{3}{2} \|B\|$$

$$\geq 2 + \left(\frac{20}{4} + \frac{10}{6} \right) \frac{3}{2} = 2 + \left(\frac{5 + 5}{3} \right) \frac{3}{2} = 12$$

So $6\|A\|^2 \geq 12$, $\|A\| \geq \sqrt{2}$, $\tilde{\alpha}_3(A) \leq \frac{1}{\sqrt{2}} \approx .7071$, smaller than the $\tilde{\alpha}_3(M_7^{0, sa})$-table upper range in $[\frac{\sqrt{8}}{3}, \frac{\sqrt{7}}{3}] = [.6667, .7559)$. This then rules out entries with larger than 1 modulus for an extremal bad paver in case one succeeds in proving $\tilde{\alpha}_3(M_7^{0, sa}) \in \left(\frac{\sqrt{8}}{3}, \frac{\sqrt{7}}{3} \right)$.

Moreover, since $\frac{1}{\|A\|} = \tilde{\alpha}_3(M_7^{0, sa})$, if A were extremal, and wlog $|a_{12}| = \max_{i,j} |a_{ij}|$, then $\|A\|^2 = \frac{1}{\tilde{\alpha}_3(M_7^{0, sa})^2} \in \left(\frac{7}{4}, \frac{9}{4} \right)$ and

$$\|A\|^2 \geq \frac{1}{6} \|A\|_{HS}^2 = \frac{1}{3} |a_{12}|^2 + \frac{1}{6} \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10} \right) \|B\|_{HS}^2$$

$$\geq \frac{|a_{12}|^2}{3} + \left(\frac{1}{4} \sum_{134-267}^{20} + \frac{1}{6} \sum_{345-567}^{10} \right) \frac{3}{2} \|B\|$$

$$\geq \frac{|a_{12}|^2}{3} + \frac{1}{6} \left(\frac{20}{4} + \frac{10}{6} \right) \frac{3}{2} = \frac{|a_{12}|^2}{3} + \frac{5}{3} > \frac{9}{4}$$

leads to the contradiction: $\tilde{\alpha}_3(M_7^{0, sa}) = \frac{1}{\|A\|} < \frac{2}{3}$. Hence

$$|a_{12}|^2 \leq \frac{27}{4} - 5 = \frac{7}{4}, \text{ i.e., } \max_{i,j} |a_{ij}| \leq \frac{\sqrt{7}}{2} < \|A\|.$$
Bibliography