Introduction

Itaï Ben-Yaacov C. Ward Henson

American Institute of Mathematics Workshop

September 2006

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Origins

Many classes of (complete) metric structures arising in analysis are "tame" (e.g., admit well-behaved notions of independence) although not elementary in the classical sense.

Continuous logic [BU, BBHU] (Ben-Yaacov, Berenstein, Henson & Usvyatsov) is an attempt to apply model-theoretic tools to such classes. It was preceded by:

- Henson's logic for Banach structures (positive bounded formulae, approximate satisfaction).
- Ben-Yaacov's positive logic and compact abstract theories.
- Chang and Keisler's continuous model theory (1966).
- Łukasiewicz's many-valued logic (similar, although probably devised for other purposes).
- ...?

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Intellectual game: replace $\{T, F\}$ with [0, 1]

- The basic idea is: "replace the space of truth values $\{T, F\}$ with [0,1], and see what happens"...
- Things turn out more elegant if we agree that 0 is "True".
- Greater truth value is falser.

Ingredient I: non-logical symbols

- ullet A signature ${\cal L}$ consists of function and predicate symbols, as usual.
- *n*-ary function symbols: interpreted as functions $M^n \to M$.
- *n*-ary predicate symbols: interpreted as functions $M^n \rightarrow [0,1]$.
- ullet ${\cal L}$ -terms and atomic ${\cal L}$ -formulae are as in classical logic.

Example: language of probability algebras

Probability algebras are Boolean algebras of events in probability spaces; the probability of an event is a value in [0,1]. Language of probability algebras: $\mathcal{L} = \{0,1,\cdot^c,\cap,\cup,\mu\}$.

- 0, 1 are 0-ary function symbols (constant symbols).
- \cdot^c (complement) is a unary function symbol.
- \bullet \cup , \cap (union, intersection) are binary function symbols.
- ullet μ (probability) is a unary predicate symbol.

Example: language of probability algebras

Probability algebras are Boolean algebras of events in probability spaces; the probability of an event is a value in [0,1]. Language of probability algebras: $\mathcal{L} = \{0,1,\cdot^c,\cap,\cup,\mu\}$.

- 0, 1 are 0-ary function symbols (constant symbols).
- \cdot^c (complement) is a unary function symbol.
- \bullet \cup , \cap (union, intersection) are binary function symbols.
- \bullet μ (probability) is a unary predicate symbol.

Thus:

- $z, x \cap y^c, x \triangle y$ are terms (values in the algebra).
- $\mu(x), \mu(x \cap y^c)$ are atomic formulae (values in [0,1]).

Ingredient II: Connectives

- Any continuous function $[0,1]^n \to [0,1]$ should be admitted as an *n*-ary connective.
- Problem: uncountable syntax. But a dense subset of $C([0,1]^n,[0,1])$ (in uniform convergence) is good enough.
- The following connectives generate a (countable) dense family of connectives (lattice Stone-Weierstrass):

$$\neg x := 1 - x;$$
 $\frac{1}{2}x := x/2;$ $x - y := \max\{x - y, 0\}.$

• " $\varphi \dot{-} \psi$ " replaces " $\psi \rightarrow \varphi$ ". In particular: $\{\psi, \varphi \dot{-} \psi\} \models \varphi$ (Modus Ponens: if $\psi = 0$ and $\varphi \dot{-} \psi = 0$ then $\varphi = 0$).

Ingredient III: Quantifiers

- If $R \subseteq M^{n+1}$ is a predicate on M, $(\forall x R(x, \bar{b}))^M$ is the falsest among $\{R(a, \bar{b}): a \in M\}$.
- By analogy, if $R: M^{n+1} \rightarrow [0,1]$ is a continuous predicate:

$$(\forall x R(x, \bar{b}))^M = \sup_{a \in M} R(a, \bar{b}).$$

We will just use " $\sup_{x} \varphi$ " instead of " $\forall x \varphi$ ".

- Similarly, " $\exists x \varphi$ " becomes "inf_x φ ".
- Prenex normal form exists since the connectives $\neg, \frac{1}{2}, \div$ are monotone in each argument:

$$\varphi - \inf_{\mathbf{x}} \psi \equiv \sup_{\mathbf{x}} (\varphi - \psi), \quad \&c...$$

Probability algebras, cntd.

• We may construct useful connectives:

$$a \wedge b := \min\{a, b\}$$
 $= a \div (a \div b)$
 $a \vee b := \max\{a, b\}$ $= \neg(\neg a \wedge \neg b)$
 $|a - b|$ $= (a \div b) \vee (b \div a)$

- Thus: $\mu(x \cap y)$ and $|\mu(x) \mu(y)|$ are quantifier-free formulae.
- $\sup_x \inf_y \left| \mu(x \cap y) \frac{1}{2}\mu(x) \right|$ is a formula. It is in fact a sentence, as it has no free variables.

Ingredient IV: Equality...?

In classical logic the symbol = always satisfies:

$$x = x$$
 $(x = y) \rightarrow ((x = z) \rightarrow (y = z))$ (ER)

Replacing "x=y" with "d(x,y)" and " $\varphi \to \psi$ " with " $\psi \div \varphi$ ":

$$d(x,x)$$
 $\left(d(y,z) - d(x,z)\right) - d(x,y)$

I.e., d is a pseudo-metric:

$$d(x,x) = 0 \qquad d(y,z) \le d(x,z) + d(x,y) \tag{PM}$$

Similarly, = is a congruence relation:

$$(x = y) \rightarrow (P(x, \bar{z}) \rightarrow P(y, \bar{z}))$$
 (CR)

Basic definitions

Translates to:

$$(P(y,\bar{z}) \div P(x,\bar{z})) \div d(x,y)$$

I.e., P is 1-Lipschitz:

$$P(y,\bar{z}) - P(x,\bar{z}) \le d(x,y)$$
 (1L)

Similarly, = is a congruence relation:

$$(x = y) \rightarrow (P(x, \bar{z}) \rightarrow P(y, \bar{z}))$$
 (CR)

Basic definitions

Translates to:

$$(P(y,\bar{z}) \div P(x,\bar{z})) \div d(x,y)$$

I.e., P is 1-Lipschitz:

$$P(y,\bar{z}) - P(x,\bar{z}) \le d(x,y)$$
 (1L)

 \therefore all predicate and function symbols must be 1-Lipschitz in d.

Example (Probability algebras, part 3)

Indeed: $d(a,b) := \mu(a \triangle b)$ is a (pseudo)metric on events, and each of \cdot^c , \cup , \cap , μ is 1-Lipschitz.

Structures

Definition

A set M, equipped with a pseudo-metric d^M and 1-Lipschitz interpretations f^M , P^M of symbols $f, P \in \mathcal{L}$ is an \mathcal{L} -pre-structure. It is an \mathcal{L} -structure if d^M is a complete metric.

Basic definitions

Structures

Definition

A set M, equipped with a pseudo-metric d^M and 1-Lipschitz interpretations f^M , P^M of symbols $f, P \in \mathcal{L}$ is an \mathcal{L} -pre-structure. It is an \mathcal{L} -structure if d^M is a complete metric.

- Once $=^{M}$ is a congruence relation, classical logic cannot tell whether it is true equality or not.
- Similarly, once all symbols are 1-Lipschitz, continuous logic cannot tell whether:
 - d^M is a true metric or a mere pseudo-metric.
 - A Cauchy sequence has a limit or not.
- A pre-structure M is logically indistinguishable from its completion \widehat{M}/\sim_d . $(a \sim_d b \iff d(a,b) = 0)$

Recap: probability algebras

- Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space.
- Let $\mathfrak{B}_0 \leq \mathfrak{B}$ be the null-measure ideal, and $\bar{\mathfrak{B}} = \mathfrak{B}/\mathfrak{B}_0$. Then $\bar{\mathfrak{B}}$ is a Boolean algebra and μ induces $\bar{\mu} \colon \bar{\mathfrak{B}} \to [0,1]$. The pair $(\bar{\mathfrak{B}},\bar{\mu})$ is a probability algebra.
- It admits a complete metric: $d(a,b) = \bar{\mu}(a\triangle b)$. $\bar{\mu}$ and the Boolean operations are 1-Lipschitz.

Recap: probability algebras

- Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space.
- Let $\mathfrak{B}_0 \leq \mathfrak{B}$ be the null-measure ideal, and $\bar{\mathfrak{B}} = \mathfrak{B}/\mathfrak{B}_0$. Then $\bar{\mathfrak{B}}$ is a Boolean algebra and μ induces $\bar{\mu} \colon \bar{\mathfrak{B}} \to [0,1]$. The pair $(\bar{\mathfrak{B}},\bar{\mu})$ is a probability algebra.
- It admits a complete metric: $d(a,b) = \bar{\mu}(a\triangle b)$. $\bar{\mu}$ and the Boolean operations are 1-Lipschitz.
- $(\mathfrak{B},0,1,\cap,\cup,\cdot^c,\mu)$ is a pre-structure; $(\bar{\mathfrak{B}},0,1,\cap,\cup,\cdot^c,\bar{\mu})$ is its completion (i.e., a structure).

Recap: probability algebras

- Let $(\Omega, \mathfrak{B}, \mu)$ be a probability space.
- Let $\mathfrak{B}_0 \leq \mathfrak{B}$ be the null-measure ideal, and $\bar{\mathfrak{B}} = \mathfrak{B}/\mathfrak{B}_0$. Then $\bar{\mathfrak{B}}$ is a Boolean algebra and μ induces $\bar{\mu} \colon \bar{\mathfrak{B}} \to [0,1]$. The pair $(\bar{\mathfrak{B}},\bar{\mu})$ is a probability algebra.
- It admits a complete metric: $d(a,b) = \bar{\mu}(a\triangle b)$. $\bar{\mu}$ and the Boolean operations are 1-Lipschitz.
- $(\mathfrak{B}, 0, 1, \cap, \cup, \cdot^c, \mu)$ is a pre-structure; $(\bar{\mathfrak{B}}, 0, 1, \cap, \cup, \cdot^c, \bar{\mu})$ is its completion (i.e., a structure).

Remark

If $a_n \to a$ in d then $\mu(a_n) \to \mu(a)$. Thus σ -additivity of the measure comes "for free".

Bottom line

- By replacing $\{T, F\}$ with [0,1] we obtained a logic for (bounded) complete metric 1-Lipschitz structures.
- It is fairly easy to replace "1-Lipschitz" with "uniformly continuous".
- One can also overcome "bounded", but it's trickier.
- Since all structures are complete metric structures we do not measure their size by cardinality, but by density character:

$$||(M,d)|| = \min\{|A|: A \subseteq M \text{ is dense}\}.$$

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Semantics

As usual, the notation $\varphi(x_0,\ldots x_{n-1})$ [or $\varphi(x_{< n})$, or $\varphi(\bar{x})$] means that the free variables of φ are among x_0,\ldots,x_{n-1} . If M is a structure and $\bar{a}\in M^n$: we define the truth value $\varphi^M(\bar{a})\in [0,1]$ inductively, in the "obvious way".

Example

Let $(M,0,1,.^c,\cup,\cap,\mu)$ be a probability algebra, $\varphi(x)=\inf_y \left|\mu(x\cap y)-\frac{1}{2}\mu(x)\right|$.

- If $a \in M$ is an atom, then $\varphi^M(a) = \frac{1}{2}\mu(a)$.
- If a has no atoms below it then $\varphi^M(a) = 0$.

Semantics

As usual, the notation $\varphi(x_0, \dots x_{n-1})$ [or $\varphi(x_{< n})$, or $\varphi(\bar{x})$] means that the free variables of φ are among x_0, \dots, x_{n-1} . If M is a structure and $\bar{a} \in M^n$: we define the truth value $\varphi^M(\bar{a}) \in [0,1]$ inductively, in the "obvious way".

Example

Let $(M,0,1,.^c,\cup,\cap,\mu)$ be a probability algebra, $\varphi(x)=\inf_y |\mu(x\cap y)-\frac{1}{2}\mu(x)|$.

- If $a \in M$ is an atom, then $\varphi^M(a) = \frac{1}{2}\mu(a)$.
- If a has no atoms below it then $\varphi^M(a) = 0$.

The function $\varphi^M \colon M^n \to [0,1]$ is uniformly continuous (by induction on φ).

Various "elementary" notions

- Elementary equivalence: If M, N are two structures then $M \equiv N$ if $\varphi^M = \varphi^N \in [0,1]$ for every sentence φ (i.e.: formula without free variables). Equivalently: " $\varphi^M = 0 \iff \varphi^N = 0$ for all sentence φ ."
- Elementary extension: $M \leq N$ if $M \subseteq N$ and $\varphi^M(\bar{a}) = \varphi^N(\bar{a})$ for every formula φ and $\bar{a} \in M$. This implies $M \equiv N$.

Lemma (Elementary chains)

The union of an elementary chain $M_0 \leq M_1 \leq \dots$ is an elementary extension of each M_i .

Caution: we have to replace the union of a countable increasing chain with its completion.

Ultraproducts

- $(M_i : i \in I)$ are structures, \mathscr{U} an ultrafilter on I.
- We let $N_0 = \prod_{i \in I} M_i$ as a set; its members are $(\bar{a}) = (a_i : i \in I), a_i \in M_i$.
- We interpret the symbols:

$$f^{N_0}((a_i: i \in I), \dots) = (f^{M_i}(a_i, \dots): i \in I) \in N_0$$

$$P^{N_0}((a_i: i \in I), \dots) = \lim_{\mathcal{U}} P^{M_i}(a_i, \dots) \in [0, 1]$$

- This way N_0 is a pre-structure. We define $N = \widehat{N_0}$ (the completion), and call it the ultraproduct $\prod_{i \in I} M_i / \mathcal{U}$.
- The image of $(\bar{a}) \in N_0$ in N is denoted $(\bar{a})_{\mathscr{U}}$:

$$(\bar{a})_{\mathscr{U}}=(\bar{b})_{\mathscr{U}}\Longleftrightarrow 0=\lim_{\mathscr{U}}d(a_i,b_i)\quad \Big[=d^{N_0}\big((\bar{a}),(\bar{b})\big)\Big].$$

Properties of ultraproducts

• Łoś's Theorem: for every formula $\varphi(x, y, ...)$ and elements $(\bar{a})_{\mathscr{U}}, (\bar{b})_{\mathscr{U}}, ... \in N = \prod M_i/\mathscr{U}$:

$$\varphi^{N}((\bar{a})_{\mathscr{U}},(\bar{b})_{\mathscr{U}},\dots)=\lim_{\mathscr{U}}\varphi^{M_{i}}(a_{i},b_{i},\dots).$$

- [Easy] $M \equiv N$ (M and N are elementarily equivalent) if and only if M admits an elementary embedding into an ultrapower of N.
- [Deeper: generalising Keisler & Shelah] $M \equiv N$ if and only if M and N have ultrapowers which are isomorphic.

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Theories

- A theory T is a set of sentences (closed formulae).
- $M \vDash T \Longleftrightarrow \varphi^M = 0$ for all $\varphi \in T$.
- We sometimes write T as a set of statements " $\varphi=0$ ". We may also allow as statements things of the form " $\varphi \leq r$ ", " $\varphi \geq r$ ", " $\varphi=r$ ", etc.
- If *M* is any structure then its theory is

Th(M) = { "
$$\varphi = 0$$
" : $\varphi^M = 0$ } $\Big[\equiv \{ "\varphi = r" : \varphi^M = r \} \Big]$.

Theories of this form are called **complete** (equivalently: complete theories are the maximal satisfiable theories).

Compactness

Theorem (Compactness)

A theory is satisfiable if and only if it is finitely satisfiable.

Notice that:

$$T \equiv \{ \varphi \leq 2^{-n} : n < \omega \& \varphi = 0 \in T \}.$$

Corollary

Assume that T is approximately finitely satisfiable. Then T is satisfiable.

Examples of continuous elementary classes

- Hilbert spaces (infinite dimensional).
- Probability algebras (atomless).
- L^p Banach lattices (atomless).
- Fields with a non-trivial valuation in $(\mathbb{R}, +)$ (algebraically closed, in characteristic (p, q)).
- &c...

All these examples are complete and admit QE.

Universal theories

- A theory consisting solely of " $\left(\sup_{\overline{x}}\varphi(\overline{x})\right)=0$ ", where φ is quantifier-free, is called universal. Universal theories are those stable under substructures.
- We may write $(\sup_{\bar{x}}\varphi)=0$ as $\forall \bar{x}(\varphi=0)$.
- Similarly, we may write $(\sup_{\bar{x}} |\varphi \psi|) = 0$ as $\forall \bar{x} (\varphi = \psi)$.
- And if σ, τ are terms: we may write $\left(\sup_{\bar{x}} d(\sigma, \tau)\right) = 0$ as $\forall \bar{x}(\sigma = \tau)$.

The (universal) theory of probability algebras

The class of probability algebras is axiomatised by:

universal equational axioms of Boolean algebras

$$\forall xy \ d(x,y) = \mu(x \triangle y)$$

$$\forall xy \ \mu(x) + \mu(y) = \mu(x \cap y) + \mu(x \cup y)$$

$$\mu(1) = 1$$

The (universal) theory of probability algebras

The class of probability algebras is axiomatised by:

universal equational axioms of Boolean algebras

$$\forall xy \ d(x,y) = \mu(x \triangle y)$$

$$\forall xy \ \mu(x) + \mu(y) = \mu(x \cap y) + \mu(x \cup y)$$

$$\mu(1) = 1$$

The model completion is the $\forall \exists$ -theory of atomless probability algebras:

$$\sup_x \inf_y \left| \mu(x \cap y) - \frac{1}{2}\mu(x) \right| = 0.$$

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Types (without parameters)

Definition

Let M be a structure, $\bar{a} \in M^n$. Then:

$$\mathsf{tp}^{M}(\bar{\mathsf{a}}) = \{ \text{``}\varphi(\bar{\mathsf{x}}) = r\text{''} : \varphi(\bar{\mathsf{x}}) \in \mathcal{L}, r = \varphi(\bar{\mathsf{a}})^{M} \}.$$

 $S_n(T)$ is the space of types of *n*-tuples in models of T. If $p \in S_n(T)$:

$$\varphi(\bar{x})^p = r \iff "\varphi(\bar{x}) = r" \in p.$$

Types (without parameters)

Definition

Let M be a structure, $\bar{a} \in M^n$. Then:

$$\mathsf{tp}^{M}(\bar{\mathsf{a}}) = \{ \text{``}\varphi(\bar{\mathsf{x}}) = r\text{''} : \varphi(\bar{\mathsf{x}}) \in \mathcal{L}, r = \varphi(\bar{\mathsf{a}})^{M} \}.$$

 $S_n(T)$ is the space of types of *n*-tuples in models of T. If $p \in S_n(T)$:

$$\varphi(\bar{x})^p = r \iff "\varphi(\bar{x}) = r" \in p.$$

- The logic topology on $S_n(T)$ is minimal such that $p \mapsto \varphi^p$ is continuous for all φ .
- This is the analogue of the Stone topology in classical logic; it is compact and Hausdorff (not totally disconnected).

Types (with parameters)

Definition

Let M be a structure, $\bar{a} \in M^n$, $B \subseteq M$. Then:

$$tp^{M}(\bar{a}/B) = \{ \text{``}\varphi(\bar{x},\bar{b}) = r\text{''} : \varphi(\bar{x},\bar{y}) \in \mathcal{L}, \bar{b} \in B^{m}, r = \varphi(\bar{a},\bar{b})^{M} \}.$$

 $S_n(B)$ is the space of types over B of n-tuples in elementary extensions of M. If $p \in S_n(B)$, $\bar{b} \in B$:

$$\varphi(\bar{\mathbf{x}}, \bar{\mathbf{b}})^p = r \iff "\varphi(\bar{\mathbf{x}}, \bar{\mathbf{b}}) = r" \in p.$$

The logic topology on $S_n(B)$ is minimal such that $p \mapsto \varphi(\bar{x}, \bar{b})^p$ is continuous for all $\varphi(\bar{x}, \bar{b})$, $\bar{b} \in B^m$. It is compact and Hausdorff.

Saturated and homogeneous models

Definition

Let κ be a cardinal, M a structure.

- M is κ -saturated if for every $A \subseteq M$ such that $|A| < \kappa$ and every $p \in S_1(A)$: p is realised in M.
- M is κ -homogeneous if for every $A \subseteq M$ such that $|A| < \kappa$ and every mapping $f: A \to M$ which preserves truth values, f extends to an automorphism of M.

Fact

Let M be any structure and \mathscr{U} a non-principal ultrafilter on \aleph_0 . Then the ultrapower M^{\aleph_0}/\mathscr{U} is \aleph_1 -saturated.

Monster models

A monster model of a complete theory T is a model of T which is κ -saturated and κ -homogeneous for some κ which is much larger than any set under consideration.

Fact

- Every complete theory T has a monster model.
- If \bar{M} is a monster model for T, then every "small" model of T (i.e., smaller than κ) is isomorphic to some $N \leq \bar{M}$.
- If $A \subseteq \overline{M}$ is small then $S_n(A)$ is the set of orbits in \overline{M}^n under $\operatorname{Aut}(\overline{M}/A)$.

Thus monster models serve as "universal domains": everything happens inside, and the automorphism group is large enough.

Definable predicates

- We identify a formula $\varphi(x_{< n})$ with the function $\varphi \colon S_n(T) \to [0,1]$ it induces: $p \mapsto \varphi^p$. By Stone-Weierstrass these functions are dense in $C(S_n(T),[0,1])$.
- An arbitrary continuous function ψ: S_n(T) → [0, 1] is called a definable predicate. It is a uniform limit of formulae:
 ψ = lim_{n→∞} φ_n. Its interpretation:

$$\psi^{M}(\bar{a}) = \lim_{n} \varphi_{n}^{M}(\bar{a}).$$

Since each φ_n^M is uniformly continuous, so is ψ^M .

Definable predicates

- We identify a formula $\varphi(x_{\leq n})$ with the function $\varphi \colon S_n(T) \to [0,1]$ it induces: $p \mapsto \varphi^p$. By Stone-Weierstrass these functions are dense in $C(S_n(T),[0,1])$.
- An arbitrary continuous function ψ: S_n(T) → [0, 1] is called a definable predicate. It is a uniform limit of formulae:
 ψ = lim_{n→∞} φ_n. Its interpretation:

$$\psi^{M}(\bar{a}) = \lim_{n} \varphi_{n}^{M}(\bar{a}).$$

Since each φ_n^M is uniformly continuous, so is ψ^M .

• Same applies with parameters. Note that a definable predicate $\lim \varphi_n(\bar{x}, \bar{b}_n)$ may depend on countably many parameters.

Imaginaries and algebraic closure

 In continuous logic imaginary elements are introduced as canonical parameters of formulae and predicates with parameters. Imaginary sorts are also metric:

$$d(\operatorname{cp}(\psi),\operatorname{cp}(\chi))=\sup_{\bar{x}}|\psi(\bar{x})-\chi(\bar{x})|.$$

- An element a is algebraic over A if the set of its conjugates over A is compact (replaces "finite").
- $acl^{eq}(A)$ is the set of all imaginaries algebraic over A.

Omitting types

Theorem (Omitting types)

Assume T is countable and $X \subseteq S_1(T)$ is meagre (i.e., contained in a countable union of closed nowhere-dense sets). Then T has a model M such that a dense subset of M omits each type in X. (Similarly with $X_n \subseteq S_n(T)$ meagre for each n.)

Omitting types

Theorem (Omitting types)

Assume T is countable and $X \subseteq S_1(T)$ is meagre (i.e., contained in a countable union of closed nowhere-dense sets). Then T has a model M such that a dense subset of M omits each type in X. (Similarly with $X_n \subseteq S_n(T)$ meagre for each n.)

What about omitting types in M, and not only in a dense subset?

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- 2 Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Metric on types

The topological structure of $S_n(T)$ is insufficient. We will also need to consider the distance between types:

$$d(p,q)=\inf\{d(a,b)\colon a,b\in M\vDash T\ \&\ M\vDash p(a)\cup q(b)\}.$$

(In case T is incomplete and p,q belong to different completions: $d(p,q) = \inf \varnothing := \infty$.)

Metric on types

The topological structure of $S_n(T)$ is insufficient. We will also need to consider the distance between types:

$$d(p,q) = \inf\{d(a,b)\colon a,b\in M\vDash T\ \&\ M\vDash p(a)\cup q(b)\}.$$

(In case T is incomplete and p,q belong to different completions: $d(p,q) = \inf \varnothing := \infty$.)

The infimum is always attained as minimum. Indeed, apply compactness to the partial type:

$$p(x) \cup q(y) \cup \{d(x,y) \le d(p,q) + 2^{-n} : n < \omega\}.$$

Some properties of $(S_n(T), d)$

- If $f: S_n(T) \to [0,1]$ is topologically continuous (f is a definable predicate) then it is metrically uniformly continuous.
- Implies: The metric refines the topology.
- If $F \subseteq S_n(T)$ is closed, then so is the set:

$$\bar{B}(F,r) = \{ p \in S_n(T) \colon d(p,F) \le r \}.$$

- Implies: $(S_n(T), d)$ is complete.
- And: If $F \subseteq S_n(T)$ is closed and $p \in S_n(T)$, then there is $q \in F$ such that d(p,q) = d(p,F).

All these properties are consequences of compactness + "metric Hausdorff" property:

Lemma

The distance function $d: S_n(T)^2 \to [0,\infty]$ is lower semi-continuous. That is to say that $\{(p,q): d(p,q) \le r\}$ is closed for all r.

Proof.

The projection $S_{2n}(T) \to S_n(T) \times S_n(T)$ is closed, and $[d(\bar{x},\bar{y}) \le r] \subseteq S_{2n}(T)$ is closed, whereby so is its image $\{(p,q)\colon d(p,q) \le r\} \subseteq S_n(T)^2$.

d-isolated types

Definition

A type $p \in S_n(T)$ is *d*-isolated if for all r > 0 the metric ball B(p, r) contains p in its topological interior: $p \in B(p, r)^{\circ}$ (i.e., the metric and the topology coincide at p).

Fact

A type $p \in S_n(T)$ is d-isolated if and only if it is weakly d-isolated, i.e., iff for all r > 0: $B(x, r)^{\circ} \neq \emptyset$.

Omitting and realising types in models

Proposition (Henson)

A d-isolated type p is realised in every model of T. If T is countable, then the converse is also true.

Proof.

- \implies As $B(p,2^{-n})^{\circ} \neq \varnothing$ for all n, it must be realised in M, say by a_n . We can furthermore arrange that $d(a_n,a_{n+1}) < 2^{-n-1}$. Then $a_n \to a \models p$.
- \iff If $\bar{B}(p,r)^{\circ} = \emptyset$ for some r > 0, we can omit it in a dense subset of M. Then M omits p.

Ryll-Nardzewski Theorem

Definition

A theory T is λ -categorical if for all $M, N \models T$:

$$||M|| = ||N|| = \lambda \Longrightarrow M \simeq N.$$

Theorem (Henson)

For a complete countable theory T, TFAE:

- T is ℵ₀-categorical (unique separable model).
- Every n-type over Ø is d-isolated for all n.
- The metric and topology coincide on each $(S_n(T), d)$.
- Every automorphism-invariant uniformly continuous predicate on M
 is definable.

Outline

- Continuous logic
 - Basic definitions
 - Semantics
 - Theories
- 2 Continuous model theory
 - Types
 - The metric on $S_n(T)$
 - Stability

Stable theories

Recall: $\|\cdot\|$ denotes the metric density character.

Definition

- (lovino) We say that T is λ -stable if $||A|| \le \lambda \Longrightarrow ||S_n(A)|| \le \lambda$.
- It is stable if it is λ -stable for some λ .
- It is superstable if it is λ -stable for all λ big enough.

Proposition

The following are equivalent:

- T is stable.
- If $||M|| \le 2^{|T|}$ then $|S_n(M)| \le 2^{|T|}$.

Notions of independence

Let \bar{M} be a monster model, and \bigcup a ternary notion of independence between small subsets of \bar{M} : $A \bigcup_B C$ means "A is independence from C over B." It may satisfy:

- ullet Invariance: under automorphisms of $ar{M}$.
- Symmetry: $A \downarrow_B C \iff C \downarrow_B A$.
- Transitivity: $A \perp_B CD \iff \left[A \perp_B C \text{ and } A \perp_{BC} D \right]$.
- Finite character: $A \bigcup_{B} C \iff \bar{a} \bigcup_{B} C$ for all finite $\bar{a} \in A$.

Notions of independence

Let \bar{M} be a monster model, and \bigcup a ternary notion of independence between small subsets of \bar{M} : $A \bigcup_B C$ means "A is independence from C over B." It may satisfy:

- ullet Invariance: under automorphisms of $ar{M}$.
- Symmetry: $A \downarrow_B C \iff C \downarrow_B A$.
- Transitivity: $A \downarrow_B CD \iff [A \downarrow_B C \text{ and } A \downarrow_{BC} D]$.
- Finite character: $A \perp_B C \iff \bar{a} \perp_B C$ for all finite $\bar{a} \in A$.
- Extension: for all \bar{a} , B, C there is \bar{a}' such that $\operatorname{tp}(\bar{a}/B)=\operatorname{tp}(\bar{a}'/B)$ and $\bar{a}' \bigcup_B C$.
- Local character: For all \bar{a} and B there is $B_0 \subseteq B$ such that $|B_0| \le |T|$ and $\bar{a} \downarrow_{B_0} B$.
- Stationarity: if $M \preceq \bar{M}$, $\bar{a} \downarrow_M B$, $\bar{a}' \downarrow_M B$ then: $\operatorname{tp}(\bar{a}/M) = \operatorname{tp}(\bar{a}'/M) \Longrightarrow \operatorname{tp}(\bar{a}/B) = \operatorname{tp}(\bar{a}'/B)$.

Stability and independence

Theorem

T is stable if and only if its monster models admit notions of independence satisfying all of the above. Moreover, if such a notion of independence exists then it is unique.

Example

- In Hilbert spaces: \downarrow = orthogonality.
- In L^p lattices: more complicated.

Itaï Ben-Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, *Model theory for metric structures*, Expanded lecture notes for a workshop given in March/April 2005, Isaac Newton Institute, University of Cambridge.

Itaï Ben-Yaacov and Alexander Usvyatsov, *Continuous first order logic and local stability*, submitted.