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Abstract. We obtain explicit formulas for the test vector in the Bessel model and derive the criteria for
existence and uniqueness for Bessel models for the unramified, quadratic twists of the Steinberg represen-
tation π of GSp4(F ), where F is a non-archimedean local field of characteristic zero. We also give precise
criteria for the Iwahori spherical vector in π to be a test vector. We apply the formulas for the test vector
to obtain an integral representation of the local L-function of π twisted by any irreducible, admissible rep-
resentation of GL2(F ). Together with results in [4] and [10], we derive an integral representation for the
global L-function of an irreducible, cuspidal automorphic representation of GSp4(A) obtained from a Siegel
cuspidal Hecke newform, with respect to the Borel congruence subgroup of square-free level, twisted by any
irreducible, cuspidal, automorphic representation of GL2(A). A special value result for this L-function in
the spirit of Deligne’s conjecture is obtained.

1 Introduction

It is known that the representation of the symplectic group obtained from a Siegel modular form is non-
generic, which means that it does not have a Whittaker model. Consequently, one cannot use the techniques
or results for generic representations in this case. In such a situation one introduces the notion of a generalized
Whittaker model, now called the Bessel model. These Bessel models have been used to obtain integral
representations of L-functions. It is known that an automorphic representation of GSp4(A), where A is the
ring of adeles of a number field, obtained from a Siegel modular form always has some global Bessel model.
For the purposes of local calculations it is often very important to know the precise criteria for existence of
local Bessel models and explicit formulas. In this paper, we wish to investigate Bessel models for unramified,
quadratic twists of the Steinberg representation π of GSp4(F ), where F is any non-archimedean local field
of characteristic zero.

Let us first briefly explain what a Bessel model is. Detailed definitions will be given in Sect. 3. Let F be
a non-archimedean field of characteristic zero. Let U(F ) be the unipotent radical of the Siegel parabolic
subgroup of GSp4(F ) and θ be any non-degenerate character of U(F ). The group GL2(F ), embedded in
the Levi subgroup of the Siegel parabolic subgroup, acts on U(F ) by conjugation and hence, on characters
of U(F ). Let T (F ) = StabGL2(F )(θ). Then T (F ) is isomorphic to the units of a quadratic extension L of
F . The group R(F ) = T (F )U(F ) is called the Bessel subgroup of GSp4(F ) (depending on θ). Let Λ be
any character of T (F ) and denote by Λ⊗ θ the character obtained on R(F ). Let (π, V ) be any irreducible,
admissible representation of GSp4(F ). A linear functional β : V → C, satisfying β(π(r)v) = (Λ⊗ θ)(r)β(v)
for any r ∈ R(F ), v ∈ V , is called a (Λ, θ)-Bessel functional for π. We say that π has a (Λ, θ)-Bessel model
if π is isomorphic to a subspace of smooth functions B : GSp4(F ) → C, such that B(rh) = (Λ⊗ θ)(r)B(h)
for all r ∈ R(F ), h ∈ GSp4(F ). The existence of a non-trivial (Λ, θ)-Bessel functional is equivalent to the
existence of a (Λ, θ)-Bessel model for a representation. If π has a non-trivial (Λ, θ)-Bessel functional β, then
a vector v ∈ V such that β(v) 6= 0 is called a test vector for β.

In [12], the authors have obtained, for any irreducible, admissible representation π of GSp4(F ), the criteria
to be satisfied by Λ for the existence of a (Λ, θ)-Bessel functional for π. Their method involves the use of
theta lifts and distributions. The uniqueness of Bessel functionals has been obtained in [8] for many cases,
in particular for any π with a trivial central character. In [18], a test vector is obtained when both the
representation π and the character Λ are unramified. In [14], a test vector is obtained when F = Qp, p is odd
and inert in the quadratic field extension L corresponding to T (Qp), the representation π is an unramified,
quadratic twist of the Steinberg representation and Λ has conductor 1 + poL. The explicit formulas of the
test vector in the above two cases have been used in [4] and [14] to obtain an integral representation of the
GSp4 ×GL2 L-function where the GL2 representation is either unramified or Steinberg.
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The main goal of this paper is to obtain explicit formulas for a test vector whenever a Bessel model for the
unramified, quadratic twist of the Steinberg representation of GSp4(F ) exists. In addition to obtaining these
formulas, we, in fact, obtain an independent proof of the criteria for existence and uniqueness for the Bessel
models. We also give precise conditions on the character Λ so that the Iwahori spherical vector in π is a test
vector. This is achieved in Theorem 3.2 which states the following.

Theorem: Let π = ΩStGSp4
be the Steinberg representation of H(F ), twisted by an unramified quadratic

character Ω. Let Λ be a character of L× such that Λ |F×≡ 1. If L is a field, then π has a (Λ, θ)-Bessel model
if and only if Λ 6= Ω ◦ NL/F . If L is not a field, then π always has a (Λ, θ)-Bessel model. In case π has
a (Λ, θ)-Bessel model, it is unique. In addition, if π has a (Λ, θ)-Bessel model, then the Iwahori spherical
vector of π is a test vector for the Bessel functional if and only if Λ is trivial on 1 + P (see (4) for definition
of P) and, in case

(
L
p

)
= 1 and Λ is unramified, then Λ((1, $)) 6= Ω($).

The methods used to prove the above theorem are very different from those in [8] and [12].

When the Iwahori spherical vector is a test vector, we use the explicit formula for the test vector to obtain
an integral representation of the local L-function L(s, π × τ) of the Steinberg representation π of GSp4(F ),
twisted by any irreducible admissible representation τ of GL2(F ). This integral involves a function B in the
Bessel model of π and a Whittaker function W# in a certain induced representation of GU(2, 2) related to
τ . We wish to remark that in this paper, and other works ([4], [9], [10], [14]), the Bessel function B is always
chosen to be a “distinguished” vector (spherical if π is unramified and Iwahori spherical if π is Steinberg)
which has the additional property of being a test vector. With this choice of B we have a systematic
way of choosing W# (see [10]) so that the integral is non-zero and gives an integral representation of the
L-function. The work so far suggests that to obtain an integral representation for the L-function with
a general irreducible, admissible representation π of GSp4(F ), we will have to choose B to be both a
“distinguished” vector in the Bessel model of π and a test vector for the Bessel functional. This further
highlights the importance of obtaining more information and explicit formulas for test vectors for Bessel
models of GSp4(F ). This is a topic of ongoing work.

The local computation mentioned above, together with the archimedean and p-adic calculations in [4] and
[10], we obtain an integral representation of the global L-function L(s, π × τ) of an irreducible, cuspidal,
automorphic representation π of GSp4(A), obtained from a Siegel cuspidal newform with respect to the Borel
congruence subgroup of square-free level, twisted by any irreducible, cuspidal, automorphic representation
τ of GL2(A). When τ corresponds to an elliptic cusp form in Sl(N,χ), we obtain algebraicity results for
special value of the twisted L-function in the spirit of Deligne’s conjecture [3].

The paper is organized as follows. The first half of the paper deals with the existence and uniqueness of
Bessel models. In Sect. 2, we give the basics regarding the non-archimedean setup, Steinberg representation
and the Iwahori Hecke algebra. We define B(Λ, θ)I to be the space of smooth functions on GSp4(F ) which are
right invariant under the Iwahori subgroup I and transform on the left according to Λ⊗θ. In Sect. 3.1-3.4, we
obtain that dim(B(Λ, θ)I) ≤ 1 (the uniqueness), the criterion for dim(B(Λ, θ)I) = 1 and the explicit formula
for the unique (up to scalars) function B in B(Λ, θ)I. The methods used here are similar to those in [14]. In
case Λ is a unitary character such that dim(B(Λ, θ)I) = 1, we use the function B to generate a Hecke module
VB . We show that VB is irreducible and has a unique (up to a constant) vector which is Iwahori spherical,
hence implying that VB is a (Λ, θ)-Bessel model for the Steinberg representation. In case Λ is not unitary
(this can only happen when L is split over F ), we use the fact that the Steinberg representation, in the split
case, is generic and actually show that any generic, irreducible, admissible representation of GSp4(F ) has
a split Bessel model. We believe that this result is known to the experts but since it is not available in the
literature we present the proof in details. This is done is Sect. 3.5, in particular Theorem 3.2.

In the second half of the paper, we give the application of the explicit formula of the test vector. In Sect. 4,
we obtain an integral representation of the L-function of the Steinberg representation twisted by any GL2

representation in Theorem 4.1. In Theorems 5.1 and 5.2, we obtain an integral representation for the global
L-function and a special value result.

The author would like to thank Ralf Schmidt for all his help, in particular, for explaining how to obtain a
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Bessel model from a Whittaker model in the split case. The author would also like to thank Abhishek Saha
for several fruitful discussions on this topic.

2 Steinberg representation of GSp4

Non-archimedean setup

Let F be a non-archimedean local field of characteristic zero. Let o, p, $, q be the ring of integers, prime ideal,
uniformizer and cardinality of the residue class field o/p, respectively. Let us fix three elements a, b, c ∈ F
such that d := b2 − 4ac 6= 0. Let

L =

{
F (
√
d) if d /∈ F×2,

F ⊕ F if d ∈ F×2.
(1)

In case L = F ⊕F , we consider F diagonally embedded. If L is a field, we denote by x̄ the Galois conjugate
of x ∈ L over F . If L = F ⊕ F , let (x, y) = (y, x). In any case we let N(x) = xx̄ and tr(x) = x + x̄. We
shall make the following assumptions:

(A1) a, b ∈ o and c ∈ o×.

(A2) If d 6∈ F×2, then d is the generator of the discriminant of L/F . If d ∈ F×2, then d ∈ o×.

We set the Legendre symbol as follows,

(L
p

)
:=

 −1, if d 6∈ F×2, d 6∈ p (the inert case),
0, if d 6∈ F×2, d ∈ p (the ramified case),
1, if d ∈ F×2 (the split case).

(2)

If L is a field, then let oL be its ring of integers. If L = F ⊕F , then let oL = o⊕o. Let $L be the uniformizer
of oL if L is a field and set $L = ($, 1) if L is not a field. Note that, if (Lp ) 6= −1, then N($L) ∈ $o×. Let
α ∈ oL be defined by

α :=


b+
√
d

2c
if L is a field,(b+

√
d

2c
,
b−
√
d

2c

)
if L= F ⊕ F.

(3)

We fix the following ideal in oL,

P := poL =


pL if

(
L
p

)
= −1,

p2
L if

(
L
p

)
= 0,

p⊕ p if
(
L
p

)
= 1.

(4)

Here, pL is the maximal ideal of oL when L is a field extension. Note that P is prime only if
(
L
p

)
= −1. We

have Pn ∩ o = pn for all n ≥ 0. Let us recall Lemma 3.1.1 of [9].

2.1 Lemma. Let notations be as above.

i) The elements 1 and α constitute an integral basis of L/F .

ii) There exists no x ∈ o such that α+ x ∈ P.
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Steinberg representation

Let us define the symplectic group H = GSp4 by

H(F ) := {g ∈ GL4(F ) : tgJg = µ2(g)J, µ2(g) ∈ F×},

where J =
[

12

−12

]
. The maximal compact subgroup is denoted by KH := GSp4(o). We define the Iwahori

subgroup as follows,

I := {g ∈ KH : g ≡


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 (mod p)}. (5)

Let Ω be an unramified, quadratic character of F×. Let π be the Steinberg representation of H(F ), twisted
by the character Ω. This representation is denoted by ΩStGSp4

. Since we have assumed that Ω is quadratic,
we see that π has trivial central character. The Steinberg representation has the property that it is the
only representation of H(F ) which has a unique (up to a constant) Iwahori fixed vector. The Iwahori Hecke
algebra acts on the space of I-invariant vectors. We will next describe the Iwahori Hecke algebra.

Iwahori Hecke algebra

The Iwahori Hecke algebra HI of H(F ) is the convolution algebra of left and right I-invariant functions on
H(F ). We refer the reader to Sect. 2.1 of [16] for details on the Iwahori Hecke algebra. Here, we state the
two projection operators (projecting onto the Siegel and Klingen parabolic subgroups) and the Atkin Lehner
involution. The unique (up to a constant) Iwahori fixed vector v0 in π is annihilated by the projection
operators and is an eigenvector of the Atkin Lehner involution.

∑
w∈o/p

π(


1 w

1
1
−w 1

)v0+π(s1)v0 = 0, π(η0)v0 = ωv0,
∑
y∈o/p

π(


1

1
y 1

1

)v0+π(s2)v0 = 0. (6)

Here

s1 =


1

1
1

1

 , s2 =


1

1
−1

1

 , η0 =


1

1
$

$

 and ω = −Ω($). (7)

3 Existence and uniqueness of Bessel models for the Steinberg representation

Let us fix an additive character ψ of F , with conductor o. Let a, b ∈ o and c ∈ o× be as in Sect. 2, and set

S =
[
a b/2
b/2 c

]
. Then ψ defines a character θ on U(F ) = {

[
12 X

12

]
: tX = X} by

θ(
[

1 X
1

]
) = ψ(tr(SX)). (8)

Let
T (F ) := {g ∈ GL2(F ) : tgSg = det(g)S}. (9)
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Set ξ =
[
b/2 c
−a b/2

]
and F (ξ) = {x + yξ : x, y ∈ F}. Then, it can be checked that T (F ) = F (ξ)× and is

isomorphic to L×, with the isomorphism given by[
x+ b

2y cy
−ay x− b

2y

]
7→

{
x+ y

√
d

2 , if L is a field;
(x+ y

√
d

2 , x− y
√
d

2 ), if L = F ⊕ F.
(10)

We consider T (F ) as a subgroup of H(F ) via

T (F ) 3 g 7−→
[
g

det(g) tg−1

]
∈ H(F ).

Let R(F ) = T (F )U(F ). We call R(F ) the Bessel subgroup of H(F ) (with respect to the given data a, b, c).
Let Λ be any character on L× that is trivial on F×. We will consider Λ as a character on T (F ). We have
θ(t−1ut) = θ(u) for all u ∈ U(F ) and t ∈ T (F ). Hence the map tu 7→ Λ(t)θ(u) defines a character of R(F ).
We denote this character by Λ⊗ θ.

As mentioned in the introduction, a linear functional β : V → C, satisfying β(π(r)v) = (Λ ⊗ θ)(r)β(v) for
any r ∈ R(F ), v ∈ V , is called a (Λ, θ)-Bessel functional for π. We say that π has a (Λ, θ)-Bessel model if π
is isomorphic to a subspace of smooth functions B : H(F )→ C satisfying

B(tuh) = Λ(t)θ(u)B(h) for all t ∈ T (F ), u ∈ U(F ), h ∈ H(F ). (11)

The existence of a non-zero (Λ, θ)-Bessel functional for π is equivalent to the existence of a non-trivial (Λ, θ)-
Bessel model for π. If π has a non-zero (Λ, θ)-Bessel functional β, then the space {Bv : v ∈ π,Bv(h) :=
β(π(h)v)} gives a non-trivial (Λ, θ)-Bessel model for π. Conversely, if π has a non-trivial (Λ, θ)-Bessel model
{Bv : v ∈ π} then the linear functional β(v) := Bv(1) is a non-zero (Λ, θ)-Bessel functional for π. We say
that v ∈ π is a test vector for a Bessel functional β if β(v) 6= 0. Note that a vector v ∈ π is a test vector for
β if and only if the corresponding function Bv in the Bessel model satisfies Bv(1) 6= 0.

Define the space B(Λ, θ)I of smooth functions B on H(F ) which are right I-invariant, satisfy (11) and the
following conditions, for any h ∈ H(F ), obtained from (6),

∑
w∈o/p

B(h


1 w

1
1
−w 1

) +B(hs1) = 0, (12)

B(hη0) = ωB(h), (13)

∑
y∈o/p

B(h


1

1
y 1

1

) +B(hs2) = 0. (14)

Our aim is to obtain the criteria for existence and uniqueness for (Λ, θ)-Bessel models for π. Let us state
the steps we take to obtain this.

i) Since a function B in B(Λ, θ)I is right I-invariant and satisfies (11) we see that the values of B are
completely determined by its values on double coset representatives R(F )\H(F )/I. We obtain these
representatives in Proposition 3.3.

ii) In Proposition 3.8, we use the I-invariance of B and (11)-(14) to obtain necessary conditions to be
satisfied by the values of functions in B(Λ, θ)I on double coset representatives for R(F )\H(F )/I. This
gives us dim(B(Λ, θ)I) ≤ 1 in Corollary 3.9.

iii) In Proposition 3.10, we show that the function B with the given values at double coset representatives
for R(F )\H(F )/I (obtained in Proposition 3.8) is well-defined. We show that B satisfies (12), (13)
and (14) for all values of h ∈ H(F ) and obtain the criteria for dim(B(Λ, θ)I) = 1 in Theorem 3.1.
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iv) Suppose Λ is such that dim(B(Λ, θ)I) = 1. If Λ is unitary then we use 0 6= B ∈ B(Λ, θ)I to generate
a Hecke module VB . We define an inner product on VB and show in Proposition 3.15 that VB is
irreducible and provides a (Λ, θ)-Bessel model for π. If Λ is not unitary (this can happen only if L is
a split extension of F ), then we show that any irreducible, generic, admissible representation of H(F )
has a split (Λ, θ)-Bessel model. Since π is generic in the split case, we obtain in Theorem 3.2 the precise
criteria for existence and uniqueness of a (Λ, θ)-Bessel model for π.

3.1 Double coset decomposition

From (3.4.2) of [4], we have the following disjoint double coset decomposition.

H(F ) =
⊔
l∈Z

⊔
m≥0

R(F )h(l,m)KH , h(l,m) =


$2m+l

$m+l

1
$m

 . (15)

It follows from the Bruhat decomposition for Sp(4, o/p) that

KH = I t
⊔

x∈o/p


1
x 1

1 −x
1

 s1I t
⊔

x∈o/p


1 x

1
1

1

 s2I t
⊔

x,y∈o/p


1
x 1 y

1 −x
1

 s1s2I (16)

t
⊔

x,y∈o/p


1 x y

1 y
1

1

 s2s1I t
⊔

x,y,z∈o/p


1 y
x 1 y xy + z

1 −x
1

 s1s2s1I (17)

t
⊔

x,y,z∈o/p


1 x y

1 y z
1

1

 s2s1s2I t
⊔

w,x,y,z∈o/p


1 x y
w 1 wx+ y wy + z

1 −w
1

 s1s2s1s2I. (18)

Let W = {1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2} be the Weyl group of Sp4(F ) and let W (1) be the set of

representatives for {1, s1}\W given by {1, s2, s2s1, s2s1s2}. Observing that h(l,m)


1 o o

1 o o
1

1

h(l,m)−1

is contained in R(F ), we get a preliminary (non-disjoint) decomposition

R(F )h(l,m)KH =
⋃

s∈W (1),w∈o/p

(
R(F )h(l,m)sI ∪R(F )h(l,m)Wws1sI

)
, (19)

where, for w ∈ o/p, we set

Ww =


1
w 1

1 −w
1

 .
The next lemma gives the condition under which the two double cosets of the form R(F )h(l,m)sI and
R(F )h(l,m)Wws1sI are the same.

3.1 Lemma. For w ∈ o/p and m ≥ 0, set βmw := a$2m+b$mw+cw2. Let s ∈W (1). Then R(F )h(l,m)sI =
R(F )h(l,m)Wws1sI if and only if βmw ∈ o×.
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Proof. Suppose βmw ∈ o×. Take y = $m, x = $mb/2 + cw and set g =
[
x+ b

2y cy
−ay x− b

2y

]
. Let r =[

g
det(g) tg−1

]
. Then

rh(l,m) = h(l,m)Wws1k, where k =


−βmw

b$m + cw c
−c b$m + cw

βmw

 ∈ I.

Note that for any s ∈ W (1), we have s−1ks ∈ I. Using rh(l,m)s = h(l,m)Wws1s(s−1ks), we obtain
R(F )h(l,m)sI = R(F )h(l,m)Wws1sI, as required.

Now we will prove the converse. For i = 1, 2, 3, 4, let ri =
[
gi

det(gi) tg−1
i

][
12 Xi

12

]
, where Xi = tXi and

gi =
[
xi + b

2yi cyi
−ayi xi − b

2yi

]
, such that

A1 = (h(l,m)Wws1)−1r1h(l,m) ∈ I,A2 = (h(l,m)Wws1s2)−1r2h(l,m)s2 ∈ I,

A3 = (h(l,m)Wws1s2s1)−1r3h(l,m)s2s1 ∈ I,A4 = (h(l,m)Wws1s2s1s2)−1r4h(l,m)s2s1s2 ∈ I.

First, let w ∈ (o/p)×. Looking at the (2, 2) coefficient of Ai for i = 1, 2, 3, 4, we get yi = $my′i, with y′i ∈ o×.
We have

(1, 2) coefficient of A1 = − 1
w

((1, 1) coefficient of A1 + βmw y
′
1) ∈ p

(3, 2) coefficient of A2 = − 1
w

((3, 3) coefficient of A2 + βmw y
′
1) ∈ p

(4, 1) coefficient of A3 = − 1
w

((4, 4) coefficient of A3 + βmw y
′
1) ∈ p

(4, 3) coefficient of A4 = − 1
w

((4, 4) coefficient of A4 + βmw y
′
1) ∈ p

Since diagonal elements of Ai are in o× and w, y′i ∈ o×, we can conclude, in each of the above case, that
βmw ∈ o×, as required.

Now let w = 0. If m > 0, then clearly βmw /∈ o×. Also, each of the Ai have two of the four diagonal entries
equal to c$−myi and a$myi, both of which cannot be units. Hence, Ai /∈ I. If m = 0, then each of the Ai
have two of the four diagonal entries equal to cyi and ayi. If Ai ∈ I, then a ∈ o×, and hence, β0

0 = a ∈ o×.
This completes the proof of the lemma.

The next lemma describes for which w ∈ o/p we have βmw ∈ o×.

3.2 Lemma. For w ∈ o/p and m ≥ 0, set βmw := a$2m + b$mw + cw2 as above.

i) If m > 0, then βmw ∈ o× if and only if w ∈ (o/p)×.

ii) Let m = 0.

a) If
(
L
p

)
= −1, then β0

w ∈ o× for every w ∈ o/p.

b) Let
(
L
p

)
= 0. Let w0 be the unique element of o/p such that α+w0 ∈ pL, the prime ideal of oL.

Then β0
w ∈ o× if and only if w 6= w0. In case #(o/p) is odd, one can take w0 = −b/(2c).

c) Let
(
L
p

)
= 1. Then β0

w ∈ o× if and only if w 6= −b+
√
d

2c , −b−
√
d

2c .
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Proof. Part i) is clear. For the rest of the lemma, we need the following claim.

Claim: We have β0
w ∈ o× if and only if α+ w ∈ o×L .

The claim follows from the identity

a+ bw + cw2 = −c(α+ w)(ᾱ+ w) = −cN(α+ w). (20)

If
(
L
p

)
= −1, then pL = P and Lemma 2.1 ii) implies that α + w ∈ o×L for all w ∈ o/p. The claim gives

ii)a) of the lemma. Let us now assume that
(
L
p

)
= 0. In this case, the injective map ι : o ↪→ oL gives

an isomorphism between the fields o/p ' oL/pL. Let w0 = −ι−1(α) be the unique element in o/p such
that α + w0 ∈ pL. In case #(o/p) is odd, then one can take w0 = −b/(2c) ∈ o since

√
d ∈ pL. Then for

any w ∈ o/p, w 6= w0, we have α + w ∈ o×L . Now, the claim gives ii)b) of the lemma. Next assume that(
L
p

)
= 1. Since

√
d ∈ o× by assumption, we have α 6∈ P. If α + w 6∈ o×L for some w ∈ o, then we have

one of (b±
√
d)/(2c) + w lies in p. Hence, we see that the only choices of w = (w,w) such that α+ w 6∈ o×L

are w = (−b ±
√
d)/(2c). Note that

√
d ∈ o× implies that (−b ±

√
d)/(2c) are not equal modulo p. This

completes the proof of the lemma.

Note that, in the case
(
L
p

)
= 0, (20) implies that β0

w0
∈ p but β0

w0
6∈ p2 by Lemma 2.1 ii).

Next, we will show the disjointness of all the relevant double cosets. Set

As,t = (h(l,m)s)−1rh(l,m)t t ∈W, s ∈W − {t, s1t}
Aw,s,t = (h(l, 0)s)−1rh(l, 0)Wws1t w ∈ o/p, s, t ∈W (1), s 6= t

A∗w,s,t = (h(l, 0)Wws1s)−1rh(l, 0)Wws1t w ∈ o/p, s, t ∈W (1), s 6= t

Notice that, for all of the matrices defined above, and any r ∈ R(F ), at least one of the diagonal entries is
zero. This implies that none of the above matrices can be in I for any choice of r ∈ R(F ). For

(
L
p

)
= 1, set

A∗s,t = (h(l, 0)W−b+
√

d
2c

s1s)−1rh(l, 0)W−b−
√

d
2c

s1t s, t ∈W (1).

If s 6= t, then at least one of the diagonal entries of A∗s,t is zero, implying that it cannot be in I for any choice
of r ∈ R(F ). If s = t and A∗s,t is in I, then we get

x−
√
dy

2
∈ o× and −

√
d

c
(x−

√
dy

2
) ∈ p,

which is not possible, since
√
d ∈ o×. Hence, A∗s,t cannot be in I for any choice of r ∈ R(F ). We summarize

in the following proposition.

3.3 Proposition. Let W be the Weyl group of Sp4(F ) and W (1) = {1, s2, s2s1, s2s1s2}. If
(
L
p

)
= 0, let w0

be the unique element of o/p such that α + w0 ∈ pL. If #(o/p) is odd, then take w0 = −b/(2c). Then we
have the following disjoint double coset decomposition.

R(F )h(l,m)KH =



⊔
s∈W

R(F )h(l,m)sI, if m > 0;⊔
s∈W (1)

R(F )h(l, 0)sI, if m = 0,
(
L
p

)
= −1;⊔

s∈W (1)

(
R(F )h(l, 0)sI tR(F )h(l, 0)Ww0s1sI

)
, if m = 0,

(
L
p

)
= 0;⊔

s∈W (1)

(
R(F )h(l, 0)sI tR(F )h(l, 0)W−b+

√
d

2c

s1s

tR(F )h(l, 0)W−b−
√

d
2c

s1sI
)
, if m = 0,

(
L
p

)
= 1.

(21)
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3.2 Necessary conditions for values of B ∈ B(Λ, θ)I

In this section, we will obtain the necessary conditions on the values of B ∈ B(Λ, θ)I on the double coset
representatives from Proposition 3.3 using I-invariance of B and (11)-(14).

Conductor of Λ:

Let us define
c(Λ) = min{m ≥ 0 : Λ|(1+Pm)∩o×L

≡ 1}. (22)

Note that (1 + Pm) ∩ o×L = 1 + Pm if m ≥ 1 and (1 + Pm) ∩ o×L = o×L if m = 0. Also, c(Λ) is the conductor

of Λ only if
(
L
p

)
= −1. Let us set c(Λ) = m0. Since Λ is trivial on F×, we see that Λ|(o×+Pm0 )∩o×L

≡ 1.

Let us make a few observations about Λ and c(Λ).

i) If L is a field, then we have L× = 〈$L〉.o×L . If
(
L
p

)
= −1 and m0 = 0, then we have that Λ($L) = 1,

since $L ∈ $o×L . In case
(
L
p

)
= 0 and m0 = 0, we see that Λ($L) = ±1. In general, if L is a field, we

see that Λ is a unitary character since m0 is finite.

ii) If L is not a field, then L× = F× ⊕ F× and Λ((x, y)) = Λ1(x)Λ2(y), where Λ1,Λ2 are two characters
of F× satisfying Λ1.Λ2 ≡ 1. In this case, m0 is the conductor of both Λ1,Λ2 and the character Λ need
not be unitary.

In the next lemma, we will describe some coset representatives, which will be used in the evaluation of certain
sums involving the character Λ.

3.4 Lemma. Let m ≥ 1. A set of coset representatives for ((o× + Pm−1) ∩ o×L )/(o× + Pm) is given by

{w + α$m−1 : w ∈ (o/p)×} ∪ {1} if m ≥ 2

{w + α : w ∈ o/p} ∪ {1} if m = 1,
(L

p

)
= −1

{w + α : w ∈ o/p, w 6= w0} ∪ {1} if m = 1,
(L

p

)
= 0

{w + α : w ∈ o/p, w 6= (−b±
√
d)/(2c)} ∪ {1} if m = 1,

(L
p

)
= 1.

In the case
(
L
p

)
= 0, the element w0 is the unique element in o/p such that w0 + α /∈ o×L .

Proof. Let x + α$m−1y ∈ (o× + Pm−1) ∩ o×L , with x, y ∈ o. If m ≥ 2, then x ∈ o×. If y ∈ p, then
x + α$m−1y ∈ o× + Pm, and hence corresponds to the coset representative 1. Now, let us assume that
y ∈ o×. Then, using y ∈ o×+ Pm, we see that x+α$m−1y is equivalent to x/y+α$m−1 modulo o×+ Pm.
Note that x/y + α$m−1 ∈ o×L implies that, modulo p, the element x/y lies in

(o/p)× if m ≥ 2, o/p if m = 1,
(L

p

)
= −1

o/p− {w0} if m = 1,
(L

p

)
= 0, o/p− {(−b±

√
d)/(2c)} if m = 1,

(L
p

)
= 1. (23)

This follows from the proof of Lemma 3.2. Now, we show that there is an element X ∈ o× + Pm, such that
(x/y + α$m−1)X is equal to w + α$m−1 for some w in the sets described in (23). This is obtained in the
following claim.
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Claim: Let w,w′ ∈ o. Depending on the value if m and
(
L
p

)
, assume that w,w′ are equivalent, modulo p,

to elements in the sets defined in (23). Then w ≡ w′ (mod p) if and only if (w + α$m−1)/(w′ + α$m−1) ∈
o× + Pm.

The claim can be proved as follows. Suppose (w+α$m−1)/(w′+α$m−1) = x+α$my, with x ∈ o×, y ∈ o,
then

w + α$m−1 = (w′x− a

c
$2m−1y) + α(x$m−1 + w′$my +

b

c
$2m−1y).

Now, x$m−1 + w′$my + b
c$

2m−1y = $m−1 implies that x ≡ 1 (mod p). From w′x − a
c$

2m−1y = w, we
get w′x ≡ w (mod p) and hence w ≡ w′ (mod p), as required. Now assume that w ≡ w′ (mod p). Take

y =
w′ − w

$(w′2 + b
c$

m−1w′ + a
c$

2(m−1))
, x = 1− w′$y − b

c
$my.

The assumptions on w,w′ imply that y ∈ o, x ∈ o× and (w + α$m−1)/(w′ + α$m−1) = x + α$my, as
required.

Depending on the c(Λ), certain values of B have to be zero. This is obtained in the next lemma.

3.5 Lemma. i) Let c(Λ) = m0 ≥ 2. Then

B(h(l,m)) = 0 for all m ≤ m0 − 2 and any l. (24)

ii) Let c(Λ) = m0 ≥ 1 and
(
L
p

)
= 1. For w = (−b±

√
d)/(2c)

B(h(l, 0)Wws1) = 0 for all l.

iii) Let c(Λ) = m0 = 0,
(
L
p

)
= 0 and Λ = Ω ◦NL/F . Then

B(h(l, 0)Ww0s1s2) = 0 for all l.

iv) Let c(Λ) = m0 = 0 and
(
L
p

)
= −1. Then

B(h(l, 0)) = 0 for all l.

Proof.

i) Let m ≤ m0 − 2. Let 1 + x+ αy ∈ 1 + Pm+1, x, y ∈ pm+1, such that Λ(1 + x+ αy) 6= 1. Let

k =


c(1 + x) + by cy$−m

−ay$m c(1 + x)
c(1 + x) ay$m

−cy$−m c(1 + x) + by

 ∈ I.

Then

B(h(l,m)) = B(h(l,m)k) = B(


c(1 + x) + by cy
−ay c(1 + x)

c(1 + x) ay
−cy c(1 + x) + by

h(l,m))

= Λ(1 + x+ αy)B(h(l,m)),

which implies that B(h(l,m)) = 0, as required.
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ii) Let (a1, a2) ∈ o×⊕o× = o×L be such that Λ((a1, a2)) 6= 1. Choose x = (a1 +a2)/2 and y = (a1−a2)/
√
d

and let g =
[
x+ by/2 cy
−ay x− by/2

]
. With r =

[
g

det(g) tg−1

]
, we have the matrix identity, for w =

−b+
√
d

2c ,

rh(l, 0)Wws1 = h(l, 0)Wws1k, where k =


a2 −β0

w
a1−a2√

d

ca1−a2√
d

a1

a1 −ca1−a2√
d

β0
w
a1−a2√

d
a2

 ∈ I.

Hence, we get
B(h(l, 0)Wws1) = B(rh(l, 0)Wws1) = Λ((a1, a2))B(h(l, 0)Wws1).

This implies that B(h(l, 0)W−b+
√

d
2c

s1) = 0. A similar calculation works for w = −b−
√
d

2c .

iii) We have

η0 =


$

$
$

$

h(−1, 0)s2s1s2


−1

−1
1

1

 .
Hence,

ωB(h(l, 0)Ww0s1s2) = B(h(l, 0)Ww0s1s2η0) = B(h(l, 0)Ww0


1

$
$

1

 s2).

Let x = −b/2− cw0, y = 1 and set g =
[
x+ by/2 cy
−ay x− by/2

]
, r =

[
g

det(g) tg−1

]
. Then

rh(l, 0)Ww0s1s2 = h(l, 0)Ww0


1

$
$

1

 s2


$−1β0

w0
b+2cw0
$

−$−1β0
w0

− b+2cw0
$
c

−c

 ,
Note that b+ 2cw0 ∈ p and β0

w0
∈ p− p2 implies that the rightmost matrix is in I. Hence,

ωB(h(l, 0)Ww0s1s2) = Λ(−cw0 − b/2 +
√
d/2)B(h(l, 0)Ww0s1s2) = Λ(w0 + ᾱ)B(h(l, 0)Ww0s1s2).

If m0 = 0 and Λ = Ω ◦NL/F , then Λ(w0 + ᾱ) = Ω($) = −ω. This is because w0 + ᾱ ∈ pL − p2
L (by

Lemma 2.1 ii)) and Ω is unramified. This implies that if Λ = Ω ◦NL/F , then B(h(l, 0)Ww0s1s2) = 0,
as required.

iv) Let us set h = h(l, 0)s1 in (12). We get∑
w∈o/p

B(h(l, 0)Wws1) = −B(h(l, 0)). (25)

By Lemmas 3.1, 3.2, we see that for any w ∈ o/p, we have

B(h(l, 0)Wws1) = Λ(c(w + α))B(h(l, 0)) = Λ(w + α)B(h(l, 0)).

Substituting in (25), we get B(h(l, 0)) = 0, as required.

From Lemmas 3.4 and 3.5(i), we obtain the following information on certain character sums involving Λ.
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3.6 Lemma. For any l, we have∑
w∈(o/p)×

Λ(w + α$m)B(h(l,m)) +B(h(l,m)) =
{

0, if m < m0;
qB(h(l,m)), if m ≥ m0.

if m > 0. (26)

∑
w∈o/p

Λ(w + α)B(h(l, 0)) +B(h(l, 0)) =
{

0, if m0 ≥ 1;
(q + 1)B(h(l, 0)), if m0 = 0. if

(L
p

)
= −1 (27)

∑
w∈o/p
w 6=w0

Λ(w + α)B(h(l, 0)) +B(h(l, 0)) =
{

0, if m0 ≥ 1;
qB(h(l, 0)), if m0 = 0. if

(L
p

)
= 0 (28)

∑
w∈o/p

w 6=−b±
√

d
2c

Λ(w + α)B(h(l, 0)) +B(h(l, 0)) =
{

0, if m0 ≥ 1;
(q − 1)B(h(l, 0)), if m0 = 0. if

(L
p

)
= 1 (29)

Conductor of ψ

Since the conductor of ψ is o, we obtain the following further vanishing conditions on the values of B.

3.7 Lemma. i) If s ∈ {1, s1, s2, s2s1} and m ≥ 0, then

B(h(l,m)s) = 0 if l < 0.

ii) If s ∈ {s1s2, s1s2s1, s2s1s2, s1s2s1s2} and m ≥ 0, then

B(h(l,m)s) = 0 if l < −1.

iii) If w ∈ o, then
B(h(l, 0)Wws1) = 0 if l < 0.

iv) If w ∈ o and s ∈ {s1s2, s1s2s1, s1s2s1s2}, then

B(h(l, 0)Wws) = 0 if l < −1.

v) If
(
L
p

)
= 1 and w = (−b±

√
d)/(2c), then

B(h(−1, 0)Wws1s2) = 0.

Proof.

i) For any ε ∈ o×, set

kεs =


1

1 ε
1

1

 if s = 1, s2 and kεs =


1 ε

1
1

1

 if s = s1, s2s1.

Then, for s ∈ {1, s1, s2, s2s1} and ε ∈ o×, we obtain

B(h(l,m)s) = B(h(l,m)skεs) = B(


1

1 ε$l

1
1

h(l,m)s) = ψ(cε$l)B(h(l,m)s).

Since the conductor of ψ is o, we conclude that B(h(l,m)s) = 0 if l < 0.
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ii) For any ε ∈ o×, set

ks =


1

1
ε$ 1

1

 if s = s1s2, s2s1s2 and ks =


1

1
1

ε$ 1

 if s = s1s2s1, s1s2s1s2.

Then, for s ∈ {s1s2, s2s1s2, s1s2s1, s1s2s1s2} and ε ∈ o×, we have

B(h(l,m)s) = B(h(l,m)sks) = B(


1

1 ε$l+1

1
1

h(l,m)s) = ψ(cε$l+1)B(h(l,m)s).

Since, the conductor of ψ is o, we conclude that B(h(l,m)s) = 0 if l < −1.

iii) For w ∈ o and ε ∈ o×, we have

B(h(l, 0)Wws1) = B(h(l, 0)Wws1


1 ε

1
1

1

) = B(


1

1 ε$l

1
1

h(l, 0)Wws1)

= ψ(cε$l)B(h(l, 0)Wws1).

Since, the conductor of ψ is o, we conclude that B(h(l, 0)Wws1) = 0 if l < 0.

iv) For any ε ∈ o×, set

ks =


1

1
ε$ 1

1

 if s = s1s2, and ks =


1

1
1

ε$ 1

 if s = s1s2s1, s1s2s1s2.

Then, for s ∈ {s1s2, s1s2s1, s1s2s1s2} and ε ∈ o×, we have

B(h(l, 0)Wws) = B(h(l, 0)Wwsks) = B(


1

1 ε$l+1

1
1

h(l, 0)Wws) = ψ(cε$l+1)B(h(l, 0)Wws).

Since, the conductor of ψ is o, we conclude that B(h(l, 0)Wws) = 0 if l < −1.

v) We have

B(h(−1, 0)Wws1s2) = B(h(−1, 0)Wws1s2


1
ε 1

1 −ε
1

) = ψ(ε$−1
√
d)B(h(−1, 0)Wws1s2),

for any ε ∈ o×. We then get the result, since for
(
L
p

)
= 1, we have

√
d ∈ o×.

Values of B using (12)

Substituting h = h(l,m)s1 in (12) and using Lemmas 3.1, 3.2 and 3.6, we get for any l

B(h(l,m)s1) =
{

0, if m < m0;
−qB(h(l,m)), if m ≥ m0,

if m > 0. (30)
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B(h(l, 0)Ww0s1) =
{

0, if m0 ≥ 1;
−qB(h(l, 0)), if m0 = 0. (31)

B(h(l, 0)W−b+
√

d
2c

s1) +B(h(l, 0)W−b−
√

d
2c

s1) = −(q − 1)B(h(l, 0)) if m0 = 0. (32)

Substituting h = h(l,m)s2s1 in (12) and using that the conductor of ψ is o, we get for any l,m

B(h(l,m)s2s1) = −1
q
B(h(l,m)s2). (33)

Substituting h = h(l,m)s1s2s1 in (12) and using that the conductor of ψ is o, we get for any m > 0 and l

B(h(l,m)s1s2s1) = −1
q
B(h(l,m)s1s2). (34)

Let
(
L
p

)
= 0. Substituting h = h(−1, 0)Ww0s1s2s1 in (12) and using that the conductor of ψ is o and

b+ 2cw0 ∈ p, we get

B(h(−1, 0)Ww0s1s2s1) = −1
q
B(h(−1, 0)Ww0s1s2). (35)

Let
(
L
p

)
= 1 and w = (−b ±

√
d)/(2c). Substituting h = h(l, 0)Wws1s2s1 in (12) and using that the

conductor of ψ is o and
√
d ∈ o×, we get for l 6= −1

B(h(l,m)Wws1s2s1) = −1
q
B(h(l,m)Wws1s2). (36)

Values of B using (14)

Substituting h = h(l,m)s2 in (14) and using that the conductor of ψ is o, we get for any l,m

B(h(l,m)s2) = −1
q
B(h(l,m)). (37)

Substituting h = h(l,m)s2s1s2 in (14) and using that the conductor of ψ is o, we get for l 6= −1

B(h(l,m)s2s1s2) = −1
q
B(h(l,m)s2s1). (38)

Let w = 0 if m > 0, w = w0 if m = 0,
(
L
p

)
= 0 and w = (−b ±

√
d)/(2c) if m = 0,

(
L
p

)
= 1. Substituting

h = h(l,m)Wws1s2 in (14) and using that the conductor of ψ is o, we get for l 6= −1

B(h(l,m)Wws1s2) = −1
q
B(h(l,m)Wws1). (39)

Substituting h = h(l,m)Wws1s2s1s2 in (14) and using that the conductor of ψ is o, we get for all l,m

B(h(l,m)Wws1s2s1s2) = −1
q
B(h(l,m)Wws1s2s1). (40)

14



Values of B using (13)

For any l,m,w we have the matrix identities

h(l,m)s2s1η0 = h(l − 1,m+ 1)s1s2s1


1
−1

−1
1

 (41)

h(l,m)Wws1s2s1s2η0 = h(l + 1,m)Wws1


1

1
−1

−1

 (42)

h(l,m)s2s1s2η0 = h(l + 1,m)


1

1
−1

−1

 . (43)

Hence, by (13), we have

B(h(l,m)s2s1) = ωB(h(l − 1,m+ 1)s1s2s1), (44)
B(h(l,m)Wws1s2s1s2) = ωB(h(l + 1,m)Wws1), (45)

B(h(l,m)s2s1s2) = ωB(h(l + 1,m)). (46)

Using (43) we see that

B(h(l, 0)W−b+
√

d
2c

s1s2) = ωB(h(l, 0)W−b+
√

d
2c

s1s2η0) = ωB(h(l, 0)W−b+
√

d
2c


1

$
$

1

 s2).

Let x =
√
d/2 +$, y = 1, g =

[
x+ by/2 cy
−ay x− by/2

]
and set r =

[
g

det(g) tg−1

]
. Then we have the matrix

identity

rh(l, 0)W−b−
√

d
2c

s1s2 = h(l, 0)W−b+
√

d
2c


1

$
$

1

 s2k, with k =


√
d
c −1
−
√
d
c 1
$ c

−$ −c

 ∈ I.

This gives us
B(h(l, 0)W−b+

√
d

2c

s1s2) = ωΛ((
√
d+$,$))B(h(l, 0)W−b−

√
d

2c

s1s2). (47)

Summary

Using (33), (37), (38) and (46) we get for l,m ≥ 0

B(h(l + 1,m)) = − ω
q3
B(h(l,m)). (48)

Using (30), (33), (34), (37), (39), (44) and (48), we get for l ≥ 0,m ≥ m0 − 1

B(h(l,m+ 1)) =
1
q4
B(h(l,m)). (49)
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Hence, we conclude that

B(h(l,m)) =


0, if l ≤ −1 or 0 ≤ m ≤ m0 − 2;
q−4(m−m0+1)(−ωq−3)lB(h(0,m0 − 1)), if l ≥ 0 and m ≥ m0 − 1 > 0;
q−4m(−ωq−3)lB(1), if l ≥ 0 and m ≥ m0 = 0, 1.

(50)

Let
(
L
p

)
= 1 and w = (−b±

√
d)/(2c). Using (36), (39), (40) and (45), we get for l ≥ 0

B(h(l + 1, 0)Wws1) = − ω
q3
B(h(l, 0)Wws1), (51)

which gives us
B(h(l, 0)Wws1) = (−ωq−3)lB(Wws1). (52)

In addition, if m0 = 0 and ωΛ((1, $)) = −1, using (32), (39) and (47), we get for all l ≥ 0

B(h(l, 0)) = 0. (53)

Summarizing the calculations of the values of B, we obtain

3.8 Proposition. Let c(Λ) = m0. For l,m ∈ Z,m ≥ 0, let us set

Al,m :=
{
q−4(m−m0+1)(−ωq−3)l, if m0 ≥ 1;
q−4m(−ωq−3)l, if m0 = 0.

Cm0 :=
{
B(h(0,m0 − 1)), if m0 ≥ 1;
B(1), if m0 = 0.

We have the following necessary conditions on the values of B ∈ B(Λ, θ)I.

i) For m ≥ 0 and any m0,

a)

B(h(l,m)) =
{

0, if l ≤ −1 or m ≤ m0 − 2;
Al,mCm0 , if l ≥ 0 and m ≥ m0 − 1.

b)

B(h(l,m)s2) =
{

0, if l ≤ −1 or m ≤ m0 − 2;
− 1
qAl,mCm0 , if l ≥ 0 and m ≥ m0 − 1.

c)

B(h(l,m)s2s1) =
{

0, if l ≤ −1 or m ≤ m0 − 2;
1
q2Al,mCm0 , if l ≥ 0 and m ≥ m0 − 1.

d)

B(h(l,m)s2s1s2) =


0, if l ≤ −2 or m ≤ m0 − 2;
ωA0,mCm0 , if l = −1 and m ≥ m0 − 1;
− 1
q3Al,mCm0 , if l ≥ 0 and m ≥ m0 − 1.

ii) For m > 0 and any m0,

a)

B(h(l,m)s1) =
{

0, if l ≤ −1 or m ≤ m0 − 1;
−qAl,mCm0 , if l ≥ 0 and m ≥ m0.

b)

B(h(l,m)s1s2) =

 0, if l ≤ −2 or m ≤ m0 − 1;
−ωq3A0,mCm0 , if l = −1 and m ≥ m0;
Al,mCm0 , if l ≥ 0 and m ≥ m0.
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c)

B(h(l,m)s1s2s1) =


0, if l ≤ −2 or m ≤ m0 − 1;
ωq2A0,mCm0 , if l = −1 and m ≥ m0;
− 1
qAl,mCm0 , if l ≥ 0 and m ≥ m0.

d)

B(h(l,m)s1s2s1s2) =


0, if l ≤ −2 or m ≤ m0 − 1;
−ωqA0,mCm0 , if l = −1 and m ≥ m0;
1
q2Al,mCm0 , if l ≥ 0 and m ≥ m0.

iii) Let m0 ≥ 1.

a) If
(
L
p

)
= 0 and s ∈ {1, s2, s2s1, s2s1s2}, then, for all l,

B(h(l, 0)Ww0s1s) = 0.

b) If
(
L
p

)
= 1, s ∈ {1, s2, s2s1, s2s1s2} and w = −b±

√
d

2c , then, for all l,

B(h(l, 0)Wws1s) = 0.

iv) Let m0 = 0.

a) If
(
L
p

)
= −1 then

C0 = 0.

b) Suppose
(
L
p

)
= 0, then

i.

B(h(l, 0)Ww0s1) =
{

0, if l ≤ −1;
−qAl,0C0, if l ≥ 0.

ii.

B(h(l, 0)Ww0s1s2) =

 0, if l ≤ −2;
−ωq3C0, if l = −1;
Al,0C0, if l ≥ 0.

iii.

B(h(l, 0)Ww0s1s2s1) =
{

0, if l ≤ −2;
ωq2Al+1,0C0, if l ≥ −1.

iv.

B(h(l, 0)Ww0s1s2s1s2) =
{

0, if l ≤ −2;
−ωqAl+1,0C0, if l ≥ −1.

c) Suppose
(
L
p

)
= 0 and Λ = Ω ◦NL/F , then

C0 = 0.

d) Suppose
(
L
p

)
= 1. Then for s ∈ {1, s2, s2s1, s2s1s2}

B(h(l, 0)W−b−
√

d
2c

s1s) =
1

ωΛ((1, $))
B(h(l, 0)W−b+

√
d

2c

s1s).

e) Suppose
(
L
p

)
= 1 and ωΛ((1, $)) = −1.

i.
C0 = 0.
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ii.

B(h(l, 0)W−b+
√

d
2c

s1) =

{
0, if l ≤ −1;
Al,0B(W−b+

√
d

2c

s1), if l ≥ 0.

iii.

B(h(l, 0)W−b+
√

d
2c

s1s2) =

{
0, if l ≤ −1;
− 1
qAl,0B(W−b+

√
d

2c

s1), if l ≥ 0.

iv.

B(h(l, 0)W−b+
√

d
2c

s1s2s1) =

{
0, if l ≤ −2;
−ωqAl+1,0B(W−b+

√
d

2c

s1), if l ≥ −1.

v.

B(h(l, 0)W−b+
√

d
2c

s1s2s1s2) =

{
0, if l ≤ −2;
ωAl+1,0B(W−b+

√
d

2c

s1), if l ≥ −1.

f) Suppose
(
L
p

)
= 1 and ωΛ((1, $)) 6= −1.

i.

B(h(l, 0)W−b+
√

d
2c

s1) =
{

0, if l ≤ −1;
− q−1

1+ωΛ((1,$))Al,0C0, if l ≥ 0.

ii.

B(h(l, 0)W−b+
√

d
2c

s1s2) =
{

0, if l ≤ −1;
q−1

q(1+ωΛ((1,$)))Al,0C0, if l ≥ 0.

iii.

B(h(l, 0)W−b+
√

d
2c

s1s2s1) =

{
0, if l ≤ −2;
ωq(q−1)

1+ωΛ((1,$))Al+1,0C0, if l ≥ −1.

iv.

B(h(l, 0)W−b+
√

d
2c

s1s2s1s2) =

{
0, if l ≤ −2;
− ω(q−1)

1+ωΛ((1,$))Al+1,0C0, if l ≥ −1.

The above proposition immediately gives us the following corollary.

3.9 Corollary. For any character Λ, we have

dim
(
B(Λ, θ)I

)
≤ 1. (54)

3.3 Well-definedness of B

In this section, we will show that a function B on H(F ), which is right I-invariant, satisfies (11) and with
values on the double coset representatives of R(F )\H(F )/I given by Proposition 3.8, is well defined. Hence,
we have to show that

r1sk1 = r2sk2 ⇒ B(r1sk1) = B(r2sk2)

for r1, r2 ∈ R(F ), k1, k2 ∈ I and any double coset representative s. This is obtained in the following
proposition.

3.10 Proposition. Let s be any double coset representative from Proposition 3.3 and the values B(s) be
as in Proposition 3.8. Let t ∈ T (F ), u ∈ U(F ) such that s−1tus ∈ I. Then

Λ(t)θ(u) = 1 or B(s) = 0.
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Proof. Let t =
[
g

det(g) tg−1

]
and u =

[
1 X

1

]
, with g =

[
x+ by/2 cy
−ay x− by/2

]
, X = tX. We will go

through various values of double coset representatives s, assume s−1tus ∈ I and obtain the conclusion of the
proposition.

Well-definedness for s = h(l,m)s′ with s′ ∈W : If s′ ∈ {s1, s1s2, s1s2s1, s1s2s1s2} then we only consider
m > 0. We have x + y

√
d

2 = x − by
2 + cyα. (In the split case, we consider the same identity with

(x + y
√
d

2 , x − y
√
d

2 )). Let us assume s−1tus ∈ I. For any s′, we see that x ± by/2 ∈ o×. If s′ ∈
{1, s2, s2s1, s2s1s2} we have y ∈ pm+1 and x+

√
dy/2 ∈ o×+ Pm+1. If s′ ∈ {s1, s1s2, s1s2s1, s1s2s1s2}

we have y ∈ pm and x+
√
dy/2 ∈ o× + Pm. Hence, for any s′, we have g ∈ GL2(o). This implies

s′ = 1, s1 ⇒ X ∈
[

pl+2m pl+m

pl+m pl

]
, s′ = s2 ⇒ X ∈

[
pl+2m+1 pl+m

pl+m pl

]
,

s′ = s2s1 ⇒ X ∈
[

pl+2m+1 pl+m+1

pl+m+1 pl

]
, s′ = s1s2 ⇒ X ∈

[
pl+2m pl+m

pl+m pl+1

]
,

s′ = s1s2s1 ⇒ X ∈
[

pl+2m pl+m+1

pl+m+1 pl+1

]
, s′ = s2s1s2, s1s2s1s2 ⇒ X ∈

[
pl+2m+1 pl+m+1

pl+m+1 pl+1

]
.

Now looking at the values of B(h(l,m)s′), s′ ∈ W from Proposition 3.8, we get that either B(s) = 0
or Λ(t) = θ(u) = 1.(

L
p

)
= 0: Let w0 be the unique element of o/p such that w0 + α 6∈ o×L . Let s = h(l, 0)Ww0s

′, with s′ ∈
{s1, s1s2, s1s2s1, s1s2s1s2}. If m0 ≥ 1, then we have B(s) = 0. Hence, assume that m0 = 0. Note that
x+ y

√
d

2 = x− by/2− cw0y + c(w0 + α)y and a+ bw0 + cw2
0 ∈ p. We see that s−1tus ∈ I implies that

y ∈ o, x± (
b

2
+ cw0)y ∈ o×.

Hence, we have x+ y
√
d

2 ∈ o×L . This implies that g ∈ GL2(o) and Λ(t) = 1.

Well-definedness for s = h(l, 0)Ww0s1: We have B(h(l, 0)Ww0s1) = 0 if l ≤ −1. Hence, assume
that l ≥ 0. In this case, we get[

1
−w0 1

]
gX

[
1 −w0

1

]
∈
[

pl pl

pl pl

]
⊂
[

o o
o o

]
and hence θ(u) = 1.

Well-definedness for s = h(l, 0)Ww0s1s2: We have B(h(l, 0)Ww0s1s2) = 0 if l ≤ −2. Hence, assume
that l ≥ −1. In this case, we get[

1
−w0 1

]
gX

[
1 −w0

1

]
∈
[

pl pl

pl pl+1

]
.

If l ≥ 0, then we get θ(u) = 1, as required. If l = −1, then let[
1
−w0 1

]
gX

[
1 −w0

1

]
=
[
x1 x2

x3 x4

]
, with x1, x2, x3 ∈ $−1o, x4 ∈ o.

Set ε1 = x+ (b/2 + cw0)y, ε2 = x− (b/2 + cw0)y. Using the fact that X is symmetric and β0
w0
∈ p,

we conclude that x3ε1 − x2ε2 ∈ o. Now θ(u) = ψ(tr(SX)) is equal to

ψ(
1

det(g)

(
a((x− by

2
)x1 − yc(x3 + w0x1)) + b(yax1 + (x+

by

2
)(x3 + w0x1))

+ c(ya(x2 + w0x1) + (x+
by

2
)(w2

0x1 + w0(x2 + x3) + x4))
)

)
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= ψ(
1

det(g)

(
(x+

by

2
)(x1β

0
w0

+ cx4) + x2β
0
w0
yc− x3β

0
w0
yc+ (x2ε2 − x3ε1)cw0

+ x3ε1(b+ 2cw0)
)

)

= 1.

Here, we have used that x3ε1 − x2ε2 ∈ o, b+ 2cw0 ∈ p and ψ is trivial on o.
Well-definedness for s = h(l, 0)Ww0s1s2s1: We have B(h(l, 0)Ww0s1s2s1) = 0 if l ≤ −2. Hence,

assume that l ≥ −1. In this case, we get[
1
−w0 1

]
gX

[
1 −w0

1

]
∈
[

pl pl+1

pl+1 pl+1

]
.

If l ≥ 0, then we get θ(u) = 1, as required. If l = −1, then using similar arguments (much easier
since x2, x3 ∈ o) as in the case s = h(l, 0)Ww0s1s2, we can conclude that θ(u) = 1.

Well-definedness for s = h(l, 0)Ww0s1s2s1s2: We have B(h(l, 0)Ww0s1s2s1s2) = 0 if l ≤ −2. Hence,
assume that l ≥ −1. In this case, we get[

1
−w0 1

]
gX

[
1 −w0

1

]
∈
[

pl+1 pl+1

pl+1 pl+1

]
⊂
[

o o
o o

]
and hence θ(u) = 1.

(
L
p

)
= 1: Let w = (−b ±

√
d)/(2c). Note that a + bw + cw2 ∈ p. Let s = h(l, 0)Wws

′, with s′ ∈
{s1, s1s2, s1s2s1, s1s2s1s2}. If m0 ≥ 1, then we have B(s) = 0. Hence, assume that m0 = 0. We
see that s−1tus ∈ I implies that

y ∈ o, x± y
√
d

2
∈ o×, which implies that (x+

y
√
d

2
, x− y

√
d

2
) ∈ o×L .

Hence, we get Λ(t) = 1. Also, x + by
2 = x +

√
dy
2 − c(

−b+
√
d

2c )y ∈ o, and hence, x ± by
2 ∈ o. This gives

us g ∈M2(o). Since det(g) = (x+ y
√
d

2 )(x− y
√
d

2 ) ∈ o×, we get g ∈ GL2(o).

Well-definedness for s = h(l, 0)Wws
′, w = −b±

√
d

2c and s′ = s1, s1s2: We have B(h(l, 0)Wws
′) = 0 if

l ≤ −1. Hence, assume that l ≥ 0. In this case, we get

[
1
−w 1

]
gX

[
1 −w

1

]
∈


[

pl pl

pl pl

]
, if s′ = s1[

pl pl

pl pl+1

]
, if s′ = s1s2

Since g ∈ GL2(o), we get, X ∈
[

o o
o o

]
, in either case and hence, θ(u) = 1, as required.

Well-definedness for s = h(l, 0)Wws1s2s1, w = −b±
√
d

2c : We have B(h(l, 0)Wws1s2s1) = 0 if l ≤ −2.
Hence, assume that l ≥ −1. In this case, we get[

1
−w 1

]
gX

[
1 −w

1

]
∈
[

pl pl+1

pl+1 pl+1

]
.

If l ≥ 0, then we get θ(u) = 1, as required. If l = −1, then let[
1
−w 1

]
gX

[
1 −w

1

]
=
[
x1 x2

x3 x4

]
, with x1 ∈ $−1o, x2, x3, x4 ∈ o.

Imitating the calculation of the well-definedness for s = h(l, 0)Ww0s1s2,
(
L
p

)
= 0, replacing w0

by w = −b±
√
d

2c , we get

θ(u) = ψ(
1

det(g)

(
(x+

by

2
)(x1β

0
w + cx4) + x2β

0
wyc− x3β

0
wyc+ (x2ε2 − x3ε1)cw + x3ε1(b+ 2cw)

)
)
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= 1.

Here, ε1 = x+ ( b2 + cw) and ε2 = x− ( b2 + cw).

Well-definedness for s = h(l, 0)Wws1s2s1s2, w = −b±
√
d

2c : We have B(h(l, 0)Wws1s2s1s2) = 0 if l ≤
−2. Hence, assume that l ≥ −1. In this case, we get[

1
−w 1

]
gX

[
1 −w

1

]
∈
[

pl+1 pl+1

pl+1 pl+1

]
.

Since g ∈ GL2(o), we get, X ∈
[

o o
o o

]
, and hence, θ(u) = 1, as required.

3.4 Criterion for dim(B(Λ, θ)I) = 1

In the previous sections, we have explicitly obtained a well-defined function B, which is right I-invariant
and satisfies (11). The values of B on the double coset representatives of R(F )\H(F )/I were obtained, in
Proposition 3.8, using one or more of the conditions (12)-(14). To show that the function B is actually an
element of B(Λ, θ)I, we have to show that the conditions (12)-(14) are satisfied by B for every h ∈ H(F ).
In fact, it is sufficient to show that B satisfies (12)-(14) when h is any double coset representative of
R(F )\H(F )/I. The computations for checking this are long but not complicated. We will describe the
calculation for h = h(l,m) below.

For w, y ∈ o, w, y 6= 0, we have the matrix identities
1
w 1

1 −w
1

 =


1 w−1

1
1

−w−1 1

 s1


−w

−w−1

−w−1

−w




1 w−1

1
1

−w−1 1

 (55)


1

1
y 1

1

 =


1 y−1

1
1

1

 s2


−y

1
−y−1

1




1 y−1

1
1

1

 (56)

Using (55) and Lemmas 3.1, 3.2, 3.6, we have∑
w∈o/p

B(h(l,m)s1Wws1) +B(h(l,m)s1) =
∑
w∈o/p
w 6=0

B(h(l,m)Ww−1s1) +B(h(l,m)) +B(h(l,m)s1)

=
∑
w∈o/p

B(h(l,m)Wws1) +B(h(l,m)).

By Proposition 3.8, we see, for every value of m0,m, l,
(
L
p

)
, that the above quantity is equal to zero. Next,

we have

B(h(l,m)η0) = B(h(l,m)


$

$
$

$

h(−1, 0)s2s1s2) = B(h(l − 1,m)s2s1s2) = ωB(h(l,m)).

Here, we have again used Proposition 3.8 and the identities Al−1,m = (−ωq3)Al,m. Finally, using (56),

∑
y∈o/p

B(h(l,m)


1

1
y 1

1

) +B(h(l,m)s2)
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= B(h(l,m)) +
∑
y∈o/p
y 6=0

B(h(l,m)


1 y−1

1
1

1

 s2) +B(h(l,m)s2)

= B(h(l,m)) +
∑
y∈o/p

ψ(a$l+2my)B(h(l,m)s2).

By Proposition 3.8, if l ≤ −1, then both B(h(l,m)) and B(h(l,m)s2) are equal to zero, and if l ≥ 0, then
B(h(l,m)s2) = −1/qB(h(l,m)). Hence, in either case, the above quantity is zero.

This shows that, for h = h(l,m), the function B satisfies (12) - (14), as required. The calculation for other
values of h follows in a similar manner. Hence, we get the following theorem.

3.1 Theorem. Let Λ be a character of L×. Let B(Λ, θ)I be the space of smooth functions on H(F ), which
are right I-invariant, satisfy (11) and the Hecke conditions (12) - (14). Then

dim(B(Λ, θ)I) =

{
0, if Λ = Ω ◦NL/F and

(
L
p

)
∈ {−1, 0};

1, otherwise.
(57)

Note that the condition on Λ, in the case
(
L
p

)
∈ {−1, 0}, follows from Proposition 3.8, iv)a) and iv)c).

3.5 Existence of Bessel model

In this section we will obtain the existence of a (Λ, θ)-Bessel model for π. In case Λ is a unitary character, we
will act with the Hecke algebra of H(F ) on a non-zero function in B(Λ, θ)I. We will define an inner product
on this Hecke module and also show that the Hecke module has a unique, up to a constant, function which is
right I-invariant (the same function that we started with). This will lead to the proof that the Hecke module
is irreducible and is isomorphic to π, thus giving a (Λ, θ)-Bessel model for π.

In case Λ is not unitary (this can happen only if L = F ⊕ F ) we will obtain a Bessel model for π using the
Whittaker model.

Hecke module

The Hecke algebra H of H(F ) is the space of all complex valued functions on H(F ) which are locally constant
and compactly supported, with convolution product defined as follows,

(f1 ∗ f2)(g) :=
∫

H(F )

f1(h)f2(h−1g)dh, for f1, f2 ∈ H, g ∈ H(F ). (58)

We refer the reader to [2] for details on Hecke algebras of p-adic groups and Hecke modules. Let Λ be a
character of L× such that B(Λ, θ)I 6= 0. Let B ∈ B(Λ, θ)I be the unique, up to a constant, function whose
values are described in Proposition 3.8. Define the action of f ∈ H on B by

(R(f)B)(g) :=
∫

H(F )

f(h)B(gh)dh. (59)

This is a finite sum and hence converges for all f . Let

VB := {R(f)B : f ∈ H}. (60)

Since R(f1)R(f2)B = R(f1 ∗ f2)B, we see that VB is a Hecke module. Note that every function in VB
transforms on the left according to Λ⊗ θ.
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Inner product on Hecke module

Let us now assume that Λ is a unitary character. Note that, by the comments in the begining of Sect. 3.2,
if L is a field, then Λ is always unitary. In this case, we will define an inner product on the space VB . Let
us start by computing some volumes required for the calculation of the norm of B. For any double coset
representative s of R(F )\H(F )/I, let us set Is := s−1R(F )s ∩ I. Using arguments as in Sect. 3.7.1, 3.7.2 of
[9], we get the following lemma regarding the volume of Is.

3.11 Lemma. If
(
L
p

)
= 0, then set w = w0, the unique element in o/p such that w0 +α 6∈ o×L . If

(
L
p

)
= 1,

then let w ∈ {(−b±
√
d)/(2c)}. Let l ≥ 0.

i) If s ∈ {h(l,m)s1 : m ≥ 1} ∪ {h(l, 0)Wws1}, then (vol(Is))−1 = (1−
(
L
p

)
q−1)q4m+3l.

ii) If s ∈ {h(l,m) : m ≥ 0} ∪ {h(l,m)s1s2 : m ≥ 1} ∪ {h(l, 0)Wws1s2}, then (vol(Is))−1 = (1 −(
L
p

)
q−1)q4m+3l+1.

iii) If s ∈ {h(l,m)s2 : m ≥ 0} ∪ {h(l,m)s1s2s1 : m ≥ 1} ∪ {h(l, 0)Wws1s2s1}, then (vol(Is))−1 = (1 −(
L
p

)
q−1)q4m+3l+2.

iv) If s ∈ {h(l,m)s2s1 : m ≥ 0} ∪ {h(l,m)s1s2s1s2 : m ≥ 1} ∪ {h(l, 0)Wws1s2s1s2}, then (vol(Is))−1 =
(1−

(
L
p

)
q−1)q4m+3l+3.

v) If s ∈ {h(l,m)s2s1s2 : m ≥ 0}, then (vol(Is))−1 = (1−
(
L
p

)
q−1)q4m+3l+4.

3.12 Lemma. The norm

〈B,B〉 :=
∫

R(F )\H(F )

|B(h)|2dh

is finite. In particular,

〈B,B〉
vol(I)

=



(1−
(
L
p

)
q−1) 2q4m0−3

(1−q−1)(1−q−3) |Cm0 |2, if m0 ≥ 1;

0 if m0 = 0,
(
L
p

)
= −1 OR

m0 = 0,
(
L
p

)
= 0,Λ = Ω ◦NL/F ;

2q5+q4+q2−2q
(1−q−3)(1−q−1) |C0|2, if m0 = 0,

(
L
p

)
= 0,Λ 6= Ω ◦NL/F ;

2(1+q−1)(q+2+q−1)
1−q−3 |B(W−b+

√
d

2c

s1)|2, if m0 = 0,
(
L
p

)
= 1, ωΛ((1, $)) = −1;(

2q5

1−q−3 + 2q2(1−q−1)3(q+2+q−1)
(1−q−3)(1+ωΛ((1,$)))2

)
|C0|2, if m0 = 0,

(
L
p

)
= 1, ωΛ((1, $)) 6= −1.

(61)

Here, Cm := B(h(0,m)) and the measure is normalized so that vol(KH) = 1.

Proof. We have∫
R(F )\H(F )

|B(h)|2dh =
∑

s∈R(F )\H(F )/I

∫
R(F )\R(F )sI

|B(h)|2dh =
∑

s∈R(F )\H(F )/I

|B(s)|2
∫

Is\I

dh

=
∑

s∈R(F )\H(F )/I

|B(s)|2 vol(I)
vol(Is)

.
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Let us first assume that m0 ≥ 1. Recall that Al,m = q4m0−4(q−4)m(−ωq−3)l. By Propositions 3.3, 3.8 and
Lemma 3.11, we get

〈B,B〉
vol(I)

=
(

(q + 1 +
1
q

+
1
q2

)
∑
l≥0

m≥m0−1

A2
l,mq

4m+3l + (q2 + q + 1 +
1
q

)
∑
l≥0

m≥m0

A2
l,mq

4m+3l

+ (q2 + q3 + q4)
∑
m≥m0

A2
0,mq

4m +
∑

m≥m0−1

A2
0,mq

4m+1
)
|Cm0 |2

Substituting the value of Al,m and using geometric series, we get the result. The value of 〈B,B〉 in the other
cases are computed in a similar manner.

Let L2(R(F )\H(F ),Λ ⊗ θ) := {φ : H(F ) → C : smooth, φ(rh) = (Λ ⊗ θ)(r)φ(h) for r ∈ R(F ), h ∈
H(F ),

∫
R(F )\H(F )

| φ(h) |2 dh <∞}. The previous lemma tells us that B ∈ L2(R(F )\H(F ),Λ⊗ θ). It is an
easy exercise to see that, in fact, for any f ∈ H, we have R(f)B ∈ L2(R(F )\H(F ),Λ⊗ θ). Now, we see that
VB inherits the inner product from L2(R(F )\H(F ),Λ⊗ θ). For f1, f2 ∈ H, we obtain

〈R(f1)B,R(f2)B〉 =
∫

R(F )\H(F )

(R(f1)B)(g)(R(f2)B)(g)dg. (62)

3.13 Lemma. For f ∈ H, define f∗ ∈ H by f∗(g) = f(g−1). Then we have

〈B1, R(f)B2〉 = 〈R(f∗)B1, B2〉, for any B1, B2 ∈ VB . (63)

Proof. The lemma follows by a formal calculation.

Irreducibility of VB

3.14 Lemma. Let V I
B be the subspace of functions in VB that are right I-invariant. Then

dim(V I
B) = 1.

Proof. We know that V I
B is not trivial since B ∈ V I

B . Let χI ∈ H be the characteristic function of I and
set fI := vol(I)−1χI. Then, by definition, any B′ ∈ V IB , satisfies R(fI)B′ = B′. Let f ∈ H be such that
B′ = R(f)B = R(f ∗ fI)B. Here, we have used that B ∈ V I

B . Then

B′ = R(fI)B′ = R(fI)(R(f ∗ fI)B) = R(fI ∗ f ∗ fI)B.

But fI ∗ f ∗ fI ∈ HI, the Iwahori Hecke algebra. Since B is an eigenfunction of HI, we see that B′ ∈ CB.
Hence, dim(V I

B) = 1, as required.

3.15 Proposition. Let π = ΩStGSp4
be the Steinberg representation of H(F ), twisted by an unramified,

quadratic character Ω. Let Λ be a character of L× such that dim(B(Λ, θ)I) = 1. Let VB be as in (60). If Λ
is unitary, then VB is irreducible and isomorphic to π.

Proof. Let us assume, to the contrary, that VB is reducible. Let W be an H-invariant subspace. Let W⊥

be the complement of W in VB with respect to the inner product 〈 , 〉 defined in (62). Using Lemma 3.13,
we see that W⊥ is also H-invariant. Write B = B1 +B2, with B1 ∈W,B2 ∈W⊥. Let fI be as defined in the
proof of Lemma 3.14. Since W,W⊥ are H-invariant, we see that R(fI)B1 ∈ W and R(fI)B2 ∈ W⊥. Since
B is right I-invariant, we see that B1 = R(fI)B1 and B2 = R(fI)B2. By Lemma 3.14, we obtain, either
B = B1 or B = B2. Since VB is generated by B, we have either W = VB or W = 0. Hence, we see that VB
is an irreducible Hecke module, which contains a unique, up to a constant, vector which is right I-invariant.
This uniquely characterizes the Steinberg representation of H(F ), and hence, VB is isomorphic to π.
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Generic representations have split Bessel models

Let us now assume that Λ is not a unitary character. This can happen only if L = F ⊕ F . In this case, we
will use the fact that ΩStGSp4

is a generic representation. We will now show that any irreducible, admissible,
generic representation of H(F ) has a split Bessel model.

Let S =
[
a b/2
b/2 c

]
be such that b2 − 4ac is a square in F×. One can find a matrix A ∈ GL2(o) such that

S′ := tASA =
[

1/2
1/2

]
. In this case, TS′(F ) := {g ∈ GL2(F ) : tgS′g = det(g)S′} = A−1T (F )A. The

group TS′(F ) embedded in H(F ) is given by

{


x

y
y

x

 : x, y ∈ F×}.

Let θ′ be the character of U(F ) obtained from S′ and Λ′ be the character of TS′(F ) obtained from Λ. Then
it is easy to see that π has a (Λ, θ)-Bessel model if and only if it has a (Λ′, θ′)-Bessel model. So, we will

assume that S =
[

1/2
1/2

]
.

Let (π, V ) be an irreducible, admissible representation of H(F ). For c1, c2 ∈ F×, consider the character
ψc1,c2 of the unipotent radical N1(F ) of the Borel subgroup given by

ψc1,c2(


1 x ∗ ∗

1 ∗ y
1
−x 1

) = ψ(c1x+ c2y).

The representation π of H(F ) is called generic if HomN1(F )(π, ψc1,c2) 6= 0. In this case there is an associated
Whittaker model W(π, ψc1,c2) consisting of functions H(F ) → C that transform on the left according to
ψc1,c2 . For W ∈ W(π, ψc1,c2), there is an associated zeta integral

Z(s,W ) =
∫
F×

∫
F

W (


y

y
1

x 1

)|y|s−3/2 dx d×y. (64)

This integral is convergent for Re(s) > s0, where s0 is independent of W ([13], Proposition 2.6.3). More
precisely, the integral converges to an element of C(q−s), and therefore has meromorphic continuation to all
of C. Moreover, there exists an L-factor of the form

L(s, π) =
1

Q(q−s)
, Q(X) ∈ C[X], Q(0) = 1,

such that
Z(s,W )
L(s, π)

∈ C[q−s, qs] for all W ∈ W(π, ψc1,c2). (65)

(This is proved in [13] Proposition 2.6.4 for π with trivial central character.)

3.16 Lemma. Let (π, V ) be an irreducible, admissible, generic representation of H(F ) with trivial central
character. Let σ be a unitary character of F×, and let s ∈ C be arbitrary. Then there exists a non-zero
functional fs,σ : V → C with the following properties.
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i) For all x, y, z ∈ F and v ∈ V ,

fs,σ(π(


1 x y

1 y z
1

1

)v) = ψ(c1y)fs,σ(v). (66)

ii) For all x ∈ F× and v ∈ V ,

fs,σ(π(


x

1
1

x

)v) = σ(x)−1|x|−s+1/2fs,σ(v). (67)

Proof: We may assume that V = W(π, ψc1,c2). Let s0 ∈ R be such that Z(s,W ) is absolutely convergent
for Re(s) > s0. Then the integral

Zσ(s,W ) =
∫
F×

∫
F

W (


y

y
1

x 1

)|y|s−3/2σ(y) dx d×y (68)

is also absolutely convergent for Re(s) > s0, since σ is unitary. Note that these are the zeta integrals for
the twisted representation σπ. Therefore, by (65), the quotient Zσ(s,W )/L(s, σπ) is in C[q−s, qs] for all
W ∈ W(π, ψc1,c2). Now, for Re(s) > s0, we define

fs,σ(W ) =
Zσ(s, π(w)W )
L(s, σπ)

, where w =


1

1
1

−1

 . (69)

Straightforward calculations show that (66) and (67) are satisfied. For general s, since the quotient (69) is
entire, we can define fs,σ by analytic continuation.

3.17 Proposition. Let (π, V ) be an irreducible, admissible, generic representation of H(F ) with trivial
central character. Then π admits a split Bessel functional with respect to any character Λ of T (F ) that
satisfies Λ

∣∣
F×
≡ 1.

Proof: As mentioned earlier, we can take S =
[

1/2
1/2

]
. Let s ∈ C and σ be a unitary character of F×

such that

Λ(


x

1
1

x

) = σ(x)−1|x|−s+1/2 for all x ∈ F×.

Let fs,σ be as in Lemma 3.16. We may assume that c1 = 1, so that fs,σ(π(u)v) = θ(u)v for all u ∈ U(F ) by
(66). We have

fs,σ(π(


x

1
1

x

)v) = Λ(x)fs,σ(v) for all x ∈ F× (70)

by (67). Since Λ
∣∣
F×
≡ 1 we in fact obtain fs,σ(π(t)v) = Λ(t)fs,σ(v) for all t ∈ T (F ). Hence fs,σ is a Bessel

functional as desired.

Let us remark here that, in the split case, for values of s ∈ C outside the range of convergence of the zeta
integral, we do not have an explicit formula for the Bessel functional. This, in turn, is also reflected in the
fact that it is not very easy to define an inner product on the space VB (defined in (60)), although it is
known that the Steinberg representation is square-integrable.
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Main result on existence and uniqueness of Bessel models

3.2 Theorem. Let π = ΩStGSp4
be the Steinberg representation of H(F ), twisted by an unramified

quadratic character Ω. Let Λ be a character of L× such that Λ |F×≡ 1. If L is a field, then π has a
(Λ, θ)-Bessel model if and only if Λ 6= Ω ◦NL/F . If L is not a field, then π always has a (Λ, θ)-Bessel model.
In case π has a (Λ, θ)-Bessel model, it is unique.

In addition, if π has a (Λ, θ)-Bessel model, then the Iwahori spherical vector of π is a test vector for the
Bessel functional if and only if Λ satisfies the following conditions.

i) Λ |1+P≡ 1, i.e., c(Λ) ≤ 1 (see (22) for definition of c(Λ)).

ii) If
(
L
p

)
= 1 and Λ is unramified, then Λ((1, $)) 6= Ω($).

Proof. If π has a (Λ, θ)-Bessel model, then it contains a unique vector in B(Λ, θ)I. By Theorem 3.1, the
dimension of B(Λ, θ)I is one, which gives us the uniqueness of Bessel models.

Now we will show the existence of the Bessel model. Let Λ be a character of L×, with Λ |F×≡ 1, such that,
if L is a field, Λ 6= Ω ◦ NL/F . We know, by Proposition 3.1, that dim(B(Λ, θ)I) = 1. If Λ is unitary, then
Proposition 3.15 tells us that VB is a (Λ, θ)-Bessel model for π. If Λ is not unitary, then we use the fact that
π is a generic representation in the split case. Then Proposition 3.17 gives us the result.

The statement regarding the test vector can be deduced from Proposition 3.8 and the fact that a Bessel
function B corresponds to a test vector if and only if B(1) 6= 0.

4 Integral representation of the non-archimedean local L-function

In this section, using the explicit values of the Bessel function obtained in Proposition 3.8, we will obtain
an integral representation of the L-function for the Steinberg representation π of H(F ) twisted by any
irreducible, admissible representation τ of GL2(F ). For this, we will use the integral obtained by Furusawa
in [4]. Let us briefly describe the setup.

4.1 The unitary group, parabolic induction and the local integral

Let G = GU(2, 2;L) be the unitary similitude group, whose F -points are given by

G(F ) := {g ∈ GL4(L) : tḡJg = µ2(g)J, µ2(g) ∈ F×}, (71)

where J =
[

12

−12

]
. Note that H(F ) = G(F ) ∩ GL4(F ). As a minimal parabolic subgroup we choose

the subgroup of all matrices that become upper triangular after switching the last two rows and last two
columns. Let P be the standard maximal parabolic subgroup of G(F ) with a non-abelian unipotent radical.
Let P = MN be the Levi decomposition of P . We have M = M (1)M (2), where

M (1)(F ) = {


ζ

1
ζ̄−1

1

 : ζ ∈ L×}, M (2)(F ) = {


1

α β
µ

γ δ

 ∈ G(F )},

N(F ) = {


1 z

1
1
−z 1




1 w y
1 y

1
1

 : w ∈ F, y, z ∈ L}. (72)
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The modular factor of the parabolic P is given by

δP (


ζ

1
ζ̄−1

1




1
α β

µ
γ δ

) = |N(ζ)µ−1|3 (µ = ᾱδ − βγ̄), (73)

where | · | is the normalized absolute value on F . Let (τ, Vτ ) be an irreducible, admissible representation
of GL2(F ), and let χ0 be a character of L× such that χ0

∣∣
F×

coincides with ωτ , the central character of
τ . Let us assume that Vτ is the Whittaker model of τ with respect to the character ψ−c (we assume that
c 6= 0). Then the representation (λ, g) 7→ χ0(λ)τ(g) of L××GL2(F ) factors through {(λ, λ−1) : λ ∈ F×}, and
consequently defines a representation ofM (2)(F ) on the same space Vτ . Let χ be a character of L×, considered
as a character of M (1)(F ). Extend the representation χ × χ0 × τ of M(F ) to a representation of P (F ) by
setting it to be trivial on N(F ). If s is a complex parameter, set I(s, χ, χ0, τ) = IndG(F )

P (F )(δ
s+1/2
P ×χ×χ0×τ).

Let (π, Vπ) be the twisted Steinberg representation of H(F ). We assume that Vπ is a Bessel model for π
with respect to a character Λ⊗ θ of R(F ). Let the characters χ, χ0 and Λ be related by

χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)−1. (74)

Let W#( · , s) be an element of I(s, χ, χ0, τ) for which the restriction of W#( · , s) to the standard maximal
compact subgroup of G(F ) is independent of s, i.e., W#( · , s) is a “flat section” of the family of induced
representations I(s, χ, χ0, τ). By Lemma 2.3.1 of [9], it is meaningful to consider the integral

Z(s) =
∫

R(F )\H(F )

W#(ηh, s)B(h) dh, (75)

where

η =


1
α 1

1 −ᾱ
1

 . (76)

This is the local component of the global integral considered in Sect. 5.2 below.

4.2 The GL2 newform

Let us define K(0)(p0) = GL2(o) and, for n > 0,

K(0)(pn) = GL2(o) ∩
[

1 + pn o
pn o×

]
. (77)

As above, let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ) such that Vτ is the ψ−c–
Whittaker model of τ . It is well known that Vτ has a unique (up to a constant) vector W (1), called the
newform, that is right-invariant under K(0)(pn) for some n ≥ 0. We then say that τ has conductor pn. Let

us normalize W (1) so that W (1)(1) = 1. We will need the values of W (1) evaluated at
[
$l

1

]
, for l ≥ 0.

The following table gives these values (refer Sect. 2.4 [15]).
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τ W (1)(

$l

1

)

α× β with α, β unramified, αβ−1 6=| |±1 q−
l
2
α($l+1)−β($l+1)

α($)−β($)

α× β with α unramified, β ramified, αβ−1 6=| |±1 ωτ ($l)α($−l)q−
l
2

supercuspidal OR ramified twist of Steinberg 1 if l = 0

OR α× β with α, β ramified, αβ−1 6=| |±1 0 if l > 0

Ω′StGL2 , with Ω′ unramified Ω′($l)q−l

We extend W (1) to a function on M (2)(F ) via

W (1)(ag) = χ0(a)W (1)(g), a ∈ L×, g ∈ GL2(F ). (78)

4.3 Choice of Λ and W#

We will choose a character Λ of L× such that π has a (Λ, θ)-Bessel model and the Iwahori spherical vector
is a test vector for the Bessel functional. Noting that Λ |F× is the central character of π and using Theorem
3.2, we impose the following conditions on Λ.

i) Λ|F× ≡ 1

ii) If L is a field, then Λ 6= Ω ◦NL/F

iii) c(Λ) ≤ 1

iv) If L is not a field and c(Λ) = 0, then ωΛ((1, $)) 6= −1.

Note that this implies that Λ|o×+P ≡ 1. For n ≥ 1, let Γ(Pn) be the principal congruence subgroup of the
maximal compact subgroup KG := G(o) of G(F ), defined by

Γ(Pn) := {g ∈ KG : g ≡ 1 (mod Pn)}. (79)

We prove the following lemma, which will be crucial for the well-definedness of W# below.

4.1 Lemma. Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ) with conductor
pn, n ≥ 0. Set n0 = max{1, n} and let

m̂ =


ζ

a′ b′

µζ̄−1

c′ d′

 ∈M(F ) and n̂ =


1 z

1
1
−z 1




1 w y
1 y

1
1

 ∈ N(F ).

Suppose we have A := η−1m̂n̂η ∈ IΓ(Pn0). Then we get

i) c′ ∈ Pn0 and a′ζ̄−1 ∈ 1 + Pn0 .

ii) for any

[
a′1 b

′
1

c′1 d
′
1

]
∈ GU(1, 1;L)(F ),

χ(ζ)W (1)(
[
a′1 b

′
1

c′1 d
′
1

][
a′ b′

c′ d′

]
) = W (1)(

[
a′1 b

′
1

c′1 d
′
1

]
).
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Proof. Using Lemma 2.1 i), it is easy to show that for n ≥ 0

x ∈ o + Pn and αx ∈ o + Pn implies x ∈ Pn. (80)

First note that IΓ(Pn0) ⊂ M4(o + Pn0). Looking at the (4, 1), (4, 2) coefficient of A, we see that c′, αc′ ∈
o + Pn0 . By (80), we obtain c′ ∈ Pn0 , as required.

Observe that m̂n̂ ∈ KG and c′ ∈ Pn0 ⊂ P implies that ζ, a′, d′ ∈ o×L . The upper left 2 × 2 block of A is
given by [

ζ + αzζ zζ
αa′ − α(ζ + αzζ)) a′ − αzζ

]
.

We will repeatedly use the following fact:

If x ∈ o + Pn0 , then x ≡ x̄ (mod (α− ᾱ)Pn0). (81)

For, if x = y + αz with y ∈ o and z ∈ pn0 , then x− x̄ = (α− ᾱ)z. Applying this to the matrix entries of A,
we get zζ ≡ z̄ζ̄ (mod (α− ᾱ)Pn0), and then

a′ − ā′ ≡ (α− ᾱ)zζ (mod (α− ᾱ)Pn0), ζ − ζ̄ ≡ (ᾱ− α)zζ (mod (α− ᾱ)Pn0). (82)

Using ζ + αzζ ≡ ζ̄ + ᾱz̄ζ̄ (mod (α− ᾱ)Pn0) and (82), we get from the (2, 1) coefficient of A that

(a′ − ζ̄)(α− ᾱ) ≡ 0 (mod (α− ᾱ)Pn0).

Hence a′ − ζ̄ ≡ 0 (mod Pn0), so that a′ζ̄−1 ∈ 1 + Pn0 , as required. This proves part i) of the lemma.

Looking at the (1, 2) coefficient of A, we see that zζ ∈ P. Looking at the (1, 1) coefficient of A, we see that
ζ ∈ o× + P.

χ(ζ)W (1)(
[
a′1 b

′
1

c′1 d
′
1

][
a′ b′

c′ d′

]
) = χ(ζ)χ0(a′)W (1)(

[
a′1 b

′
1

c′1 d
′
1

][
1 b′/a′

c′/a′ d′/a′

]
)

= Λ(ζ̄−1)χ0(ζ̄−1)χ0(a′)W (1)(
[
a′1 b

′
1

c′1 d
′
1

][
1 b′/a′

c′/a′ d′/a′

]
)

= W (1)(
[
a′1 b

′
1

c′1 d
′
1

]
)

Here, we have used the fact that Λ is trivial on o×+ P, χ0 is trivial on 1 + Pn0 and the matrix
[

1 b′/a′

c′/a′ d′/a′

]
lies in K(0)(pn0).

Let n0 = max{1, n}, as above. Given a complex number s, define the function W#( · , s) : G(F ) → C as
follows.

i) If g /∈M(F )N(F )ηIΓ(Pn0), then W#(g, s) = 0.

ii) If g = mnηkγ with m ∈M(F ), n ∈ N(F ), k ∈ I, γ ∈ Γ(Pn0), then W#(g, s) = W#(mη, s).

iii) For ζ ∈ L× and
[
a′ b′

c′ d′

]
∈M (2)(F ),

W#(


ζ

1
ζ̄−1

1




1
a′ b′

µ
c′ d′

 η, s) = |N(ζ) · µ−1|3(s+1/2)χ(ζ)W (1)(
[
a′ b′

c′ d′

]
). (83)

Here µ = ā′d′ − b′c̄′.

By Lemma 4.1, we see that W# is well-defined. It is an element of I(s, χ, χ0, τ).
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4.4 Support of W#

Let us choose W# as above and B as in Proposition 3.8, with B(1) = 1. Note that B(1) 6= 0 by the comments
in the begining of Sect. 4.3. Then the integral (75) becomes

Z(s) =
∑

l∈Z,m≥0

∑
t

W#(ηh(l,m)t, s)B(h(l,m)t)V l,mt , (84)

where t corresponds to the double coset representatives from Proposition 3.3 and

V l,mt = vol(R(F )\R(F )h(l,m)tI).

To compute (84), we need to find out for what values of l,m, t is ηh(l,m)t in the support of W#. Write
ηh(l,m) = h(l,m)ηm, where

ηm =


1

$mα 1
1 −$mᾱ

1

 . (85)

Since h(l,m) ∈M(F ), we need to know for which values of m, t is ηmt in the support of W#. This is done
in the following lemma.

4.2 Lemma. Let t be any double coset representative from Proposition 3.3. Then ηmt lies in the support,
MNηIΓ(Pn0), of W# if and only if m = 0 and t = 1.

Proof. Let us first consider the case m > 0. Note that it is enough to show that ηmt /∈ MNηIΓ(P). For
any double coset representative t, we have t−1ηmt ≡ 1 (mod P) and hence t−1ηmt ∈ Γ(P). So it is enough
to show that t /∈ MNηIΓ(P) for any t. Suppose, there are m̂ ∈ M, n̂ ∈ N such that A = η−1m̂n̂t ∈ IΓ(P).
Write

m̂ =


ζ

a′ b′

µζ̄−1

c′ d′

 ∈M(F ), n̂ =


1 z

1
1
−z 1




1 w y
1 y

1
1

 ∈ N(F ),

Note that m̂, n̂ ∈ KG and

IΓ(P) ⊂


o + P P o + P o + P
o + P o + P o + P o + P

P P o + P o + P
P P P o + P

 .
Using (80), we obtain for each t ∈ W , that c′, d′ ∈ P, a contradiction. Let us now consider the case m = 0.
First let t = 1. Taking m̂ = n̂ = 1, we easily see that η ∈ MNηIΓ(Pn0), as required. Now assume that
t 6= 1. Suppose, there are m̂ ∈ M, n̂ ∈ N such that A = η−1m̂n̂ηt ∈ IΓ(P). Here, m̂, n̂ are as described
above.

i) Let t = s2. We have

(3, 1) coefficient of A = ᾱ
(

(4, 1) coefficient of A
)
− µζ̄−1.

Since A ∈ IΓ(P) implies that the (3, 1) and (4, 1) coefficient of A is in P, the above identity gives us
µζ̄−1 ∈ P, which is a contradiction.

ii) Let t ∈ {s2s1, s2s1s2}. We have

(3, 2) coefficient of A = ᾱ
(

(4, 2) coefficient of A
)
− µζ̄−1.

Since A ∈ IΓ(P) implies that the (3, 2) and (4, 2) coefficient of A is in P, the above identity gives us
µζ̄−1 ∈ P, which is a contradiction.
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Now, let w ∈ o be such that α+ w /∈ o×L .

i) Let t = Wws1. Looking at the (4, 1) coefficient of A, we obtain c ∈ P. Looking at the (4, 3) coefficient
of A and using α+ w /∈ o×L gives us d ∈ P, which is a contradiction.

ii) Let t = Wws1s2. Looking at the (4, 3) coefficient of A, we see that c ∈ P. This implies that the (3, 3)
coefficient of A is in P, a contradiction.

iii) Let t = Wws1s2s1,Wws1s2s1s2. The (3, 4), (4, 4) coefficient of A gives us c, αc ∈ o + P. (80) implies
that c ∈ P. Hence, the (4, 4) coefficient of A is in P, a contradiction.

This completes the proof of the lemma.

4.5 Integral computation

From Lemma 4.2, we see that the integral (84) is equal to

Z(s) =
∑
l≥0

W#(ηh(l, 0), s)B(h(l, 0))V l,01 . (86)

Arguing as in Sect. 3.5 of [4], we get

V l,01 =
(1−

(
L
p

)
q−1)q

(1 + q)2(1 + q2)
q3l.

From Proposition 3.8 and (83), we get

B(h(l, 0)) = (−ωq−3)l, (87)

W#(ηh(l, 0), s) = q−3(s+ 1
2 )lωτ ($−l)W (1)(

[
$l

1

]
). (88)

Let us set C =
(1−
(

L
p

)
q−1)q

(1+q)2(1+q2) . We have

Z(s) = C
∑
l≥0

(−ω)lq−3(s+ 1
2 )lωτ ($−l)W (1)(

[
$l

1

]
). (89)

We will now substitute the value of W (1), from the table obtained in Sect. 4.2, into (89) for all possible GL2

representations τ .

τ = α× β, with α, β unramified and αβ−1 6= | |±1: We get

Z(s) = C
1

(1 + ωα($−1)q−3s−2)(1 + ωβ($−1)q−3s−2)
. (90)

τ = α× β, with α unramified, β ramified and αβ−1 6= | |±1: We get

Z(s) = C
1

1 + ωα($−1)q−3s−2
. (91)

τ = α× β, with α, β ramified and αβ−1 6= | |±1: We get

Z(s) = C. (92)
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τ supercuspidal, OR τ = Ω′StGL2 , with Ω′ ramified: We get

Z(s) = C. (93)

τ = Ω′StGL2 , with Ω′ unramified: We get

Z(s) = C
1

1 + ωΩ′($−1)q−3s− 5
2
. (94)

Let τ̃ denote the contragradient of the representation τ . We have the following L-functions for the represen-
tation π = ΩStGSp4

, with Ω unramified and quadratic, twisted by τ̃ .

L(s, π×τ̃) =



(1− Ω($)α($−1)q−s−
3
2 )−1(1− Ω($)β($−1)q−s−

3
2 )−1, if τ = α× β, α, β unramified,

αβ−1 6= | |±1;
(1− Ω($)α($−1)q−s−

3
2 )−1, if τ = α× β, α unramified,

β ramified αβ−1 6= | |±1;
(1− Ω($)Ω′($−1)q−s−1)−1(1− Ω($)Ω′($−1)q−s−2)−1, if τ = Ω′StGL2 ,Ω

′ unramified;
1, otherwise.

(95)
From (90)-(95), we get the following theorem on the integral representation of L-functions.

4.1 Theorem. Let π = ΩStGSp4
be the Steinberg representation of GSp4(F ) twisted by an unramified,

quadratic character Ω. Let τ be any irreducible, admissible representation of GL2(F ). Let Z(s) be the
integral defined in (64). Choose B as in Sect. 3 and W# as in Sect. 4.3. Then we have

Z(s) = Y ′(s)L(3s+
1
2
, π × τ̃), (96)

where

Y ′(s) =
{
C(1− Ω($)Ω′($−1)q−3s− 3

2 ), if τ = Ω′StGL2 ,Ω
′ unramified;

C, otherwise.

Here, C =
(1−
(

L
p

)
q−1)q

(1+q)2(1+q2) .

5 Global theory

In the previous section, we computed the non-archimedean integral representation of the L-function L(s, π×
τ̃) for the Steinberg representation of GSp4 twisted by any GL2 representation. In [4], the integral has
been computed for both π and τ unramified. In [10], the integral has been calculated for an unramified
representation π twisted by any ramified GL2 representation τ . Also, in [10], the archimedean integral has
been computed for π∞ a holomorphic (or limit of holomorphic) discrete series representation with scalar
minimal K-type, and τ∞ any representation of GL2(R). In this section, we will put together all the local
computations and obtain an integral representation of a global L-function. We will start with a Siegel
cuspidal newform F of weight l with respect to the Borel congruence subgroup of square-free level. We will
obtain an integral representation of the L-function of F twisted by any irreducible, cuspidal, automorphic
representation τ of GL2(A). When τ is obtained from a holomorphic cusp form of the same weight l as F ,
we obtain a special value result for the L-function, in the spirit of Deligne’s conjectures.

5.1 Siegel modular form and Bessel model

Let M be a square-free positive integer and l be any positive integer. Let

B(M) := {g ∈ Sp4(Z) : g ≡


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 (mod M)}.
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Let F be a Siegel newform of weight l with respect to B(M). We refer the reader to Sect. 8 of [14] or [16]
for definition and details on newforms with square-free level. The Fourier expansion of F is given by

F (Z) =
∑
T>0

A(T )e2πitr(TZ),

where T runs over all semi-integral, symmetric, positive definite 2 × 2 matrices. We obtain a well-defined
function Φ = ΦF on H(A), where A is the ring of adeles of Q, by

Φ(γh∞k0) = µ2(h∞)l det(J(h∞, i12))−lF (h∞〈i12〉), (97)

where γ ∈ H(Q), h∞ ∈ H+(R), k0 ∈
∏
p-M

H(Zp)
∏
p|M

Ip. Let VF be the space generated by the right translates

of ΦF and let πF be one of the irreducible components. Then πF = ⊗πp, where π∞ is a holomorphic discrete
series representation of H(R) of lowest weight (l, l), for a finite prime p - M , πp is an irreducible, unramified
representation of H(Qp), and for p |M , πp is a twist ΩpStGSp4

of the Steinberg representation of H(Qp) by
an unramified, quadratic character Ωp.

For a positive integer D ≡ 0, 3 (mod 4), set

S(−D) =



[
D
4 0
0 1

]
if D ≡ 0 (mod 4),[

1+D
4

1
2

1
2 1

]
if D ≡ 3 (mod 4).

(98)

Let L = Q(
√
−D) and T (A) ' A×L be the adelic points of the group defined in (9). Let R(A) = T (A)U(A)

be the Bessel subgroup of H(A). Let Λ be a character of

T (A)/T (Q)T (R)
∏
p-M

T (Zp)
∏
p|M

T 0
p , (99)

where, T (Zp) = T (Qp) ∩GL2(Zp) and T 0
p = T (Zp) ∩ Γ0

p. Here Γ0
p = {g ∈ GL2(Zp) : g ≡

[
∗ 0
∗ ∗

]
(mod pZp)}.

Note that, under the isomorphism (10), T 0
p corresponds to Z×p + poLp

, where oLp
is the ring of integers of

the two dimensional algebra L⊗Q Qp. Let ψ be a character of Q\A that is trivial on Zp for all primes p and
satisfies ψ(x) = e−2πix for all x ∈ R. We define the global Bessel function of type (Λ, θ) associated to Φ̄ by

BΦ̄(h) =
∫

ZH(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1Φ̄(rh)dr, (100)

where θ(
[

1 X
1

]
) = ψ(tr(SX)) and Φ̄(h) = Φ(h). If BΦ̄ is non-zero, then Bφ̄ is non-zero for any φ ∈ πF . We

say that πF has a global Bessel model of type (Λ, θ) if BΦ̄ 6= 0. We shall make the following assumption on
the representation πF .

Assumption: πF has a global Bessel model of type (Λ, θ) such that

A1: −D is the fundamental discriminant of Q(
√
−D).

A2: Λ is a character of (99).

A3: For p |M , if L⊗Qp is split and Λp is unramified, then Ωp($p)Λp((1, $p)) 6= 1.

5.1 Remark. In [4], [9], [10] and [14], non-vanishing of a suitable Fourier coefficient of F is assumed, while
in [11], the existence of a suitable global Bessel model for πF is assumed. Let us explain the relation of
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the above assumption to non-vanishing of certain Fourier coefficients of F . Let {tj} be a set of represen-
tatives for (99). One can take tj ∈ GL2(Af). Write tj = γjmjκj , with γj ∈ GL2(Q),mj ∈ GL+

2 (R) and
κj ∈

∏
p-M GL2(Zp)

∏
p|M Γ0

p. Set Sj := det(γj)−1 tγjS(−D)γj . Note that {Sj}j is a subset of the set of

representatives of Γ0(M) equivalence classes of primitive, semi-integral positive definite 2 × 2 matrices of
discriminant −D.

From [14] or [18], we have, for h∞ ∈ H+(R),

BΦ̄(h∞) = µ2(h∞)l det(J(h∞, I))−l e−2πi tr(S(−D)h∞〈I〉)
∑
j

Λ(tj)−1A(Sj), (101)

and BΦ̄(h∞) = 0 for h∞ 6∈ H+(R). Suppose that there is a semi-integral, symmetric, positive definite 2× 2
matrix T satisfying

i) −D = det(2T ) is the fundamental discriminant of L = Q(
√
−D).

ii) T is Γ0(M) equivalent to one of the Sj .

iii) The Fourier coefficient A(T ) 6= 0.

Then it is clear from (101) that one can choose a Λ such that parts A1,A2 of the assumption are satisfied.
If M = 1 (as in [4], [9], [10]) or, every prime p |M is inert in L (as in [14]), then {Sj}j is the complete set of

representatives of Γ0(M) equivalence classes and hence, condition i) above implies condition ii) to give the
assumption from [4], [9], [10] and [14]. We have to include part A3 of the assumption to guarantee that the
Iwahori spherical vector in πp, for p |M , is a test vector for the Bessel functional.

Let us abbreviate a(Λ) =
∑

Λ(tj)A(Sj). For h ∈ H(A), we have

BΦ̄(h) = a(Λ)
∏
p

Bp(hp),

where, B∞ is as defined in [10], for a finite prime p - M , Bp is the spherical vector in the (Λp, θp)-Bessel
model for πp, and for p |M , Bp is the vector in the (Λp, θp)-Bessel model for πp defined by Proposition 3.8
and 3.10. For p <∞, we have normalized the Bp so that Bp(1) = 1.

5.2 Global induced representation and global integral

Let τ = ⊗τp be an irreducible, cuspidal, automorphic representation of GL2(A) with central character ωτ .
For every prime p <∞, let pnp be the conductor of τp. For almost all p, we have np = 0. Set N =

∏
p p

np .
Choose l1 to be any weight occurring in τ∞. Let χ0 be a character of A×L such that χ0|A× = ωτ and
χ0,∞(ζ) = ζl2 for any ζ ∈ S1. Here, l2 depends on l1 and l by the formula

l2 =
{
l1 − 2l if l ≤ l1,
−l1 if l ≥ l1

as in [10]. The existence of such a character is guaranteed by Lemma 5.3.1 of [10]. Define another character
χ of A×L by

χ(ζ) = χ0(ζ̄)−1Λ(ζ̄)−1.

Let I(s, χ0, χ, τ) be the induced representation of G(A) obtained in an analogous way to the local situation
in Sect. 4.1. We will now define a global section fΛ(g, s). Let us realize the representation τ as a subspace of
L2(GL2(Q)\GL2(A)) and let f̂ be the automorphic cusp form such that the space of τ is generated by the
right translates of f̂ . The function f̂ corresponds to a cuspidal Hecke newform on the complex upper half
plane. Then, f̂ is factorizable. Write f̂ = ⊗f̂p such that f̂∞ is the function of weight l1 in τ∞. For p <∞,
f̂p is the unique newform in τp with f̂p(1) = 1. Using χ0, extend f̂ to a function of GU(1, 1;L)(A).
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For a finite prime p, set

KG
p :=

 G(Zp), if p - MN ;
IΓ((poLp)np,0), if p |M ;
H(Zp)Γ((poLp

)np), if p | N, p - M.

Here, in the second case, np,0 = max(1, np). Set KG(M,N) =
∏
p<∞

KG
p and let K∞ be the maximal compact

subgroup of G(R). Let η be the element of G(Q) defined in (76). Let ηM,N be the element of G(A) such
that the p-component is given by η for p |MN and by 1 for p - MN . For s ∈ C, define fΛ( · , s) on G(A) by

i) fΛ(g, s) = 0 if g 6∈M(A)N(A)ηM,NK∞K
G(M,N).

ii) If m = m1m2, mi ∈M (i)(A), n ∈ N(A), k = k0k∞, k0 ∈ KG(M,N), k∞ ∈ K∞, then

fΛ(mnηM,Nk, s) = δ
1
2 +s

P (m)χ(m1)f̂(m2)f(k∞). (102)

Recall that δP (m1m2) = |NL/Q(m1)µ1(m2)−1|3.

Here, M (1)(A), M (2)(A), N(A) are the adelic points of the algebraic groups defined by (72) and f is the
function on K∞ defined in [10] as follows

f(g) =
{
b̂(g)l1−l det(J(g, i12))−l, if l ≤ l1;
ĉ(g)l−l1 det(J(g, i12))−l, if l ≥ l1.

Here, we have J(gtg, i12) =
[
â(g) b̂(g)
ĉ(g) d̂(g)

]
. As in [10], it can be checked that fΛ is well-defined. For Re(s)

large enough we can form the Eisenstein series

E(g, s; fΛ) :=
∑

γ∈P (Q)\G(Q)

fΛ(γg, s). (103)

In fact, E(g, s; fΛ) has a meromorphic continuation to the entire plane. In [4], Furusawa studied integrals of
the form

Z(s, fΛ, φ) =
∫

H(Q)ZH(A)\H(A)

E(h, s; fΛ)φ(h) dh, (104)

where φ ∈ Vπ. Theorem (2.4) of [4], the “Basic Identity”, states that

Z(s, fΛ, φ) =
∫

R(A)\H(A)

WfΛ(ηh, s)Bφ(h) dh, (105)

where Bφ is the Bessel function corresponding to φ and WfΛ is the function defined by

WfΛ(g) =
∫

Q\A

fΛ

(
1

1 x
1

1

 g)ψ(cx)dx, g ∈ G(A).

The function WfΛ is a pure tensor and we can write WfΛ(g, s) =
∏
pW

#
p (gp, s). Then we see that W#

∞ is as
defined in [10]. For a finite prime p - M , the W#

p is the function defined in Sect. 4.5 of [10]. For p |M , the
W#
p is as in Sect. 4.3. It follows from (105) that

Z(s, fΛ, Φ̄) =
∏
p≤∞

Zp(s,W#
p , Bp),
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where
Zp(s,W#

p , Bp) =
∫

R(Qp)\H(Qp)

W#
p (ηh, s)Bp(h) dh.

When p - MN, p < ∞, the integral Zp is evaluated in [4]. For p = ∞ or p | N, p - M , the integral Zp is
calculated in Theorems 3.5.1 and 4.4.1 of [10]. For p | M , the integral Zp is calculated in Theorem 4.1.
Putting all of this together we get the following global theorem.

5.1 Theorem. Let F be a Siegel cuspidal newform of weight l with respect to B(M), where l is any positive
integer and M is square-free, satisfying the assumption stated in Sect. 5.1. Let Φ be the adelic function
corresponding to F , and let πF be an irreducible component of the cuspidal, automorphic representation
generated by Φ. Let τ be any irreducible, cuspidal, automorphic representation of GL2(A). Let the global
characters χ, χ0 and Λ, as well as the global section fΛ ∈ I(s, χ, χ0, τ), be chosen as above. Then the global
integral (104) is given by

Z(s, fΛ, Φ̄) =
( ∏
p≤∞

Yp(s)
) L(3s+ 1

2 , π × τ̃)
L(6s+ 1, ω−1

τ )L(3s+ 1, τ̃ ×AI(Λ))
(106)

with

Y∞(s) = a(Λ)il+l2
a+

2
πD−3s− l

2
(4π)−3s+ 3

2−l

6s+ 2l + l2 − 1
Γ(3s+ l − 1 + ir

2 )Γ(3s+ l − 1− ir
2 )

Γ(3s+ l − l1
2 −

1
2 )

. (107)

Here, AI(Λ) is the automorphic representation of GL2(A) obtained from Λ via automorphic induction. The
factor Yp(s) is one for p - MN . For p - M,p | N , the factor Yp(s) is given in Theorem 3.5.1 of [10]. For
p | M , we have Yp(s) = Lp(6s + 1, ω−1

τp
)L(3s + 1, τ̃p × AI(Λp))Y ′p(s), where Y ′p(s) is given in Theorem 4.1.

The number r and a+ are as in the archimedean calculation in [10], and the constant a(Λ) is defined in Sect.
5.1.

5.3 Special values of L-functions

In this section, we will use Theorem 5.1 to obtain a special value result for the L-function in the case that τ
corresponds to a holomorphic cusp form of the same weight as F . Let Ψ ∈ Sl(N,χ′), the space of holomorphic
cusp forms on the complex upper half plane h1 of weight l with respect to Γ0(N) and nebentypus χ′. Here
N =

∏
p p

np is any positive integer and χ′ is a Dirichlet character modulo N . Ψ has a Fourier expansion

Ψ(z) =
∞∑
n=1

bne
2πinz.

We will assume that Ψ is primitive, which means that Ψ is a newform, a Hecke eigenform and is normalized
so that b1 = 1. Let ω = ⊗ωp be the character of A×/Q× defined as the composition

A× = Q× × R×+ ×
( ∏
p<∞

Z×p
)
−→

∏
p|N

Z×p −→
∏
p|N

(Zp/pnpZp)× ∼= (Z/NZ)×
χ′−→ C×.

Let K(0)(N) :=
∏
p|N

K(0)(pnp)
∏
p-N

GL2(Zp) with the local congruence subgroups K(0)(pn) = GL2(Zp) ∩[
1 + pnZp Zp
pnZp Zp

]
as in (77). Let K0(N) :=

∏
p|N

K0(pnp)
∏
p-N

GL2(Zp), where K0(pn) = GL2(Zp) ∩
[

Zp Zp
pnZp Zp

]
.

Evidently, K(0)(N) ⊂ K0(N). Let λ be the character of K0(N) given by

λ(
[
a b
c d

]
) :=

∏
p|N

ωp(ap). (108)
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With these notations, we now define the adelic function fΨ by

fΨ(γ0mk) = λ(k)
det(m)l/2

(γi+ δ)l
Ψ
(αi+ β

γi+ δ

)
,

where γ0 ∈ GL2(Q), m =
[
α β
γ δ

]
∈ GL+

2 (R) and k ∈ K0(N). Define a character χ0, as in the previous

section, with l2 = −l. Using χ0, extend fΨ to a function on GU(1, 1;L)(A). We can take f̂ = fΨ in
(102) and obtain the section fΛ. Now, Lemma 5.4.2 of [10] gives us that, for g ∈ G+(R), the function
µ2(g)−l det(J(g, i12))lE(g, s; fΛ) only depends on Z = g〈i12〉. Let us define the function E on H2 := {Z ∈
M2(C) : i( tZ̄ − Z) is positive definite} by the formula

E(Z, s) = µ2(g)−l det(J(g, i12))lE
(
g,
s

3
+
l

6
− 1

2
; fΛ

)
, (109)

where g ∈ G+(R) is such that g〈i12〉 = Z. The series that defines E(Z, s) is absolutely convergent for
Re(s) > 3−l/2 (see [7]). Let us assume that l > 6. Now, we can set s = 0 and obtain a holomorphic Eisenstein
series E(Z, 0) on H2. Let ΓG(M,N) := G(Q) ∩ G+(R)KG(M,N). We have ΓG(M,N) ∩ H(Q) = B(M).
Then E(Z, 0) is a modular form of weight l with respect to ΓG(M,N). Its restriction to h2, the Siegel upper
half space, is a modular form of weight l with respect to B(M). By [6], we know that the Fourier coefficients
of E(Z, 0) are algebraic.

Set V (M) :=
[
Sp4(Z) : B(M)

]−1 and define, for any two Siegel modular forms F1, F2 of weight l with respect
to B(M), the Petersson inner product by

〈F1, F2〉 =
1
2
V (M)

∫
B(M)\h2

F (Z)F2(Z)(det(Y ))l−3 dX dY.

Arguing as in Lemma 5.6.2 of [10] or Proposition 9.0.5 of [14], we get

Z(
l

6
− 1

2
, fΛ, Φ̄) = 〈E(Z, 0), F 〉. (110)

Let Γ(2)(M) := {g ∈ Sp4(Z) : g ≡ 1 (mod M)} be the principal congruence subgroup of Sp4(Z). Let
us denote the space of all Siegel cusp forms of weight l with respect to Γ(2)(M) by Sl(Γ(2)(M)). For a
Hecke eigenform F ∈ Sl(Γ(2)(M)), let Q(F ) be the subfield of C generated by all the Hecke eigenvalues
of F . From [5, p. 460], we see that Q(F ) is a totally real number field. Let Sl(Γ(2)(M),Q(F )) be the
subspace of Sl(Γ(2)(M)) consisting of cusp forms whose Fourier coefficients lie in Q(F ). Again by [5, p. 460],
Sl(Γ(2)(M)) has an orthogonal basis {Fi} of Hecke eigenforms Fi ∈ Sl(Γ(2)(M),Q(Fi)). In addition, if F is
a Hecke eigenform such that F ∈ Sl(Γ(2)(M),Q(F )), then one can take F1 = F in the above basis. Hence,
let us assume that the Siegel newform F of weight l with respect to B(M) considered in the previous section
satisfies F ∈ Sl(Γ(2)(M),Q(F )). Then, arguing as in Lemma 5.4.3 of [9], we have

〈E(Z, 0), F 〉
〈F, F 〉

∈ Q̄, (111)

where Q̄ is the algebraic closure of Q in C. Let 〈Ψ,Ψ〉1 := (SL2(Z) : Γ1(N))−1
∫

Γ1(N)\h1

|Ψ(z)|2yl−2 dx dy,

where Γ1(N) := {
[
a b
c d

]
∈ Γ0(N) : a, d ≡ 1 (mod N)}. We have the following generalization of Theorem

4.8.3 of [4].

5.2 Theorem. Let l,M be positive integers such that l > 6 and M is square-free. Let F be a cuspidal Siegel
newform of weight l with respect to B(M) such that F ∈ Sl(Γ(2)(M),Q(F )), satisfying the assumption from
Sect. 5.1. Let Ψ ∈ Sl(N,χ′) be a primitive form, with N =

∏
pnp , any positive integer, and χ′, any Dirichlet
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character modulo N . Let πF and τΨ be the irreducible, cuspidal, automorphic representations of GSp4(A)
and GL2(A) corresponding to F and Ψ. Then

L( l2 − 1, πF × τ̃Ψ)
π5l−8〈F, F 〉〈Ψ,Ψ〉1

∈ Q̄. (112)

Proof. Arguing as in the proof of Theorem 5.7.1 of [10], together with (110) and (111), we get the theorem.

Special value results like the one above have been obtained in [1], [4], [9], [10] and [14].
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