Constraint Satisfaction

Complexity

and

Logic

Phokion G. Kolaitis

IBM Almaden Research Center

&

UC Santa Cruz

Goals

Goals:

- Show that Constraint Satisfaction Problems (CSP) form a broad class of algorithmic problems that arise naturally in several different areas.
- Present an overview of CSP with emphasis on the computational complexity aspects of CSP and on the connections with database theory, universal algebra, and logic

Course Outline

Constraint Satisfaction Problems (CSP)

- Definition & Examples of CSP
- CSP & the Homomorphism Problem
- CSP & Database Theory
- Computational Complexity of CSP
 - Uniform & Non-Uniform CSP
 - Schaefer's Dichotomy Theorem for Boolean CSP
 - The Feder-Vardi Dichotomy Conjecture for general CSP

Course Outline

- The Pursuit of Tractable Cases of CSP
 - Universal Algebra and Closure Properties of Constraints
 - Datalog, Finite-variable Logics, and Pebble Games
 - Bounded Treewidth and Finite-variable Logics

Algorithmic Problems

- k-SAT: $(k \ge 2 \text{ is fixed})$ Given a k-CNF formula, is it satisfiable?
- k-Colorability: $(k \ge 2 \text{ is fixed})$ Given a graph $\mathbf{H} = (V, E)$, is it k-colorable?
- CLIQUE:

Given a graph $\mathbf{H} = (V, E)$ and a positive integer k, does \mathbf{H} contain a k-clique?

• Hamiltonian Cycle:

Given a graph $\mathbf{H} = (V, E)$, does it contain a Hamiltonian cycle?

Constraint Satisfaction Problems

Problems:

- $k\text{-SAT} (k \ge 2)$
- k-Colorability $(k \ge 2)$
- CLIQUE
- Hamiltonian Cycle
- LATIN SQUARE COMPLETION

Question: What do these have in common?

Answer: Each of them is a

Constraint Satisfaction Problem.

Constraint Satisfaction Problem

U. Montanari – 1974

CSP – Informal Definition

Input: A set V of variables, a domain D of values for the variables, and a set C of constraints.

Question: Is there an *assignment* of values to variables such that all constraints in C are satisfied?

Example: k-SAT as a CSP

k-CNF φ : variables x_1, \ldots, x_n ; clauses c_1, \ldots, c_m

- Variables: x_1, \ldots, x_n
- Values: 0, 1
- Constraints: Given by the clauses of φ .

Constraint Satisfaction Problem

Input: (V, D, C)

- A finite set V of variables
- A finite domain D of values for the variables
- A set C of constraints (t, R) restricting the values that tuples of variables can take.
 - t: a tuple $t = (x_1, \dots, x_m)$ of variables
 - -R: a relation on D of arity |t|=m

Question: Does (V, D, C) have a solution?

Solution: A mapping $h: V \to D$ such that

$$h(t) = (h(x_1), \dots, h(x_m)) \in R,$$

for every constraint $(t, R) \in C$.

An assignment of values to the variables such that all constraints are satisfied.

Example

• 3-SAT:

Given a 3CNF-formula φ with variables x_1, \ldots, x_n and clauses c_1, \ldots, c_m , is φ satisfiable?

• 3-SAT as a CSP:

- Variables x_1, \ldots, x_n
- Domain $D = \{0, 1\}$
- Constraints $((x, y, z), R_i), i = 0, 1, 2, 3$

Clause	Relation
$(x \lor y \lor z)$	$R_0 = \{0, 1\}^3 - \{(0, 0, 0)\}$ $R_1 = \{0, 1\}^3 - \{(1, 0, 0)\}$ $R_2 = \{0, 1\}^3 - \{(1, 1, 0)\}$ $R_3 = \{0, 1\}^3 - \{(1, 1, 1)\}$
$(\neg x \vee y \vee z)$	$R_1 = \{0, 1\}^3 - \{(1, 0, 0)\}$
$(\neg x \vee \neg y \vee z)$	$R_2 = \{0,1\}^3 - \{(1,1,0)\}$
$(\neg x \vee \neg y \vee \neg z)$	$R_3 = \{0,1\}^3 - \{(1,1,1)\}$

Example

- 3-Colorability: Given a graph $\mathbf{H} = (V, E)$, is it 3-colorable?
- 3-Colorability as a CSP:
 - The variables are the nodes in V
 - The domain is the set $D = \{R, G, B\}$ of three colors.
 - The constraints are the pairs ((u, v), Q), where $(u, v) \in E$ and Q is the relation

$$\{(R,G),(G,R),(R,B),(B,R),(B,G),(G,B)\}.$$

Constraint Satisfaction Problems

Fundamental & ubiquitous problems in AI and CS:

- Boolean Satisfiability, Graph Colorability, ...
- Database Query Processing
- Planning and Scheduling
- Belief Maintenance
- Machine Vision
- . . .
- Linguistics

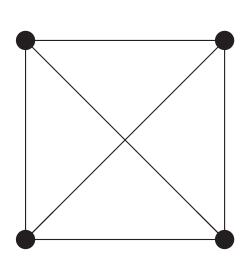
Homomorphisms

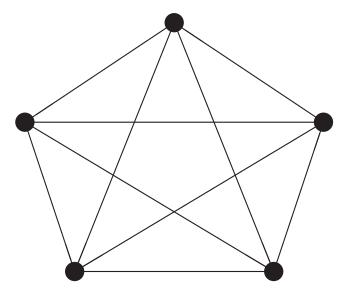
Definition: Consider two relational structures $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$ and $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

 $h: \mathbf{A} \to \mathbf{B}$ is a homomorphism if for every $i \leq m$ and every tuple $(a_1, \dots, a_n) \in A^n$,

$$R_i^{\mathbf{A}}(a_1,\ldots,a_n) \implies R_i^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

Example: Clique \mathbf{K}_4 vs. Clique \mathbf{K}_5





- There is a homomorphism from \mathbf{K}_4 to \mathbf{K}_5 ;
- There is no homomorphism from K_5 to K_4 .

The Homomorphism Problem

Definition: The Homomorphism Problem

Given two relational structures **A** and **B**, is there a homomorphism $h : \mathbf{A} \to \mathbf{B}$?

Fact: Feder & Vardi – 1993

CSP can be identified with the Homomorphism Problem.

Example

3-Sat as a Homomorphism Problem:

Given 3-CNF formula φ with variables x_1, \ldots, x_n :

•
$$\mathbf{A}^{\varphi} = (\{x_1, \dots, x_n\}, R_0^{\varphi}, R_1^{\varphi}, R_2^{\varphi}, R_3^{\varphi}), \text{ where}$$

$$R_0^{\varphi} = \{(x, y, z) : (x \vee y \vee z) \text{ is a clause of } \varphi\}$$

$$R_1^{\varphi} = \{(x, y, z) : (\neg x \vee y \vee z) \text{ is a clause of } \varphi\}$$

$$R_2^{\varphi} = \{(x, y, z) : (\neg x \vee \neg y \vee z) \text{ is a clause of } \varphi\}$$

$$R_3^{\varphi} = \{(x, y, z) : (\neg x \vee \neg y \vee \neg z) \text{ is a clause of } \varphi\}$$

•
$$\mathbf{B} = (\{0, 1\}, R_0, R_1, R_2, R_3)$$
, where
$$R_0 = \{0, 1\}^3 - \{(0, 0, 0)\}$$

$$R_1 = \{0, 1\}^3 - \{(1, 0, 0)\}$$

$$R_2 = \{0, 1\}^3 - \{(1, 1, 0)\}$$

$$R_3 = \{0, 1\}^3 - \{(1, 1, 1)\}$$

Fact: φ is satisfiable iff there is hom. $h: \mathbf{A}^{\varphi} \to \mathbf{B}$.

Examples

3-Colorability as a Homomorphism Problem:

Fact: A graph
$$\mathbf{H} = (V, E)$$
 is 3-colorable \iff

there is a homomorphism $h: \mathbf{H} \to \mathbf{K}_3$, where \mathbf{K}_3 is the 3-clique, i.e., $\mathbf{K}_3 = (\{R, G, B\}, E_3)$, where

$$E_3 = \{(R, G), (G, R), (R, B), (B, R), (B, G), (G, B)\}.$$

k-Colorability as a Homomorphism Problem:

Fact: A graph
$$\mathbf{H} = (V, E)$$
 is k -colorable \iff

there is a homomorphism $h: \mathbf{H} \to \mathbf{K}_k$, where \mathbf{K}_k is the k-clique.

From CSP to the Homomorphism Problem

Given a CSP-instance (V, D, C), let R_1, \ldots, R_m be the distinct relations on D occurring in C.

Define the instance (\mathbf{A}, \mathbf{B}) of the Homomorphism Problem, where

$$\mathbf{A} = (V, \{t : (t, R_1) \in C\}, \dots, \{t : (t, R_m) \in C\})$$

and

$$\mathbf{B}=(D,R_1,\ldots,R_m).$$

Fact: The CSP instance (V, D, C) has a solution

$$\iff$$

there is a homomorphism from **A** to **B**.

From the Homomorphism Problem to CSP

Given an instance $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$ and $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ of the Homomorphism Problem, define the instance (V, D, C) of CSP, where

- V = A (i.e., the elements of A are variables);
- D = B (i.e., the elements of B are values);
- $C = \{(t, R_i^{\mathbf{B}}) : t \in R_i^{\mathbf{A}}, 1 \le i \le m\}.$

Fact: There is a homomorphism from A to B

the CSP-instance (V, D, C) has a solution.

CSP vs. the Homomorphism Problem

Conclusion: Feder & Vardi – 1993

CSP = Homomorphism Problem

Some Advantages:

- Clean, algebraic formulation of CSP.
- Makes it possible to apply methods from universal algebra and logics to the study of CSP.
- Makes the connections between CSP and database theory transparent.

Course Outline

Constraint Satisfaction Problems

- Definition & Examples of CSP
- CSP & the Homomorphism Problem
- CSP & Database Theory
- Computational Complexity of CSP
- The Pursuit of Tractable Cases of CSP

Relational Databases

Definition:

- Relation Schema: $R(A_1, ..., A_k)$ R: relation name; $A_1, ..., A_k$: attribute names.
- Relation conforming with R:
 A set R' of k-tuples
- $Database\ Schema:\ A\ set\ S\ of\ relation\ schemas$
- $Database\ over\ S$: A set S of relations conforming with the relation schemas in S.

Database = Relational Structure

Example:

• Relation Schemas:

ENROLLS(Student, Course)
TEACHES(Faculty, Course)

• Database Schema: {ENROLLS, TEACHES}.

Relational Databases

Example: (continued)

• Relation Schemas:

ENROLLS(Student, Course)

TEACHES(Faculty, Course)

• Relation ENROLLS

Student	Course	
Adams	CS101	
Bing	Math10	
	• • •	

• Relation TEACHES

Faculty	Course	
Euler	Math10	
Turing	CS130	
Codd	CS180	
• • •	•••	

Relational Join

Notation: Given relations R_1, \ldots, R_m ,

$$R_1 \bowtie R_2 \bowtie \cdots \bowtie R_m$$

is the relational join or, simply, the join of R_1, \ldots, R_m .

Definition: Given

$$R_1(A, B, C), R_2(B, C, D), R_3(A, D, E),$$

$$R_1 \bowtie R_2 \bowtie R_3 = \{(a, b, c, d, e) : R_1(a, b, c) \land R_2(b, c, d) \land R_3(a, d, e)\}$$

Example: TAUGHT-BY(Student, Course, Faculty)

 $TAUGHT-BY = ENROLLS \bowtie TEACHES$

Fact: Computing joins is the most frequent and most costly operation in database systems. (Why?)

Relational Joins

• Relation ENROLLS

Student	Course	
Adams	CS101	
Bing	Math10	
• • •	• • •	

• Relation TEACHES

Faculty	Course	
Euler	Math10	
Turing	CS130	
Codd	CS180	
• • •	•••	

• Relation TAUGHT-BY

Student	Course	Faculty
Bing	Math10	Euler
	• • •	• • •

CSP and Joins

• Consider a CSP instance (V, D, C), where

$$V = \{X_1, \dots, X_n\}$$
 $C = \{C_1, \dots, C_m\}$
 $C_i = (t_i, R_i)$
 $t_i = (X_{j_1}, \dots, X_{j_i}).$

• For each (t_i, R_i) , view the occurrence of R_i as a relation over the relation schema $R_i(X_{j_1}, \ldots, X_{j_i})$.

Fact: Bibel, Gyssens, Jeavons, ...

$$R_1 \bowtie \cdots \bowtie R_m = \text{Solutions}((V, D, C)).$$

In particular,

(V, D, C) has a solution $\iff R_1 \bowtie \cdots \bowtie R_m \neq \emptyset$.

Conclusion: CSP is a database problem.

CSP and Databases

Fact: There are strong links between CSP and key problems in database systems:

- Relational Join Evaluation
- Conjunctive Query Evaluation (CQE)
- Conjunctive Query Containment (CQC)

Queries

Definitions:

- $Class\ C\ of\ structures$: a collection of relational structures closed under isomorphisms.
- k-ary Query Q on C:
 a mapping Q with domain C and such that
 - $-Q(\mathbf{A})$ is a k-ary relation on \mathbf{A} , for $\mathbf{A} \in \mathcal{C}$;
 - Q is preserved under isomorphisms, i.e., if $h : \mathbf{A} \to \mathbf{B}$ is an isomorphism, then

$$Q(\mathbf{B}) = h(Q(\mathbf{A})).$$

• Boolean Query Q on C:

a mapping $Q: \mathcal{C} \to \{0,1\}$ preserved under isomorphisms. Thus, Q can be identified with the subclass \mathcal{C}' of \mathcal{C} , where

$$\mathcal{C}' = \{ \mathbf{A} \in \mathcal{C} : Q(\mathbf{A}) = 1 \}.$$

Examples of Queries

- Path of Length 2-P2: Binary query on graphs $\mathbf{H}=(V,E)$ such that $P2(\mathbf{H})=\{(a,b)\in V^2\colon (\exists c)(E(a,c)\wedge E(c,b))\}.$
- ARTICULATION POINT AP:
 Unary query on graphs $\mathbf{H} = (V, E)$ such that $AP(\mathbf{H}) = \{a \in V : a \text{ is an articulation point of } \mathbf{H}\}.$
- Connectivity CN:
 Boolean query on graphs $\mathbf{H} = (V, E)$ such that

$$CN(\mathbf{H}) = \begin{cases} 1 & \text{if } \mathbf{H} \text{ is connected} \\ 0 & \text{otherwise.} \end{cases}$$

• k-Colorability, $k \ge 2$, Hamiltonian Cycle, ...

Definability of Queries

Let L be a logic and C a class of structures

• A k-ary query Q on C is L-definable if there is an L-formula $\varphi(x_1, \ldots, x_k)$ with x_1, \ldots, x_k as free variables and such that for every $\mathbf{A} \in C$

$$Q(\mathbf{A}) = \{(a_1, \dots, a_k) \in A^k : \mathbf{A} \models \varphi(a_1, \dots, a_k)\}.$$

• A Boolean query Q on \mathcal{C} is L-definable if there is an L-sentence ψ such that for every $\mathbf{A} \in \mathcal{C}$

$$Q(\mathbf{A}) = 1 \iff \mathbf{A} \models \psi.$$

Conjunctive Queries

Definition: A conjunctive query is a query definable by a FO-formula in prenex normal form built from atomic formulas, \land , and \exists only.

$$(\exists z_1 \ldots \exists z_m) \psi(x_1, \ldots, x_k, z_1, \ldots, z_m),$$

where ψ is a conjunction of atomic formulas.

Also, written as a rule:

$$Q(x_1,\ldots,x_k):-R(y_2,x_3,x_1),S(x_1,y_3),\ldots,S(y_7,x_2)$$

Examples:

• Path of Length 2 (Binary query)

$$(\exists z)(E(x_1, z) \land E(z, x_2)$$

$$P2(x_1, x_2) : -E(x_1, z), E(z, x_2)$$

• Cycle of Length 3 (Boolean query)

$$(\exists x_1 \exists x_2 \exists x_3)(E(x_1, x_2) \land E(x_2, x_3) \land E(x_3, x_1))$$

$$Q := E(x_1, x_2), E(x_2, x_3), E(x_3, x_1)$$

Conjunctive Queries

• Every relational join is a conjunctive query

$$R_1(A, B, C), R_2(B, C, D),$$

$$R_1 \bowtie R_2(x, y, z, w) : - R_1(x, y, z), R_2(y, z, w)$$

- Conjunctive Queries are the most frequently asked queries in databases (a.k.a. SPJ queries)
- The main construct of SQL expresses conjunctive queries

SELECT
$$R_1.A, R_2.D$$

FROM
$$R_1, R_2$$

WHERE
$$R_1.B = R_2.B$$
 AND $R_1.C = R_2.C$

Conjunctive Query Evaluation

A fundamental problem about conjunctive queries

Definition: Conjunctive Query Evaluation CQE

• Given a CQ Q and a structure \mathbf{A} , find

$$Q(\mathbf{A}) = \{(a_1, \dots a_k) : \mathbf{A} \models Q(a_1, \dots, a_k)\}\$$

• For Boolean queries Q, this becomes: Given Q and \mathbf{A} , does $\mathbf{A} \models Q$? (is $Q(\mathbf{A}) = 1$?)

Examples:

- Given a graph H, find all pairs of nodes connected by a path of length 4.
- Given a graph H, does it contain a triangle?

Conjunctive Query Containment

A fundamental problem about conjunctive queries

Definition: Conjunctive Query Containment CQC

• Given two k-ary CQs Q_1 and Q_2 , is it true that for every structure \mathbf{A} ,

$$Q_1(\mathbf{A}) \subseteq Q_2(\mathbf{A})$$
?

• For Boolean queries, this becomes: Given two Boolean queries Q_1 and Q_2 , does $Q_1 \models Q_2$? (does Q_1 logically imply Q_2 ?)

Examples:

- Is it true that if two nodes of a graph **H** are connected by a path of length 4, then they are also connected by a path of length 3?
- It is true that if a graph \mathbf{H} contains a \mathbf{K}_4 , then it also contains a \mathbf{K}_3 ?

CQE, CQC, CSP

Theorem: Chandra & Merlin – 1977

CQE and CQC are the *same* problem.

Fact: K ... & Vardi – 1998

CSP and CQC are the same problem

Question: What is the common link?

CQE, CQC, CSP

Theorem: Chandra & Merlin -1977

CQE and CQC are the same problem.

Fact: K ... & Vardi – 1998

CSP and CQC are the *same* problem

Question: What is the common link?

Answer: The Homomorphism Problem

Canonical CQs and Canonical Structures

Definition: Canonical Conjunctive Query

Given $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$, the canonical CQ of \mathbf{A} is the Boolean CQ $Q^{\mathbf{A}}$ with the elements of A as variables and the "facts" of \mathbf{A} as conjuncts:

$$Q^{\mathbf{A}} : - \bigwedge_{i=1}^{m} \bigwedge_{\mathbf{t}} R_i^{\mathbf{A}}(\mathbf{t})$$

Definition: Canonical Structure

Given a Boolean conjunctive query Q, let \mathbf{A}^Q be the structure with the variables of Q as elements and the conjuncts of Q as "facts".

Example:

•
$$\mathbf{A} = (\{a, b, c\}, \{(a, b), (b, c), (c, a)\}$$

 $Q^{\mathbf{A}} : -E(x, y) \land E(y, z) \land E(z, x)$

•
$$Q: -E(x,y) \wedge E(x,z)$$

$$\mathbf{A}^{Q} = (\{a,b,c\}, \{(a,b), (a,c)\}$$

Homomorphisms, CQC and CQE

Theorem: Chandra & Merlin – 1977

For relational structures **A** and **B**, TFAE

- There is a homomorphism $h : \mathbf{A} \to \mathbf{B}$
- $\mathbf{B} \models Q^{\mathbf{A}}$ (i.e., $Q^{\mathbf{A}}(\mathbf{B}) = 1$)
- $Q^{\mathbf{B}} \subseteq Q^{\mathbf{A}}$

Theorem: Chandra & Merlin – 1977

For conjunctive queries Q_1 and Q_2 , TFAE

- \bullet $Q_1 \subseteq Q_2$
- There is a homomorphism $h: \mathbf{A}^{Q_2} \to \mathbf{A}^{Q_1}$
- $\mathbf{A}^{Q_1} \models Q_2$ (i.e., $Q_2(\mathbf{A}^{Q_1}) = 1$)

Homomorphisms, CQC, and CQE

Example: 3-Colorability

For a graph **H**, the following are equivalent:

- 1. **H** is 3-colorable
- 2. There is a homomorphism $h: \mathbf{H} \to \mathbf{K_3}$
- 3. $\mathbf{K}_3 \models Q^{\mathbf{H}}$
- 4. $Q^{\mathbf{K}_3} \subseteq Q^{\mathbf{H}}$

Proof:

- (2) \Longrightarrow (3): A homomorphism $h : \mathbf{H} \to \mathbf{K_3}$ provides witnesses in $\mathbf{K_3}$ for the existential quantifiers in $Q^{\mathbf{H}}$.
- (3) \Longrightarrow (4): If $\mathbf{K_3} \models Q^{\mathbf{H}}$ and $\mathbf{A} \models Q^{\mathbf{K_3}}$, then there is a homomorphism $h : \mathbf{H} \to \mathbf{K_3}$ and a homomorphism and $h^* : \mathbf{K_3} \to \mathbf{A}$.

The composition $h^* \circ h : \mathbf{H} \to \mathbf{A}$ provides witnesses in \mathbf{A} for the existential quantifiers in $Q^{\mathbf{H}}$.

CSP, CQE, and CQC

Theorem: Chandra & Merlin – 1977

For relational structures **A** and **B**, TFAE

- There is a homomorphism $h : \mathbf{A} \to \mathbf{B}$
- $\mathbf{B} \models Q^{\mathbf{A}}$ (i.e., $Q^{\mathbf{A}}(\mathbf{B}) = 1$)
- $Q^{\mathbf{B}} \subseteq Q^{\mathbf{A}}$

Conclusion:

CSP, CQE, and CQC are the *same* problem.

Course Outline

Constraint Satisfaction Problems

- Definition & Examples of CSP
- CSP & the Homomorphism Problem
- CSP & Database Theory
- Computational Complexity of CSP
 - Uniform & Non-Uniform CSP
 - Schaefer's Dichotomy Theorem for Boolean CSP
 - The Feder-Vardi Dichotomy Conjecture for general CSP
- The Pursuit of Tractable Cases of CSP
 - Datalog & Pebble Games
 - Bounded Treewidth and Finite-Variable Logics

Computational Complexity Primer

Computational Complexity:

- The quantitative study of solvability
 - Y. Hartmanis 1993
- Solvable decision problems are placed into classes according to the time/space resources required to solve them.

Some Major Complexity Classes:

Р	polynomial time
NP	nondeterministic polynomial time
EXPTIME	exponential time

Complexity Classes

Fact: The following containments hold:

$$P \subseteq NP \subseteq EXPTIME$$

Theorem: Hartmanis & Stearns – 1965

$$P \subset EXPTIME$$

Open Problems:

- Is $P \neq NP$?
- Is $NP \neq EXPTIME$?

Note: It is generally believed that $P \neq NP$.

NP-Complete Problems

Definition: Let Q be a decision problem (a Boolean query). We say that Q is NP-complete if

- 1. $Q \in NP$.
- 2. Q is NP-hard, i.e., for every $Q' \in NP$, there a polynomial-time many-one reduction f of Q' to Q:

$$x \in Q' \iff f(x) \in Q.$$

Theorem: S. Cook – 1971, R. Karp 1972, ...

The following problems are NP-complete:

- k-Sat, $k \ge 3$
- k-Colorability, $k \ge 3$
- CLIQUE
- Hamiltonian Cycle
- Latin Square Completion

NP-Complete Problems

Fact: Let Q be an NP-complete problem.

The following are equivalent:

- P = NP
- $Q \in P$.

Remark:

- NP-complete problems hold the *secret* of whether or not P = NP.
- Establishing that Q is NP-complete is viewed as evidence that $Q \notin P$ and, hence, it is an intractable algorithmic problem.

Complexity of CSP

Definition: Uniform CSP

 $\{(\mathbf{A}, \mathbf{B}) : \exists \text{ homomorphism } h : \mathbf{A} \to \mathbf{B}\}$ (Homomorphism Problem)

Theorem: Uniform CSP is NP-complete

Proof:

- Uniform CSP is in NP:
 - Given A, B, "guess" $h : A \to B$ and verify it is a homomorphism.
- Uniform CSP is NP-hard:
 It contains NP-hard problems as special cases
 (e.g., 3-SAT)

Complexity of CQC

Definition: CQC Problem

Given Boolean queries Q_1 , Q_2 , does $Q_1 \models Q_2$?

Theorem: CQC is NP-complete

Proof: Same as Uniform CSP

Remark:

Recall that Boolean CQs are FO-sentences built from atomic formulas, ∧, and ∃ only.
So, for such sentences, logical implication is decidable.

• In contrast, for arbitrary FO-sentences, logical implication is undecidable.

Coping with NP-Completeness

Question: How to cope with NP-completeness?

Answer: Garey & Johnson -1979

- Design *heuristic* algorithms that may work well in practice.
- Identify polynomial-time solvable cases of the problem, the so-called *islands of tractability*, by imposing restrictions on the inputs.

Example 1:

- 3-Sat is NP-complete.
- Horn 3-Sat is in P.

Example 2:

- 3-Colorability is NP-complete.
- 3-Colorability on graphs of bounded treewidth is in P.

Restricting Uniform CSP

Research Program: Identify all islands of tractability of Uniform CSP.

Definition: Let \mathcal{A} , \mathcal{B} be two classes of structures.

$$CSP(\mathcal{A}, \mathcal{B}) = \{ (\mathbf{A}, \mathbf{B}) : \mathbf{A} \in \mathcal{A}, \mathbf{B} \in \mathcal{B} \text{ and}$$

$$\exists \text{ homomorphism } h : \mathbf{A} \to \mathbf{B} \}$$

Research Program: Identify all \mathcal{A} , \mathcal{B} such that $CSP(\mathcal{A}, \mathcal{B})$ is in P.

Non-Uniform CSP

Definition: Fix a structure **A**.

$$CSP({\bf A}, All) = {\bf B} : \exists \text{ homomorphism } h : {\bf A} \to {\bf B}$$

Fact: For every fixed **A**,

$$CSP(\{\mathbf{A}\}, All) \in P$$

Proof: Exercise.

Definition: Fix a structure **B**:

 $CSP(All, {\bf B}) = {\bf A} : \exists \text{ homomorphism } h : {\bf A} \rightarrow {\bf B}$

Fact: The complexity of $CSP(All, \{B\})$ depends on **B**.

Proof:

- $CSP(All, \{\mathbf{K}_3\})$ is NP-complete (3-Colorability)
- $CSP(All, \{\mathbf{K}_2\})$ is in P. (2-COLORABILITY)

Complexity of Non-Uniform CSP

Notation: For simplicity, for every fixed structure **B**, we put

$$CSP(\mathbf{B}) = CSP(All, \{\mathbf{B}\})$$

Research Program:

- Identify the islands of tractability of CSP(**B**).
- In other words, characterize the structures **B** for which CSP(**B**) is solvable in polynomial time.

Boolean Non-Uniform CSP

Definition: Boolean Non-Uniform CSP

$$CSP(\mathbf{B}) \text{ with } \mathbf{B} = (\{0, 1\}, R_1^{\mathbf{B}}, \dots, R_1^{\mathbf{B}})$$

Fact: Boolean Non-Uniform CSP problems are Generalized Satisfiability Problems, i.e., variants of Boolean satisfiability in CNF.

Examples: Each of the following problems is a CSP(**B**) problem for a suitable Boolean **B**.

- 3-SAT: $\mathbf{B} = (\{0,1\}, R_0, R_1, R_2, R_3)$
- 2-SAT: $\mathbf{B} = (\{0,1\}, R'_0, R'_1, R'_2)$
- POSITIVE 1-IN-3-SAT: 3CNF-formulas with clauses $(x \lor y \lor z)$; exactly one variable is true in each clause.

$$\mathbf{B} = (\{0,1\}, R_{1/3}),$$

where

$$R_{1/3} = \{(1,0,0), (0,1,0), (0,0,1).$$

Complexity of Boolean Non-Uniform CSP

Schaefer's Dichotomy Theorem - 1978

- If **B** is Boolean structure, then CSP(**B**) is in P or it is NP-complete.
- Moreover, there is a polynomial-time algorithm to decide, given a Boolean structure **B**, whether CSP(**B**) is in P or it is NP-complete. ■

Question: Why is this a dichotomy theorem?

The Fine Structure of NP

Theorem: Ladner - 1975

If $P \neq NP$, then there is a problem Q such that

- $Q \in NP P$;
- Q is not NP-complete.

Remark: Consequently, it is conceivable that a family of NP-problems contains problems of such intermediate complexity problems.

This possibility cannot be ruled out a priori.

Dichotomy of Boolean Non-Uniform CSP

Schaefer's Dichotomy Theorem - 1978

• If **B** is Boolean structure, then CSP(**B**) is in P or it is NP-complete.

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

• Moreover, there is a polynomial-time algorithm to decide, given a Boolean structure **B**, whether CSP(**B**) is in P or it is NP-complete. ■

Question: What is the boundary in this dichotomy?

Dichotomy of Boolean Non-Uniform CSP

Proof Architecture:

$$\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$$

• Identify a number of cases for which CSP(**B**) is in P.

Each such case will be described in terms of conditions on the relations $R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}$ of \mathbf{B} .

- Show that CSP(**B**) is NP-complete in all other cases.
- Show that there is a polynomial-time algorithm for checking whether the conditions describing the tractable cases hold.

Definition: $R \subseteq \{0,1\}^k$, for some $k \ge 1$.

- R is 0-valid if it contains the k-tuple $(0, \ldots, 0)$.
- R is 1-valid if it contains the k-tuple $(1, \ldots, 1)$.

Fact: $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$

- If every $R_i^{\mathbf{B}}$ is 0-valid, then $CSP(\mathbf{B})$ is in P.
- If every $R_i^{\mathbf{B}}$ is 1-valid, then $CSP(\mathbf{B})$ is in P.

Proof: Trivial

- The constant function h(x) = 0 is a homomorphism.
- The constant function h(x) = 1 is a homomorphism.

Relations and Solutions

Notation: Let φ be a Boolean formula with k variables x_1, \ldots, x_k .

 $\operatorname{Sol}(\varphi)$ is the set of all k-tuples (a_1, \ldots, a_k) such that if s is a truth assignment with $s(x_i) = a_i$, $1 \leq i \leq k$, then $s(\varphi) = 1$.

Example: If φ is $(\neg x \lor y)$, then

$$Sol(\varphi) = \{(0,0), (0,1), (1,1)\}.$$

Remark: For all remaining tractable cases, the condition on the relations of **B** will assert that each relation $R_i^{\mathbf{B}}$ is equal to $\mathrm{Sol}(\varphi)$, where φ belongs to a certain class of "well-behaved" Boolean formulas (the class of formulas will change from tractable case to tractable case).

Definition: $R \subseteq \{0,1\}^k$, for some $k \ge 1$.

R is bijunctive if there is a 2-CNF formula φ such that $R = \operatorname{Sol}(\varphi)$.

Theorem:
$$\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$$

If every $R_i^{\mathbf{B}}$ is bijunctive, then $CSP(\mathbf{B})$ is in P.

Proof: 2-SAT is in P.

The resolution algorithm runs in polynomial time on 2-CNF formulas, because

• Every resolvent of two 2-clauses is a 2-clause:

$$\{l_1, l_2\}$$
 $\{\overline{l_1}, l_3\}$ \swarrow $\{l_2, l_3\}$

• Given n variables, there is a polynomial number of 2-clauses involving these variables.

Definition: $R \subseteq \{0,1\}^k, k \ge 1.$

• R is Horn if $R = \text{Sol}(\varphi)$ for some $Horn\ formula$ φ , i.e., a CNF-formula in which each conjunct has at most one positive literal.

$$x \wedge (\neg x \vee z) \wedge (\neg y \vee \neg z \vee w)$$

• R is $dual\ Horn\ R = Sol(\varphi)$ for some $dual\ Horn$ $formula\ \varphi$, i.e., a CNF-formula in which each conjunct has at most one negative literal.

$$\neg x \land (x \lor \neg z) \land (y \lor z \lor \neg w)$$

Theorem: $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$

- If every $R_i^{\mathbf{B}}$ is Horn, then $CSP(\mathbf{B})$ is in P.
- If every $R_i^{\mathbf{B}}$ is dual Horn, then $CSP(\mathbf{B})$ is in P.

Proof: Unit Propagation algorithm.

Definition: $R \subseteq \{0,1\}^k, k \ge 1.$

R is affine if it is the set of solutions of a system of linear equations over the 2-element field.

Example: $R = \{(0,1), (1,0)\}$ is affine, because $R = \operatorname{Sol}(x \oplus y = 1).$

Theorem: $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$

If every $R_i^{\mathbf{B}}$ is affine, then $CSP(\mathbf{B})$ is in P.

Proof: Use Gaussian Elimination algorithm.

Schaefer Structures

Definition:
$$\mathbf{B} = (\{0, 1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$$

B is *Schaefer* if at least one of the following six conditions holds:

- Every relation $R_i^{\mathbf{B}}$ is 0-valid.
- Every relation $R_i^{\mathbf{B}}$ is 1-valid.
- Every relation $R_i^{\mathbf{B}}$ is bijunctive.
- Every relation $R_i^{\mathbf{B}}$ is Horn.
- Every relation $R_i^{\mathbf{B}}$ is dual Horn.
- Every relation $R_i^{\mathbf{B}}$ is affine.

Otherwise, we say that \mathbf{B} is non-Schaefer.

Schaefer's Dichotomy Theorem

Theorem: Let $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

- If **B** is Schaefer, then CSP(**B**) is in P.
- If **B** is non-Schaefer, then CSP(**B**) is NP-complete.

Proof:

- The first part has already been established.
- The second part requires much more work.

 The key ingredient is a theorem about the expressive power of conjunctive queries on non-Schaefer structures.

Schaefer's Expressibility Theorem

Note: Recall that a *conjunctive query* is a FO-formula built from atomic formulas, \land , and \exists only.

Theorem: Let
$$\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$$

If **B** is non-Schaefer, then every Boolean relation $R \subset \{0,1\}^k$, $k \geq 1$, is definable on **B** by some conjunctive query over **B** with constants 0 and 1.

This means that for every $k \geq 1$ and for every $R \subset \{0,1\}^k$, there is a formula $\psi(x_1,\ldots,x_k,y,z)$ that is built from $R_1^{\mathbf{B}},\ldots,R_m^{\mathbf{B}},\wedge$, and \exists , and has the property that for every $(a_1,\ldots,a_k) \in \{0,1\}^k$

$$(a_1,\ldots,a_k)\in R\iff \mathbf{B}\models\psi(a_1,\ldots,a_k,0,1).$$

Remark: Intutitively, this result asserts that on non-Schaefer structures, conjunctive queries have *maximum* expressive power (they can define all Boolean relations).

Schaefer's Dichotomy Theorem

Theorem: Let $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

- If **B** is Schaefer, then CSP(**B**) is in P.
- If **B** is non-Schaefer, then CSP(**B**) is NP-complete.
- Moreover, there are simple polynomial-time criteria to test if **B** is Schaefer.

Remark: These criteria involve *closure properties* of the relations of **B**.

Closure Properties

Theorem: Let $R \subseteq \{0,1\}^k$, $k \ge 1$.

- R is bijunctive iff it is closed under the 3-ary majority function maj(x, y, z).
- S is Horn iff it is closed under $g(x,y) = x \wedge y$.
- S is dual Horn iff it is is closed under $g'(x, y) = x \vee y$.
- S is affine iff it is closed under $h(x, y, z) = x \oplus y \oplus z$.

Closure Properties

Example: Let $R = \{(0,1), (1,0), (1,1)\}$

 \bullet R is not Horn, because

$$(0,1) \wedge (1,0) = (0,0) \notin R.$$

 \bullet R is not affine, because

$$(0,1) \oplus (1,0) \oplus (1,1) = (0,0) \notin R.$$

Example: Let $R = \{(0,0), (0,1), (1,0)\}$

 \bullet R is not dual Horn, because

$$(0,1) \lor (1,0) = (1,1) \not\in R.$$

 \bullet R is not affine, because

$$(0,0) \oplus (0,1) \oplus (1,0) = (1,1) \notin R.$$

Positive 1-in-3 SAT

- 3-CNF formula with clauses $(x \lor y \lor z)$; exactly one variable/clause is true.
- Positive-1-In-3-SAT = $CSP((\{0,1\}, R_{1/3}))$ $R_{1/3} = \{(1,0,0), (0,1,0), (0,0,1).$

Fact: Positive 1-In-3-SAT is NP-complete

Proof: Apply Schaefer's Dichotomy Theorem

- $R_{1/3}$ is not bijunctive, because $maj((1,0,0),(0,1,0),(0,0,1)) = (0,0,0) \notin R.$
- $R_{1/3}$ is neither Horn nor dual Horn, since $(1,0,0) \wedge (0,1,0) = (0,0,0) \not\in R_{1/3}.$ $(1,0,0) \vee (0,1,0) = (1,1,0) \not\in R_{1/3}.$
- $R_{1/3}$ is not affine, since $(1,0,0) \oplus (0,1,0) \oplus (0,0,1) = (1,1,1) \not\in R_{1/3}.$

Schaefer's Dichotomy Theorem

Theorem: Let $\mathbf{B} = (\{0,1\}, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

- If **B** is Schaefer, then CSP(**B**) is in P.
- If \mathbf{B} is non-Schaefer, then $CSP(\mathbf{B})$ is NP-complete.
- Moreover, there are simple polynomial-time criteria to test if **B** is Schaefer.

Remark: Schaefer's Dichotomy Theorem is the mother of many other dichotomy results for families of decision problems.

Complexity of CSP(B)

Conclusion: Schaefer's Dichotomy Theorem yields a complete classification of the complexity of CSP(**B**) for Boolean structures **B**.

Question: What about arbitrary structures **B**?

Complexity of CSP(B)

Conclusion: Schaefer's Dichotomy Theorem yields a complete classification of the complexity of CSP(**B**) for Boolean structures **B**.

Question: What about arbitrary structures **B**?

Dichotomy Conjecture: Feder & Vardi –1993 For every structure **B**, one of the following holds:

- $CSP(\mathbf{B})$ is in P.
- CSP(**B**) is NP-complete.

Towards the Dichotomy Conjecture

Theorem: Hell & Nešetril – 1990

Let **B** be an *undirected* graph.

- If **B** is 2-Colorable, then CSP(**B**) is in P.
- If **B** not 2-Colorable, then CSP(**B**) is NP-complete.

Theorem: A. Bulatov -2002

The Dichotomy Conjecture is true for $CSP(\mathbf{B})$, where $B = \{0, 1, 2\}$.

Note: The Dichotomy Conjecture remains open for $CSP(\mathbf{B})$ with $|B| \geq 4$.

Islands of Tractability of CSP(B)

Fact: An extensive pursuit of tractable cases of CSP(**B**) has taken place over the years.

First Stage: Numerous particular results.

Second Stage: Broad sufficient conditions for tractability of CSP(**B**).

Fact: Unifying explanations for many tractability results have been discovered:

- Expressibility in Datalog
 Feder & Vardi 1993
- Closure Properties of Constraints
 Connections with universal algebra
 Feder & Vardi 1993
 Jeavons & collaborators 1995 to present

Course Outline

Constraint Satisfaction Problems (CSP)

- Definition & Examples of CSP
- CSP & the Homomorphism Problem
- CSP & Database Theory
- Computational Complexity of CSP
 - Uniform & Non-Uniform CSP
 - Schaefer's Dichotomy Theorem for Boolean CSP
 - The Feder-Vardi Dichotomy Conjecture for general CSP
- The Pursuit of Tractable Cases of CSP
 - Datalog & Pebble Games
 - Bounded Treewidth & Finite-Variable Logics

Datalog

Note: Recall that CQs can be written as *rules*:

Path of Length 2 - P2: $(\exists z)(E(x_1,z) \land E(z,x_2)$

$$P2(x_1, x_2) : - E(x_1, z), E(z, x_2)$$

Definition:

- Datalog = Conjunctive Queries + Recursion Logic Programming without function symbols
- A Datalog program is a finite set of rules given by conjunctive queries

$$T(\overline{x}) : -S_1(\overline{y}_1), \dots, S_r(\overline{y}_r).$$

- Some relation symbols may occur both in the *heads* and the *bodies* of rules.
 - These are the *recursive* relation symbols or intensional database predicates (IDBs).
- The remaining relation symbols are the extensional database predicates (EDBs).

Datalog Examples

Definition: Transitive Closure Query TC

Given graph $\mathbf{H} = (V, E)$,

 $TC(\mathbf{H}) = \{(a, b) \in V^2 : \text{there is a path from } a \text{ to } b\}.$

Example 1: Datalog program for TC

Example 2: Another Datalog program for TC

Note:

- \bullet E is the EDB.
- S is the IDB; it defines TC.

Datalog Examples

Definition: S. Cook - 1974

PATH SYSTEMS $\mathbf{S} = (F, A, R)$

Given a finite set of formulas F, a set of axioms $A \subseteq F$, and a rule of inference $R \subseteq F^3$, compute the theorems of this system.

Example: Datalog program for PATH SYSTEMS:

Note:

- \bullet A and R are the EDBs.
- T is the IDB; it defines the theorems of S.

Tractability of Datalog

Fact:

• If a query Q is defined by a Datalog program, then Q is in P.

Proof:

• Datalog programs can be evaluated "bottomup" in a polynomial number of iterations.

Evaluation of Datalog Programs

Example: Datalog program for TC

$$S(x,y) : - E(x,y)$$

$$S(x,y) : - E(x,z) \wedge S(z,y)$$

Bottom-up Evaluation

Fact:

$$TC = \bigcup_{m} S^{m}$$
$$TC = S^{|V|}.$$

Preservation Properties

Fact: Preservation Properties of Datalog.

- Datalog queries are preserved under homomorphisms.
- Datalog queries are *monotone*, i.e., they are preserved if new tuples are added to the EDBs.

Proof: Exercise - use preservation properties of positive existential formulas.

Fact: On the class \mathcal{G} of all finite graphs:

 $Datalog[\mathcal{G}] \subseteq PTIME[\mathcal{G}].$

Fact: Let $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

- In general, $CSP(\mathbf{B})$ is not monotone. (Why?)
- \bullet Hence, $CSP(\mathbf{B})$ is not expressible in Datalog.

However,

- $\overline{\text{CSP}(\mathbf{B})}$ is monotone, where $\overline{\text{CSP}(\mathbf{B})} = \{\mathbf{A}: \not\exists \text{ homomorphism } h: \mathbf{A} \to \mathbf{B}\}.$
- Hence, it is conceivable that $\overline{CSP(\mathbf{B})}$ is expressible in Datalog (and, thus, it is in P).

Fact: Feder & Vardi -1993

Expressibility of $\overline{CSP(\mathbf{B})}$ in Datalog is a unifying explanation for many tractability results about $CSP(\mathbf{B})$.

Example: 2-Colorability = $CSP(\mathbf{K}_2)$

Datalog program for Non 2-Colorability

Example: Let **B** be Boolean structure.

If **B** is bijunctive, Horn, or dual Horn, then $\overline{\text{CSP}(\mathbf{B})}$ is expressible in Datalog.

Theorem: Feder & Vardi – 1993

- If $\mathbf{B} = (B, R_1, \dots, R_k)$ is such that $\operatorname{Pol}(\{R_1, \dots, R_k\})$ contains a near-unanimity function, then $\overline{\operatorname{CSP}(\mathbf{B})}$ is expressible in Datalog.
- If $\mathbf{B} = (B, R_1, \dots, R_k)$ is such that $\operatorname{Pol}(\{R_1, \dots, R_k\})$ contains an ACI function, then $\overline{\operatorname{CSP}(\mathbf{B})}$ is expressible in Datalog.

Open Problem: Is there an algorithm to decide whether, given \mathbf{B} , we have that $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in Datalog?

Question: Fix
$$\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$$
.

When is $\overline{\mathrm{CSP}(\mathbf{B})}$ expressible in Datalog?

Question: Fix $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$.

When is $\overline{\mathrm{CSP}(\mathbf{B})}$ expressible in Datalog?

Answer: K ... & Vardi – 1998, 2000

Expressibility of $\overline{\mathrm{CSP}(\mathbf{B})}$ in Datalog can be characterized in terms of

- Finite-Variable Logics and Pebble Games;
- Consistency Properties.

The Infinitary Logic $L^{\omega}_{\infty\omega}$

Definition: Barwise (1977)

- Infinitary logic with k variables, $k \geq 1$. $L_{\infty\omega}^k$ is the collection of $L_{\infty\omega}$ -formulas with at most k distinct variables.
- Infinitary logic with finitely many variables

$$L^{\omega}_{\infty\omega} = \bigcup_{k>1} L^k_{\infty\omega}.$$

Fact: $L^{\omega}_{\infty\omega}$ is a useful tool in analyzing the expressive power of least fixed-point logic.

Theorem: Barwise -1977, Immerman -1981

 $L^{\omega}_{\infty\omega}$ -definability can be characterized in terms of pebble games.

Existential Positive Fragments of $L^{\omega}_{\infty\omega}$

Definition: K ... & Vardi -1995

- $\exists L_{\infty\omega}^k$ is the fragment of $L_{\infty\omega}^k$ that contains all atomic formulas and is closed under \exists , \bigvee , \bigwedge .
- Existential infinitary logic with finitely many variables

$$\exists \mathcal{L}_{\infty\omega}^{\omega} = \bigcup_{k>1} \exists \mathcal{L}_{\infty\omega}^{k}.$$

Fact:

- Datalog $\subseteq \exists L^{\omega}_{\infty\omega}$
- $\exists L^{\omega}_{\infty\omega}$ is a useful tool for analyzing the expressive power of Datalog.
- $\exists L^{\omega}_{\infty\omega}$ -definability can be characterized in terms of existential pebble games.

Existential k-Pebble Games

Spoiler and Duplicator play on two structures \mathbf{A} and \mathbf{B} . Each player uses k pebbles. In each move,

- Spoiler places a pebble on or removes a pebble from an element of **A**.
- Duplicator tries to duplicate the move on **B**.

$$\mathbf{A}: \qquad a_1 \quad a_2 \quad \dots \quad a_l$$

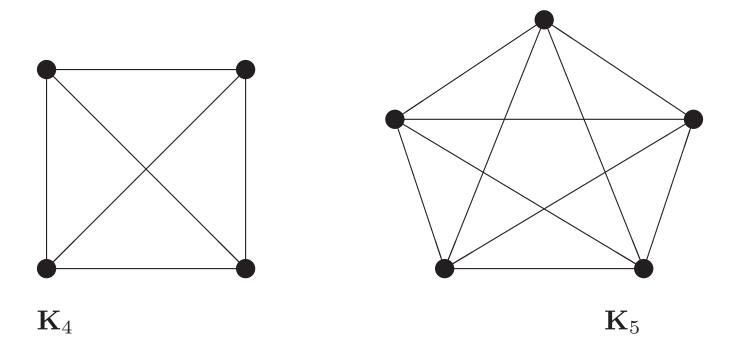
$$\downarrow \qquad \downarrow \qquad \dots \qquad \downarrow$$

$$\mathbf{B}: \qquad b_1 \quad b_2 \quad \dots \quad b_l \qquad l \leq k$$

- Spoiler wins the (\exists, k) -pebble game if at some point the mapping $a_i \mapsto b_i$, $1 \le i \le l$, is not a partial homomorphism.
- Duplicator wins the (\exists, k) -pebble game if the above never happens.

Example

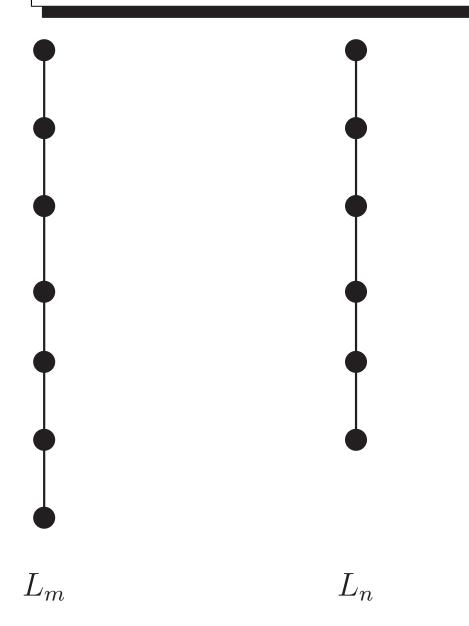
Cliques of Different Size



Fact: Let \mathbf{K}_k be the k-clique

- Duplicator wins the (\exists, k) -pebble game on \mathbf{K}_k and \mathbf{K}_{k+1} .
- Spoiler wins the (\exists, k) -pebble game on \mathbf{K}_k and \mathbf{K}_{k-1} .

Linear Orders of Different Size



- Spoiler wins the $(\exists, 2)$ -pebble game on L_m and L_n , where m > n.
- Duplicator wins the $(\exists, 2)$ -pebble game on L_n and L_m , where m > n.

Winning Strategies in the (\exists, k) -Pebble Game

Definition: A winning strategy for the Duplicator in the (\exists, k) -pebble game is a non-empty family I of partial homomorphisms from \mathbf{A} to \mathbf{B} such that

- If $f \in I$ and $h \subseteq f$, then $h \in I$ (I is closed under subfunctions).
- If $f \in I$ and |f| < k, then for every $a \in A$, there is $g \in I$ so that $f \subseteq g$ and $a \in \text{dom}(g)$.

 (I has the forth property up to k)

Uses of Existential k-Pebble Games

- Existential k-pebble games can be used to study the expressive power of $\exists L_{\infty\omega}^k$.
- In particular, existential k-pebble games can be used to obtain lower bounds for definability in Datalog.

(\exists, k) -Pebble Games and $\exists L_{\infty\omega}^k$ -Definability

Definition: Let A, B be two σ -structures.

 $\mathbf{A} \preceq_{\infty\omega}^k \mathbf{B}$, if every $\exists L_{\infty\omega}^k$ -sentence that is true on \mathbf{A} is also true on \mathbf{B} .

Theorem: $K \dots \& Vardi - 1995$

The following statements are equivalent.

- $\mathbf{A} \leq_{\infty\omega}^k \mathbf{B}$.
- Duplicator wins the (\exists, k) -pebble game on \mathbf{A} and \mathbf{B} .

Lower Bounds for $\exists \mathbb{L}^k_{\infty\omega}$ -Definability

Corollary: Let Q be a Boolean query on C. The following statements are equivalent:

- Q is $\exists L^{\omega}_{\infty\omega}$ -definable on \mathcal{C} .
- There is a k such that for every \mathbf{A}, \mathbf{B} in \mathcal{C} , if $\mathbf{A} \models Q$ and $\mathbf{B} \not\models Q$, then the *Spoiler* wins the (\exists, k) -pebble game on \mathbf{A}, \mathbf{B} .

A Methodology for $\exists L^{\omega}_{\infty\omega}$ -Definability

To show that a Boolean query Q is not expressible in $\exists L_{\infty\omega}^{\omega}$, suffices to show that for every k there are structures \mathbf{A}_k and \mathbf{B}_k such that

- $\mathbf{A}_k \models Q \text{ and } \mathbf{B}_k \not\models Q.$
- Duplicator wins the (\exists, k) -pebble game on \mathbf{A} , \mathbf{B} .

Fact: This method is also *complete*.

k-Datalog

Definition: A k-Datalog program is a Datalog program in which each rule

$$t_0:-t_1,\ldots,t_m$$

has at most k distinct variables in the head t_0 and at most k distinct variables in the body t_1, \ldots, t_m .

Example: Non 2-Colorability revisited

$$egin{array}{|c|c|c|c|} O(X,Y) & :- & E(X,Y) \\ O(X,Y) & :- & O(X,Z), E(Z,W), E(W,Y) \\ Q & :- & O(X,X) \\ \hline \end{array}$$

Therefore,

Non 2-Colorability is expressible in 4-Datalog.

k-Datalog and (\exists, k) -Pebble Games

Theorem: K ... & Vardi

• On the class of all finite structures,

$$k$$
-Datalog $\subset \exists L_{\infty\omega}^k$.

- There is a polynomial-time algorithm to decide whether, given two finite structures \mathbf{A} and \mathbf{B} , whether the Spoiler or the Duplicator wins the (\exists, k) -pebble game on \mathbf{A} and \mathbf{B} .
- For each finite structure **B**, there is a k-Datalog program $\pi_{\mathbf{B}}$ that expresses the query: given a finite σ -structure **A**, does the Spoiler win the (\exists, k) -pebble game on **A** and **B**?

Theorem: K . . . & Vardi – 1998

Let k be a positive integer and \mathbf{B} a finite structure. Then the following are equivalent:

- $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in k-Datalog
- $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in $\exists \mathbf{L}_{\infty\omega}^k$
- $CSP(\mathbf{B}) = \{\mathbf{A} : Duplicator \text{ wins the}$ $(\exists, k)\text{-pebble game on } \mathbf{A} \text{ and } \mathbf{B}\}.$

Note: It is always the case that

 $CSP(\mathbf{B}) \subseteq \{\mathbf{A} : \text{ Duplicator wins the}$ $(\exists, k)\text{-pebble game on } \mathbf{A} \text{ and } \mathbf{B}\}.$

Islands of Tractability of CSP

Non-Uniform CSP(B) Problems

- Definability of $\overline{\mathrm{CSP}(\mathbf{B})}$ in Datalog
- Definability of $\overline{\mathrm{CSP}(\mathbf{B})}$ in $\exists L_{\infty\omega}^{\omega}$.
- Single *canonical* polynomial-time algorithm: determine who wins the (\exists, k) -pebble game.

From Non-Uniform CSP to Uniform CSP

Note: So far, we have focused on tractable cases of *non-uniform* constraint satisfaction problems.

$$CSP(\mathbf{B}) = CSP(All, \{\mathbf{B}\})$$

Fact: Many applications in AI and in database systems involve uniform CSP(\mathcal{A}, \mathcal{B}), where \mathcal{A} and \mathcal{B} are classes of structures.

For example, usually, conjunctive query containment and conjunctive query evaluation appear as uniform CSPs.

Question:

Can we obtain tractability results for uniform CSP from tractability results for non-uniform CSP?

From Non-Uniform CSP to Uniform CSP

Note: Let \mathcal{A} and \mathcal{B} be two classes of structures.

It is possible that $CSP(A, \{B\})$ is in P, for every **B** in \mathcal{B} , but $CSP(A, \mathcal{B})$ is NP-complete.

Example: $\mathcal{K} = \text{all } cliques \text{ and } \mathcal{G} = \text{all graphs:}$

- $CSP(K, \{H\})$ is in P, for every graph H;
- $CSP(\mathcal{K}, \mathcal{G})$ in NP-complete. (it is the CLIQUE problem)

Conclusion: Tractability results for non-uniform CSP do not necessarily yield tractability results for uniform CSP.

However, certain non-uniform tractable cases do uniformize!

Definition: For every positive integer k, let

 $D_k = \{\mathbf{B} : \overline{\mathrm{CSP}(\mathbf{B})} \text{ is expressible in } k\text{-Datalog}\}.$

Remark: Recall that if $\mathbf{B} \in \mathcal{D}_k$, then $\mathrm{CSP}(\mathbf{B})$ is in P.

Theorem:

 $CSP(All, \mathcal{D}_k)$ is in P, for every positive integer k.

Proof: An easy consequence of the following:

- Characterization of when $\overline{\text{CSP}(\mathbf{B})}$ is expressible in k-Datalog (using (\exists, k) -pebble games).
- Polynomial-time algorithm for determining the winner in the (\exists, k) -pebble game.

Conclusions:

- Expressibility in Datalog provides a unifying explanation for many tractability results about non-uniform CSP.
- Expressibility of non-uniform CSPs in k-Datalog uniformizes, which implies that $CSP(All, \mathcal{D}_k)$ is a large island of tractability for uniform CSP.

However,

Open Problem: Let k be a positive integer.

Is there an algorithm to test, given a structure \mathbf{B} , whether or not $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in k-Datalog?

Bounded Treewidth: Motivation

Observation: Many algorithmic problems that are "hard" on arbitrary graphs become "easy" on trees.

Question: Can the concept of *tree* be weakened while maintaining "good" computational properties?

Bounded Treewidth: Motivation

Observation: Many algorithmic problems that are "hard" on arbitrary graphs become "easy" on trees.

Question: Can the concept of *tree* be weakened while maintaining "good" computational properties?

Answer: Robertson & Seymour – 1985–1995 Yes, the concept of *bounded treewidth* achieves this.

Note: Part of their work on *graph minors*.

(Downey & Fellows: "Parametrized Complexity")

k-Trees, Partial k-Trees, Treewidth

Definition: Let k be a positive integer.

- A graph \mathbf{H} is a k-tree if
 - 1. **H** is a \mathbf{K}_{k+1} -clique, or
 - 2. There are a k-tree \mathbf{G} , nodes a_1, \ldots, a_k in \mathbf{G} forming a \mathbf{K}_k -clique, and a node b in $\mathbf{H} \mathbf{G}$ such that \mathbf{H} is obtained from \mathbf{G} by connecting b to each of the nodes a_1, \ldots, a_k (thus, forming a \mathbf{K}_{k+1} -clique).
- A graph is a partial k-tree if it is a subgraph (not necessarily induced) of a k-tree.
- The treewidth of a graph \mathbf{H} , denoted by $\mathrm{tw}(\mathbf{H})$, is the smallest k such that \mathbf{H} is a partial k-tree.

Treewidth: Examples

Fact:

• If **T** is a tree, then $tw(\mathbf{T}) = 1$.

• If C is a cycle, then tw(C) = 2.

• $\operatorname{tw}(\mathsf{M}) = 2$.

• $\operatorname{tw}(\square) = 2$.

• . . .

• $\operatorname{tw}(\mathbf{K}_k) = k - 1$, for every $k \geq 2$.

Treewidth: Characterizations

Fact: The concept of treewidth can be characterized in two different ways:

- Using tree decompositions of graphs.
- Using *induced widths* of orderings of the nodes.

Note: All three descriptions of treewidth are useful, and are needed in different applications.

Treewidth: Complexity

Fact: The following problem is NP-complete:

Given graph **H** and integer $k \ge 1$, is $tw(\mathbf{H}) \le k$?

However,

Theorem: Bodlaender – 1993

For every integer $k \geq 1$, there is a linear-time algorithm such that, given a graph \mathbf{H} , it determines whether or not $\operatorname{tw}(\mathbf{H}) \leq k$.

Bounded Treewidth

Definition: For every integer $k \geq 1$,

$$\mathcal{T}(k) = \{ \mathbf{H} : \operatorname{tw}(\mathbf{H}) < k \}.$$

Fact: Fix an integer $k \geq 2$.

Many problems that are NP-complete on arbitrary graphs become tractable on $\mathcal{T}(k)$.

3-Colorability, Monochromatic Triangle, ...

Treewidth & Monadic Second-Order Logic

Definition: Monadic Second-Order Logic

$$(\exists X_1 \forall X_2 \cdots \exists X_m) \psi,$$

where X_1, \ldots, X_m are set variables and ψ is first-order.

Fact: For every $m \geq 1$, monadic second-order logic can express problems that are complete for the m-th level $\Sigma_m^{\rm P}$ of the polynomial hierarchy PH.

Theorem: Courcelle – 1990

Let Φ be a sentence of monadic second-order logic. For every integer $k \geq 2$, there is a polynomial-time algorithm such that, given a graph $\mathbf{H} \in \mathcal{T}(k)$, it determines whether or not $\mathbf{H} \models \Phi$.

CSP & Monadic Second-Order Logic

Fact: If $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ is a finite structure, then $\mathrm{CSP}(\mathbf{B})$ is definable by a sentence of existential monadic second-order logic with a universal first-order part, i.e., by a sentece of the form

$$(\exists X_1 \cdots \exists X_n)(\forall y_1 \cdots \forall y_s)\theta,$$

where θ is quantifier-free.

Proof: Use one X_i for each element of B.

Example: 3-Colorability

$$(\exists \mathbf{R} \exists G \exists B)(\forall y_1 \forall y_2)\theta.$$

Corollary: (to Courcelle's Theorem)

If $k \geq 2$, then $CSP(\mathcal{T}(k), \{\mathbf{B}\})$ is in P.

Uniform CSP and Bounded Treewidth

Note: The notion of *treewidth* can be defined for arbitrary finite structures $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$.

$$tw(\mathbf{A}) = tw(\mathbf{G}(\mathbf{A})),$$

where $\mathbf{G}(\mathbf{A}) = (A, E)$ is the *Gaifman* graph of \mathbf{A} , i.e.,

 $E(a, a') \iff a, a' \text{ occur in a tuple of } R_i^{\mathbf{A}}, \text{ for some } i.$

Theorem: Dechter & Pearl - 1989, Freuder - 1990 If $k \geq 2$, then $CSP(\mathcal{T}(k), All)$ is in P.

Note: Thus, $CSP(\mathcal{T}(k), All)$ is a large island of tractability for uniform CSP.

Moreover, Bodlaender's Theorem implies that it is an easily "accessible" island.

Logical Aspects of Bounded Treewidth

Fact: Fix an integer $k \geq 2$.

- The tractability of $CSP(\mathcal{T}(k), All)$ can be explained in terms of expressibility in k-Datalog.
- There are tight connections between having $\operatorname{tw}(\mathbf{A}) < k$ and the canonical query $Q^{\mathbf{A}}$ being definable in a fragment of first-order logic with k variables.

$$K \dots \& Vardi - 1998$$

Dalmau, K . . . , Vardi – 2002

Finite-Variable Logics

Definition: Fix an integer $k \geq 2$.

- FO^k is the collection of all first-order formulas with k distinct variables.
- L^k is the collection of all FO^k-formulas built using atomic formulas, \wedge , and \exists only.

Example: Let C_n be the *n*-element cycle, $n \geq 3$.

The canonical conjunctive query $Q^{\mathbf{C}_n}$ is expressible in L^3 .

For instance, $Q^{\mathbf{C}_4}$ is logically equivalent to

$$(\exists x \exists y \exists z)(E(x,y) \land E(y,z) \land (\exists y)(E(z,y) \land E(y,x))).$$

It is no accident that $tw(\mathbf{C}_n) = 2 \dots$

Theorem: Fix an integer $k \geq 2$.

- If $\mathbf{A} \in \mathcal{T}(k)$, then the canonical conjunctive query $Q^{\mathbf{A}}$ is expressible in L^k .
- If **B** is a fixed structure, then $\overline{CSP(\mathcal{T}(k), \{\mathbf{B}\})}$ is expressible in k-Datalog.

Proof:

- Use the construction of A as a partial k-tree.
- Combine the above with the characterization of expressibility of non-uniform CSP in k-Datalog in terms of the (\exists, k) -pebble game.

Corollary: $CSP(\mathcal{T}(k), All)$ is in P.

Algorithm: Determine whether the Spoiler or the Duplicator wins the (\exists, k) -pebble game.

Question: When is $Q^{\mathbf{A}}$ definable in L^k ?

Definition: A and B are homomorphically equivalent, denoted $\mathbf{A} \sim_h \mathbf{B}$, if there are homomorphisms $h : \mathbf{A} \to \mathbf{B}$ and $h' : \mathbf{B} \to \mathbf{A}$.

Theorem: Fix a k and a finite structure \mathbf{A} .

Then the following are equivalent:

- $Q^{\mathbf{A}}$ is definable in L^k .
- There is some $\mathbf{B} \in \mathcal{T}(k)$ such that $\mathbf{A} \sim_h \mathbf{B}$.
- $\operatorname{core}(\mathbf{A}) \in \mathcal{T}(k)$.

Cores

Definition: We say that a structure \mathbf{B} is the *core* of a structure \mathbf{A} if

- B is a submodel of A
- There is no homomorphism $h : \mathbf{B} \to \mathbf{B}'$ from \mathbf{B} to a proper submodel \mathbf{B}' of \mathbf{B} .

Examples:

- \bullet core(\mathbf{K}_k) = \mathbf{K}_k
- $\operatorname{core}(\mathbf{C}_n) = \mathbf{C}_n$
- $core(\mathbf{M}) = \mathbf{K}_3$
- If H is 2-colorable, then $core(H) = \mathbf{K}_2$.

Note: Cores play an important role in database query processing and optimization.

Definition: Fix an integer $k \geq 2$.

 $\mathcal{H}(\mathcal{T}(k))$ is the class of all structures that are homomorphically equivalent to a structure in $\mathcal{T}(k)$.

Remark: $\mathcal{T}(k)$ is properly contained in $\mathcal{H}(\mathcal{T}(k))$:

There are 2-colorable graphs of arbitrarily large treewidth (for instance, k-grids)

Theorem: Let $k \geq 2$ be an integer.

- If **B** is a fixed structure, then $\overline{CSP(\mathcal{H}(\mathcal{T}(k)), \{\mathbf{B}\})}$ is definable in k-Datalog.
- $CSP(\mathcal{H}(\mathcal{T}(k)), All)$ is definable in LFP^{2k} , Least Fixed-Point Logic with 2k variables.

Algorithm: Determine whether the Spoiler or the Duplicator wins the (\exists, k) -pebble game.

New Islands of Tractability

Theorem: Fix an integer $k \geq 2$.

• $CSP(\mathcal{H}(\mathcal{T}(k)), All)$ is in P.

Good News!

• Determining membership in $\mathcal{H}(\mathcal{T}(k))$ is an NP-complete problem.

Bad News!

Conclusion:

- We have discovered new islands of tractability that are larger than $\mathcal{T}(k)$.
- Unfortunately, these islands are "inaccessible".

Classification Theorem

Question: Are there islands of tractability of the form CSP(A, All) larger than $\mathcal{H}(\mathcal{T}(k))$?

Answer: No!

(modulo a complexity-theoretic assumption)

Theorem: Grohe -2003

Assume that $FPT \neq W[1]$.

If \mathcal{A} is a r.e. class of finite structures over some vocabulary such that $CSP(\mathcal{A}, All)$ is in P, then there is a $k \geq 2$ such that $\mathcal{A} \subseteq \mathcal{H}(\mathcal{T}(k))$.

Note: FPT $\neq W[1]$ is the analog of P \neq NP for parametrized complexity.

Conclusion: The classes $\mathcal{H}(\mathcal{T}(k))$ constitute the largest islands \mathcal{A} of tractability for $\mathrm{CSP}(\mathcal{A}, All)$.

The Archipelago of Tractability for CSP

Classification Program for CSP:

Discover all islands of tractability of CSP:

Identify all classes \mathcal{A} and \mathcal{B} of finite structures such that $CSP(\mathcal{A}, \mathcal{B})$ is in P.

Current Status:

• All islands of tractability of the form

have been discovered.

• All islands of tractability of the form

$$CSP(All, \{\mathbf{B}\})$$

with $|B| \leq 3$ have been discovered.

• Much more remains to be done. So, the quest goes on ...

Question: Is there a more precise relationship between $\mathcal{T}(k)$ and L^k ?

Theorem: Fix a k and a finite structure \mathbf{A} .

Then the following are equivalent:

- $\mathbf{A} \in \mathcal{T}(k)$
- $Q^{\mathbf{A}}$ can be transformed to an L^k -sentence by repeatedly applying the following rewrite rules to subformulas of $Q^{\mathbf{A}}$:
 - Associativity and Commutativity of \wedge
 - $-(\exists x)(\varphi \wedge \psi) \mapsto (\exists x)\varphi \wedge \psi$, provided x is not free in ψ .
 - $-(\exists x)\varphi \mapsto (\exists y)\varphi[x/y]$, provided y is not free in θ .

Note: The above rewrite rules are routinely used in database query processing and optimization.

Concluding Remarks

Constraint Satisfaction is a meeting point of

- Computational Complexity
- Database Theory
- Logic
- Universal Algebra.