Generalized Intersection Bodies and the Low Dimensional Busemann-Petty Problem

Emanuel Milman

The Weizmann Institute of Science

American Institute of Mathematics Fourier Analytic Methods in Convex Geometry August 2007

Outline

- The Busemann-Petty Problem
- Intersection Bodies
- The *k*-Generalized Busemann-Petty Problem
- Low Dimensional Busemann-Petty Problem
- First Generalization of Int-Bodies: k-Busemann-Petty Bodies (\mathcal{BP}_k^n) , Spherical Radon Transforms.
- Second Generalization of Int-Bodies: k-Intersection Bodies (\mathcal{I}_k^n) , Fourier Transforms of Homogeneous Distributions.
- Relationship between \mathcal{BP}_k^n and \mathcal{I}_k^n . Are these families equivalent?

Busemann-Petty Problem

Notation: $0 \le m \le n$

 G_m^n - Grassmann manifold of *m*-dim linear subspaces of \mathbb{R}^n .

Busemann-Petty Problem (1956)

Let K, L denote two convex symmetric bodies in \mathbb{R}^n .

Assume
$$\forall H \in G_{n-1}^n$$
 $Vol_{n-1}(K \cap H) \leq Vol_{n-1}(L \cap H)$.

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

Series of results 1975-1999 (Ball,Bourgain,Gardner, Giannopoulos,Koldobsky,Larman,Lutwak,Papadimitrakis, Rogers,Schlumprecht,Zhang):

Answer: $n \le 4 \text{ Yes}$, $n \ge 5 \text{ No!}$

Busemann-Petty Problem

Notation: $0 \le m \le n$

 G_m^n - Grassmann manifold of *m*-dim linear subspaces of \mathbb{R}^n .

Busemann-Petty Problem (1956)

Let K, L denote two convex symmetric bodies in \mathbb{R}^n .

Assume
$$\forall H \in G_{n-1}^n$$
 $Vol_{n-1}(K \cap H) \leq Vol_{n-1}(L \cap H)$.

Does it follow that $Vol_n(K) \le$

$$Vol_n(K) \leq Vol_n(L)$$
 ?

Series of results 1975-1999 (Ball,Bourgain,Gardner, Giannopoulos,Koldobsky,Larman,Lutwak,Papadimitrakis, Rogers,Schlumprecht,Zhang):

Answer: $n \le 4 \text{ Yes}$, $n \ge 5 \text{ No!}$

- Key Observation (Lutwak, Gardner): Answer to BP-problem is positive in \mathbb{R}^n iff every symmetric convex body in \mathbb{R}^n is an Intersection Body.
- Intersection Bodies were introduced by Lutwak in 1975.
 They belong to a larger class of bodies:
- K is called a (symmetric) star-body if $\forall x \in K$ [0, x] $\in K$ and its *radial function* ρ_K is continuous (and even).
- $\rho_K(\theta) = \max\{r \ge 0; r\theta \in K\}, \ \theta \in S^{n-1}. \ \rho_K = \|\cdot\|_K^{-1}, \ \|x\|_K = \min\{r \ge 0; x \in rK\} \text{ is Minkowski's functional.}$
- Radial metric: $d_{\rho}(K_1, K_2) = \max_{\theta \in S^{n-1}} |\rho_{K_1}(\theta) \rho_{K_2}(\theta)|$.

Definition

K int-body of L if $\rho_K(\theta) = \operatorname{Vol}_{n-1}(L \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$.

K intersection-body if $\exists \{K_i\}$ int-bodies of $\{L_i\}$, $d_{\rho}(K_i, K) \rightarrow 0$.

- Key Observation (Lutwak, Gardner): Answer to BP-problem is positive in \mathbb{R}^n iff every symmetric convex body in \mathbb{R}^n is an Intersection Body.
- Intersection Bodies were introduced by Lutwak in 1975.
 They belong to a larger class of bodies:
- K is called a (symmetric) star-body if $\forall x \in K$ [0, x] $\in K$ and its *radial function* ρ_K is continuous (and even).
- $\rho_K(\theta) = \max\{r \geq 0; r\theta \in K\}, \ \theta \in S^{n-1}. \ \rho_K = \|\cdot\|_K^{-1}, \ \|x\|_K = \min\{r \geq 0; x \in rK\} \text{ is Minkowski's functional.}$
- Radial metric: $d_{\rho}(K_1, K_2) = \max_{\theta \in S^{n-1}} |\rho_{K_1}(\theta) \rho_{K_2}(\theta)|$.

Definition

 $\underline{K \text{ int-body of } L} \text{ if } \rho_K(\theta) = \text{Vol}_{n-1} \left(L \cap \theta^{\perp} \right) \ \forall \theta \in S^{n-1}.$

K intersection-body if $\exists \{K_i\}$ int-bodies of $\{L_i\}$, $d_{\rho}(K_i, K) \rightarrow 0$.

- Key Observation (Lutwak, Gardner): Answer to BP-problem is positive in \mathbb{R}^n iff every symmetric convex body in \mathbb{R}^n is an Intersection Body.
- Intersection Bodies were introduced by Lutwak in 1975.
 They belong to a larger class of bodies:
- K is called a (symmetric) star-body if $\forall x \in K [0, x] \in K$ and its *radial function* ρ_K is continuous (and even).
- $\rho_K(\theta) = \max\{r \geq 0; r\theta \in K\}, \ \theta \in S^{n-1}. \ \rho_K = \|\cdot\|_K^{-1}, \ \|x\|_K = \min\{r \geq 0; x \in rK\} \text{ is Minkowski's functional.}$
- Radial metric: $d_{\rho}(K_1, K_2) = \max_{\theta \in S^{n-1}} |\rho_{K_1}(\theta) \rho_{K_2}(\theta)|$.

Definition

 \underline{K} int-body of \underline{L} if $\rho_K(\theta) = \operatorname{Vol}_{n-1}(L \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$. K intersection-body if $\exists \{K_i\}$ int-bodies of $\{L_i\}$, $d_{\rho}(K_i, K) \to 0$

- Key Observation (Lutwak, Gardner): Answer to BP-problem is positive in \mathbb{R}^n iff every symmetric convex body in \mathbb{R}^n is an Intersection Body.
- Intersection Bodies were introduced by Lutwak in 1975. They belong to a larger class of bodies:
- K is called a (symmetric) star-body if $\forall x \in K \ [0, x] \in K$ and its *radial function* ρ_K is continuous (and even).
- $\rho_K(\theta) = \max\{r \geq 0; r\theta \in K\}, \ \theta \in S^{n-1}. \ \rho_K = \|\cdot\|_K^{-1},$ $||x||_{\kappa} = \min\{r \geq 0; x \in rK\}$ is Minkowski's functional.
- Radial metric: $d_{\rho}(K_1, K_2) = \max_{\theta \in S^{n-1}} |\rho_{K_1}(\theta) \rho_{K_2}(\theta)|$.

- Key Observation (Lutwak, Gardner): Answer to BP-problem is positive in \mathbb{R}^n iff every symmetric convex body in \mathbb{R}^n is an Intersection Body.
- Intersection Bodies were introduced by Lutwak in 1975.
 They belong to a larger class of bodies:
- K is called a (symmetric) star-body if $\forall x \in K \ [0, x] \in K$ and its *radial function* ρ_K is continuous (and even).
- $\rho_K(\theta) = \max\{r \geq 0; r\theta \in K\}, \ \theta \in S^{n-1}. \ \rho_K = \|\cdot\|_K^{-1}, \ \|x\|_K = \min\{r \geq 0; x \in rK\} \text{ is Minkowski's functional.}$
- Radial metric: $d_{\rho}(K_1, K_2) = \max_{\theta \in S^{n-1}} |\rho_{K_1}(\theta) \rho_{K_2}(\theta)|$.

Definition

K int-body of L if $\rho_K(\theta) = \text{Vol}_{n-1} (L \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$.

K intersection-body if $\exists \{K_i\}$ int-bodies of $\{L_i\}$, $d_{\varrho}(K_i, K) \rightarrow 0$.

Intersection Bodies (alternative definition)

Spherical Radon Transform:

$$R: C_e(S^{n-1}) \to C_e(S^{n-1}) \quad R(f)(\theta) = \int_{S^{n-1} \cap \theta^{\perp}} f(\xi) d\sigma_{\theta^{\perp}}(\xi)$$

$$R^*: \mathcal{M}_e(S^{n-1}) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R^*(d\mu) = \int_{S^{n-1}} R(g) d\mu$$

Easy to see that $R^*(g) = R(g)$, i.e. self-adjoint. R is injective and (by duality) onto a dense subset.

Recall: \underline{K} int-body of \underline{L} iff $\rho_K(\theta) = \operatorname{Vol}_{n-1}(\underline{L} \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$.

Alternative Definition

$$\underline{K}$$
 int-body of \underline{L} iff $\rho_K = c_n R(\rho_L^{n-1}) = R^*(g)$, $g \in C_{e,+}(S^{n-1})$. \underline{K} intersection-body iff $\rho_K = R^*(d\mu)$, $\mu \in \mathcal{M}_{e,+}(S^{n-1})$.

Notation: \mathcal{I}^n = class of intersection bodies in \mathbb{R}^n .

Intersection Bodies (alternative definition)

Spherical Radon Transform:

$$R: C_e(S^{n-1}) \to C_e(S^{n-1}) \quad R(f)(\theta) = \int_{S^{n-1} \cap \theta^{\perp}} f(\xi) d\sigma_{\theta^{\perp}}(\xi)$$

$$R^*: \mathcal{M}_e(S^{n-1}) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R^*(d\mu) = \int_{S^{n-1}} R(g) d\mu$$

Easy to see that $R^*(g) = R(g)$, i.e. self-adjoint. R is injective and (by duality) onto a dense subset.

Recall: K int-body of L iff $\rho_K(\theta) = \text{Vol}_{n-1} (L \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$.

Alternative Definition

 \underline{K} int-body of \underline{L} iff $\rho_K = c_n R(\rho_L^{n-1}) = R^*(g)$, $g \in C_{e,+}(S^{n-1})$. \underline{K} intersection-body iff $\rho_K = R^*(d\mu)$, $\mu \in \mathcal{M}_{e,+}(S^{n-1})$.

Notation: \mathcal{I}^n = class of intersection bodies in \mathbb{R}^n .

Intersection Bodies (alternative definition)

Spherical Radon Transform:

$$R: C_e(S^{n-1}) o C_e(S^{n-1}) \quad R(f)(\theta) = \int_{S^{n-1} \cap \theta^{\perp}} f(\xi) d\sigma_{\theta^{\perp}}(\xi)$$

$$R^*: \mathcal{M}_e(S^{n-1}) \to \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R^*(d\mu) = \int_{S^{n-1}} R(g) d\mu$$

Easy to see that $R^*(g) = R(g)$, i.e. self-adjoint. R is injective and (by duality) onto a dense subset.

Recall: K int-body of L iff $\rho_K(\theta) = \text{Vol}_{n-1} (L \cap \theta^{\perp}) \quad \forall \theta \in S^{n-1}$.

Alternative Definition

$$\frac{K \text{ int-body of } L}{K \text{ intersection-body iff } \rho_K = c_n R(\rho_L^{n-1}) = R^*(g) \;,\; g \in C_{e,+}(S^{n-1}).$$

Notation: \mathcal{I}^n = class of intersection bodies in \mathbb{R}^n .

k-Generalized BP Problem

k-Generalized BP Problem (Zhang, 1996)

Let K, L be convex symmetric bodies in \mathbb{R}^n , fix $1 \le k \le n-1$.

$$\text{Assume} \ \forall E \in G^n_{n-\textbf{k}} \ \text{Vol}_{n-\textbf{k}} \left(K \cap E \right) \leq \text{Vol}_{n-\textbf{k}} \left(L \cap E \right).$$

Does it follow that Vol_n

$$Vol_n(K) \leq Vol_n(L)$$
 ?

Zhang: Answer to k-generalized BP-problem in \mathbb{R}^n is positive **iff** every symmetric convex body in \mathbb{R}^n is a "generalized int-body" called k-BP body (\mathcal{BP}_k^n) .

Bourgain & Zhang (1998), Koldobsky (2000): negative for $1 \le k \le n-4$.

true for k = n - 1 (trivially).

open for $n \ge 5$, k = n - 3, n - 2; *low-dim BP problem*.

k-Generalized BP Problem

k-Generalized BP Problem (Zhang, 1996)

Let K, L be convex symmetric bodies in \mathbb{R}^n , fix $1 \le k \le n-1$.

$$\text{Assume} \ \forall E \in G^n_{n-{\color{red}k}} \ \text{Vol}_{n-{\color{red}k}} \left(K \cap E \right) \leq \text{Vol}_{n-{\color{red}k}} \left(L \cap E \right).$$

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

Zhang: Answer to k-generalized BP-problem in \mathbb{R}^n is positive **iff** every symmetric convex body in \mathbb{R}^n is a "generalized int-body" called k-BP body (\mathcal{BP}_k^n).

Bourgain & Zhang (1998), Koldobsky (2000): negative for $1 \le k \le n-4$. true for k=n-1 (trivially). **open** for $n \ge 5$, k=n-3, n-2; *low-dim BP problem*.

k-Generalized BP Problem

k-Generalized BP Problem (Zhang, 1996)

Let K, L be convex symmetric bodies in \mathbb{R}^n , fix $1 \le k \le n-1$.

$$\text{Assume} \ \forall E \in G^n_{n-{\color{red}k}} \ \text{Vol}_{n-{\color{red}k}} \left(K \cap E \right) \leq \text{Vol}_{n-{\color{red}k}} \left(L \cap E \right).$$

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

Zhang: Answer to k-generalized BP-problem in \mathbb{R}^n is positive **iff** every symmetric convex body in \mathbb{R}^n is a "generalized int-body" called k-BP body (\mathcal{BP}_k^n).

Bourgain & Zhang (1998), Koldobsky (2000): negative for $1 \le k \le n-4$.

true for k = n - 1 (trivially).

open for $n \ge 5$, k = n - 3, n - 2; *low-dim BP problem*.

Denote d = n - k. Low-Dim BP Problem: $n \ge 5$, d = 2,3.

Assume $\forall E \in G_d^n$ $\operatorname{Vol}_d(K \cap E) \leq \operatorname{Vol}_d(L \cap E)$. Does it follow that $\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$?

- Zhang (96): d = 2, 3; any L; K convex body of revolution, i.e. invariant under O(n-1) < O(n).
- Generalized by Rubin (07) to K with more general axial symmetries invariant under $O(m) \times O(n-m)$. Similar result by Koldobsky-König-Zymonopoulou.
- Bourgain & Zhang (98): d = 2; L Ball; K any small convex perturbation of Ball.
- Generalized by M. (05) to d = 2,3; any L; K any small perturbation of Ball, to an extent depending on its curvature.

Denote d = n - k. Low-Dim BP Problem: $n \ge 5$, d = 2,3.

Assume $\forall E \in G_{\mathbf{d}}^n \ \operatorname{Vol}_{\mathbf{d}}(K \cap E) \leq \operatorname{Vol}_{\mathbf{d}}(L \cap E)$. Does it follow that $\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L)$?

- Zhang (96): d = 2,3; any L; K convex body of revolution,
 i.e. invariant under O(n − 1) < O(n).
- Generalized by Rubin (07) to K with more general axial symmetries invariant under $O(m) \times O(n-m)$. Similar result by Koldobsky-König-Zymonopoulou.
- Bourgain & Zhang (98): d = 2; L Ball; K any small convex perturbation of Ball.
- Generalized by M. (05) to d = 2,3; any L; K any small perturbation of Ball, to an extent depending on its curvature.

Denote d = n - k. Low-Dim BP Problem: $n \ge 5$, d = 2,3.

Assume
$$\forall E \in G_d^n$$
 $\operatorname{Vol}_d(K \cap E) \leq \operatorname{Vol}_d(L \cap E)$.
Does it follow that $\operatorname{Vol}_n(K) < \operatorname{Vol}_n(L)$?

- Zhang (96): d = 2,3; any L; K convex body of revolution,
 i.e. invariant under O(n − 1) < O(n).
- Generalized by Rubin (07) to K with more general axial symmetries invariant under $O(m) \times O(n-m)$. Similar result by Koldobsky-König-Zymonopoulou.
- Bourgain & Zhang (98): d = 2; L Ball; K any small convex perturbation of Ball.
- Generalized by M. (05) to d = 2,3; any L; K any small perturbation of Ball, to an extent depending on its curvature.

Denote d = n - k. Low-Dim BP Problem: $n \ge 5$, d = 2,3.

Assume
$$\forall E \in G_d^n \ \text{Vol}_d(K \cap E) \leq \text{Vol}_d(L \cap E)$$
.

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

- Thang (96): d = 2,3; any L; K convex body of revolution,
 i.e. invariant under O(n − 1) < O(n).
- Generalized by Rubin (07) to K with more general axial symmetries invariant under $O(m) \times O(n-m)$. Similar result by Koldobsky-König-Zymonopoulou.
- Bourgain & Zhang (98): d = 2; L Ball; K any small convex perturbation of Ball.
- Generalized by M. (05) to d = 2, 3; any L; K any small perturbation of Ball, to an extent depending on its curvature.

Denote d = n - k. Low-Dim BP Problem: $n \ge 5$, d = 2,3.

Assume $\forall E \in G_d^n \text{ Vol}_d(K \cap E) \leq \text{Vol}_d(L \cap E)$.

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

- Zhang (96): d = 2,3; any L; K convex body of revolution,
 i.e. invariant under O(n − 1) < O(n).
- Generalized by Rubin (07) to K with more general axial symmetries invariant under $O(m) \times O(n-m)$. Similar result by Koldobsky-König-Zymonopoulou.
- Bourgain & Zhang (98): d = 2; L Ball; K any small convex perturbation of Ball.
- Generalized by M. (05) to d = 2,3; any L; K any small perturbation of Ball, to an extent depending on its curvature.

Spherical *m*-dim Radon Transform:

$$egin{aligned} R_m : C_e(S^{n-1}) &
ightarrow C(G_m^n) & R_m(f)(E) = \int_{S^{n-1}\cap E} f(\xi) d\sigma_E(\xi) \ R_m^* : \mathcal{M}(G_m^n) &
ightarrow \mathcal{M}_e(S^{n-1}) & \int_{S^{n-1}} g R_m^*(d\mu) = \int_{G_m^n} R_m(g) d\mu \end{aligned}$$

More concretely:

$$R_m^*(g)(\theta) = \int_{\theta \in E \in G_m^n} g(E) dE.$$

$$K \in \mathcal{I}^n \iff \rho_K = R^*(d\mu') \qquad \mu' \in \mathcal{M}_{e,+}(S^{n-1})$$

= $R_{n-1}^*(d\mu) \qquad \mu \in \mathcal{M}_+(G_{n-1}^n)$

Definition of BPT (Zhang)

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

Spherical *m*-dim Radon Transform:

$$R_m: C_e(S^{n-1}) \to C(G_m^n) \quad R_m(f)(E) = \int_{S^{n-1} \cap E} f(\xi) d\sigma_E(\xi)$$

$$R_m^*: \mathcal{M}(G_m^n) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R_m^*(d\mu) = \int_{G_m^n} R_m(g) d\mu$$

More concretely:

$$R_m^*(g)(\theta) = \int_{\theta \in E \in G_m^n} g(E) dE.$$

$$K \in \mathcal{I}^n \iff \rho_K = R^*(d\mu') \qquad \mu' \in \mathcal{M}_{e,+}(S^{n-1})$$

= $R^*_{n-1}(d\mu) \qquad \mu \in \mathcal{M}_+(G^n_{n-1})$

Definition of BP (Zhang)

$$K \in \mathcal{BP}_{k}^{n} \Longleftrightarrow \rho_{K}^{k} = R_{n-k}^{*}(d\mu) \quad \mu \in \mathcal{M}_{+}(G_{n-k}^{n})$$

Spherical *m*-dim Radon Transform:

$$R_m: C_e(S^{n-1}) \to C(G_m^n) \quad R_m(f)(E) = \int_{S^{n-1} \cap E} f(\xi) d\sigma_E(\xi)$$

$$R_m^*: \mathcal{M}(G_m^n) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R_m^*(d\mu) = \int_{G_m^n} R_m(g) d\mu$$

More concretely:

$$R_m^*(g)(\theta) = \int_{\theta \in E \in G_m^n} g(E) dE.$$

$$K \in \mathcal{I}^n \iff \rho_K = R^*(d\mu') \qquad \mu' \in \mathcal{M}_{e,+}(S^{n-1}) = R^*_{n-1}(d\mu) \qquad \mu \in \mathcal{M}_+(G^n_{n-1})$$

Definition of ### (Zhang

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

Spherical *m*-dim Radon Transform:

$$R_m: C_e(S^{n-1}) o C(G_m^n) \quad R_m(f)(E) = \int_{S^{n-1} \cap E} f(\xi) d\sigma_E(\xi)$$
 $R_m^*: \mathcal{M}(G_m^n) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R_m^* (d\mu) = \int_{G^n} R_m(g) d\mu$

More concretely:

$$R_m^*(g)(\theta) = \int_{\theta \in E \in G_m^n} g(E) dE.$$

$$K \in \mathcal{I}^n \iff \rho_K = R^*(d\mu') \qquad \mu' \in \mathcal{M}_{e,+}(S^{n-1}) = R^*_{n-1}(d\mu) \qquad \mu \in \mathcal{M}_+(G^n_{n-1})$$

Definition of BP_k^n (Zhang)

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

Spherical *m*-dim Radon Transform:

$$R_m: C_e(S^{n-1}) \to C(G_m^n) \quad R_m(f)(E) = \int_{S^{n-1} \cap E} f(\xi) d\sigma_E(\xi)$$

$$R_m^*: \mathcal{M}(G_m^n) o \mathcal{M}_e(S^{n-1}) \quad \int_{S^{n-1}} g R_m^*(d\mu) = \int_{G_m^n} R_m(g) d\mu$$

More concretely:

$$R_m^*(g)(\theta) = \int_{\theta \in E \in G_m^n} g(E) dE.$$

Remark

 R_m is injective but its image is **not dense** in $C(G_m^n)$ for 1 < m < n - 1, so Ker $R_m^* \neq 0$ in this range.

Definition of BP_k^n (Zhang)

$$K \in \mathcal{BP}_{k}^{n} \Longleftrightarrow \rho_{K}^{k} = R_{n-k}^{*}(d\mu) \quad \mu \in \mathcal{M}_{+}(G_{n-k}^{n})$$

k-Generalized BP problem and \mathcal{BP}_k^n

k-Generalized BP Problem (Zhang, 1996)

Let K, L be convex symmetric bodies in \mathbb{R}^n , fix $1 \le k \le n-1$.

Assume
$$\forall E \in G_{n-k}^n \text{ Vol}_{n-k}(K \cap E) \leq \text{Vol}_{n-k}(L \cap E)$$
.

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

Zhang: Answer to k-generalized BP-problem in \mathbb{R}^n is positive **iff** every symmetric convex body in \mathbb{R}^n is in \mathcal{BP}_k^n . More precisely:

Thm (Zhang 1996, generalizing Lutwak,Gardner for k=1)

- If $K \in \mathcal{BP}_k^n$ then **positive** answer to k-generalized BP-problem in \mathbb{R}^n for any star-body L.
- If $L \notin \mathcal{BP}_k^n$, L is sufficiently smooth and strictly convex, then there exists a convex perturbation K of L for which **negative** answer to k-generalized BP-problem.

k-Generalized BP problem and \mathcal{BP}_k^n

k-Generalized BP Problem (Zhang, 1996)

Let K, L be convex symmetric bodies in \mathbb{R}^n , fix $1 \le k \le n-1$.

Assume
$$\forall E \in G_{n-k}^n \text{ Vol}_{n-k}(K \cap E) \leq \text{Vol}_{n-k}(L \cap E)$$
.

Does it follow that $Vol_n(K) \leq Vol_n(L)$?

Zhang: Answer to k-generalized BP-problem in \mathbb{R}^n is positive **iff** every symmetric convex body in \mathbb{R}^n is in \mathcal{BP}_k^n . More precisely:

Thm (Zhang 1996, generalizing Lutwak,Gardner for k=1)

- If $K \in \mathcal{BP}_k^n$ then **positive** answer to k-generalized BP-problem in \mathbb{R}^n for any star-body L.
- If $L \notin \mathcal{BP}_k^n$, L is sufficiently smooth and strictly convex, then there exists a convex perturbation K of L for which **negative** answer to k-generalized BP-problem.

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\frac{\operatorname{Vol}(K)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma$$

$$= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} (K \cap E) d\mu(E)$$

$$\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} (L \cap E) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu$$

$$= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}}$$

$$= \left(\frac{\operatorname{Vol}(L)}{c_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}(K)}{c_{n}}\right)^{\frac{k}{n}}$$

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\frac{\operatorname{Vol}(K)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma$$

$$= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} (K \cap E) d\mu(E)$$

$$\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} (L \cap E) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu$$

$$= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}}$$

$$= \left(\frac{\operatorname{Vol}(L)}{c_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}(K)}{c_{n}}\right)^{\frac{k}{n}}$$

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\begin{split} &\frac{\operatorname{Vol}\left(K\right)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma \\ &= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(K \cap E\right) d\mu(E) \\ &\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(L \cap E\right) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu \\ &= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}} \\ &= \left(\frac{\operatorname{Vol}\left(L\right)}{C_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}\left(K\right)}{C_{n}}\right)^{\frac{k}{n}} \end{split}$$

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\begin{split} &\frac{\operatorname{Vol}\left(K\right)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma \\ &= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(K \cap E\right) d\mu(E) \\ &\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(L \cap E\right) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu \\ &= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}} \\ &= \left(\frac{\operatorname{Vol}\left(L\right)}{G_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}\left(K\right)}{G_{n}}\right)^{\frac{k}{n}} \end{split}$$

We are given $Vol_{n-k}(K \cap E) \leq Vol_{n-k}(L \cap E) \ \forall E \in G^n_{n-k}$ and:

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\begin{split} &\frac{\operatorname{Vol}\left(K\right)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma \\ &= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(K \cap E\right) d\mu(E) \\ &\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(L \cap E\right) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu \\ &= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}} \\ &= \left(\frac{\operatorname{Vol}\left(L\right)}{G_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}\left(K\right)}{G_{n}}\right)^{\frac{k}{n}} \end{split}$$

$$K \in \mathcal{BP}_k^n \iff \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

$$\begin{split} &\frac{\operatorname{Vol}\left(K\right)}{c_{n}} = \int_{S^{n-1}} \rho_{K}^{n} d\sigma = \int_{S^{n-1}} \rho_{K}^{n-k} \rho_{K}^{k} d\sigma \\ &= \int_{G_{n-k}^{n}} R_{n-k} (\rho_{K}^{n-k}) d\mu = c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(K \cap E\right) d\mu(E) \\ &\leq c_{n-k} \int_{G_{n-k}^{n}} \operatorname{Vol}_{n-k} \left(L \cap E\right) d\mu(E) = \int_{G_{n-k}^{n}} R_{n-k} (\rho_{L}^{n-k}) d\mu \\ &= \int_{S^{n-1}} \rho_{L}^{n-k} \rho_{K}^{k} d\sigma \leq \left(\int_{S^{n-1}} \rho_{L}^{n} d\sigma\right)^{\frac{n-k}{n}} \left(\int_{S^{n-1}} \rho_{K}^{n} d\sigma\right)^{\frac{k}{n}} \\ &= \left(\frac{\operatorname{Vol}\left(L\right)}{C_{n}}\right)^{\frac{n-k}{n}} \left(\frac{\operatorname{Vol}\left(K\right)}{C_{n}}\right)^{\frac{k}{n}} \end{split}$$

\mathcal{I}_k^n - second generalization of \mathcal{I}^n by Koldobsky

Recall:

$$K$$
 int-body of $L \Longleftrightarrow \rho_K(\theta) = \operatorname{Vol}_{n-1}\left(L \cap \theta^\perp\right) \ \forall \theta \in S^{n-1}$

$$\iff \frac{1}{2}\operatorname{Vol}_1\left(K \cap E^\perp\right) = \operatorname{Vol}_{n-1}\left(L \cap E\right) \ \forall E \in G^n_{n-1}$$

Definition of "" (Koldobsky)

K k-int-body of $L \iff$

$$\mathsf{Vol}_{\pmb{k}}\left(K\cap E^{\perp}
ight) = \mathsf{Vol}_{\pmb{n}-\pmb{k}}\left(L\cap E
ight) \ \ orall E \in G^n_{\pmb{n}-\pmb{k}}$$

K k-int-body (\mathcal{I}_{k}^{n}) if limit in the radial-metric.

\mathcal{I}_k^n - second generalization of \mathcal{I}^n by Koldobsky

Recall:

$$K$$
 int-body of $L \Longleftrightarrow \rho_K(\theta) = \operatorname{Vol}_{n-1}\left(L \cap \theta^\perp\right) \ \forall \theta \in S^{n-1}$

$$\iff \frac{1}{2}\operatorname{Vol}_1\left(K \cap E^\perp\right) = \operatorname{Vol}_{n-1}\left(L \cap E\right) \ \forall E \in G^n_{n-1}$$

Definition of T (Koldobsky)

K k-int-body of $L \iff$

$$\mathsf{Vol}_{\pmb{k}}\left(\pmb{K}\cap\pmb{E}^\perp
ight)=\mathsf{Vol}_{\pmb{n}-\pmb{k}}\left(\pmb{L}\cap\pmb{E}
ight) \ \ orall \pmb{E}\in\pmb{G}^n_{\pmb{n}-\pmb{k}}$$

K k-int-body (\mathcal{I}_{k}^{n}) if limit in the radial-metric.

\mathcal{I}_k^n - second generalization of \mathcal{I}^n by Koldobsky

Definition of T (Koldobsky)

K k-int-body of $L \iff$

$$\mathsf{Vol}_{\pmb{k}}\left(\pmb{K}\cap\pmb{E}^\perp
ight)=\mathsf{Vol}_{\pmb{n}-\pmb{k}}\left(\pmb{L}\cap\pmb{E}
ight) \ \ orall \pmb{E}\in\pmb{G}^n_{\pmb{n}-\pmb{k}}$$

K k-int-body (\mathcal{I}_{k}^{n}) if limit in the radial-metric.

- \mathcal{I}_k^n played important role in unified solution to BP-problem (Gardner Koldobsky Schlumprecht 99).
- In some sense an extension of L_p^n to L_{-k}^n (Koldobsky).
- Natural to describe using Fourier Transforms of homogeneous distributions (Koldobsky):

$$K \in \mathcal{I}_{k}^{n} \iff (\|\cdot\|_{K}^{-k})^{\wedge} \geq 0$$

\mathcal{I}_k^n - second generalization of \mathcal{I}^n by Koldobsky

Definition of T_k^n (Koldobsky)

K k-int-body of $L \iff$

$$\mathsf{Vol}_{\pmb{k}}\left(\pmb{K}\cap\pmb{E}^\perp
ight)=\mathsf{Vol}_{\pmb{n}-\pmb{k}}\left(\pmb{L}\cap\pmb{E}
ight) \ \ orall \pmb{E}\in\pmb{G}^n_{\pmb{n}-\pmb{k}}$$

K k-int-body (\mathcal{I}_{k}^{n}) if limit in the radial-metric.

- \$\mathcal{I}_k^n\$ played important role in unified solution to BP-problem
 (Gardner Koldobsky Schlumprecht 99).
- In some sense an extension of L_p^n to L_{-k}^n (Koldobsky).
- Natural to describe using Fourier Transforms of homogeneous distributions (Koldobsky):

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Given $f \in C(S^{n-1})$, p > -n, denote its (locally integrable) homogeneous extension to $\mathbb{R}^n \setminus \{0\}$ of degree p:

$$E_p(f)(r\theta) = f(\theta)r^p \quad r > 0, \theta \in S^{n-1},$$

 $E_p^{\wedge}(f) = \text{Fourier Transform of } E_p(f) \text{ as distribution,}$ i.e. for any test function ϕ :

$$(E_{\rho}^{\wedge}(f),\phi)=(E_{\rho}(f),\phi^{\wedge})=\int_{\mathbb{R}^{n}}E_{\rho}(f)\phi^{\wedge}$$

Facts

- $E_p^{\wedge}(f)$ is homogeneous distribution of degree -n-p.
- In general, $E_p^{\wedge}(f)$ is not a locally integrable function nor even a measure on \mathbb{R}^n .
- If $-n and <math>f \in C^{\infty}(S^{n-1})$ then $E_p^{\wedge}(f) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and abusing notation $E_p^{\wedge}(f) \in C^{\infty}(S^{n-1})$.

Given $f \in C(S^{n-1})$, p > -n, denote its (locally integrable) homogeneous extension to $\mathbb{R}^n \setminus \{0\}$ of degree p:

$$E_p(f)(r\theta) = f(\theta)r^p \quad r > 0, \theta \in S^{n-1},$$

 $E_p^{\wedge}(f) = \text{Fourier Transform of } E_p(f) \text{ as distribution,}$ i.e. for any test function ϕ :

$$(E_{\rho}^{\wedge}(f),\phi)=(E_{\rho}(f),\phi^{\wedge})=\int_{\mathbb{R}^{n}}E_{\rho}(f)\phi^{\wedge}$$

Facts

- $E_p^{\wedge}(f)$ is homogeneous distribution of degree -n-p.
- In general, $E_p^{\wedge}(f)$ is not a locally integrable function nor even a measure on \mathbb{R}^n .
- If $-n and <math>f \in C^{\infty}(S^{n-1})$ then $E_p^{\wedge}(f) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and abusing notation $E_p^{\wedge}(f) \in C^{\infty}(S^{n-1})$.

Given $f \in C(S^{n-1})$, p > -n, denote its (locally integrable) homogeneous extension to $\mathbb{R}^n \setminus \{0\}$ of degree p:

$$E_p(f)(r\theta) = f(\theta)r^p \quad r > 0, \theta \in S^{n-1},$$

 $E_p^{\wedge}(f) = \text{Fourier Transform of } E_p(f) \text{ as distribution,}$ i.e. for any test function ϕ :

$$(E_{\rho}^{\wedge}(f),\phi)=(E_{\rho}(f),\phi^{\wedge})=\int_{\mathbb{R}^{n}}E_{\rho}(f)\phi^{\wedge}$$

Facts:

- $E_p^{\wedge}(f)$ is homogeneous distribution of degree -n-p.
- In general, $E_p^{\wedge}(f)$ is not a locally integrable function nor even a measure on \mathbb{R}^n .
- If $-n and <math>f \in C^{\infty}(S^{n-1})$ then $E_p^{\wedge}(f) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and abusing notation $E_p^{\wedge}(f) \in C^{\infty}(S^{n-1})$.

Given $f \in C(S^{n-1})$, p > -n, denote its (locally integrable) homogeneous extension to $\mathbb{R}^n \setminus \{0\}$ of degree p:

$$E_p(f)(r\theta) = f(\theta)r^p \quad r > 0, \theta \in S^{n-1},$$

 $E_p^{\wedge}(f) = \text{Fourier Transform of } E_p(f) \text{ as distribution,}$ i.e. for any test function ϕ :

$$(E_{\rho}^{\wedge}(f),\phi)=(E_{\rho}(f),\phi^{\wedge})=\int_{\mathbb{R}^{n}}E_{\rho}(f)\phi^{\wedge}$$

Facts:

- $E_p^{\wedge}(f)$ is homogeneous distribution of degree -n-p.
- In general, $E_p^{\wedge}(f)$ is not a locally integrable function nor even a measure on \mathbb{R}^n .
- If $-n and <math>f \in C^{\infty}(S^{n-1})$ then $E_p^{\wedge}(f) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and abusing notation $E_p^{\wedge}(f) \in C^{\infty}(S^{n-1})$.

Given $f \in C(S^{n-1})$, p > -n, denote its (locally integrable) homogeneous extension to $\mathbb{R}^n \setminus \{0\}$ of degree p:

$$E_p(f)(r\theta) = f(\theta)r^p \quad r > 0, \theta \in S^{n-1},$$

 $E_p^{\wedge}(f) = \text{Fourier Transform of } E_p(f) \text{ as distribution,}$ i.e. for any test function ϕ :

$$(E_{\rho}^{\wedge}(f),\phi)=(E_{\rho}(f),\phi^{\wedge})=\int_{\mathbb{R}^{n}}E_{\rho}(f)\phi^{\wedge}$$

Facts:

- $E_p^{\wedge}(f)$ is homogeneous distribution of degree -n-p.
- In general, $E_p^{\wedge}(f)$ is not a locally integrable function nor even a measure on \mathbb{R}^n .
- If $-n and <math>f \in C^{\infty}(S^{n-1})$ then $E_p^{\wedge}(f) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$, and abusing notation $E_p^{\wedge}(f) \in C^{\infty}(S^{n-1})$.

Some Properties of the Fourier Transform

Thm (Koldobsky)

• Parseval Formula: for any nice f, g, 0 < q < n,

$$\int_{S^{n-1}} E_{-q}^{\wedge}(f)(\theta)g(\theta)d\sigma(\theta) = \int_{S^{n-1}} f(\theta)E_{-q}^{\wedge}(g)(\theta)d\sigma(\theta),$$

so
$$E_{-q}^{\wedge}=(E_{-q}^{\wedge})^*$$
 is "self-adjoint". Prove!

Integration on Perpendicular subspaces: For any nice f,

$$\int_{S^{n-1}\cap H^{\perp}}fd\sigma_{H^{\perp}}=d_{n,k}\int_{S^{n-1}\cap H}E_{-k}^{\wedge}(f)d\sigma_{H} \quad \forall H\in G_{n-k}^{n},$$

SO:

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

where: $I: C(G_k^n) \rightarrow C(G_{n-k}^n)$ $I(f)(H) = f(H^{\perp})$.

Some Properties of the Fourier Transform

Thm (Koldobsky)

• Parseval Formula: for any nice f, g, 0 < q < n,

$$\int_{S^{n-1}} E_{-q}^{\wedge}(f)(\theta)g(\theta)d\sigma(\theta) = \int_{S^{n-1}} f(\theta)E_{-q}^{\wedge}(g)(\theta)d\sigma(\theta),$$

so
$$E_{-q}^{\wedge} = (E_{-q}^{\wedge})^*$$
 is "self-adjoint". Prove!

Integration on Perpendicular subspaces: For any nice f,

$$\int_{S^{n-1}\cap H^{\perp}} f d\sigma_{H^{\perp}} = d_{n,k} \int_{S^{n-1}\cap H} E_{-k}^{\wedge}(f) d\sigma_{H} \quad \forall H \in G_{n-k}^{n},$$

so:

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

where:
$$I: C(G_k^n) \to C(G_{n-k}^n)$$
 $I(f)(H) = f(H^{\perp})$.

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Remarks:

- *D* is non-negative distribution if $(D, \phi) \ge 0$ for all $\phi \ge 0$.
- A non-negative (tempered) distribution is a (tempered) non-negative Borel measure.
- R.H.S. makes sense for non-integer 0 < k < n.

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n}$$
 " \iff " $\operatorname{Vol}_{k}\left(K \cap E^{\perp}\right) = \operatorname{Vol}_{n-k}\left(L \cap E\right) \ \forall E \in G_{n-k}^{n}$
 $\iff c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_{K^{\pm}}^{-k})^{\wedge})_{\pm k} = 290$$

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n}$$
 " \iff " $\operatorname{Vol}_{k}\left(K \cap E^{\perp}\right) = \operatorname{Vol}_{n-k}\left(L \cap E\right) \ \forall E \in G_{n-k}^{n}$
 $\iff c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_K^{-k})^{\wedge})$$

$$K\in\mathcal{I}_k^n \ "\Longleftrightarrow" \ (\|\cdot\|_K^{-k})^\wedge=\frac{c_{n-k}}{c_kd_{n,k}}\rho_L^{n-k}\geq 0.$$

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n}$$
 " \iff " $\operatorname{Vol}_{k}\left(K \cap E^{\perp}\right) = \operatorname{Vol}_{n-k}\left(L \cap E\right) \ \forall E \in G_{n-k}^{n}$
 $\iff c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_K^{-k})^{\wedge})$$

$$K\in \mathcal{I}_k^n \text{ "} \Longleftrightarrow \text{"} (\|\cdot\|_K^{-k})^\wedge = \frac{c_{n-k}}{c_k d_{n,k}} \rho_L^{n-k} \geq 0.$$

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n} \quad \text{``} \iff \text{``} \quad \mathsf{Vol}_{k}\left(K \cap E^{\perp}\right) = \mathsf{Vol}_{n-k}\left(L \cap E\right) \quad \forall E \in G_{n-k}^{n}$$
 $\iff \quad c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_K^{-k})^{\wedge})$$

$$K\in\mathcal{I}_k^n \text{ "}\Longleftrightarrow\text{" }(\|\cdot\|_K^{-k})^\wedge=\frac{c_{n-k}}{c_kd_{n,k}}\rho_L^{n-k}\geq 0.$$

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n} \quad \text{``} \iff \text{``} \quad \mathsf{Vol}_{k}\left(K \cap E^{\perp}\right) = \mathsf{Vol}_{n-k}\left(L \cap E\right) \quad \forall E \in G_{n-k}^{n}$$
 $\iff \quad c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_K^{-k})^{\wedge})$$

$$K\in \mathcal{I}_k^n \text{ "} \Longleftrightarrow \text{"} (\|\cdot\|_K^{-k})^\wedge = \frac{c_{n-k}}{c_k d_{n,k}} \rho_L^{n-k} \geq 0.$$

Thm (Koldobsky)

$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Idea of Proof:

$$K \in \mathcal{I}_{k}^{n}$$
 " \iff " $\operatorname{Vol}_{k}\left(K \cap E^{\perp}\right) = \operatorname{Vol}_{n-k}\left(L \cap E\right) \ \forall E \in G_{n-k}^{n}$
 $\iff c_{k}(I \circ R_{k})(\rho_{K}^{k}) = c_{n-k}R_{n-k}(\rho_{L}^{n-k})$

On the other hand, by integration on perpendicular subspaces:

$$(I \circ R_k)(\rho_K^k) = (I \circ R_k)(\|\cdot\|_K^{-k}) = d_{n,k}R_{n-k}((\|\cdot\|_K^{-k})^{\wedge})$$

$$K\in \mathcal{I}^n_k \ ``\Longleftrightarrow" \ (\lVert \cdot \rVert_K^{-k})^\wedge = \frac{c_{n-k}}{c_k d_{n,k}} \rho_L^{n-k} \geq 0.$$

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Proof based on the formula $(q \ge 0)$

$$(\|\cdot\|_K^{-n+1+q})^{\wedge}(\xi) = \frac{A_{K,\xi}^{(q)}(0)}{a_{n,q}}$$

 $A_{K,\xi}(t) = \operatorname{Vol}_{n-1}(K \cap \{t\xi + \xi^{\perp}\}), A_{K,\xi}^{(q)}$ its fractional derivative.

- When q ≤ 2, this depends only on the usual first two derivatives of A_{K,ξ}.
- When K is (symmetric) convex, by Brunn's Thm $A_{K,\xi}$ is (even) concave function, so $A_{K,\xi}^{(2)}(0) \leq 0$, $A_{K,\xi}^{(1)}(0) = 0$, $A_{K,\xi}^{(0)}(0) \geq 0$, hence $(\|\cdot\|_K^{-p})^{\wedge} \geq 0$ for $p \geq n-3$.
- Convexity does not control higher order derivatives, and indeed for s > 2, $\ell_s^n \notin \mathcal{I}_p^n$ for p < n-3. Same for cylinders

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Proof based on the formula $(q \ge 0)$:

$$(\|\cdot\|_{\mathcal{K}}^{-n+1+q})^{\wedge}(\xi) = \frac{A_{K,\xi}^{(q)}(0)}{a_{n,q}}$$

 $A_{K,\xi}(t) = \operatorname{Vol}_{n-1}(K \cap \{t\xi + \xi^{\perp}\}), A_{K,\xi}^{(q)}$ its fractional derivative.

- When q ≤ 2, this depends only on the usual first two derivatives of A_{K,ξ}.
- When K is (symmetric) convex, by Brunn's Thm $A_{K,\xi}$ is (even) concave function, so $A_{K,\xi}^{(2)}(0) \le 0$, $A_{K,\xi}^{(1)}(0) = 0$, $A_{K,\xi}^{(0)}(0) \ge 0$, hence $(\|\cdot\|_K^{-p})^{\wedge} \ge 0$ for $p \ge n-3$.
- Convexity does not control higher order derivatives, and indeed for s > 2, $\ell_s^n \notin \mathcal{I}_p^n$ for p < n-3. Same for cylinders

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Proof based on the formula $(q \ge 0)$:

$$(\|\cdot\|_{\mathcal{K}}^{-n+1+q})^{\wedge}(\xi) = \frac{A_{\mathcal{K},\xi}^{(q)}(0)}{a_{n,q}}$$

 $A_{K,\xi}(t) = \operatorname{Vol}_{n-1} (K \cap \{t\xi + \xi^{\perp}\}), A_{K,\xi}^{(q)}$ its fractional derivative.

- When q ≤ 2, this depends only on the usual first two derivatives of A_{K,ξ}.
- When K is (symmetric) convex, by Brunn's Thm $A_{K,\xi}$ is (even) concave function, so $A_{K,\xi}^{(2)}(0) \leq 0$, $A_{K,\xi}^{(1)}(0) = 0$, $A_{K,\xi}^{(0)}(0) \geq 0$, hence $(\|\cdot\|_K^{-p})^{\wedge} \geq 0$ for $p \geq n-3$.
- Convexity does not control higher order derivatives, and indeed for s > 2, $\ell_s^n \notin \mathcal{I}_p^n$ for p < n-3. Same for cylinders.

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Proof based on the formula $(q \ge 0)$:

$$(\|\cdot\|_{\mathcal{K}}^{-n+1+q})^{\wedge}(\xi) = \frac{A_{\mathcal{K},\xi}^{(q)}(0)}{a_{n,q}}$$

 $A_{K,\xi}(t) = \operatorname{Vol}_{n-1}(K \cap \{t\xi + \xi^{\perp}\}), A_{K,\xi}^{(q)}$ its fractional derivative.

- When q ≤ 2, this depends only on the usual first two derivatives of A_{K,ξ}.
- When K is (symmetric) convex, by Brunn's Thm $A_{K,\xi}$ is (even) concave function, so $A_{K,\xi}^{(2)}(0) \le 0$, $A_{K,\xi}^{(1)}(0) = 0$, $A_{K,\xi}^{(0)}(0) \ge 0$, hence $(\|\cdot\|_K^{-p})^{\wedge} \ge 0$ for $p \ge n-3$.
- Convexity does not control higher order derivatives, and indeed for s > 2, $\ell_s^n \notin \mathcal{I}_p^n$ for p < n 3. Same for cylinders.

Two generalizations of \mathcal{I}^n :

•
$$K \in \mathcal{BP}_k^n \iff \|\cdot\|_K^{-k} = \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

•
$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Thm (Koldobsky 00): $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$

Proof (M. 05):

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

Dualizing:

$$(I \circ R_k)^* = d_{n,k}(E_{-k}^{\wedge})^* \circ R_{n-k}^* = d_{n,k}E_{-k}^{\wedge} \circ R_{n-k}^*$$

So if
$$K \in \mathcal{BP}_k^n$$
, i.e. $\|\cdot\|_K^{-k} = R_{n-k}^*(d\mu), \, \mu \ge 0$,

$$(\|\cdot\|_K^{-k})^{\wedge} = E_{-k}^{\wedge} \circ R_{n-k}^*(d\mu) = d_{n,k}^{-1}(I \circ R_k)^*(d\mu) \ge 0,$$

hence $K \in \mathcal{I}_k^n$.

Two generalizations of \mathcal{I}^n :

•
$$K \in \mathcal{BP}_k^n \iff \|\cdot\|_K^{-k} = \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

•
$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Thm (Koldobsky 00): $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$.

Proof (M. 05):

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

Dualizing:

$$(I\circ R_k)^*=d_{n,k}(E_{-k}^\wedge)^*\circ R_{n-k}^*=d_{n,k}E_{-k}^\wedge\circ R_{n-k}^*$$

So if
$$K \in \mathcal{BP}_k^n$$
, i.e. $\|\cdot\|_K^{-k} = R_{n-k}^*(d\mu), \, \mu \geq 0$,

$$(\|\cdot\|_K^{-k})^{\wedge} = E_{-k}^{\wedge} \circ R_{n-k}^*(d\mu) = d_{n,k}^{-1}(I \circ R_k)^*(d\mu) \ge 0,$$

hence $K \in \mathcal{I}_k^n$

Two generalizations of \mathcal{I}^n :

•
$$K \in \mathcal{BP}_k^n \iff \|\cdot\|_K^{-k} = \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

•
$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Thm (Koldobsky 00): $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$.

Proof (M. 05):

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

Dualizing:

$$(I\circ R_k)^*=d_{n,k}(E_{-k}^\wedge)^*\circ R_{n-k}^*=d_{n,k}E_{-k}^\wedge\circ R_{n-k}^*$$

So if
$$K \in \mathcal{BP}_k^n$$
, i.e. $\|\cdot\|_K^{-k} = R_{n-k}^*(d\mu), \mu \ge 0$,

$$(\|\cdot\|_K^{-k})^{\wedge} = E_{-k}^{\wedge} \circ R_{n-k}^*(d\mu) = d_{n,k}^{-1}(I \circ R_k)^*(d\mu) \ge 0,$$

hence $K \in \mathcal{I}_k^n$

Two generalizations of \mathcal{I}^n :

•
$$K \in \mathcal{BP}_k^n \iff \|\cdot\|_K^{-k} = \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

•
$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Thm (Koldobsky 00): $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$.

Proof (M. 05):

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

Dualizing:

$$(I \circ R_k)^* = d_{n,k}(E_{-k}^{\wedge})^* \circ R_{n-k}^* = d_{n,k}E_{-k}^{\wedge} \circ R_{n-k}^*$$

So if
$$K \in \mathcal{BP}_k^n$$
, i.e. $\|\cdot\|_K^{-k} = R_{n-k}^*(d\mu), \, \mu \geq 0$,

$$(\|\cdot\|_K^{-k})^{\wedge} = E_{-k}^{\wedge} \circ R_{n-k}^*(d\mu) = d_{n,k}^{-1}(I \circ R_k)^*(d\mu) \ge 0,$$

hence $K \in \mathcal{I}_k^n$

Two generalizations of \mathcal{I}^n :

•
$$K \in \mathcal{BP}_k^n \iff \|\cdot\|_K^{-k} = \rho_K^k = R_{n-k}^*(d\mu) \quad \mu \in \mathcal{M}_+(G_{n-k}^n)$$

•
$$K \in \mathcal{I}_k^n \iff (\|\cdot\|_K^{-k})^{\wedge} \geq 0$$

Thm (Koldobsky 00): $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$.

Proof (M. 05):

$$I \circ R_k = d_{n,k} R_{n-k} \circ E_{-k}^{\wedge}$$

Dualizing:

$$(I \circ R_k)^* = d_{n,k}(E_{-k}^{\wedge})^* \circ R_{n-k}^* = d_{n,k}E_{-k}^{\wedge} \circ R_{n-k}^*$$

So if
$$K \in \mathcal{BP}_k^n$$
, i.e. $\|\cdot\|_K^{-k} = R_{n-k}^*(d\mu), \, \mu \geq 0$,

$$(\|\cdot\|_{K}^{-k})^{\wedge} = E_{-k}^{\wedge} \circ R_{n-k}^{*}(d\mu) = d_{n,k}^{-1}(I \circ R_{k})^{*}(d\mu) \geq 0,$$

hence $K \in \mathcal{I}_k^n$.

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Thm (Koldobsky 00)

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Cor (Bourgain-Zhang 98, Koldobsky 00)

Negative answer to k-Generalized BP problem for k < n - 3.

<u>Proof:</u> By GKS there exists a convex symmetric $K \notin \mathcal{I}_k^n$ (say ℓ_s^n , s > 2, or cylinder), and since $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$ then $K \notin \mathcal{BP}_k^n$; now conclude by Zhang's Thm.

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Thm (Koldobsky 00)

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Cor (Bourgain-Zhang 98, Koldobsky 00)

Negative answer to k-Generalized BP problem for k < n - 3.

<u>Proof:</u> By GKS there exists a convex symmetric $K \notin \mathcal{I}_k^n$ (say ℓ_s^n , s > 2, or cylinder), and since $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$ then $K \notin \mathcal{BP}_k^n$; now conclude by Zhang's Thm.

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Thm (Koldobsky 00)

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Cor (Bourgain-Zhang 98, Koldobsky 00)

Negative answer to k-Generalized BP problem for k < n - 3.

<u>Proof:</u> By GKS there exists a convex symmetric $K \notin \mathcal{I}_k^n$ (say ℓ_s^n , s > 2, or cylinder), and since $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$ then $K \notin \mathcal{BP}_k^n$; now conclude by Zhang's Thm.

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Thm (Koldobsky 00)

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Cor (Bourgain-Zhang 98, Koldobsky 00)

Negative answer to k-Generalized BP problem for k < n - 3.

Cor - Complete solution to BP problem

 $k = 1 \Longrightarrow$ Positive answer to BP problem iff $n \le 4$.

Proof: Negative part as above.

Positive part since $\mathcal{I}_1^n = \mathcal{BP}_1^n = \mathcal{I}^n$; conclude by Lutwak's Thm

Thm (Gardner-Koldobsky-Schlumprecht 99)

{Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_p^n$ iff $n-3 \le p < n$.

Thm (Koldobsky 00)

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Cor (Bourgain-Zhang 98, Koldobsky 00)

Negative answer to k-Generalized BP problem for k < n - 3.

Cor - Complete solution to BP problem

 $k = 1 \Longrightarrow$ Positive answer to BP problem iff $n \le 4$.

Proof: Negative part as above.

Positive part since $\mathcal{I}_1^n = \mathcal{BP}_1^n = \mathcal{I}^n$; conclude by Lutwak's Thm.

Equivalence of \mathcal{BP}_k^n and \mathcal{I}_k^n

• Koldobsky 00: Question - $\mathcal{BP}_k^n = \mathcal{I}_k^n$? Positive answer would imply positive answer to Low-Dim BP problem (n - k = 2, 3) (but not conversely!)

Reason:

GKS: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_k^n$ iff $k \geq n-3$. if $\mathcal{BP}_k^n = \mathcal{I}_k^n$ for k = n-3, n-2: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{BP}_{n-3}^n, \mathcal{BP}_{n-2}^n$. Zhang: implies positive answer to Low-Dim BP problem.

Conclusion

 $\mathcal{BP}_k^n = \mathcal{I}_k^n$ is an interesting question, with potential Geometric consequences.

Equivalence of \mathcal{BP}_k^n and \mathcal{I}_k^n

• Koldobsky 00: Question - $\mathcal{BP}_k^n = \mathcal{I}_k^n$? Positive answer would imply positive answer to Low-Dim BP problem (n - k = 2, 3) (but not conversely!)

Reason:

GKS: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_k^n$ iff $k \geq n-3$. if $\mathcal{BP}_k^n = \mathcal{I}_k^n$ for k = n-3, n-2: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{BP}_{n-3}^n, \mathcal{BP}_{n-2}^n$. Zhang: implies positive answer to Low-Dim BP problem.

Conclusion

 $\mathcal{BP}_k^n = \mathcal{I}_k^n$ is an interesting question, with potential Geometric consequences.

Equivalence of \mathcal{BP}_k^n and \mathcal{I}_k^n

• Koldobsky 00: Question - $\mathcal{BP}_k^n = \mathcal{I}_k^n$? Positive answer would imply positive answer to Low-Dim BP problem (n - k = 2, 3) (but not conversely!)

Reason:

GKS: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{I}_k^n$ iff $k \geq n-3$. if $\mathcal{BP}_k^n = \mathcal{I}_k^n$ for k = n-3, n-2: {Convex symmetric bodies in \mathbb{R}^n } $\subset \mathcal{BP}_{n-3}^n, \mathcal{BP}_{n-2}^n$. Zhang: implies positive answer to Low-Dim BP problem.

Conclusion

 $\mathcal{BP}_k^n=\mathcal{I}_k^n$ is an interesting question, with potential Geometric consequences.

Plan for the rest of the talk

Plan:

- Motivation why $\mathcal{BP}_k^n = \mathcal{I}_k^n$ (already know $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$).
- Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. So no Geometric consequences, but rather analytical ones.

Plan for the rest of the talk

Plan:

- Motivation why $\mathcal{BP}_k^n = \mathcal{I}_k^n$ (already know $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$).
- Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. So no Geometric consequences, but rather analytical ones.

Plan for the rest of the talk

Plan:

- Motivation why $\mathcal{BP}_k^n = \mathcal{I}_k^n$ (already know $\mathcal{BP}_k^n \subset \mathcal{I}_k^n$).
- Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. So no Geometric consequences, but rather analytical ones.

Identical Structures of $\mathcal{BP}_k^n, \mathcal{I}_k^n$

Th. (M. 05): for $C = \mathcal{BP}, \mathcal{I}$ (using different methods):

- ① C_k^n closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.
- ② $C_1^n = \mathcal{I}^n$, $C_{n-1}^n = \{\text{symmetric star-bodies in } \mathbb{R}^n\}$.
- **3** Let $K_1 \in \mathcal{C}^n_{k_1}$, $K_2 \in \mathcal{C}^n_{k_2}$ and $I = k_1 + k_2 \le n 1$. If $\rho_L^I = \rho_{K_1}^{k_1} \rho_{K_2}^{k_2}$ then $L \in \mathcal{C}^n_I$. As corollaries:
 - **1** $C_{k_1}^n \cap C_{k_2}^n \subset C_{k_1+k_2}^n$ if $k_1 + k_2 \leq n 1$.
 - 2 $C_k^n \subset C_l^n$ if k divides l (open: k < l?)
 - 3 If $K \in \mathcal{C}_k^n$ and $\rho_L = \rho_K^{k/l}$ then $L \in \mathcal{C}_l^n$ for $l \ge k$.
- If $K \in \mathcal{C}_k^n$ then $K \cap E \in \mathcal{C}_k^m$ for $E \in \mathcal{G}_m^n$ and m > k.
- (1) and (2) well-known and basically follow from defs. For $\mathcal{C}=\mathcal{I}$, (3) independently noticed by Koldobsky. For $\mathcal{C}=\mathcal{BP}$, (4) and (3-2) for k=1 were proved by Grinberg and Zhang. Function Spaces

Identical Structures of $\mathcal{BP}_k^n, \mathcal{I}_k^n$

Th. (M. 05): for $C = \mathcal{BP}, \mathcal{I}$ (using different methods):

- ① C_k^n closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.
- ② $C_1^n = \mathcal{I}^n$, $C_{n-1}^n = \{\text{symmetric star-bodies in } \mathbb{R}^n\}$.
- **3** Let $K_1 \in \mathcal{C}^n_{k_1}$, $K_2 \in \mathcal{C}^n_{k_2}$ and $I = k_1 + k_2 \le n 1$. If $\rho_L^I = \rho_{K_1}^{k_1} \rho_{K_2}^{k_2}$ then $L \in \mathcal{C}^n_I$. As corollaries:

 - 2 $C_k^n \subset C_l^n$ if k divides l (open: k < l?)
 - 3 If $K \in \mathcal{C}_k^n$ and $\rho_L = \rho_K^{k/l}$ then $L \in \mathcal{C}_l^n$ for $l \ge k$.
- If $K \in \mathcal{C}_k^n$ then $K \cap E \in \mathcal{C}_k^m$ for $E \in \mathcal{G}_m^n$ and m > k.
- (1) and (2) well-known and basically follow from defs.

For $C = \mathcal{I}$, (3) independently noticed by Koldobsky.

For $C = \mathcal{BP}$, (4) and (3-2) for k = 1 were proved by Grinberg and Zhang. Function Spaces

Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. In fact, we construct C^{∞} body of revolution in $\mathcal{I}_k^n \setminus \mathcal{BP}_k^n$.

Proof relies on:

Th. (M. 05): The following are equivalent:

0

$$\mathcal{BP}_k^n \subsetneq \mathcal{I}_k^n$$

② $\exists g \in C^{\infty}(G^n_{n-k}), \, R^*_{n-k}(g) \geq 1$ and $(I \circ R_k)^*(g) \geq 1$, but g is not non-negative functional on $R_{n-k}(C(G^n_{n-k}))$: $\exists h \in R_{n-k}(C(G^n_{n-k}))_+ \text{ s.t. } \int_{G^n_{n-k}} g(E)h(E)d\eta(E) < 0$. (where $I: C(G^n_k) \to C(G^n_{n-k})$ $I(f)(E) = f(E^{\perp})$)

<u>Idea of Proof:</u> construct $g \in C^{\infty}(G_{n-k}^n)$ in (2) invariant under natural action of O(n-1) < O(n), by analyzing the action of R_{n-k} and R_{n-k}^* on functions of revolution.

$$\overline{R_{n-k}(C(S^{n-1}))_{+}} \supseteq \overline{R_{n-k}(C_{+}(S^{n-1})) + I \circ R_{k}(C_{+}(S^{n-1}))}.$$

Th. (M. 07): $\mathcal{BP}_{k}^{n} \neq \mathcal{I}_{k}^{n}$ for $n \geq 4, 2 \leq k \leq n-2$.

In fact, we construct C^{∞} body of revolution in $\mathcal{I}_k^n \setminus \mathcal{BP}_k^n$.

Proof relies on:

Th. (M. 05): The following are equivalent:

0

$$\mathcal{BP}_k^n \subsetneq \mathcal{I}_k^n$$

 $\exists g \in C^{\infty}(G^n_{n-k}), \, R^*_{n-k}(g) \geq 1 \text{ and } (I \circ R_k)^*(g) \geq 1, \text{ but } g \text{ is not non-negative functional on } R_{n-k}(C(G^n_{n-k})): \\ \exists h \in R_{n-k}(C(G^n_{n-k}))_+ \text{ s.t. } \int_{G^n_{n-k}} g(E)h(E)d\eta(E) < 0. \\ \text{(where } I: C(G^n_k) \to C(G^n_{n-k}) \quad I(f)(E) = f(E^{\perp}))$

<u>Idea of Proof:</u> construct $g \in C^{\infty}(G_{n-k}^n)$ in (2) invariant under natural action of O(n-1) < O(n), by analyzing the action of R_{n-k} and R_{n-k}^* on functions of revolution.

$$R_{n-k}(C(S^{n-1}))_+ \supseteq R_{n-k}(C_+(S^{n-1})) + I \circ R_k(C_+(S^{n-1})).$$

Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. In fact, we construct C^{∞} body of revolution in $\mathcal{I}_k^n \setminus \mathcal{BP}_k^n$. Proof relies on:

Th. (M. 05): The following are equivalent:

1

$$\mathcal{BP}_k^n \subsetneq \mathcal{I}_k^n$$

② $\exists g \in C^{\infty}(G^n_{n-k}), \, R^*_{n-k}(g) \geq 1$ and $(I \circ R_k)^*(g) \geq 1$, but g is not non-negative functional on $R_{n-k}(C(G^n_{n-k}))$: $\exists h \in R_{n-k}(C(G^n_{n-k}))_+$ s.t. $\int_{G^n_{n-k}} g(E)h(E)d\eta(E) < 0$. (where $I: C(G^n_k) \to C(G^n_{n-k})$ $I(f)(E) = f(E^{\perp})$)

<u>Idea of Proof:</u> construct $g \in C^{\infty}(G^n_{n-k})$ in (2) invariant under natural action of O(n-1) < O(n), by analyzing the action of R_{n-k} and R^*_{n-k} on functions of revolution.

$$R_{n-k}(C(S^{n-1}))_+ \supseteq R_{n-k}(C_+(S^{n-1})) + I \circ R_k(C_+(S^{n-1})).$$

Th. (M. 07): $\mathcal{BP}_k^n \neq \mathcal{I}_k^n$ for $n \geq 4, 2 \leq k \leq n-2$. In fact, we construct C^{∞} body of revolution in $\mathcal{I}_k^n \setminus \mathcal{BP}_k^n$. Proof relies on:

Th. (M. 05): The following are equivalent:

0

$$\mathcal{BP}_k^n \subsetneq \mathcal{I}_k^n$$

② $\exists g \in C^{\infty}(G^n_{n-k}), \, R^*_{n-k}(g) \geq 1$ and $(I \circ R_k)^*(g) \geq 1$, but g is not non-negative functional on $R_{n-k}(C(G^n_{n-k}))$: $\exists h \in R_{n-k}(C(G^n_{n-k}))_+$ s.t. $\int_{G^n_{n-k}} g(E)h(E)d\eta(E) < 0$. (where $I: C(G^n_k) \to C(G^n_{n-k})$ $I(f)(E) = f(E^{\perp})$)

<u>Idea of Proof:</u> construct $g \in C^{\infty}(G_{n-k}^n)$ in (2) invariant under natural action of O(n-1) < O(n), by analyzing the action of R_{n-k} and R_{n-k}^* on functions of revolution.

$$\overline{R_{n-k}(C(S^{n-1}))_+} \supseteq \overline{R_{n-k}(C_+(S^{n-1})) + I \circ R_k(C_+(S^{n-1}))}.$$

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}_k^n$ iff K can be approximated in radial-metric by K_i : $\rho_{K_i}^k = \rho_{\mathcal{E}_{i,1}}^k + \ldots + \rho_{\mathcal{E}_{i,m_i}}^k$, where $\mathcal{E}_{i,j}$ are ellipsoids.

Equivalently

 \mathcal{BP}_k^n is the smallest family (containing the Euclidean Ball) which is closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.

Corollary

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Remark

$$ho_{K_i}^k =
ho_{\mathcal{E}_{i,1}}^k + \ldots +
ho_{\mathcal{E}_{i,m_i}}^k$$
 is well defined for arbitrary $k \neq 0$.

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}_k^n$ iff K can be approximated in radial-metric by K_i : $\rho_{K_i}^k = \rho_{\mathcal{E}_{i,1}}^k + \ldots + \rho_{\mathcal{E}_{i,m_i}}^k$, where $\mathcal{E}_{i,j}$ are ellipsoids.

Equivalently

 \mathcal{BP}_k^n is the smallest family (containing the Euclidean Ball) which is closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.

Corollary

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Remark

$$ho_{K_i}^k =
ho_{\mathcal{E}_{i,1}}^k + \ldots +
ho_{\mathcal{E}_{i,m_i}}^k$$
 is well defined for arbitrary $k
eq 0$.

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}_k^n$ iff K can be approximated in radial-metric by K_i : $\rho_{K_i}^k = \rho_{\mathcal{E}_{i,1}}^k + \ldots + \rho_{\mathcal{E}_{i,m_i}}^k$, where $\mathcal{E}_{i,j}$ are ellipsoids.

Equivalently

 \mathcal{BP}_k^n is the smallest family (containing the Euclidean Ball) which is closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.

Corollary

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Remark

 $ho_{K_i}^k =
ho_{\mathcal{E}_{i,1}}^k + \ldots +
ho_{\mathcal{E}_{i,m_i}}^k$ is well defined for arbitrary k
eq 0.

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}_k^n$ iff K can be approximated in radial-metric by K_i : $\rho_{K_i}^k = \rho_{\mathcal{E}_{i,1}}^k + \ldots + \rho_{\mathcal{E}_{i,m_i}}^k$, where $\mathcal{E}_{i,j}$ are ellipsoids.

Equivalently

 \mathcal{BP}_k^n is the smallest family (containing the Euclidean Ball) which is closed under full-rank linear transformations, k-radial sums $(\rho_L^k = \rho_{K_1}^k + \rho_{K_2}^k)$, limit in radial metric.

Corollary

$$\mathcal{BP}_k^n \subset \mathcal{I}_k^n$$

Remark

 $ho_{K_i}^k =
ho_{\mathcal{E}_{i,1}}^k + \ldots +
ho_{\mathcal{E}_{i,m_i}}^k$ is well defined for arbitrary $k \neq 0$.

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}^n_k$ iff K can be approximated in radial-metric by K_i : $\rho^k_{K_i} = \rho^k_{\mathcal{E}_{i,1}} + \ldots + \rho^k_{\mathcal{E}_{i,m_i}}$, where $\mathcal{E}_{i,j}$ are ellipsoids.

- Note: $E_{-k}(1) = \|\cdot\|_{D_n}^{-k}$, $T \in PD(n)$ $T(E_{-k}(1)) = \|\cdot\|_{\mathcal{E}_T}^{-k}$.
- For $1 \le k \le n-1$, $E_{-k}^{\wedge}(1) = b_{n,k}E_{-n+k}(1) \ge 0$.
- If $T \in PD(n)$, $T(E_{-k}(1))^{\wedge} = det(T)T^{-1}(E_{-k}^{\wedge}(1)) \geq 0$.

Equivalent formulation to $\mathcal{BP}_k^n = \mathcal{I}_k^n$:

If $f \in C_e^{\infty}(S^{n-1})$ satisfies $f \ge 0$ and $E_{-k}^{\wedge}(f) \ge 0$, is f the limit of $\sum_{i=1}^m T_i(E_{-k}(1))$, $T_i \in PD(n)$?

(to see equivalence, write $f = \rho_k^k = \|\cdot\|_{L^k}^{-k}$)

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}^n_k$ iff K can be approximated in radial-metric by K_i : $\rho^k_{K_i} = \rho^k_{\mathcal{E}_{i,1}} + \ldots + \rho^k_{\mathcal{E}_{i,m_i}}$, where $\mathcal{E}_{i,j}$ are ellipsoids.

- Note: $E_{-k}(1) = \|\cdot\|_{D_n}^{-k}$, $T \in PD(n)$ $T(E_{-k}(1)) = \|\cdot\|_{\mathcal{E}_T}^{-k}$.
- For $1 \le k \le n-1$, $E_{-k}^{\wedge}(1) = b_{n,k}E_{-n+k}(1) \ge 0$.
- If $T \in PD(n)$, $T(E_{-k}(1))^{\wedge} = det(T)T^{-1}(E_{-k}^{\wedge}(1)) \geq 0$.

Equivalent formulation to $\mathcal{BP}_k^n = \mathcal{I}_k^n$:

If $f \in C_e^{\infty}(S^{n-1})$ satisfies $f \ge 0$ and $E_{-k}^{\wedge}(f) \ge 0$, is f the limit of $\sum_{i=1}^m T_i(E_{-k}(1))$, $T_i \in PD(n)$?

(to see equivalence, write $f = \rho_{k}^k = \|\cdot\|_{L^k}^{-k}$)

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}_k^n$ iff K can be approximated in radial-metric by K_i : $\rho_{K_i}^k = \rho_{\mathcal{E}_{i,1}}^k + \ldots + \rho_{\mathcal{E}_{i,m_i}}^k$, where $\mathcal{E}_{i,j}$ are ellipsoids.

- Note: $E_{-k}(1) = \|\cdot\|_{D_n}^{-k}$, $T \in PD(n)$ $T(E_{-k}(1)) = \|\cdot\|_{\mathcal{E}_T}^{-k}$.
- For $1 \le k \le n-1$, $E_{-k}^{\wedge}(1) = b_{n,k}E_{-n+k}(1) \ge 0$.
- If $T \in PD(n)$, $T(E_{-k}(1))^{\wedge} = det(T)T^{-1}(E_{-k}^{\wedge}(1)) \geq 0$.

Equivalent formulation to $\mathcal{BP}_k^n = \mathcal{I}_k^n$:

If $f \in C_e^{\infty}(S^{n-1})$ satisfies $f \ge 0$ and $E_{-k}^{\wedge}(f) \ge 0$, is f the limit of $\sum_{i=1}^m T_i(E_{-k}(1)), \ T_i \in PD(n)$? (to see equivalence, write $f = \rho_K^k = \|\cdot\|_K^{-k}$)

Thm (Grinberg-Zhang 99, generalizing k = 1 Goodey-Weil 95)

 $K \in \mathcal{BP}^n_k$ iff K can be approximated in radial-metric by K_i : $\rho^k_{K_i} = \rho^k_{\mathcal{E}_{i,1}} + \ldots + \rho^k_{\mathcal{E}_{i,m_i}}$, where $\mathcal{E}_{i,j}$ are ellipsoids.

- Note: $E_{-k}(1) = \|\cdot\|_{D_n}^{-k}$, $T \in PD(n)$ $T(E_{-k}(1)) = \|\cdot\|_{\mathcal{E}_T}^{-k}$.
- For $1 \le k \le n-1$, $E_{-k}^{\wedge}(1) = b_{n,k}E_{-n+k}(1) \ge 0$.
- If $T \in PD(n)$, $T(E_{-k}(1))^{\wedge} = det(T)T^{-1}(E_{-k}^{\wedge}(1)) \geq 0$.

Equivalent formulation to $\mathcal{BP}_k^n = \mathcal{I}_k^n$:

If $f \in C_e^{\infty}(S^{n-1})$ satisfies $f \ge 0$ and $E_{-k}^{\wedge}(f) \ge 0$, is f the limit of $\sum_{i=1}^m T_i(E_{-k}(1)), \ T_i \in PD(n)$? (to see equivalence, write $f = \rho_K^k = \|\cdot\|_K^{-k}$)

