Introduction

Itaï Ben-Yaacov C. Ward Henson

September 2006

1 Continuous logic

Origins

Many classes of (complete) metric structures arising in analysis are "tame" (e.g., admit well-behaved notions of independence) although not elementary in the classical sense.

Continuous logic [BU, BBHU] (Ben-Yaacov, Berenstein, Henson & Usvyatsov) is an attempt to apply model-theoretic tools to such classes. It was preceded by:

- Henson's logic for Banach structures (positive bounded formulae, approximate satisfaction).
- Ben-Yaacov's positive logic and compact abstract theories.
- Chang and Keisler's continuous model theory (1966).
- Łukasiewicz's many-valued logic (similar, although probably devised for other purposes).
- ...?

1.1 Basic definitions

Intellectual game: replace $\{T, F\}$ with [0, 1]

- The basic idea is: "replace the space of truth values $\{T, F\}$ with [0, 1], and see what happens"...
- Things turn out more elegant if we agree that 0 is "True".
- Greater truth value is falser.

Ingredient I: non-logical symbols

- A signature \mathcal{L} consists of function and predicate symbols, as usual.
- n-ary function symbols: interpreted as functions $M^n \to M$.
- n-ary predicate symbols: interpreted as functions $M^n \to [0,1]$.
- \mathcal{L} -terms and atomic \mathcal{L} -formulae are as in classical logic.

Example: language of probability algebras

Probability algebras are Boolean algebras of events in probability spaces; the probability of an event is a value in [0, 1].

Language of probability algebras: $\mathcal{L} = \{0, 1, \cdot^c, \cap, \cup, \mu\}.$

- 0, 1 are 0-ary function symbols (constant symbols).
- \cdot^c (complement) is a unary function symbol.
- \cup , \cap (union, intersection) are binary function symbols.
- μ (probability) is a unary predicate symbol.

Thus:

- $z, x \cap y^c, x \triangle y$ are terms (values in the algebra).
- $\mu(x), \mu(x \cap y^c)$ are atomic formulae (values in [0, 1]).

Ingredient II: Connectives

- Any continuous function $[0,1]^n \to [0,1]$ should be admitted as an n-ary connective.
- Problem: uncountable syntax. But a dense subset of $C([0,1]^n,[0,1])$ (in uniform convergence) is good enough.
- The following connectives generate a (countable) dense family of connectives (lattice Stone-Weierstrass):

$$\neg x := 1 - x;$$
 $\frac{1}{2}x := x/2;$ $x \div y := \max\{x - y, 0\}.$

• " $\varphi \dot{-} \psi$ " replaces " $\psi \rightarrow \varphi$ ". In particular: $\{\psi, \varphi \dot{-} \psi\} \models \varphi$ (Modus Ponens: if $\psi = 0$ and $\varphi \dot{-} \psi = 0$ then $\varphi = 0$).

Ingredient III: Quantifiers

- If $R \subseteq M^{n+1}$ is a predicate on M, $(\forall x R(x, \bar{b}))^M$ is the falsest among $\{R(a, \bar{b}) : a \in M\}$.
- By analogy, if $R: M^{n+1} \to [0,1]$ is a continuous predicate:

$$(\forall x R(x, \bar{b}))^M = \sup_{a \in M} R(a, \bar{b}).$$

We will just use " $\sup_x \varphi$ " instead of " $\forall x \varphi$ ".

- Similarly, " $\exists x \varphi$ " becomes " $\inf_x \varphi$ ".
- Prenex normal form exists since the connectives \neg , $\frac{1}{2}$, $\dot{}$ are monotone in each argument:

$$\varphi \doteq \inf_x \psi \equiv \sup_x (\varphi \doteq \psi), \quad \&c...$$

Probability algebras, cntd.

• We may construct useful connectives:

$$\begin{array}{ll} a \wedge b := \min\{a,b\} &= a \div (a \div b) \\ a \vee b := \max\{a,b\} &= \neg (\neg a \wedge \neg b) \\ |a-b| &= (a \div b) \vee (b \div a) \end{array}$$

- Thus: $\mu(x \cap y)$ and $|\mu(x) \mu(y)|$ are quantifier-free formulae.
- $\sup_x \inf_y \left| \mu(x \cap y) \frac{1}{2}\mu(x) \right|$ is a formula. It is in fact a *sentence*, as it has no *free variables*.

Ingredient IV: Equality...?

In classical logic the symbol = always satisfies:

$$x = x$$
 $(x = y) \rightarrow (x = z) \rightarrow (y = z)$ (ER)

Replacing "x = y" with "d(x, y)" and " $\varphi \to \psi$ " with " $\psi \div \varphi$ ":

$$d(x,x)$$
 $\left(d(y,z) - d(x,z)\right) - d(x,y)$

I.e., d is a pseudo-metric:

$$d(x,x) = 0 d(y,z) \le d(x,z) + d(x,y) (PM)$$

Similarly, = is a congruence relation:

$$(x = y) \to \left(P(x, \bar{z}) \to P(y, \bar{z})\right)$$
 (CR)

Translates to:

$$(P(y,\bar{z}) \div P(x,\bar{z})) \div d(x,y)$$

I.e., P is 1-Lipschitz:

$$P(y,\bar{z}) \doteq P(x,\bar{z}) \le d(x,y) \tag{1L}$$

 \therefore all predicate and function symbols must be 1-Lipschitz in d.

Example (Probability algebras, part 3). Indeed: $d(a,b) := \mu(a \triangle b)$ is a (pseudo)metric on events, and each of \cdot^c, \cup, \cap, μ is 1-Lipschitz.

Structures

Definition. A set M, equipped with a pseudo-metric d^M and 1-Lipschitz interpretations f^M , P^M of symbols $f, P \in \mathcal{L}$ is an \mathcal{L} -pre-structure.

It is an \mathcal{L} -structure if d^M is a complete metric.

- Once $=^M$ is a congruence relation, classical logic cannot tell whether it is true equality or not.
- Similarly, once all symbols are 1-Lipschitz, continuous logic cannot tell whether:
 - $-\ d^M$ is a true metric or a mere pseudo-metric.
 - A Cauchy sequence has a limit or not.
- A pre-structure M is logically indistinguishable from its completion $\widehat{M/\sim_d}$. $(a \sim_d b \iff d(a,b)=0)$

Recap: probability algebras

- Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space.
- Let $\mathfrak{B}_0 \leq \mathfrak{B}$ be the null-measure ideal, and $\bar{\mathfrak{B}} = \mathfrak{B}/\mathfrak{B}_0$. Then $\bar{\mathfrak{B}}$ is a Boolean algebra and μ induces $\bar{\mu} \colon \bar{\mathfrak{B}} \to [0,1]$. The pair $(\bar{\mathfrak{B}}, \bar{\mu})$ is a *probability algebra*.
- It admits a complete metric: $d(a,b) = \bar{\mu}(a\triangle b)$. $\bar{\mu}$ and the Boolean operations are 1-Lipschitz.
- $(\mathfrak{B}, 0, 1, \cap, \cup, \cdot^c, \mu)$ is a pre-structure; $(\bar{\mathfrak{B}}, 0, 1, \cap, \cup, \cdot^c, \bar{\mu})$ is its completion (i.e., a structure).

Remark. If $a_n \to a$ in d then $\mu(a_n) \to \mu(a)$. Thus σ -additivity of the measure comes "for free".

Bottom line

- By replacing $\{T, F\}$ with [0, 1] we obtained a logic for (bounded) complete metric 1-Lipschitz structures.
- It is fairly easy to replace "1-Lipschitz" with "uniformly continuous".
- One can also overcome "bounded", but it's trickier.
- Since all structures are complete metric structures we do not measure their size by cardinality, but by *density character*:

$$||(M,d)|| = \min\{|A|: A \subseteq M \text{ is dense}\}.$$

1.2 Semantics

Semantics

As usual, the notation $\varphi(x_0, \dots x_{n-1})$ [or $\varphi(x_{< n})$, or $\varphi(\bar{x})$] means that the free variables of φ are among x_0, \dots, x_{n-1} .

If M is a structure and $\bar{a} \in M^n$: we define the truth value $\varphi^M(\bar{a}) \in [0, 1]$ inductively, in the "obvious way".

Example. Let $(M,0,1,.^c,\cup,\cap,\mu)$ be a probability algebra, $\varphi(x) = \inf_y |\mu(x\cap y) - \frac{1}{2}\mu(x)|$.

- If $a \in M$ is an atom, then $\varphi^M(a) = \frac{1}{2}\mu(a)$.
- If a has no atoms below it then $\varphi^M(a) = 0$.

The function $\varphi^M \colon M^n \to [0,1]$ is uniformly continuous (by induction on φ).

Various "elementary" notions

- Elementary equivalence: If M, N are two structures then $M \equiv N$ if $\varphi^M = \varphi^N \in [0, 1]$ for every sentence φ (i.e.: formula without free variables). Equivalently: " $\varphi^M = 0 \iff \varphi^N = 0$ for all sentence φ ."
- Elementary extension: $M \leq N$ if $M \subseteq N$ and $\varphi^M(\bar{a}) = \varphi^N(\bar{a})$ for every formula φ and $\bar{a} \in M$. This implies $M \equiv N$.

Lemma (Elementary chains). The union of an elementary chain $M_0 \leq M_1 \leq \ldots$ is an elementary extension of each M_i .

Caution: we have to replace the union of a countable increasing chain with its completion.

Ultraproducts

- $(M_i: i \in I)$ are structures, \mathscr{U} an ultrafilter on I.
- We let $N_0 = \prod_{i \in I} M_i$ as a set; its members are $(\bar{a}) = (a_i : i \in I), a_i \in M_i$.
- We interpret the symbols:

$$f^{N_0}((a_i: i \in I), \dots) = (f^{M_i}(a_i, \dots): i \in I) \in N_0$$

 $P^{N_0}((a_i: i \in I), \dots) = \lim_{\mathscr{U}} P^{M_i}(a_i, \dots) \in [0, 1]$

- This way N_0 is a pre-structure. We define $N = \widehat{N_0}$ (the completion), and call it the *ultraproduct* $\prod_{i \in I} M_i / \mathcal{U}$.
- The image of $(\bar{a}) \in N_0$ in N is denoted $(\bar{a})_{\mathscr{U}}$:

$$(\bar{a})_{\mathscr{U}} = (\bar{b})_{\mathscr{U}} \iff 0 = \lim_{\mathscr{U}} d(a_i, b_i) \quad \Big[= d^{N_0} \big((\bar{a}), (\bar{b}) \big) \Big].$$

Properties of ultraproducts

• Loś's Theorem: for every formula $\varphi(x, y, ...)$ and elements $(\bar{a})_{\mathscr{U}}, (\bar{b})_{\mathscr{U}}, ... \in N = \prod M_i/\mathscr{U}$:

 $\varphi^N((\bar{a})_{\mathscr{U}},(\bar{b})_{\mathscr{U}},\dots) = \lim_{\mathscr{U}} \varphi^{M_i}(a_i,b_i,\dots).$

- [Easy] $M \equiv N$ (M and N are elementarily equivalent) if and only if M admits an elementary embedding into an ultrapower of N.
- [Deeper: generalising Keisler & Shelah] $M \equiv N$ if and only if M and N have ultrapowers which are isomorphic.

1.3 Theories

Theories

- A theory T is a set of sentences (closed formulae).
- $M \vDash T \Longleftrightarrow \varphi^M = 0$ for all $\varphi \in T$.
- We sometimes write T as a set of statements " $\varphi = 0$ ". We may also allow as statements things of the form " $\varphi \leq r$ ", " $\varphi \geq r$ ", " $\varphi = r$ ", etc.
- \bullet If M is any structure then its theory is

$$\operatorname{Th}(M) = \{ ``\varphi = 0" : \varphi^M = 0 \} \quad \Big[\equiv \{ ``\varphi = r" : \varphi^M = r \} \Big].$$

Theories of this form are called *complete* (equivalently: complete theories are the maximal satisfiable theories).

Compactness

Theorem (Compactness). A theory is satisfiable if and only if it is finitely satisfiable.

Notice that:

$$T \equiv \{ \text{``}\varphi \leq 2^{-n}\text{''}: n < \omega \& \text{``}\varphi = 0\text{''} \in T \}.$$

Corollary. Assume that T is approximately finitely satisfiable. Then T is satisfiable.

Examples of continuous elementary classes

- Hilbert spaces (infinite dimensional).
- Probability algebras (atomless).
- L^p Banach lattices (atomless).
- Fields with a non-trivial valuation in $(\mathbb{R}, +)$ (algebraically closed, in characteristic (p, q)).
- &c...

All these examples are complete and admit QE.

Universal theories

- A theory consisting solely of " $(\sup_{\bar{x}} \varphi(\bar{x})) = 0$ ", where φ is quantifier-free, is called *universal*. Universal theories are those stable under substructures.
- We may write $(\sup_{\bar{x}}\varphi)=0$ as $\forall \bar{x}(\varphi=0)$.
- Similarly, we may write $(\sup_{\bar{x}} |\varphi \psi|) = 0$ as $\forall \bar{x} (\varphi = \psi)$.
- And if σ, τ are terms: we may write $(\sup_{\bar{x}} d(\sigma, \tau)) = 0$ as $\forall \bar{x}(\sigma = \tau)$.

The (universal) theory of probability algebras

The class of probability algebras is axiomatised by:

universal equational axioms of Boolean algebras
$$\forall xy \, d(x,y) = \mu(x \triangle y)$$

$$\forall xy \, \mu(x) + \mu(y) = \mu(x \cap y) + \mu(x \cup y)$$

$$\mu(1) = 1$$

The model completion is the $\forall \exists$ -theory of atomless probability algebras:

$$\sup_{x} \inf_{y} \left| \mu(x \cap y) - \frac{1}{2}\mu(x) \right| = 0.$$

2 Continuous model theory

2.1 Types

Types (without parameters)

Definition. Let M be a structure, $\bar{a} \in M^n$. Then:

$$\operatorname{tp}^{M}(\bar{a}) = \{ \varphi(\bar{x}) = r : \varphi(\bar{x}) \in \mathcal{L}, r = \varphi(\bar{a})^{M} \}.$$

 $S_n(T)$ is the space of types of n-tuples in models of T. If $p \in S_n(T)$:

$$\varphi(\bar{x})^p = r \iff "\varphi(\bar{x}) = r" \in p.$$

- The logic topology on $S_n(T)$ is minimal such that $p \mapsto \varphi^p$ is continuous for all φ .
- This is the analogue of the Stone topology in classical logic; it is compact and Hausdorff (not totally disconnected).

Types (with parameters)

Definition. Let M be a structure, $\bar{a} \in M^n$, $B \subseteq M$. Then:

$$\operatorname{tp}^{M}(\bar{a}/B) = \{ \text{``}\varphi(\bar{x}, \bar{b}) = r\text{''} : \varphi(\bar{x}, \bar{y}) \in \mathcal{L}, \bar{b} \in B^{m}, r = \varphi(\bar{a}, \bar{b})^{M} \}.$$

 $S_n(B)$ is the space of types over B of n-tuples in elementary extensions of M. If $p \in S_n(B)$, $\bar{b} \in B$:

$$\varphi(\bar{x}, \bar{b})^p = r \iff "\varphi(\bar{x}, \bar{b}) = r" \in p.$$

The logic topology on $S_n(B)$ is minimal such that $p \mapsto \varphi(\bar{x}, \bar{b})^p$ is continuous for all $\varphi(\bar{x}, \bar{b}), \bar{b} \in B^m$. It is compact and Hausdorff.

Saturated and homogeneous models

Definition. Let κ be a cardinal, M a structure.

- M is κ -saturated if for every $A \subseteq M$ such that $|A| < \kappa$ and every $p \in S_1(A)$: p is realised in M.
- M is κ -homogeneous if for every $A \subseteq M$ such that $|A| < \kappa$ and every mapping $f: A \to M$ which preserves truth values, f extends to an automorphism of M.

Fact. Let M be any structure and \mathscr{U} a non-principal ultrafilter on \aleph_0 . Then the ultrapower M^{\aleph_0}/\mathscr{U} is \aleph_1 -saturated.

Monster models

A monster model of a complete theory T is a model of T which is κ -saturated and κ -homogeneous for some κ which is much larger than any set under consideration.

Fact. • Every complete theory T has a monster model.

- If \bar{M} is a monster model for T, then every "small" model of T (i.e., smaller than κ) is isomorphic to some $N \leq \bar{M}$.
- If $A \subseteq \bar{M}$ is small then $S_n(A)$ is the set of orbits in \bar{M}^n under $Aut(\bar{M}/A)$.

Thus monster models serve as "universal domains": everything happens inside, and the automorphism group is large enough.

Definable predicates

- We identify a formula $\varphi(x_{\leq n})$ with the function $\varphi \colon S_n(T) \to [0,1]$ it induces: $p \mapsto \varphi^p$. By Stone-Weierstrass these functions are dense in $C(S_n(T), [0,1])$.
- An arbitrary continuous function $\psi \colon S_n(T) \to [0,1]$ is called a *definable predicate*. It is a uniform limit of formulae: $\psi = \lim_{n \to \infty} \varphi_n$. Its interpretation:

$$\psi^M(\bar{a}) = \lim_n \varphi_n^M(\bar{a}).$$

Since each φ_n^M is uniformly continuous, so is ψ^M .

• Same applies with parameters. Note that a definable predicate $\lim \varphi_n(\bar{x}, \bar{b}_n)$ may depend on countably many parameters.

Imaginaries and algebraic closure

• In continuous logic *imaginary elements* are introduced as canonical parameters of formulae and predicates with parameters. Imaginary sorts are also metric:

$$d(\operatorname{cp}(\psi), \operatorname{cp}(\chi)) = \sup_{\bar{x}} |\psi(\bar{x}) - \chi(\bar{x})|.$$

- An element a is algebraic over A if the set of its conjugates over A is compact (replaces "finite").
- $\operatorname{acl}^{eq}(A)$ is the set of all imaginaries algebraic over A.

Omitting types

Theorem (Omitting types). Assume T is countable and $X \subseteq S_1(T)$ is meagre (i.e., contained in a countable union of closed nowhere-dense sets). Then T has a model M such that a dense subset of M omits each type in X.

(Similarly with $X_n \subseteq S_n(T)$ meagre for each n.)

What about omitting types in M, and not only in a dense subset?

2.2 The metric on $S_n(T)$

Metric on types

The topological structure of $S_n(T)$ is insufficient. We will also need to consider the distance between types:

$$d(p,q) = \inf\{d(a,b) : a, b \in M \models T \& M \models p(a) \cup q(b)\}.$$

(In case T is incomplete and p,q belong to different completions: $d(p,q) = \inf \emptyset := \infty$.) The infimum is always attained as minimum. Indeed, apply compactness to the partial type:

$$p(x) \cup q(y) \cup \{d(x,y) \le d(p,q) + 2^{-n} : n < \omega\}.$$

Some properties of $(S_n(T), d)$

- If $f: S_n(T) \to [0,1]$ is topologically continuous (f is a definable predicate) then it is metrically uniformly continuous.
- Implies: The metric refines the topology.
- If $F \subseteq S_n(T)$ is closed, then so is the set:

$$\bar{B}(F,r) = \{ p \in S_n(T) \colon d(p,F) \le r \}.$$

- Implies: $(S_n(T), d)$ is complete.
- And: If $F \subseteq S_n(T)$ is closed and $p \in S_n(T)$, then there is $q \in F$ such that d(p,q) = d(p,F).

All these properties are consequences of compactness + "metric Hausdorff" property:

Lemma. The distance function $d: S_n(T)^2 \to [0, \infty]$ is lower semi-continuous. That is to say that $\{(p,q): d(p,q) \le r\}$ is closed for all r.

Proof. The projection $S_{2n}(T) \to S_n(T) \times S_n(T)$ is closed, and $[d(\bar{x}, \bar{y}) \leq r] \subseteq S_{2n}(T)$ is closed, whereby so is its image $\{(p, q) : d(p, q) \leq r\} \subseteq S_n(T)^2$.

d-isolated types

Definition. A type $p \in S_n(T)$ is *d-isolated* if for all r > 0 the metric ball B(p, r) contains p in its topological interior: $p \in B(p, r)^{\circ}$ (i.e., the metric and the topology coincide at p).

Fact. A type $p \in S_n(T)$ is d-isolated if and only if it is weakly d-isolated, i.e., iff for all r > 0: $B(x,r)^{\circ} \neq \emptyset$.

Omitting and realising types in models

Proposition (Henson). A d-isolated type p is realised in every model of T. If T is countable, then the converse is also true.

Proof. \Longrightarrow As $B(p, 2^{-n})^{\circ} \neq \emptyset$ for all n, it must be realised in M, say by a_n . We can furthermore arrange that $d(a_n, a_{n+1}) < 2^{-n-1}$. Then $a_n \to a \models p$.

 \Leftarrow If $\bar{B}(p,r)^{\circ} = \emptyset$ for some r > 0, we can omit it in a dense subset of M. Then M omits p.

Ryll-Nardzewski Theorem

Definition. A theory T is λ -categorical if for all $M, N \models T$:

$$||M|| = ||N|| = \lambda \Longrightarrow M \simeq N.$$

Theorem (Henson). For a complete countable theory T, TFAE:

- T is \aleph_0 -categorical (unique separable model).
- Every n-type over \varnothing is d-isolated for all n.
- The metric and topology coincide on each $(S_n(T), d)$.
- Every automorphism-invariant uniformly continuous predicate on \bar{M} is definable.

2.3 Stability

Stable theories

Recall: $\|\cdot\|$ denotes the *metric* density character.

Definition. • (Iovino) We say that T is λ -stable if $||A|| \le \lambda \Longrightarrow ||S_n(A)|| \le \lambda$.

- It is *stable* if it is λ -stable for some λ .
- It is superstable if it is λ -stable for all λ big enough.

Proposition. The following are equivalent:

- T is stable.
- If $||M|| \le 2^{|T|}$ then $|S_n(M)| \le 2^{|T|}$.

Notions of independence

Let \bar{M} be a monster model, and \bigcup a ternary notion of independence between small subsets of \bar{M} : $A \bigcup_B C$ means "A is independence from C over B." It may satisfy:

- Invariance: under automorphisms of \bar{M} .
- Symmetry: $A \downarrow_B C \iff C \downarrow_B A$.
- Transitivity: $A \downarrow_B CD \iff \left[A \downarrow_B C \text{ and } A \downarrow_{BC} D \right].$
- Finite character: $A \downarrow_B C \iff \bar{a} \downarrow_B C$ for all finite $\bar{a} \in A$.
- Extension: for all \bar{a} , B, C there is \bar{a}' such that $\operatorname{tp}(\bar{a}/B) = \operatorname{tp}(\bar{a}'/B)$ and $\bar{a}' \downarrow_B C$.
- Local character: For all \bar{a} and B there is $B_0 \subseteq B$ such that $|B_0| \leq |T|$ and $\bar{a} \bigcup_{B_0} B$.
- Stationarity: if $M \preceq \bar{M}$, $\bar{a} \downarrow_M B$, $\bar{a}' \downarrow_M B$ then: $\operatorname{tp}(\bar{a}/M) = \operatorname{tp}(\bar{a}'/M) \Longrightarrow \operatorname{tp}(\bar{a}/B) = \operatorname{tp}(\bar{a}'/B)$.

Stability and independence

Theorem. T is stable if and only if its monster models admit notions of independence satisfying all of the above. Moreover, if such a notion of independence exists then it is unique.

Example. • In Hilbert spaces: \downarrow = orthogonality.

- In probability algebras: \downarrow = probabilistic independence.
- In L^p lattices: more complicated.

References

- [BBHU] Itaï Ben-Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, *Model theory for metric structures*, Expanded lecture notes for a workshop given in March/April 2005, Isaac Newton Institute, University of Cambridge.
- [BU] Itaï Ben-Yaacov and Alexander Usvyatsov, Continuous first order logic and local stability, submitted.