A hastily prepared introduction to perturbations

Itaï Ben-Yaacov

September 2006

Perturbations of metric structures

- Changing a classical structure (without changing the underlying set) consists of changing some predicate from "True" to "False" (or *vice versa*). \Longrightarrow Changing by "little" = not changing at all.
- A continuous predicate/function can be changed by a little, e.g., by no more than $\varepsilon > 0$. \Longrightarrow Notions of small perturbations of metric structures.

Formal definition [Ben]

Definition. A perturbation system \mathfrak{p} for T consists of a family of $[0, \infty]$ -valued metrics $d_{\mathfrak{p},n}$ on $S_n(T)$, such that:

TM Each $d_{\mathfrak{p},n}$ is lower semi-continuous (i.e., $(S_n(T), d_{\mathfrak{p}})$ is a topometric space).

INV $d_{\mathfrak{p},n}$ is invariant under permutations of n.

EXT Let $\pi: S_{n+1}(T) \to S_n(T), p \in S_n(T), q \in S_{n+1}(T)$:

$$d_{\mathfrak{p},n}(p,\pi(q)) = d_{\mathfrak{p},n+1}(\pi^{-1}(p),q)$$

UC If $b \neq c$: $d_{\mathfrak{p},2}(\operatorname{tp}(aa), \operatorname{tp}(bc)) = \infty$.

Definition. A bijection $f: M \to N$ is a $\mathfrak{p}(r)$ -perturbation if for all $\bar{a} \in M$:

$$d_{\mathfrak{p}}(\operatorname{tp}(f(\bar{a})),\operatorname{tp}(\bar{a})) \le r.$$

The set of all $\mathfrak{p}(r)$ -perturbations is denoted: $\operatorname{Pert}_{\mathfrak{p}(r)}(M,N)$.

By UC a perturbation is always uniformly continuous.

Fact. Let $\bar{a} \in M$, $\bar{b} \in N$. TFAE:

- $d_{\mathfrak{p}}(\operatorname{tp}(\bar{a}), \operatorname{tp}(\bar{b})) \leq r$.
- $\exists (M' \succeq M, N' \succeq N, \theta \in \operatorname{Pert}_{\mathfrak{p}(r)}(M', N'))(\theta(\bar{a}) = \bar{b}).$

This allows us to specify a perturbation system \mathfrak{p} by specifying $\operatorname{Pert}_{\mathfrak{p}(r)}(M,N)$ for all M,N,r (they must satisfy some conditions...)

Examples

Example (Trivial perturbation system: id). $d_{id}(p,q) = \begin{cases} 0 & p=q \\ \infty & p \neq q \end{cases}$; $\operatorname{Pert}_{id(r)}(M,N) = \operatorname{Iso}(M,N)$.

Example (Banach Mazur distance). T = Banach spaces (with no additional structure). $\theta \in \text{Pert}_{BM(r)}(E, F)$ if $\theta \colon E \to F$ is a linear bijection and:

$$\forall v \in E \qquad \|v\|e^{-r} \le \|\theta(v)\| \le \|v\|e^r.$$

Example (Perturbation of a new symbol). $T = \text{an } \mathcal{L}\text{-theory}, \ \mathcal{L}' = \mathcal{L} \cup \{P(\bar{x})\}, \ \mathfrak{p} \text{ a perturbation system for } T. \ \mathfrak{p}_P = \mathfrak{p} + \text{perturbation of } P$:

$$\theta \in \operatorname{Pert}_{\mathfrak{p}_P(r)}((M,P),(N,P)) \Longleftrightarrow \begin{cases} \theta \in \operatorname{Pert}_{\mathfrak{p}(r)}(M,N), \\ \text{and for all } \bar{b} \in M : \\ |P^M(\bar{b}) - P^N(\theta(\bar{b}))| \leq r \end{cases}$$

Same can be done with a finite tuple \bar{P} of new symbols. A function symbol $f(\bar{x})$ can be replaces with $G_f(\bar{x}, y) = d(f(\bar{x}), y)$. \rightsquigarrow Perturbations of the automorphism in (M, σ) . \rightsquigarrow Perturbations of parameters of types.

- When doing "model theory up to \mathfrak{p} -perturbations" we mustn't forget the standard metric d on types. We merge d and $d_{\mathfrak{p}}$ by allowing to perturb the structure and move the realisations.
- We define $\tilde{d}_{\mathfrak{p}}(p,q)$ as the minimum r for which there are $M \vDash p(\bar{e}), N \vDash q(\bar{f})$ and $\theta \in \operatorname{Pert}_{\mathfrak{p}r}(M,N)$ such that: $(\forall a \in M) (|d^M(a,e_i) d^N(\theta(a),f_i)| \leq r)$. This is a natural common coarsening of d and $d_{\mathfrak{p}}$ on $S_n(T)$.
- Note that if $M \vDash p(\bar{e}), N \vDash q(\bar{f})$ then:

$$\tilde{d}_{\mathfrak{p},n}(p,q) = d_{\mathfrak{p}_{\bar{e}},0}(\operatorname{Th}_{\mathcal{L}(\bar{e})}(M,\bar{e}),\operatorname{Th}_{\mathcal{L}(\bar{e})}(N,\bar{f}))$$

• Finally, for $p, q \in S_n(\bar{a})$: $\mathfrak{p}_{\bar{a}}$ allows to move the parameters \bar{a} , and $\tilde{d}_{\mathfrak{p}_{\bar{a}}}(p,q)$ is the minimal distance we need to "travel", moving parameters and realisations (and perturbing the underlying structure), to get from p to q.

Categoricity up to perturbation

Definition. • Two structures are \mathfrak{p} -isomorphic, $M \simeq_{\mathfrak{p}} N$, if for all $\varepsilon > 0$ there exists an ε -perturbation $\theta \in \operatorname{Pert}_{\mathfrak{p}(\varepsilon)}(M, N)$.

• T is $\mathfrak{p}-\lambda$ -categorical if $M, N \vDash T$ and $||M|| = ||N|| = \lambda$ imply $M \simeq_{\mathfrak{p}} N$.

Perturbed Ryll-Nardzewski

Recall:

Definition. A point $x \in X$ is *d-isolated* if for all r > 0: $x \in B(x,r)^{\circ}$ (i.e., the metric and the topology coincide at x).

It is weakly d-isolated if we only have $B(x,r)^{\circ} \neq \emptyset$ for all r > 0.

Theorem. Let T be a countable complete theory. TFAE:

- T is \mathfrak{p} - \aleph_0 -categorical.
- For all finite \bar{a} , every point in the topometric space $(S_1(\bar{a}), \tilde{d}_{\mathfrak{p}_{\bar{a}}})$ is weakly $\tilde{d}_{\mathfrak{p}_{\bar{a}}}$ isolated.
- For all finite, there is a $\tilde{d}_{p_{\bar{a}}}$ -dense subset of $(S_1(\bar{a}), \tilde{d}_{p_{\bar{a}}})$ consisting of $\tilde{d}_{p_{\bar{a}}}$ -isolated points.

Corollary (Sufficient condition, no parameters). Assume T is countable, complete, and for every $n < \omega$ each point in $(S_n(T), \tilde{d}_{\mathfrak{p}})$ is $\tilde{d}_{\mathfrak{p}}$ -isolated. Then T is \mathfrak{p} - \aleph_0 -categorical.

Corollary (Transfer to a reduct). Assume T is countable, complete. Let $\mathcal{L}' = \mathcal{L} \cup \{\bar{P}\}$, T' an \mathcal{L}' -completion of T, $\mathfrak{p}' = \mathfrak{p}_{\bar{P}}$. If for every $n < \omega$ each point in $(S_n(T'), \tilde{d}_{\mathfrak{p}'})$ is $\tilde{d}_{\mathfrak{p}'}$ -isolated then T is \mathfrak{p} - \aleph_0 -categorical.

An anomaly with p-categoricity

In the previous corollary, "T' \mathfrak{p} - \aleph_0 -categorical" would not suffice.

Example. • $T_0 = \text{Th}(L_p(\mathbb{R}), \wedge, \vee, \ldots)$ theory of L_p Banach lattices [BBH].

- Let $a = \chi_{[0,1]}$, $b = \chi_{[1,2]}$; $T = T_0(a)$, $\mathfrak{p} = \mathrm{id}_T$; $T' = T(b) = T_0(a,b)$, $\mathfrak{p}' = \mathfrak{p}_b$ (So \mathfrak{p}' fixes a and perturbs b).
- T is not \aleph_0 -categorical. Two models:

$$(L^p[0,1],\chi_{[0,1]}) \quad \not\simeq \quad (L^p[0,2],\chi_{[0,1]}),$$

• But T' is \mathfrak{p}' - \aleph_0 -categorical:

$$(L^p[0,2],\chi_{[0,1]},\chi_{[0,2]}) \quad \simeq_{\mathfrak{p}'} \quad (L^p[0,3],\chi_{[0,1]},\chi_{[0,2]}),$$

Perturbations of types with parameters

Say a perturbation system \mathfrak{p} for T is given, and we wish to work over $A \subseteq \overline{M}$. How do we extend $d_{\mathfrak{p}}$ to $S_n(A)$? We need a perturbation system for $T(A) = \operatorname{Th}_{\mathcal{L}(A)}(\overline{M}, A)$.

- In case $A = \bar{a} = a_{\leq n}$ is finite, we have already seen one option: use $\mathfrak{p}_{\bar{a}}$.
- In case A is infinite, this doesn't make sense, or else boils down to \mathfrak{p}/A which fixes A. For $M, N \models T(A)$ (so $A \subseteq M, N$):

$$\theta \in \operatorname{Pert}_{(\mathfrak{p}/A)(r)}(M,N) \Longleftrightarrow \theta \in \operatorname{Pert}_{\mathfrak{p}(r)}(M,N) \& \theta \upharpoonright_A = \operatorname{id}_A.$$

 \to T is \mathfrak{p} - λ -stable if $||M|| \le \lambda$ implies $||(S_n(M), \tilde{d}_{\mathfrak{p}/M})|| \le \lambda$.

Expansion by a generic automorphism

Theorem (Chatzidakis, Pillay [CP98]). Let T be stable, $T_{\sigma} = T \cup \{$ " σ is an automorphism" $\}$. Assuming T_{σ} has a model-companion T_A :

- 1. T_A is simple.
- 2. If T is superstable, then T_A is supersimple.

The first part generalises to continuous logic. What about the second part? Consider T = PA theory of atomless probability algebras. Then:

- PA is superstable (in fact \aleph_0 -stable).
- (Berenstein, Henson [BH]) PA_A exists and is stable.
- (B.) PA_A is not superstable, and therefore not supersimple.

Let $\mathfrak{p} = \mathrm{id}_T$. \mathfrak{p}_{σ} allows to perturb the automorphism, while fixing the underlying model of T.

Proposition (B., Berenstein). PA_A is \mathfrak{p}_{σ} -superstable, and in fact \mathfrak{p}_{σ} - \mathfrak{N}_0 -stable.

Question. Let T be any superstable theory such that T_A exists. Is T_A is \mathfrak{p}_{σ} -supersimple?

References

- [BBH] Itaï Ben-Yaacov, Alexander Berenstein, and C. Ward Henson, Model-theoretic independence in the Banach lattices $L^p(\mu)$, submitted.
- [Ben] Itaï Ben-Yaacov, On perturbations of continuous structures, submitted.
- [BH] Alexander Berenstein and C. Ward Henson, Model theory of probability spaces with an automorphism, submitted.
- [CP98] Zoé Chatzidakis and Anand Pillay, Generic structures and simple theories, Annals of Pure and Applied Logic 95 (1998), 71–92.