$\begin{array}{c} \mbox{Hilbert spaces and their generic automorphisms} \\ \mbox{Talk at AIM} \end{array}$

1. Hilbert spaces

A pre-Hilbert space H over \mathbb{C} (\mathbb{R}) is a vector space over \mathbb{C} (\mathbb{R}) with an inner product $\langle \ \rangle$ that satisfies the following properties:

- (1) $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ for all $x, y, z \in H$, $a, b \in \mathbb{C}$.
- (2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- (3) $\langle x, x \rangle \in (0, \infty)$ for any nonzero $x \in H$.

A pre-Hilbert space which is complete with respect to the norm $||x|| = \sqrt{\langle x, x \rangle}$ is called a *Hilbert space*.

Let H be an infinite dimensional Hilbert space. We will treat H as a metric structure by writing it in the form

$$((B_n(H) \mid n \ge 1), 0, \{I_{mn}\}_{m \le n}, \{\lambda\}_{\lambda \in \mathbb{R}}, +, \langle \rangle)$$

where $B_n(H) = \{x \in H \mid \langle x, x \rangle \leq n^2\}$, 0 is the zero vector, $I_{mn} : B_m \to B_n$ is the inclusion map for m < n, $+: B_n(H) \times B_n(H) \to B_{2n}(H)$ is the vector addition, $\lambda_r : B_n(H) \to B_{nk}(H)$ where k - 1 < |r| < k is the scalar multiplication by r. All the operations are uniformly continuous (when restricted to a ball).

The metric on each sort is given by $d(x,y) = ||x-y|| = \sqrt{\langle x-y, x-y \rangle}$ and the diameter of $B_n(H)$ is 2n for each $n \geq 1$. Note that the predicate defined by the inner product takes its values in the closed bounded interval $[-n^2, n^2]$ when applied to elements of the sort B_n .

Let $x,y\in H$ and let $A\subset H$. By \overline{A} we mean the normed closure of the linear span of A. We denote by $P_{\overline{A}}(x)$ the projection of x on the subspace \overline{A} . We denote by A^{\perp} the set $\{z\in H: \langle a,z\rangle=0 \text{ for all }a\in A\}$. The space A^{\perp} is a closed subspace of H.

1.1. **Lemma.** Let $c_1, \ldots, c_n, d_1, \ldots, d_n \in H$ and let $A \subset H$. Then $tp(c_1, \ldots, c_n/A) = tp(d_1, \ldots, d_n/A)$ if and only if $P_{\bar{A}}(c_i) = P_{\bar{A}}(d_i)$ and $\langle c_i, c_j \rangle = \langle d_i, d_j \rangle$ for $i, j \leq n$. Hence Th(H) has quantifier elimination.

Proof. If $tp(c_1, \ldots, c_n/A) = tp(d_1, \ldots, d_n/A)$ then $\langle c_i, c_j \rangle = \langle d_i, d_j \rangle$ for $i, j \leq n$ and for every $a, b \in A$, $\langle c_i - b, a \rangle = \langle d_i - b, a \rangle$; thus $P_{\bar{A}}(c_i) = P_{\bar{A}}(d_i)$.

Conversely, assume that $P_{\bar{A}}(c_i) = P_{\bar{A}}(d_i)$ and $\langle c_i, c_j \rangle = \langle d_i, d_j \rangle$ for $i, j \leq n$. Then $c_i - P_{\bar{A}}(c_i), d_i - P_{\bar{A}}(d_i) \in A^{\perp}$ and $\langle c_i - P_{\bar{A}}(c_i), c_j - P_{\bar{A}}(c_j) \rangle = \langle d_i - P_{\bar{A}}(d_i), d_j - P_{\bar{A}}(d_j) \rangle$. After using the Gram-Schmidt orthonormalization process we can build an automorphism of H that fixes \bar{A} pointwise and takes $c_i - P_{\bar{A}}(c_i)$ to $d_i - P_{\bar{A}}(d_i)$ for $i \leq n$.

Since the theory of Hilbert spaces is separably categorical, then the theory of infinite dimensional Hilbert spaces is complete. Call this theory T_H . Note that to say that a Hilbert space is infinite dimensional we only need to add the scheme (indexed by $n \in \mathbb{N}^+$):

$$\inf_{x_1} \dots \inf_{x_n} \max\{|\langle x_i, x_j \rangle - \delta_{ij}| : i, j \leq n\} = 0$$

where δ_{ij} equals to 1 if $i = j$ and to zero otherwise.

1.2. **Lemma.** Let $A \subset H$. Then the definable closure of A equals \bar{A} .

Proof. We show that if $c \in \overline{A}$, then $c \in \operatorname{dcl}(A)$. Given $c \in \overline{A}$, there is a Cauchy sequence $\{c_n : n \geq 1\}$ of elements in the space spanned by A such that $\lim_{n \to \infty} c_n = c$. We may assume that $\|c_n - c\| \leq 1/(2n)$ for $n \geq 1$. Let $\varphi_n(x) = \|x - c_n\| \div 1/(2n)$. Then the family of formulas $\{\varphi_n(x) \mid n \geq 1\}$ and numbers $\{\delta_n = 1/(2n) \mid n \geq 1\}$ shows that $\{c\}$ is A-definable.

Assume now that $c \notin \bar{A}$, so $c - P_{\bar{A}}(c) \neq 0$. Let $y \in A^{\perp}$ be such that $||y|| = ||c - P_{\bar{A}}(c)||$. Then $\operatorname{tp}(c/A) = \operatorname{tp}(P_{\bar{A}}(c) + y/A)$ so $|\{d \mid \operatorname{tp}(d/A) = \operatorname{tp}(c/A)\}|$ is unbounded and thus $c \notin \operatorname{dcl}(A)$.

1.3. **Proposition.** Let $x, y \in H$ and let $A \subset H$. Then

$$d(\operatorname{tp}(x/A),\operatorname{tp}(y/A))^2 = \|P_{\bar{A}}(x) - P_{\bar{A}}(y)\|^2 + \left|\|x - P_{\bar{A}}(x)\| - \|y - P_{\bar{A}}(y)\|\right|^2$$

Proof. Let $x, y \in H$ and let $A \subset H$. If $\operatorname{tp}(x'/A) = \operatorname{tp}(x/A)$ and $\operatorname{tp}(y'/A) = \operatorname{tp}(y/A)$, then

$$||x' - y'||^2 = ||P_{\bar{A}}(x') - P_{\bar{A}}(y')||^2 + ||(x' - P_{\bar{A}}(x')) - (y' - P_{\bar{A}}(y'))||^2 \ge$$
$$||P_{\bar{A}}(x) - P_{\bar{A}}(y)||^2 + |||x - P_{\bar{A}}(x)|| - ||y - P_{\bar{A}}(y)|||^2$$

For the converse, let $x_{\perp} = x - P_{\bar{A}}(x)$ and $y_{\perp} = y - P_{\bar{A}}(y)$. If $x_{\perp} = 0$ the result is clear, so we may assume that $x_{\perp} \neq 0$. Let $\alpha = \|y_{\perp}\|/\|x_{\perp}\|$ and let $z = \alpha x_{\perp}$. Then by Lemma 1.1 $\operatorname{tp}(y/A) = \operatorname{tp}(P_{\bar{A}}(y) + z/A)$ and by the Pythagorean theorem,

$$||x - (P_A(y) + z)||^2 = ||P_{\bar{A}}(x) - P_{\bar{A}}(y)||^2 + ||x_{\perp} - \alpha x_{\perp}||^2 = ||P_{\bar{A}}(x) - P_{\bar{A}}(y)||^2 + ||x_{\perp}|| - ||y_{\perp}||^2.$$

Recall that T_H is separably categorical. Note that for $A = \emptyset$, the formula in the previous proposition gives that for $x, y \in H$, $d(\operatorname{tp}(x), \operatorname{tp}(y)) = |||x|| - ||y|||$. So for types belonging to the sort $B_n(H)$, we get that $(S_1(T), d) \cong ([0, n], l)$ with l the euclidean metric in the interval, which is a compact space.

1.4. **Proposition.** The theory T_H is ω -stable.

Proof. Let H be an infinite dimensional Hilbert space, let $A \subset H$ be countable and let $T_A = Th(\mathcal{M}, a)_{a \in A}$. We may assume that the dimension of A^{\perp} (in H) is infinite. Since H is separable, \bar{A} has countable dimension. By lemma 1.1 every 1-type over A is realized in H. Since H is separable with respect to the norm, so is $S_1(A)$ with respect to the d metric.

A model theoretic study of infinite dimensional Hilbert spaces is carried out in [4, 1]. Most of the material from this section follows those sources. Proposition 1.4 appears in [6].

2. Generic automorphisms

Let U be a new unary function symbol and let L_U be the language of Hilbert spaces expanded with U.

The automorphisms of Hilbert spaces are *unitary maps*. To understand the model Theory of Hilbert spaces with unitary maps we will need some results from spectral theory:

2.1. **Definition.** Let H be a Hilbert space and let U be a unitary map on H. The spectrum of U is the set of all $\lambda \in S^1$ for which there is a sequence $\{v_i : i \in \omega\}$ of normal vectors in H such that $\lim_{i \to \infty} \|U(v_i) - \lambda v_i\| = 0$.

A complex number λ is in the discrete spectrum if it is an isolated point in the spectrum of finite multiplicity. That is, $Dim\{x \in H : U(x) = \lambda x\}$ is finite and nonzero. The complement of the discrete spectrum is the essetial spectrum and it is denoted by $\sigma_e(U)$.

2.2. **Definition.** Let H be a separable Hilbert space and let U, U' be unitary operators on H. We say that U and U' are approximately unitarily equivalent if there is a sequence $\{V_n : n \in \omega\}$ of unitary operators such that $\lim_{n\to\infty} \|U' - V_n U V_n^*\| = 0$.

We also need the following corollary of a Theorem by Weyl-von Neumann-Berg.

- 2.3. **Theorem.** Suppose that U, U' are unitary operators on separable Hilbert spaces H, H' respectively. Then U and U' are approximate unitarily equivalent if and only if:
 - (1) $\sigma_e(U) = \sigma_e(U')$
 - (2) $Dim\{x \in H : Ux = \lambda x\} = Dim\{x \in H' : U'x = \lambda x\} \text{ for } \lambda \in S^1 \setminus \sigma_e(U)$

From the previous result we get that the class of pairs (H, U), where H is a Hilbert space and U is a unitary map whose spectrum is the whole set S^1 is an elementary class. Call the theory of this class $T_H A$. From the previous Theorem $T_H A$ is complete.

- 2.4. **Definition.** Let T be a theory. We say that a metric structure $\mathcal{M} \models T$ is existentially closed if whenever $\mathcal{N} \models T$, $\mathcal{N} \supset \mathcal{M}$ and $\mathcal{N} \models \inf_{\bar{x}} \varphi(x, \bar{a}) = r$ where $\bar{a} \in \mathcal{M}$, then $\mathcal{M} \models \inf_{\bar{x}} \varphi(x, \bar{a}) = r$.
- 2.5. **Lemma.** T_HA is the model companion of $T_H \cup "U$ is an automorphism".

Proof. We only proof that if (H,U) is existentially closed then $(H,U) \models T_H A$. So let (H,U) be existentially closed. Let H' be a separable Hilbert space and let U' be a unitary operator on H' whose spectrum is S^1 . Consider the structure $(H \oplus H', U \oplus U')$, where $H \oplus H'$ is the direct sum of the two spaces and $U \oplus U'$ is the induced automorphism of the sum. Then $(H,U) \subset (H \oplus H', U \oplus U')$. Let $\lambda \in S^1$, let $\epsilon > 0$ and let $v' \in H'$ be a normal vector such that $||U'(v') - \lambda v'|| \le \epsilon/2$. Since (H,U) is existentially closed, there is $v \in H$ a normal vector such that $||U(v) - \lambda v|| \le \epsilon$. Since ϵ was arbitrary, we get that λ belongs to the spectrum of U. Thus the spectrum of U is S^1 and $(H,U) \models T_H A$.

It is easy to see that T_HA has quantifier elimination and is stable. Stability can be showed by proving that the natural notion of independence satisfies all expected properties. It is easy to show that $T_H A$ is not ω -stable: for each $\lambda \in S^1$ let $p_{\lambda}(x)$ be the type stating $U(x) = \lambda x$ and ||x|| = 1. Then for $\lambda \neq \eta$, $d(p_{\lambda}, p_{\eta}) = \sqrt{2}$ and thus $(S_1(T_H A), d)$ is not separable.

2.6. **Proposition.** T_HA is ω -stable up to perturbations of the automorphism.

A complete description of T_HA and its properties can be found in [3]. A proof that T_HA is ω -stable up to perturbations of the automorphism can be found in [2]. The Weyl-von Neumann-Berg Theorem can be found in [5].

References

- Itay Ben-Yaacov, Positive model theory and compact abstract theories, Journal of Mathematical Logic 3, 2003, 85–118.
- [2] Itay Ben-Yaacov and Alexander Berenstein, On perturbations of Hilbert spaces and probability spaces with a generic automorphism, preprint.
- [3] Itay Ben-Yaacov, Alexander Usvyatsov and Moshe Zadka, Hilbert spaces with a generic automorphism, preprint.
- [4] Alexander Berenstein and Steven Buechler, Homogeneous expansions of Hilbert spaces, Annals of Pure and Applied Logic 128 (2004), no. 1-3, 75–101.
- [5] Kenneth Davidson, C^* algebras by example, Fields Institute monographs, 1991.
- [6] José Iovino, Stable Banach space structures, I: Fundamentals, in Models, algebras and proofs (Bogotá, 1995), Lecture Notes in Pure and Applied Mathematics, 203, Marcel Dekker, New York, 1999, 77–95.

Alexander Berenstein

Universidad Nacional de Colombia

 $E\text{-}mail\ address: \verb|aberenst@gmail.com||$