Semidefinite Programming Rank Reduction for Graph Realization and Sensor Network Localization

Yinyu Ye

Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering Stanford University

September 23, 2009

Outline

- Semidefinite Programming (SDP)
- ► SDP Rank Theorems
- Graph Realization and Sensor Network Localization
- Universal Rigidity and SDP Rank
- More Questions?

Semidefinite Programming Problem

Consider the Semidefinite Programming problem:

(SDP) minimize
$$A_0 \bullet X$$

subject to $A_i \bullet X = b_i$ $i = 1, ..., m$, $X \succeq \mathbf{0}$

where A_0, A_1, \ldots, A_m are given $n \times n$ symmetric matrices and b_1, \ldots, b_m are given scalars, and

$$A \bullet X = \sum_{i,j} a_{ij} x_{ij} = \operatorname{trace}(A^T X).$$

The Dual of SDP

The dual problem to (SDP) can be written as:

(SDD) maximize
$$\mathbf{b}^T \mathbf{y}$$
 subject to $\sum_{i=1}^{m} y_i A_i + S = A_0, S \succeq \mathbf{0},$

where $y = (y_1; ...; y_m) \in \mathbb{R}^m$.

Let X^* and S^* be a solution pair with zero duality gap. Then

$$\operatorname{rank}(X^*) + \operatorname{rank}(S^*) \leq n.$$

Thus, if there is S^* such that $rank(S^*) \ge n - d$, then the max rank of X^* is bounded above by d.

Computational Complexity and Rank of SDP Solution

- ▶ The SDP interior-point algorithm finds an ϵ -approximate solution where solution time is linear in $\log(1/\epsilon)$ and polynomial in m and n.
- ▶ Barvinok 95 (earlier results ?)showed that if the problem is solvable, then there exists a solution X^* whose rank r satisfies $r(r+1) \le 2m$. (A constructive proof can be based on Carathéodory's theorem.)
- And the rank bound is essentially tight.
- ▶ A such optimal solution can be found in polynomial time; Pataki (1999), and Alfakih/Wolkowicz (1999).

SDP Feasibility Problem

For simplicity, consider finding X satisfies

$$A_i \bullet X = b_i$$
 $i = 1, \ldots, m, X \succeq \mathbf{0}$

where A_1, \ldots, A_m are positive semidefinite matrices and scalars $(b_1, \ldots, b_m) \geq \mathbf{0}$.

$$\begin{aligned} x_1 + x_2 + x_3 &= 1, \\ \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq \mathbf{0}. \end{aligned}$$

What is the rank of SDP solution matrices?

Low-Rank SDP Solution

- ▶ We are interested in finding a fixed low-rank (say d) solution to the above system.
- ► However, there are some issues:
 - ► Such a solution may not exist!
 - Even if it does, one may not be able to find it efficiently.
- ▶ So we consider an approximation of the problem.

Approximate Low-Rank SDP Solution

We consider the problem of finding an $\hat{X} \succeq 0$ of rank at most d that satisfies every SDP constraint approximately and uniformly:

$$\beta(m, n, d) \cdot b_i \leq A_i \bullet \hat{X} \leq \alpha(m, n, d) \cdot b_i \quad \forall i = 1, \ldots, m.$$

Here, $\alpha(\cdot) \ge 1$ and $\beta(\cdot) \in (0,1]$ are called the distortion factors. Clearly, the closer are both to 1, the better the solution quality.

Approximate Low-Rank Theorem (So, Y and Zhang 07)

Let $r = \max\{\operatorname{rank}(A_i)\}$. Then, for any $d \ge 1$, there exists an $\hat{X} \succeq \mathbf{0}$ with $\operatorname{rank}(\hat{X}) \le d$ such that

$$\alpha(m, n, d) = \begin{cases} 1 + \frac{12 \ln(4mr)}{d} & \text{for } 1 \le d \le 12 \ln(4mr) \\ 1 + \sqrt{\frac{12 \ln(4mr)}{d}} & \text{for } d > 12 \ln(4mr) \end{cases}$$

$$\beta(m, n, d) = \begin{cases} \frac{1}{e(2m)^{2/d}} & \text{for } 1 \le d \le 4 \ln(2m) \\ \max \left\{ \frac{1}{e(2m)^{2/d}}, 1 - \sqrt{\frac{4 \ln(2m)}{d}} \right\} & \text{for } d > 4 \ln(2m) \end{cases}$$

Moreover, there exists an efficient randomized algorithm for finding such an \hat{X} .

Some Remarks

- ► There is always a low-rank approximate SDP solution with bounded distortion factors.
- As the allowable rank increases, the distortion become smaller and smaller. In particular, when $d = O(\ln(m))$, the distortion factors are both equal a constant close to 1.
- ▶ The lower distortion factor is independent of n and the rank of A_i s.
- ► The factors are sharp; but they can be improved if we only consider one—sided inequalities.
- ► This result contains as special cases several well-known results in the literature.

Low Rank SDP Applications

The low-rank SDP problem arises in many applications, e.g.:

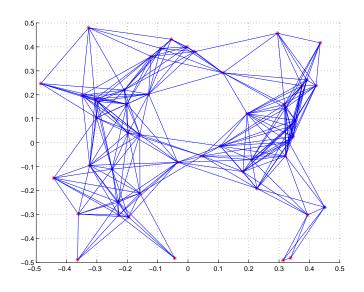
- metric embedding/dimension reduction (e.g., Johnson and Lindenstrauss 84, Matousek 90, Sun, Xiao and Boyd 06, etc.)
- approximating non-convex (real, complex) quadratic optimization (e.g., Goemans and Williamson 95, Nesterov 98, Y 98, Nemirovskii, Roos and Terlaky 99, Luo, Sidiropoulos, Tseng and Zhang 06, So, Zhang and Y 07, etc.)
- distance matrix completion (e.g., Laurent 97, Alfakih, Khandani and Wolkowicz 99, etc.)
- ▶ low-rank matrix completion (e.g., ISMP 2009 ...)
- ▶ graph realization/sensor network localization (e.g., Biswas and Y 04, So and Y 04, Biswas, Toh, and Y 06, Jin and Saunders 07, Wang, Zheng, Boyd and Y 08, Kim, Kojima and Waki 08, Pong and Tseng 08, Krislock and Wolkowicz 08, etc.)

Graph Realization and Sensor Network Localization

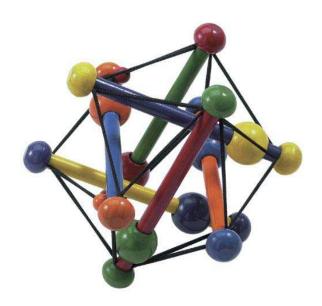
Given a graph G = (V, E) and sets of non–negative weights, say $\{d_{ij} : (i,j) \in E\}$, the goal is to compute a realization of G in the Euclidean space \mathbb{R}^d for a given low dimension d, i.e.

- \triangleright to place the vertices of G in \mathbb{R}^d such that
- ▶ the Euclidean distance between a pair of adjacent vertices (i,j) equals to (or bounded by) the prescribed weight $d_{ij} \in E$.

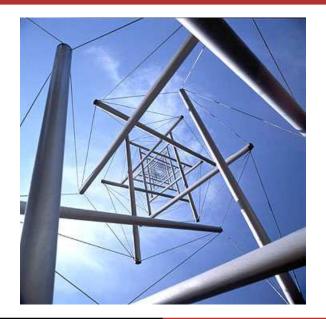
Unit-Disk Sensor Network: 50-node in 2-D



Tensegrity Graph: a Toy Graph Realization



Tensegrity Graph: a Needle Tower Realization



Molecular Conformation

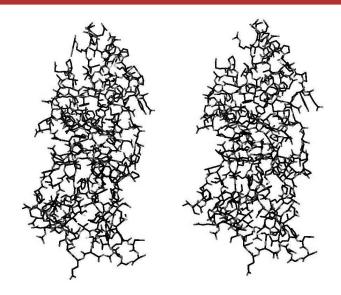


Figure: 1F39 with 85% of distances below 6Å and 10% noise

Sensor Localization Problem

Given anchors $\mathbf{a}_k \in \mathbf{R}^d$, $\hat{d}_{kj} \in N_a$ and $d_{ij} \in N_x$, find $\mathbf{x}_i \in \mathbf{R}^d$ such that

$$\begin{aligned} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} &= d_{ij}^{2}, \ \forall \ (i, j) \in N_{x}, \ i < j, \\ \|\mathbf{a}_{k} - \mathbf{x}_{j}\|^{2} &= \hat{d}_{kj}^{2}, \ \forall \ (k, j) \in N_{a}, \end{aligned}$$

(ij) ((kj)) connects points \mathbf{x}_i and \mathbf{x}_j (\mathbf{a}_k and \mathbf{x}_j) with an edge whose Euclidean length is d_{ij} (\hat{d}_{kj}).

Does the system have a localization or realization of all \mathbf{x}_j 's? Is the localization unique? Is there a certification for the solution to make it reliable or trustworthy? Is the system partially localizable with certification? All these questions are related to Global Optimization.

For simplicity, we fix d = 2 in the following.

Matrix Representation I

Let $X = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n]$ be the $2 \times n$ matrix that needs to be determined and \mathbf{e}_j be the vector of all zero except 1 at the jth position. Then

$$\mathbf{x}_i - \mathbf{x}_j = X(\mathbf{e}_i - \mathbf{e}_j)$$
 and $\mathbf{a}_k - \mathbf{x}_j = [I \ X](\mathbf{a}_k; -\mathbf{e}_j)$

so that

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = (\mathbf{e}_i - \mathbf{e}_j)^T X^T X (\mathbf{e}_i - \mathbf{e}_j)$$

$$\|\mathbf{a}_k - \mathbf{x}_j\|^2 = (\mathbf{a}_k; -\mathbf{e}_j)^T [I \ X]^T [I \ X](\mathbf{a}_k; -\mathbf{e}_j) =$$

$$(\mathbf{a}_k; -\mathbf{e}_j)^T \begin{pmatrix} I & X \\ X^T & X^T X \end{pmatrix} (\mathbf{a}_k; -\mathbf{e}_j).$$

Matrix Representation II

Or, equivalently,

$$(\mathbf{e}_{i} - \mathbf{e}_{j})^{T} Y(\mathbf{e}_{i} - \mathbf{e}_{j}) = d_{ij}^{2}, \ \forall \ i, j \in N_{x}, \ i < j,$$

$$(\mathbf{a}_{k}; -\mathbf{e}_{j})^{T} \begin{pmatrix} I & X \\ X^{T} & Y \end{pmatrix} (\mathbf{a}_{k}; -\mathbf{e}_{j}) = \hat{d}_{kj}^{2}, \ \forall \ k, j \in N_{a},$$

$$Y = X^{T} X.$$

SDP Relaxation

Change

$$Y = X^T X$$

to

$$Y \succeq X^T X$$
.

This matrix inequality is equivalent to

$$\left(\begin{array}{cc}I&X\\X^T&Y\end{array}\right)\succeq\mathbf{0},$$

This matrix has rank at least 2. If it's 2, then $Y = X^T X$, and the converse is also true.

SDP Relaxation in Standard Form

$$Z = \left(\begin{array}{cc} I & X \\ X^T & Y \end{array}\right).$$

Find a symmetric matrix $Z \in \mathbf{R}^{(2+n)\times(2+n)}$ such that

$$Z_{1:2,1:2} = I$$

$$(\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)(\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)^T \bullet Z = d_{ij}^2, \ \forall \ i, j \in N_x, \ i < j,$$

$$(\mathbf{a}_k; -\mathbf{e}_j)(\mathbf{a}_k; -\mathbf{e}_j)^T \bullet Z = \hat{d}_{kj}^2, \ \forall \ k, j \in N_a,$$

$$Z \succ \mathbf{0}.$$

If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be bounded.

The Dual of the SDP Relaxation

minimize
$$I \bullet V + \sum_{i < j \in N_x} w_{ij} d_{ij}^2 + \sum_{k,j \in N_a} \hat{w}_{kj} \hat{d}_{kj}^2$$

subject to $\begin{pmatrix} V & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} + \sum_{i < j \in N_x} w_{ij} (\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j) (\mathbf{0}; \mathbf{e}_i - \mathbf{e}_j)^T$
 $+ \sum_{k,j \in N_a} w_{kj} (\mathbf{a}_k; -\mathbf{e}_j) (\mathbf{a}_k; -\mathbf{e}_j)^T \succeq 0,$

where variable matrix $V \in \mathcal{M}^2$, variable w_{ij} is the (stress) weight on edge between \mathbf{x}_i and \mathbf{x}_j , and \hat{w}_{kj} is the (stress) weight on edge between \mathbf{a}_k and \mathbf{x}_i .

Note that the dual is always feasible since $V = \mathbf{0}$ and all w equal 0 is a feasible solution.

The rank of any optimal dual slack matrix is less or equal to n.

Unique Localizability

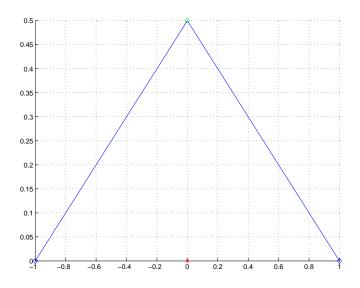
A sensor network is 2-uniquely-localizable if there is a unique localization in \mathbb{R}^2 and there is no $\mathbf{x}_j \in \mathbb{R}^h$, j=1,...,n, where h>2, such that

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = d_{ij}^2, \ \forall \ i, j \in N_x, \ i < j,$$

 $\|(\mathbf{a}_k; \mathbf{0}) - \mathbf{x}_j\|^2 = \hat{d}_{kj}^2, \ \forall \ k, j \in N_a.$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $(\mathbf{a}_k; \mathbf{0}) \in \mathbb{R}^h$, k = 1, ..., m.

One sensor-Two anchors: Not localizable



Uniquely-Localizable Graphs

- ▶ If every edge length is specified, then the sensor network is 2-uniquely-localizable (Schoenberg 1942).
- ▶ If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-uniquely-localizable (So and Y 2005).

ULPs can be localized by SDP

Theorem

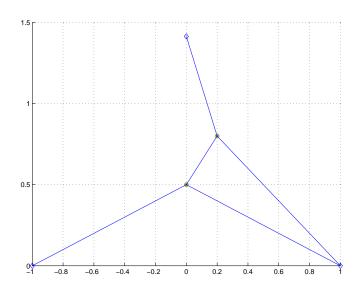
(So and Y 2005) The following statements are equivalent:

- 1. The sensor network is 2-uniquely-localizable;
- 2. The max-rank solution of the SDP relaxation has rank 2;
- 3. The solution matrix has $Y = X^TX$ or $Trace(Y X^TX) = 0$.

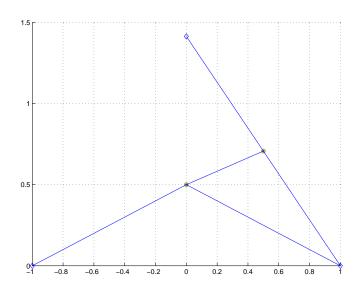
When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable.

If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-strongly-localizable

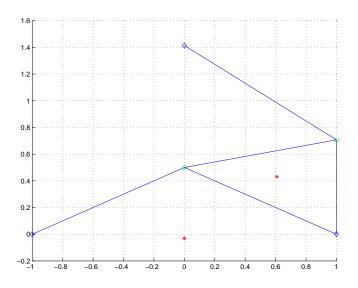
Two sensor-Three anchors: Strongly Localizable



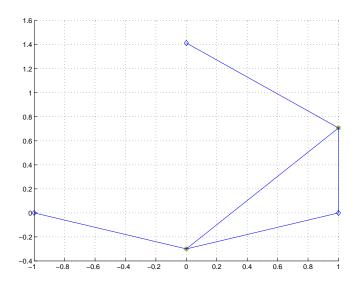
Two sensor-Three anchors: Localizable but not Strongly



Two sensor-Three anchors: Not localizable



Two sensor-Three anchors: Strongly Localizable



Localize All Localizable Points

Theorem

(So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is localizable, then the submatrix solution corresponding to the subproblem in the SDP solution has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown sensor points.

Implication: Diagonals of "co-variance" matrix

$$\bar{Y} - \bar{X}^T \bar{X}$$
,

 $\bar{Y}_{jj} - \|\bar{\mathbf{x}}_j\|^2$, can be used as a measure to see whether *j*th sensor's estimated position is reliable or not (Biswas and Y 2004).

Anchor Free Localization

Find a rank-d symmetric matrix $Z \in \mathbb{R}^{n \times n}$ such that

$$(\mathbf{e}_i - \mathbf{e}_j)(\mathbf{e}_i - \mathbf{e}_j)^T \bullet Z = d_{ij}^2, \ \forall \ i, j \in N_x, \ i < j, Z \succeq \mathbf{0}.$$

minimize
$$I \bullet Z$$

s.t. $(\mathbf{e}_i - \mathbf{e}_j)(\mathbf{e}_i - \mathbf{e}_j)^T \bullet Z = d_{ij}^2, \ \forall \ i, j \in N_x, \ i < j, Z \succeq \mathbf{0}.$

Theorem

(Biswas et al. 2006) The sensor network is d-uniquely-localizable if and only if the solution of the SDP problem is unique and it has rank d.

Generically Unique Localizability

- ▶ The *d*-localizability depends on graph N_x combinatorics as well as distance measurements d_{ij} .
- ▶ Is there a sparse graph that is generically *d*-localizable, that is, independent of distance measurements?

Trilateration Graphs

A trilaterative ordering in dimension d for a graph G is an ordering of the vertices $1, \cdots, d+1, d+2, \cdots, n$ such that K_{d+1} , the complete graph of the first d+1 vertices, is in G, and every vertex j>d+1 has d+1 edges connected to its preceding vertices on the sequence.

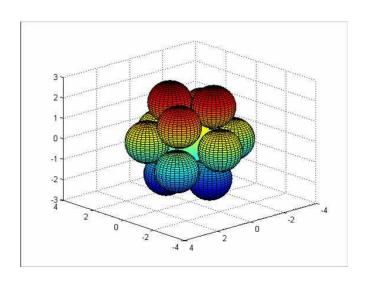
Graphs for which a trilaterative ordering exists in dimension d are called trilateration graphs in dimension d (or d-trilateration graphs). A spanning d-trilateration graph is a d-trilateration and contains every vertex of the graph.

Theorem

(Zhu, So and Y 2009) The spanning trilateration graph in dimension d is generically d-localizable. Moreover, it is a near optimal (with only O(n) edges), in terms of information-theoretical complexity, and generically d-localizable graph.

The Kissing Problem

- ▶ Given a unit center sphere, the maximum number of unit spheres, in d dimensions, can touch or kiss the center sphere?
- General Solutions does not exist.
- Delsarte Method uses linear programming to provide an upper bound on the number of spheres.
- Arr K(1)=2, K(2)=6, K(3)= 12, K(8) = 240, K(24) = 196650.
- ► K(4) = 24: proved using Delsarte Method by Oleg Musin only 3 years ago.
- ► For other dimensions, lower bounds have been provided by constructing a lattice structure. There also exists a bound using the Riemann zeta function, but is non-constructive.



The Kissing Problem as Localization

Given *n*-balls, find the lowest-rank solution to

$$(\mathbf{e}_i - \mathbf{e}_j)(\mathbf{e}_i - \mathbf{e}_j)^T \bullet Z \geq 1, \ \forall i < j \leq n,$$

$$\mathbf{e}_i \mathbf{e}_i^T \bullet Z = 1, \ \forall i,$$

$$Z \geq \mathbf{0}.$$

From the Approximate Low-Rank Theorem,

Corollary

One can have n-balls kissed in dimension- $O(\log(n))$ space where the distance error is below any fixed ϵ .

Search for a Low-Rank Solution?

Construct a nonzero SDP objective function to reduce the rank of a solution.

min
$$C \bullet Z$$

s.t. $(\mathbf{e}_i - \mathbf{e}_j)(\mathbf{e}_i - \mathbf{e}_j)^T \bullet Z \geq 1, \ \forall i < j \leq n,$
 $\mathbf{e}_i \mathbf{e}_i^T \bullet Z = 1, \ \forall i,$
 $Z \succ \mathbf{0}.$

Search for Low-Rank Solution?

The Gegenbauer polynomial:

$$G_0^{(r)}(t) = 1, \ G_1^{(r)}(t) = t, ...,$$

$$G_k^{(r)}(t) = \frac{(2k+r-4)tG_{k-1}^{(r)}(t) - (k-1)G_{k-2}^{(r)}(t)}{k+r-3}.$$

Given symmetric matrix $Y \succeq 0$ with rank r and all its diagonals equal 1, Schoenberg's theorem on the Gegenbauer polynomial:

Theorem

The Gegenbauer polynomial matrix, $[G_k^{(r)}(y_{ij})]$, remains positive semidefinite for k = 0, ..., where symmetric matrix $[G_k^{(r)}(y_{ij})]$ has the same dimension of Y and its corresponding component equals $G_k^{(r)}(y_{ij})$.