SQUARE-FREE MONOMIAL IDEALS AND HYPERGRAPHS

N.V. TRUNG

ABSTRACT. These are notes on the author's talk given at the workshop on Integral Closure, Multiplier Ideals and Cores, AIM, December 2006.

1. Introduction

Let K be a field and $R = K[x_1, ..., x_n]$ a polynomial ring over K.

Let G be a simple, undirected graph on the set of vertices $[1, n] = \{1, ..., n\}$. The edge ideal of G is defined to be the ideal

$$I(G) := (x_i x_j | \{i, j\} \in G).$$

This notion was introduced by Villareal.

Let I = I(G). Simis, Vasconcelos and Villareal showed that $I^{(k)} = I^k \, \forall \, k \geq 0$ if and only if G is a bipartite graph, where $I^{(k)}$ denotes the k-th symbolic power of I. In particular, the equality between symbolic and ordinary powers holds for the edge ideal of any subgraph of G if G is bipartite.

The edge ideals of graphs are in one-to-one correspondence with the ideals generated by square free monomials of degree two. To study arbitrary squarefree monomial ideals we need to consider hypergraphs.

A clutter Δ on the set of vertices [1, n] is a collection of subsets of [1, n] called edges such that there is no containment of edges.

Definition 1.1. The edge ideal of Δ is defined to be the ideal

$$I(\Delta) := (x_{i_1}...x_{i_r} | \{i_1, ..., i_r\} \in \Delta).$$

The edge ideals of clutters are in one-to-one correspondence with the square free monomial ideals. There is an other way to associate a clutter with a squarefree monomial ideal.

Definition 1.2. The ideal

$$I^*(\Delta) = \bigcap_{\{i_1, \dots, i_r\} \in \Delta} (x_{i_1}, \dots, x_{i_r})$$

is called the *cover ideal* of Δ .

Date: July 13, 2007.

2 N.V. TRUNG

Recall that a cover of Δ is a subset of [1, n] which meets every edge of Δ . The minimal generators of $I^*(\Delta)$ are in one-to-one correspondence with the minimal covers of Δ .

Let Δ^* denote the clutter of the minimal covers of Δ . Then Δ^* is called the *blocker* or transversal of Δ . We always have $(\Delta^*)^* = \Delta$ and hence $I^*(\Delta) = I(\Delta^*)$. The ideal $I^*(\Delta)$ is also called the Alexander dual of $I(\Delta)$.

2. Cover ideals

Definition 2.1. Let $k \in \mathbb{N}$ and $C = (c_1, \ldots, c_n) \in \mathbb{N}^n$. Then C is called a k-cover of Δ if

$$\sum_{i \in F} c_i \ge k \ \forall \ F \in \Delta.$$

If we think of C as a multiset which consists of c_i copies of i, i = 1, ..., n, then a k-cover is just a multiset of vertices which meet every edge at least k times.

Definition 2.2. Let t be an indeterminate. The algebra

$$A(\Delta) = K[x^C t^k \mid C \text{ is a } k\text{-cover of } \Delta, \ k \ge 0] \subseteq R[t]$$

is called the vertex cover algebra of Δ .

Let $I = I^*(\Delta)$. It is obvious that $x^C = x_1^{c_1} \dots x_n^{c_n} \in I^{(k)}$ if and only if C is a k-cover. Therefore, $A(\Delta) = \bigoplus_{k \ge 0} I^{(k)} t^k$, the symbolic Rees algebra of I. Thus, $I^{(k)} = I^k$ for all $k \ge 0$ if and only if $A(\Delta)$ is a standard graded algebra over R.

In order to generalize the result of Simis, Vasconcelos and Villareal we need to consider hypergraphs which generalize bipartite graphs.

Definition 2.3. A cycle of Δ is an alternating sequence of the form

$$v_1, F_1, v_2, F_2, \dots, v_r, F_r, v_{r+1} = v_1,$$

where $v_1, ..., v_r$ and $F_1, ..., F_r$ are distinct vertices and edges and $x_i, v_{i+1} \in F_i \ \forall \ i = 1, ..., n$. The cycle is called *special* if $F_i \cap \{v_1, ..., v_r\} = \{v_i, v_{i+1}\}$. We call Δ a *balanced* clutter if Δ has no odd special cycle of length greater or equal to 3.

Notice that a graph G is balanced if and only if G is bipartite.

Theorem 2.4. [Herzog-Hibi-Trung-Zheng] $A(\Gamma)$ is standard graded for all subclutters $\Gamma \subset \Delta$ if and only if Δ is balanced.

3. Edge ideal

Let $I = I(\Delta)$ now be the edge ideal of Δ . By the above result, $I^{(k)} = I^k$ for all $k \geq 0$ if Δ^* is balanced. The question now is whether we can describe this equality directly in terms of Δ .

Let $\overline{I^k}$ denote the integral closure of I^k . Since $I^k \subseteq \overline{I^k} \subseteq I^{(k)}$, we can break up the equality into two parts $I^k \subseteq \overline{I^k}$ and $\overline{I^k} = I^{(k)}$. All these equalities can be expressed in combinatorial terms.

Let $\Delta = \{F_1, \ldots, F_m\}$. Let $M = (a_{ij})$ be the vertex-edge incidence matrix of Δ , i.e.

$$a_{ij} = \begin{cases} 0, & i \notin F_j, \\ 1, & i \in F_j. \end{cases}$$

For all vectors $C \in \mathbb{N}^n$ we define

$$\tau(C) := \min\{ A \cdot \mathcal{C} \mid A \in \mathbb{N}^n, \ M^T \cdot A \ge \underline{1}, \ \},$$

$$\tau^*(C) := \min\{ A \cdot \mathcal{C} \mid A \in \mathbb{R}^n_+, \ M^T \cdot A \ge \underline{1}, \ \},$$

$$\nu(C) := \max\{ B \cdot \underline{1} \mid B \in \mathbb{N}^m, \ M \cdot B \le C \ \},$$

$$\nu^*(C) := \max\{ B \cdot \underline{1} \mid B \in \mathbb{R}^m_+, \ M \cdot B \le C \ \},$$

where $\underline{1}$ denotes the vector $(1,...,1) \in \mathbb{N}^m$. Then

$$\nu(C) \le \nu^*(C) = \tau^*(C) \le \tau(C),$$

where the middle equality follows from the duality of Linear Programming.

Lemma 3.1.

- (1) $x^C \in I^k \Leftrightarrow \nu(C) \ge k$.
- (2) $x^C \in \overline{I^k} \Leftrightarrow \nu^*(C) \ge k$.
- (3) $x^C \in I^{(k)} \Leftrightarrow \tau(C) \ge k$.

Definition 3.2.

- (1) Δ is said to have the integer rounding property if $\nu(C) = [\nu^*(C)]$ for all $C \in \mathbb{N}^n$.
- (2) Δ is called Fulkersonian if $\tau(C) = \tau^*(C)$ for all $C \in \mathbb{N}^n$.
- (3) Δ is called Mengerian if $\nu(C) = \tau(C)$ for all $C \in \mathbb{N}^n$.

Lemma 3.1 gives easy proofs for the following results.

Theorem 3.3.

- (1) $I^k = \overline{I^k}$ for all $k \geq 0$ if and only if Δ has the rounding property.
- (2) $\overline{I^k} = I^{(k)}$ for all $k \ge 0$ if and only if Δ is a Fulkersonian hypergraph [Trung, Villarreal].
- (3) $I^k = I^{(k)}$ for all $k \ge 0$ if and only if Δ is a Mengerian hypergraph [Herzog-Hibi-Trung-Zheng, Villarreal].

Unlike balanced hypergraphs, there are no known characterizations of the above classes of hypergraphs by forbidden structure.

4 N.V. TRUNG

4. The König Property

Definition 4.1. We call the following invariants

$$\tau(\Delta) = \min\{c_1 + \dots + c_n | C \text{ is a minimal cover of } \Delta\},\$$

$$\nu(\Delta) = \max\{k | \text{ there exist } k \text{ disjoint edges of } \Delta\}$$

the blocking number and the matching number of Δ , respectively. If $\nu(\Delta) = \tau(\Delta)$, Δ is said to have the König property.

Notice that $\nu(\Delta) = \nu(C)$ and $\tau(\Delta) = \tau(C)$, where C = (1, ..., 1).

Let V_1, V_2 be two arbitrary disjoint subsets of the set of vertices of Δ . We define a clutter Γ on the set of vertices $V \setminus (V_1 \cup V_2)$ whose edges are the subsets of V of the form $F \setminus V_1$, where $F \in \Delta$ and $F \cap V_2 = \emptyset$. Clearly, $I(\Gamma)$ is obtained from $I(\Delta)$ by setting $x_i = 1$ for $i \in V_1$ and $x_i = 0$ for $i \in V_2$.

Definition 4.2. Such a clutter Γ is called a *minor* of $I(\Delta)$.

Conjecture 4.3. [Conforti-Cornuejols] Δ is a Mengerian hypergraph if and only if all minors of Δ has the König property.

Note that the implication "only if" is trivial. It is also known that Δ is a Fulkerson hypergraph if all minors of Δ has the König property. Therefore, it remains to show that Δ has the rounding property if all minors of Δ has the König property,

Let $I = I(\Delta)$. Then $\tau(\Delta) = \operatorname{ht}(I)$ and $\nu(\Delta)$ is the maximal length of a regular sequence of monomials in I. To settle the conjecture we have to show that $I^k = \overline{I^k}$ for all $k \geq 0$ if all ideals J obtained from I by setting some variables equal 0,1 contain a regular sequence of monomials of length $\operatorname{ht}(J)$. Roughly speaking, we have to consider ideals obtained from I by adding some variables and localize at some variables.

On the other hand, $I^k = \overline{I^k}$ for all $k \geq 0$ means that the Rees algebra R(I) is normal. Since R(I) is normal if and only if it satisfies Serre conditions R_1 and S_2 , using induction we need only to show that depth $R(I) \geq 2$ under the assumption of the conjecture.