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ABSTRACT. We obtain explicit formulas for the test vector in the Bessel model and derive the criteria for
existence and uniqueness for Bessel models for the unramified, quadratic twists of the Steinberg represen-
tation 7w of GSp,(F'), where F' is a non-archimedean local field of characteristic zero. We also give precise
criteria for the Iwahori spherical vector in 7 to be a test vector. We apply the formulas for the test vector
to obtain an integral representation of the local L-function of 7 twisted by any irreducible, admissible rep-
resentation of GLa(F'). Together with results in [4] and [10], we derive an integral representation for the
global L-function of an irreducible, cuspidal automorphic representation of GSp,(A) obtained from a Siegel
cuspidal Hecke newform, with respect to the Borel congruence subgroup of square-free level, twisted by any
irreducible, cuspidal, automorphic representation of GL2(A). A special value result for this L-function in
the spirit of Deligne’s conjecture is obtained.

1 Introduction

It is known that the representation of the symplectic group obtained from a Siegel modular form is non-
generic, which means that it does not have a Whittaker model. Consequently, one cannot use the techniques
or results for generic representations in this case. In such a situation one introduces the notion of a generalized
Whittaker model, now called the Bessel model. These Bessel models have been used to obtain integral
representations of L-functions. It is known that an automorphic representation of GSp,(A), where A is the
ring of adeles of a number field, obtained from a Siegel modular form always has some global Bessel model.
For the purposes of local calculations it is often very important to know the precise criteria for existence of
local Bessel models and explicit formulas. In this paper, we wish to investigate Bessel models for unramified,
quadratic twists of the Steinberg representation 7 of GSp,(F'), where F' is any non-archimedean local field
of characteristic zero.

Let us first briefly explain what a Bessel model is. Detailed definitions will be given in Sect. 3. Let F be
a non-archimedean field of characteristic zero. Let U(F) be the unipotent radical of the Siegel parabolic
subgroup of GSp,(F) and € be any non-degenerate character of U(F'). The group GLy(F'), embedded in
the Levi subgroup of the Siegel parabolic subgroup, acts on U(F') by conjugation and hence, on characters
of U(F). Let T(F) = Stabgr,,(#)(#). Then T'(F') is isomorphic to the units of a quadratic extension L of
F. The group R(F) = T(F)U(F) is called the Bessel subgroup of GSp,(F) (depending on ). Let A be
any character of T'(F') and denote by A ® 6 the character obtained on R(F'). Let (m, V) be any irreducible,
admissible representation of GSp,(F'). A linear functional 5 : V — C, satisfying B(w(r)v) = (A ® 0)(r)5(v)
for any r € R(F),v € V, is called a (A, 6)-Bessel functional for 7. We say that 7 has a (A, §)-Bessel model
if 7 is isomorphic to a subspace of smooth functions B : GSp,(F') — C, such that B(rh) = (A ® 0)(r)B(h)
for all r € R(F),h € GSp,(F). The existence of a non-trivial (A, #)-Bessel functional is equivalent to the
existence of a (A, #)-Bessel model for a representation. If 7 has a non-trivial (A, §)-Bessel functional 3, then
a vector v € V such that G(v) # 0 is called a test vector for .

In [12], the authors have obtained, for any irreducible, admissible representation m of GSp,(F'), the criteria
to be satisfied by A for the existence of a (A, 8)-Bessel functional for 7. Their method involves the use of
theta lifts and distributions. The uniqueness of Bessel functionals has been obtained in [8] for many cases,
in particular for any 7 with a trivial central character. In [18], a test vector is obtained when both the
representation 7 and the character A are unramified. In [14], a test vector is obtained when F' = Q,, p is odd
and inert in the quadratic field extension L corresponding to T(Q),), the representation 7 is an unramified,
quadratic twist of the Steinberg representation and A has conductor 1+ poy. The explicit formulas of the
test vector in the above two cases have been used in [4] and [14] to obtain an integral representation of the
GSp, X GLg L-function where the GLy representation is either unramified or Steinberg.
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The main goal of this paper is to obtain explicit formulas for a test vector whenever a Bessel model for the
unramified, quadratic twist of the Steinberg representation of GSp,(F’) exists. In addition to obtaining these
formulas, we, in fact, obtain an independent proof of the criteria for existence and uniqueness for the Bessel
models. We also give precise conditions on the character A so that the Iwahori spherical vector in 7 is a test
vector. This is achieved in Theorem 3.2 which states the following.

Theorem: Let m = QStgsp, be the Steinberg representation of H(F'), twisted by an unramified quadratic
character Q). Let A be a character of L™ such that A |px=1. If L is a field, then  has a (A, 0)-Bessel model
if and only if A # Qo Ny p. If L is not a field, then m always has a (A,0)-Bessel model. In case © has
a (A, 0)-Bessel model, it is unique. In addition, if m has a (A,0)-Bessel model, then the Iwahori spherical
vector of T is a test vector for the Bessel functional if and only if A is trivial on 1+ (see (4) for definition

of B) and, in case (%) =1 and A is unramified, then A((1,w)) # Q(w).
The methods used to prove the above theorem are very different from those in [8] and [12].

When the Iwahori spherical vector is a test vector, we use the explicit formula for the test vector to obtain
an integral representation of the local L-function L(s, 7w x 7) of the Steinberg representation 7 of GSp,(F),
twisted by any irreducible admissible representation 7 of GLa(F'). This integral involves a function B in the
Bessel model of 7 and a Whittaker function W# in a certain induced representation of GU(2,2) related to
7. We wish to remark that in this paper, and other works ([4], [9], [10], [14]), the Bessel function B is always
chosen to be a “distinguished” vector (spherical if 7 is unramified and Iwahori spherical if 7 is Steinberg)
which has the additional property of being a test vector. With this choice of B we have a systematic
way of choosing W# (see [10]) so that the integral is non-zero and gives an integral representation of the
L-function. The work so far suggests that to obtain an integral representation for the L-function with
a general irreducible, admissible representation m of GSp,(F), we will have to choose B to be both a
“distinguished” vector in the Bessel model of m and a test vector for the Bessel functional. This further
highlights the importance of obtaining more information and explicit formulas for test vectors for Bessel
models of GSp,(F). This is a topic of ongoing work.

The local computation mentioned above, together with the archimedean and p-adic calculations in [4] and
[10], we obtain an integral representation of the global L-function L(s,m x 7) of an irreducible, cuspidal,
automorphic representation m of GSp,(A), obtained from a Siegel cuspidal newform with respect to the Borel
congruence subgroup of square-free level, twisted by any irreducible, cuspidal, automorphic representation
7 of GLo(A). When 7 corresponds to an elliptic cusp form in S;(V, x), we obtain algebraicity results for
special value of the twisted L-function in the spirit of Deligne’s conjecture [3].

The paper is organized as follows. The first half of the paper deals with the existence and uniqueness of
Bessel models. In Sect. 2, we give the basics regarding the non-archimedean setup, Steinberg representation
and the Iwahori Hecke algebra. We define B(A, 6)! to be the space of smooth functions on GSp,(F) which are
right invariant under the Iwahori subgroup I and transform on the left according to A®#6. In Sect. 3.1-3.4, we
obtain that dim(B(A,#)') <1 (the uniqueness), the criterion for dim(B(A, 6)!) = 1 and the explicit formula
for the unique (up to scalars) function B in B(A,#)!. The methods used here are similar to those in [14]. In
case A is a unitary character such that dim(B(A, #)') = 1, we use the function B to generate a Hecke module
Vg. We show that Vg is irreducible and has a unique (up to a constant) vector which is Iwahori spherical,
hence implying that Vg is a (A, #)-Bessel model for the Steinberg representation. In case A is not unitary
(this can only happen when L is split over F'), we use the fact that the Steinberg representation, in the split
case, is generic and actually show that any generic, irreducible, admissible representation of GSp,(F’) has
a split Bessel model. We believe that this result is known to the experts but since it is not available in the
literature we present the proof in details. This is done is Sect. 3.5, in particular Theorem 3.2.

In the second half of the paper, we give the application of the explicit formula of the test vector. In Sect. 4,
we obtain an integral representation of the L-function of the Steinberg representation twisted by any GLq
representation in Theorem 4.1. In Theorems 5.1 and 5.2, we obtain an integral representation for the global
L-function and a special value result.
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Bessel model from a Whittaker model in the split case. The author would also like to thank Abhishek Saha
for several fruitful discussions on this topic.

2 Steinberg representation of GSp,

Non-archimedean setup

Let F' be a non-archimedean local field of characteristic zero. Let o, p, @, ¢ be the ring of integers, prime ideal,
uniformizer and cardinality of the residue class field o/p, respectively. Let us fix three elements a,b,c € F

such that d := b?> — 4ac # 0. Let
: X2
L:{F(\/&) if d ¢ F*2, 1)

FoF if d € F*2.
In case L = FF& F, we consider F' diagonally embedded. If L is a field, we denote by T the Galois conjugate

ofz € Lover F. f L =F@&F, let (z,y) = (y,2). In any case we let N(z) = 27 and tr(z) =z +z. We
shall make the following assumptions:

(A1) a,b€oand c€o0*.

(A2) If d ¢ F*2, then d is the generator of the discriminant of L/F. If d € F*2, then d € o*.

We set the Legendre symbol as follows,

I -1, ifdg F*2 ddp (the inert case),
(—) =< 0, ifdgd F*2, deyp (the ramified case), (2)
1, ifd e F*? (the split case).

If L is a field, then let op, be its ring of integers. If L = F@ F, then let o, = 0®o. Let @y be the uniformizer
of oy, if L is a field and set @y, = (w, 1) if L is not a field. Note that, if (%) # —1, then N(wy) € wo™. Let
«a € o1, be defined by

bt vd if L is a field,
o= bQC Vi b vd (3)
( tvd b ) fL=FaF.
2c 2c
We fix the following ideal in oy,
L
L if (g) = -1,
‘,B =por = p% if (%) =0, (4)
e (L
pop if(3)=1
Here, py, is the maximal ideal of oy, when L is a field extension. Note that 3 is prime only if ( %) =—-1. We

have " No = p™ for all n > 0. Let us recall Lemma 3.1.1 of [9].

2.1 Lemma. Let notations be as above.

i) The elements 1 and « constitute an integral basis of L/F.

ii) There exists no x € o such that a + z € P.



Steinberg representation

Let us define the symplectic group H = GSp, by

H(F) :={g € GLy(F) : 'gJg = p2(9)J, p2(g) € F*},

where J = [ 1 12] . The maximal compact subgroup is denoted by K := GSp,(0). We define the Iwahori
—1s

subgroup as follows,

I:'={geKl:g= (mod p)}. (5)

O ¥ *x ¥
¥ X ¥ *

O O ¥ *
O O *x O

Let © be an unramified, quadratic character of F*. Let m be the Steinberg representation of H(F'), twisted
by the character . This representation is denoted by 2Stgsp,. Since we have assumed that €2 is quadratic,
we see that m has trivial central character. The Steinberg representation has the property that it is the
only representation of H(F') which has a unique (up to a constant) Iwahori fixed vector. The Iwahori Hecke
algebra acts on the space of I-invariant vectors. We will next describe the Iwahori Hecke algebra.

Iwahori Hecke algebra

The Iwahori Hecke algebra Hy of H(F') is the convolution algebra of left and right I-invariant functions on
H(F). We refer the reader to Sect. 2.1 of [16] for details on the Iwahori Hecke algebra. Here, we state the
two projection operators (projecting onto the Siegel and Klingen parabolic subgroups) and the Atkin Lehner
involution. The unique (up to a constant) Iwahori fixed vector vy in 7 is annihilated by the projection
operators and is an eigenvector of the Atkin Lehner involution.

1 w 1

1 1

Z 7( 1 Jvo+m(s1)vo =0, m(no)vo = wuo, Z m( Y 1 Jvo+(s2)ve = 0. (6)
weEo/p w1 y€Eo/p 1
Here
1 1 1

1 1 1

51 = A = Com= | and w=-0(w). (7
1 1 w

3 Existence and uniqueness of Bessel models for the Steinberg representation

Let us fix an additive character ¢ of F, with conductor 0. Let a,b € 0 and ¢ € 0* be as in Sect. 2, and set

S = {672 béﬂ. Then ¢ defines a character § on U(F) {[12 f(] :'X =X} by
2

o[ 1 | = wies, 0

Let
T(F) :={g € GLao(F) : 'gSg = det(g)S}. (9)



Set & = [b_/j ij] and F(§) = {& +y& : x,y € F}. Then, it can be checked that T(F) = F(£)* and is

isomorphic to L*, with the isomorphism given by

{x—i-gy cy }}_} ac—&—y@, if L is a field,; (10)
—ay x—3y (:v—&-y@w—y@), if L=F&F.

We consider T'(F') as a subgroup of H(F) via

T(F)>gr— € H(F).

g
{ det(g) tg‘l}
Let R(F) = T(F)U(F). We call R(F) the Bessel subgroup of H(F) (with respect to the given data a,b,c).
Let A be any character on L* that is trivial on F*. We will consider A as a character on T'(F). We have
O(ttut) = O(u) for all w € U(F) and t € T(F). Hence the map tu — A(t)0(u) defines a character of R(F).
We denote this character by A ® 6.

As mentioned in the introduction, a linear functional 5 : V' — C, satisfying (7 (r)v) = (A ® 6)(r)8(v) for
any r € R(F),v € V, is called a (A, §)-Bessel functional for 7. We say that = has a (A, #)-Bessel model if 7
is isomorphic to a subspace of smooth functions B : H(F') — C satisfying

B(tuh) = A(t)0(u)B(h)  for all t € T(F),u € U(F),h € H(F). (11)

The existence of a non-zero (A, §)-Bessel functional for 7 is equivalent to the existence of a non-trivial (A, 0)-
Bessel model for 7. If 7w has a non-zero (A, #)-Bessel functional 3, then the space {B, : v € 7, B,(h) :=
B(w(h)v)} gives a non-trivial (A, 8)-Bessel model for . Conversely, if 7 has a non-trivial (A, 6)-Bessel model
{By : v € w} then the linear functional 3(v) := B,(1) is a non-zero (A, 6)-Bessel functional for 7. We say
that v € 7 is a test vector for a Bessel functional j if 8(v) # 0. Note that a vector v € 7 is a test vector for
B if and only if the corresponding function B, in the Bessel model satisfies B, (1) # 0.

Define the space B(A, #)' of smooth functions B on H(F) which are right I-invariant, satisfy (11) and the
following conditions, for any h € H(F'), obtained from (6),

1 w
SoBk| ' [ eBhs) =0, (12)
weEo/p —w 1
B(hno) = wB(h), (13)
1
> B, b DBy =0, (14)
y€Eo/p 1

Our aim is to obtain the criteria for existence and uniqueness for (A, #)-Bessel models for 7. Let us state
the steps we take to obtain this.

i) Since a function B in B(A,#)! is right I-invariant and satisfies (11) we see that the values of B are
completely determined by its values on double coset representatives R(F)\H(F)/I. We obtain these
representatives in Proposition 3.3.

ii) In Proposition 3.8, we use the I-invariance of B and (11)-(14) to obtain necessary conditions to be
satisfied by the values of functions in B(A, #)! on double coset representatives for R(F)\H(F)/1. This
gives us dim(B(A,#)!) < 1 in Corollary 3.9.

iii) In Proposition 3.10, we show that the function B with the given values at double coset representatives
for R(F)\H(F)/I (obtained in Proposition 3.8) is well-defined. We show that B satisfies (12), (13)
and (14) for all values of h € H(F) and obtain the criteria for dim(B(A,6)!) =1 in Theorem 3.1.



iv) Suppose A is such that dim(B(A,#)") = 1. If A is unitary then we use 0 # B € B(A,6)! to generate
a Hecke module V. We define an inner product on Vp and show in Proposition 3.15 that Vg is
irreducible and provides a (A, #)-Bessel model for 7. If A is not unitary (this can happen only if L is
a split extension of F'), then we show that any irreducible, generic, admissible representation of H(F)
has a split (A, §)-Bessel model. Since 7 is generic in the split case, we obtain in Theorem 3.2 the precise
criteria for existence and uniqueness of a (A, )-Bessel model for 7.

3.1 Double coset decomposition

From (3.4.2) of [4], we have the following disjoint double coset decomposition.

w2m+l
" wm+l
HF)=| | || RF)N1m)K h(l,m) = ) (15)
1€Zm>0 m
w
It follows from the Bruhat decomposition for Sp(4,0/p) that
1 1 T 1
H z 1 1 z 1 Y
K" =10 || N T L | stu [ | | sl (16)
x€o/p z€o/p 1 z,y€o/p 1
Ty 1 Y
(] |_| 1 31/ s9s511 U v 1 Z{ chj:; z 5189511 (17)
z,y€o/p xyzeo/p 1
T Yy 1 T Y
1 z w 1 wr+ wy + z
U |_| %1/ So81821 LU |_| 1 y ny) 515981891 (18)
z,y,2€0/p 1 w,z,y,2€0/p 1

Let W = {1, 51, $2, 8152, S251, 518281, $25182, §1828152 } be the Weyl group of Sp,(F') and let W be the set of

1 0o o
representatives for {1, s; }\W given by {1, s2, $251, s25182}. Observing that h(l,m) 1 i 0 h(l,m)~1
1
is contained in R(F'), we get a preliminary (non-disjoint) decomposition
R(F(ImK" = | (R(F)h(l,m)sl U R(F)A(, m)W,,,slsl), (19)

seW) weo/p

where, for w € o/p, we set

The next lemma gives the condition under which the two double cosets of the form R(F)h(l,m)sl and
R(F)h(l,m)W,,s1s] are the same.

3.1 Lemma. Forw € o/p andm > 0, set 7 := aw?" +bw™w-+cw?. Let s € W), Then R(F)h(l,m)sl =
R(F)h(l,m)W,,s1s] if and only if B} € 0*.



m o X m T+ 5y oy
Proof. Suppose 7' € 0*. Take y = w™,x = w™b/2 + cw and set g = a z— byl Let r =
o 2
g
[ det(g)tg_l}' Then
_ @M cw ¢
rh(l,m) = h(l,m)Wys1k, where k = e b4 ew]| € L
ﬁm

Note that for any s € W), we have s~'ks € I. Using rh(l,m)s = h(l,m)Wy,s15(s~'ks), we obtain
R(F)h(l,m)sI = R(F)h(l,m)W,s;sl, as required.

Now we will prove the converse. For i = 1,2,3,4, let r; =

} [12 ‘f’}, where X; = 'X; and
2

i
det(g;)tg; "

4 b .
gi = Tit Y cy,b , such that
—aYi T — 3Y;

Ay = (h(l,m)Wys1) " trih(l,m) € T,Ay = (h(l,m)Wy,s152) " rah(l,m)sy €1,
Az = (M1, m)Wys15281) *r3h(l,m)ses1 € LAy = (h(l,m)Wys1528152) *rah(l,m)sas1s0 € 1.

First, let w € (0/p)*. Looking at the (2,2) coefficient of A; for i = 1,2,3,4, we get y; = w™y}, with y; € 0*.
We have

(1,2) coefficient of Ay = fi((l, 1) coefficient of A1 + B'y}) € p
(3,2) coefficient of Ay = fi((?), 3) coefficient of Ay + B'y,) € p
(4,1) coefficient of Az = 7%((4’ 4) coefficient of Az + B'yy) € p
(4, 3) coeflicient of A4 = —%((4, 4) coefficient of Ay + By'yy) € p

Since diagonal elements of A; are in 0* and w,y, € 0*, we can conclude, in each of the above case, that
O € 0%, as required.

Now let w = 0. If m > 0, then clearly 3" ¢ 0*. Also, each of the A; have two of the four diagonal entries
equal to cow™™y; and aw™y;, both of which cannot be units. Hence, 4; ¢ I. If m = 0, then each of the A;
have two of the four diagonal entries equal to cy; and ay;. If A; € I, then a € 0%, and hence, 3) = a € 0*.
This completes the proof of the lemma. [

The next lemma describes for which w € o/p we have gII* € 0*.

3.2 Lemma. For w € o/p and m > 0, set B := aw?®™ + bw™w + cw? as above.

i) If m > 0, then 37 € o* if and only if w € (0/p)*.

ii) Let m = 0.
a) If (%) = —1, then 82 € 0> for every w € o/p.
b) Let (% = 0. Let wy be the unique element of o/p such that o+ wg € pr,, the prime ideal of oy,.
Then () € o* if and only if w # wg. In case #(0/p) is odd, one can take wg = —b/(2c).

~— 2O

= 1. Then 3° € o* if and only if w # %C‘/E, %C\/E.

¢) Let (

o |~



Proof. Part i) is clear. For the rest of the lemma, we need the following claim.

Claim: We have 32 € 0 if and only if « + w € o} .

w

The claim follows from the identity
a+bw + cw? = —c(a+w)(a+w) = —cN(a +w). (20)

If (L) = —1, then p;, = P and Lemma 2.1 ii) implies that a + w € o for all w € o/p. The claim gives
p L

ii)a) of the lemma. Let us now assume that (I’;

) = 0. In this case, the injective map ¢ : 0 — o0y gives
an isomorphism between the fields o/p ~ o7 /pr. Let wy = —t~(a) be the unique element in o/p such
that o + wo € pr. In case #(0/p) is odd, then one can take wy = —b/(2¢) € o since Vd € p. Then for
any w € o/p,w # wp, we have o + w € o;. Now, the claim gives ii)b) of the lemma. Next assume that

(%) = 1. Since Vd € 0* by assumption, we have a & P. If a +w ¢ of for some w € o, then we have

one of (b+ +/d)/(2¢) +w lies in p. Hence, we see that the only choices of w = (w,w) such that a +w & o

are w = (—b++/d)/(2¢c). Note that v/d € o* implies that (—b+ v/d)/(2¢) are not equal modulo p. This
completes the proof of the lemma. [

Note that, in the case (%) =0, (20) implies that 58,0 € p but ﬂg)o ¢ p? by Lemma 2.1 ii).

Next, we will show the disjointness of all the relevant double cosets. Set

Agr = (h(l,m)s) " rh(l,m)t teW,s €W — {t, st}
Aw,st = (M(1,0)s)” Yrh(l,0)Waysit wEo/p,s,tE W(l)as #1
AL 0= (R(1,0)Wys15)~ Lrh(l,0) Wy, s1t weo/p s, te W 54t

Notice that, for all of the matrices defined above, and any r € R(F'), at least one of the diagonal entries is

zero. This implies that none of the above matrices can be in I for any choice of r € R(F). For (%) =1, set
A%y = (h(1,0)W_yrvas18)  rh(l,0)W_,_ygsit s, te W,
2c 2c

If s # ¢, then at least one of the diagonal entries of A, is zero, implying that it cannot be in I for any choice
of r € R(F). If s =t and A}, is in I, then we get

Vdy Vd,  Vdy
2

T— €0 d_7($_ ) €p,

which is not possible, since vV/d € 0*. Hence, A} 4 cannot be in I for any choice of r € R(F). We summarize
in the following proposition.

3.3 Proposition. Let W be the Weyl group of Sp,(F') and w = {1, s2, 8281, S28182}. If (%) =0, let wy
—b/(2¢). Then we

be the unique element of o/p such that « + wo € pr. If #(0/p) is odd, then take wy =
have the following disjoint double coset decomposition.

L] R(F)h(l,m)s, ifm > 0;
seW
Ll R(F)h(l,0)sL, ifm =0, (%) =1
sew (1)
R mE" =4 U (ROFYAL, 0)sTU R(F)R(LOWaysisl), ifm =0, (L) =0 (21)
LI (R(F)R(@L,0)s1U R(F)R(L0)W s vas15
sew ) 2c
UR(F)h(l, O)W,b,ﬁslsl>, ifm =0, (%) — 1.




3.2 Necessary conditions for values of B € B(A,0)!

In this section, we will obtain the necessary conditions on the values of B € B(A,#)! on the double coset
representatives from Proposition 3.3 using I-invariance of B and (11)-(14).

Conductor of A:

Let us define
¢(A) =min{m >0: A|(1+ﬂ3’")ﬁ05 =1} (22)

Note that (1+P™)Noy =14+P™if m >1and (1+P™)No; =of if m = 0. Also, ¢(A) is the conductor
of A only if (%) = —1. Let us set ¢(A) = mg. Since A is trivial on F'*, we see that A|(GX+;BWD)%§ =1.

Let us make a few observations about A and ¢(A).

i) If L is a field, then we have L* = (wp).0f. If (%) = —1 and mg = 0, then we have that A(wy) =1,

p
see that A is a unitary character since my is finite.

since wy, € wo; . In case (L) = 0 and mg = 0, we see that A(wyr) = £1. In general, if L is a field, we

ii) If L is not a field, then L™ = F* @ F* and A((z,y)) = A1(z)A2(y), where Ay, Ay are two characters
of F'* satisfying Ay.As = 1. In this case, mg is the conductor of both Aj, Ao and the character A need
not be unitary.

In the next lemma, we will describe some coset representatives, which will be used in the evaluation of certain
sums involving the character A.

3.4 Lemma. Let m > 1. A set of coset representatives for ((0* +PB™1)No})/(0* +P™) is given by
{w+aw™ iwe (ofp)*U{l} ifm>2

{w+a:weo/p}u{l} 1fm:1,(§) — 1

{w+a:weo/p,w#w}U{l} jfm:l,(%)

0
{w+a:weo/p,w#(—b+Vd)/(2c)} U{1} ifm:L(%) =1.

In the case (%) = 0, the element wy is the unique element in o/p such that wo + « ¢ o7 .

Proof. Let z 4+ aw™ 'y € (0 + P 1) Noj, with z,y € 0. If m > 2, then z € 0*. If y € p, then
z 4+ aw™ ly € 0* 4+ P™, and hence corresponds to the coset representative 1. Now, let us assume that
y € 0%. Then, using y € 0* +P™, we see that z + aw™ 1y is equivalent to z/y + aw™ ! modulo 0> + P™.
Note that z/y + aw™ ! € o} implies that, modulo p, the element z/y lies in

o/p)<  ifm>2  ofp ifm:l,(%):—l
o/p — {wo} ifm=1,(§)=o, o/p — {(=b+ Vd)/(2¢)} ifm=1,(§)=1. (23)

This follows from the proof of Lemma 3.2. Now, we show that there is an element X € o* + ™, such that
(x/y + aw™ 1) X is equal to w + aww™ ! for some w in the sets described in (23). This is obtained in the
following claim.



L
v
to elements in the sets defined in (23). Then w = w’ (mod p) if and only if (w + aw™ 1) /(w' + aw™ 1) €

0* 4 P,

Claim: Let w,w’ € 0. Depending on the value if m and ( ), assume that w,w’ are equivalent, modulo p,

The claim can be proved as follows. Suppose (w + aw™ 1) /(w' + aw™ 1) = 2+ aw™y, with z € 0¥,y € o,
then

a _
1 t — & 2m—1

w4+ aw™ = (W' Zm=1

b
y) + a(zo™ ! + w'w™y + e ).

2m—1

Now, zw™ ! + w'w™y + bw y = @™ ! implies that = 1 (mod p). From w'z — ¢@*™ 1y = w, we

get w'z = w (mod p) and hence w = w’ (mod p), as required. Now assume that w = w’ (mod p). Take
w —w

w(w’2 4 bm=1yy 1 gw2(m—1))’
(& C

y= r=1—w'wy— -o™y.
c

The assumptions on w,w’ imply that y € o,z € 0* and (w + aw™ !)/(w + aw™ ') = z + aw™y, as
required. [

Depending on the ¢(A), certain values of B have to be zero. This is obtained in the next lemma.

3.5 Lemma. i) Let ¢(A) = mg > 2. Then
B(h(l,m)) =0 for all m < mg — 2 and any l. (24)
ii) Let ¢(A) =mg > 1 and (%) = 1. For w = (=b=++/d)/(2¢)
B(h(l,0)Wys1) =0 for all i.
iii) Let ¢(A) = mg = 0, (%) =0and A =QoNy,p . Then
B(h(l,0)Wy,$182) = 0 for all [.
iv) Let ¢(A) = mgo = 0 and (%) — —1. Then
B(h(1,0)) =0 for all I.

Proof.

i) Let m <mg—2. Let 1 + 2 +ay €1+ P 2,y € p™HL such that A(1+ 2 + ay) # 1. Let

c(l+z)+by cyw ™
—ayw™ c(l+x)

k= c(l+x) ayww™ €l
—cyw™ ™ c(l+x)+by
Then
c(1+x)+ by cy
_ _ —ay (1 +x)
B(h(l,m)) = B(h(l,m)k) = B( (1 + ) ay h(l,m))

—cy  c(l+xz)+by
= A1+ 2 + ay)B(h(l,m)),

which implies that B(h(l,m)) = 0, as required.
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ii) Let (a1,a2) € 0X @0* = o) be such that A((a1,as)) # 1. Choose = = (a1 +as)/2 and y = (a1 —as)/Vd

|z +by/2 ey . g . _

and let g = —ay x—by/2]| With r = det(g)tg=1 | we have the matrix identity, for w =
—b+Vd
2c 7

ay By M
cB=22 ay
rh(l,0)Wys1 = h(l,0)Wys1k, where k = vd a1—as | €1
“ i
gese a

Hence, we get
B(h(1,0)Wys1) = B(rh(l,0)Wys1) = A((a1, as)) B(h(l,0)Ws1).

This implies that B(h(l,0)W_,.,g$1) = 0. A similar calculation works for w = 71’276‘/3.
2¢c
iii) We have
w -1
-1
o = w - h(—1,0)s251 52 )
w 1
Hence,
1
wB(h(1,0) Wy, s152) = B(h(l,0) W, s15am0) = B(h(l,0) Wy, | 7 N )
1
i _ _lz+by/2 ey g
Let x = —b/2 — cwp,y = 1 and set g = —ay - by/2 = det(g)tg~ | Then
! = B 130 b+2 W%
I _ bt2cwg
rh(l,0) Wy 5180 = h(1L,0)Way | & 52 & P = :
w c
1 —c

Note that b+ 2cwy € p and 3° € p — p? implies that the rightmost matrix is in I. Hence,

WB(h(1,0) Wy, s152) = A(—cwo — b/2 + Vd/2)B(h(1,0) Wy, s152) = Alwo + @)B(h(l,0) Wy, 5152).
If mg =0and A = Qo Ny p, then A(wy + &) = Q(w) = —w. This is because wo + & € py — p3 (by

Lemma 2.1 ii)) and €2 is unramified. This implies that if A = Qo Ny, p, then B(h(l,0)Wy,s152) = 0,
as required.

iv) Let us set h = h(l,0)s; in (12). We get

> B(h(l,0)Wys1) = —B(h(1,0)). (25)

wGO/p
By Lemmas 3.1, 3.2, we see that for any w € o/p, we have
B(h(1,0)Wys1) = Alc(w + «))B(R(1,0)) = Alw + o) B(h(l,0)).

Substituting in (25), we get B(h(l,0)) = 0, as required. ]
From Lemmas 3.4 and 3.5(i), we obtain the following information on certain character sums involving A.
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3.6 Lemma. For any [, we have

S Mot am™)B0(m) + B0 iy, I im0
i
T A a)B(:4.0) + B30 = L By, ez b (k)=
?U%i/g/\(w+a)3(h(l70)) + B(h(1,0)) = { 2}3(}1(170))’ jmz = jf(f) ~0
2 A+ e)BRG0)+ B 0) = Lo nsoaoy, mezo #(5)=1
wp b/

Conductor of ¢

Since the conductor of ¢ is 0, we obtain the following further vanishing conditions on the values of B.
3.7 Lemma. i) If s € {1, 51, 82,8281} and m > 0, then
B(h(l,m)s) =0 ifl <0.
ii) If s € {8182, 518281, 28182, $1528182} and m > 0, then
B(h(l,m)s) =0 ifl < —1.

iii) If w € o, then
B(h(1,0)Wys1) =0 if1 <0.

iv) If w € 0 and s € {s182, 815251, S1525152}, then

B(h(1,0)W,s) =0 ifl < —1.

v) If (%) =1 and w = (=b=++/d)/(2¢), then

B(h(—]., O)stlsz) =0.
Proof.

i) For any € € 0%, set

ks = ‘ if s=1,s9 and kS =

1 1

if s = 51, 8981.

Then, for s € {1, s1, 82, $281} and € € 0, we obtain
1

1 ewo!

B(h(l,m)s) = B(h(l,m)sk) = B( h(l,m)s) = 9 (cew')B(h(l,m)s).

1

Since the conductor of ¢ is 0, we conclude that B(h(l,m)s) =0if [ < 0.
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ii) For any € € 0™, set

if s = 515951, 515828182.

1
B(h(l,m)s) = B(h(l,m)sks) = B(
Since, the conductor of ¢ is 0, we conclude that B(h(l,m)s) =0 if | < —1.

ili) For w € o and € € 0™, we have

B(h(l,0)Was1) = B(h(l,0)Waus: | Rt ) h(1,0)Was1)

= op(cew’) B(h(l,0)Wys1).
Since, the conductor of ¥ is o, we conclude that B(h(l,0)W,,s1) =01if [ <O0.
iv) For any € € 0%, set
1 1

ke = if s = s189, and ks = if s = 815951, 518281 82.

€w 1
1 €w 1

Then, for s € {s152, 515281, 51525182} and € € 0™, we have
b b b b

! I+1
h(l,0)Wys) = 1 (cer ™) B(h(1,0)W,s).

1 €w

1

Since, the conductor of ¢ is 0, we conclude that B(h(l,0)W,s) =0if I < —1.

v) We have
1
B(h(—]., O)stlsg) = B(h(—]., O)Ww8182 € 1 —e¢ ) = Qb(Ewil\/&)B(h(—l, O)Ww8182)7
1
for any € € 0. We then get the result, since for (%) =1, we have V/d € 0*. [

Values of B using (12)

Substituting h = h(l,m)s; in (12) and using Lemmas 3.1, 3.2 and 3.6, we get for any [

0 if m < mg;

B(h(l,m)s;) = { CaB(m), i e ifm>0.  (30)
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[0, if mg > 1;
B(h(1,0)Wasys:1) { ~B(h(1,0)), if mg =0. (31

B(h(l,0)W _prvas1) + B(A(l, )W _s_vas1) = —(¢ = )B(h(1,0)) if mo = 0. (32)

2c

Substituting h = h(l,m)s2s; in (12) and using that the conductor of ¢ is o, we get for any I, m

B(h(l,m)ss1) = 7$B(h(l,m)52). (33)

Substituting h = h(l,m)s1s2s1 in (12) and using that the conductor of 1 is o, we get for any m > 0 and !

B(h(l,m)s15951) = —éB(h(l,m)slsg). (34)

Let (%) = 0. Substituting h = h(—1,0)W,,s152s1 in (12) and using that the conductor of ) is o and

b+ 2cwp € p, we get
1
B(h(—l,O)Ww081$QS1) = —gB(h(—l,O)Ww(JSlSQ). (35)

Let (%) = 1and w = (=b =+ Vd)/(2¢). Substituting h = h(l,0)Wy,s15251 in (12) and using that the

conductor of 1 is 0 and v/d € 0%, we get for [ # —1

B(h(l,m)W,s15251) = 7%B(h(l,m)Ww3182). (36)

Values of B using (14)
Substituting h = h(l,m)ss in (14) and using that the conductor of ¢ is o, we get for any I,m

B(h(l,m)ss) = féB(h(l,m)). (37)

Substituting h = h(l,m)s2s1s2 in (14) and using that the conductor of ¢ is o, we get for [ # —1
B(h(l, m)sss155) = —%B(h(z,m)ml). (38)
Let w =0 if m > 0, w = wp if m = 0, (g) —0and w = (—b+vd)/(2¢) if m =0, (g) — 1. Substituting
h = h(l,m)W,s152 in (14) and using that the conductor of ¢ is o, we get for | # —1
B(h(l,m)Wys1ss) = —éB(h(l,m)stl). (39)
Substituting h = h(l,m)W,,s1525182 in (14) and using that the conductor of ¢ is o, we get for all I, m

1
B(h(l,m)W,,s1828182) = ——B(h(l,m)W,,818281). (40)
q
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Values of B using (13)

For any [, m,w we have the matrix identities

1
h(l,m)sas1mo = h(l — 1,m + 1)s15281 -1 1 (41)
1
1
R(l,m)Wy,s1528182m0 = h(l + 1, m)Wy,s1 1 1 (42)
-1
1
h(l,m)sas189mp = h(l +1,m) 1 1 (43)
-1
Hence, by (13), we have
B(h(l,m)s2s1) = wB(h(l —1,m + 1)s18251), (44)
B(h(l,m)Wys1828182) = wB(h(l + 1, m)Wys1), (45)
B(h(l,m)s2s182) = wB(h(l 4+ 1,m)). (46)
Using (43) we see that
1
B(h(1,0)W _s..va s152) = wB(h(1, OW _sya s15210) = wB(h(L, )W s vz « . )
1
Let x = \/3/2 +w,y=1,9= THby/2 ey and set r = |7 Then we have the matrix
’ ’ —ay x—by/2 det(g)'g~" ]
identity
1 ¥d -1
¢ _va
rh(L,OYW _,_vasiso = h(LOW vz | = sok, with k = - 1 el
— e @w <
1 —w —c
This gives us
B(h(LO)W _svas152) = wA((Vd + w,w))B(h(l, OW_y_vas152)- (47)
Summary
Using (33), (37), (38) and (46) we get for I,m >0
w
B(h(l+1,m)) = —qﬁB(h(Z,m)). (48)
Using (30), (33), (34), (37), (39), (44) and (48), we get for [ > 0,m > mg — 1
1
B(h(l,m + 1)) = — B(h(l,m)). (49)

q4
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Hence, we conclude that

0, ifl<—-lor0<m<mg—2;
B(h(l,m)) = { ¢ 4m=motD)(_g=3)!B(h(0,mg — 1)), if1>0and m >my—1> 0;
¢ (~wgHB(1), ifl>0and m >mg=0,1.

Let (%) =1 and w = (=b=+/d)/(2¢). Using (36), (39), (40) and (45), we get for [ > 0
B(h(l + 1,0)Wys1) = —;"—SB(h(Z,O)stl),

which gives us
B(h(1,0)Wys1) = (—wq ) B(Wys1).

In addition, if mg = 0 and wA((1,w)) = —1, using (32), (39) and (47), we get for all I > 0

B(h(1,0)) = 0.

Summarizing the calculations of the values of B, we obtain

3.8 Proposition. Let ¢(A) = mg. For l,m € Z,m > 0, let us set

Alm =

)

Cry

q—4(m—mo+1)(_wq—3>l) lfm() Z 1;
g Am(—wq3), if mg = 0.

We have the following necessary conditions on the values of B € B(A, ).

i) For m > 0 and any my,

a)
o ifl<—-1orm<mg—2;
B(h(l,m)) = { AmCigs  if1 >0 and m > mg — 1.
b)
0, ifl<—=1orm<mgy—2;
B(h(l,m)s) = { _éAl,mCmo’ if1 >0 and m > mgo — 1.
¢)
0, if1 < —1orm<mg—2;
B(h(l’m)SZLﬁ) - { q%Al,mCmm ifl >0 and m >mo — 1.
d)
0, if 1 < =2 orm < mg— 2
B(h(lm)sgsise) = ¢ @ Aoy, if1=—1 and m > mo —1;

—q%AlvamO, if 1 >0 and m > mg — 1.

ii) For m > 0 and any my,

a)
|0 ifl<—-1lorm<mgy—1;
B(h(l,m)s1) = { —qA; ;mCry, if1 >0 and m > my.
b)
0, ifl<—-2orm<mg—1;
B(h(l,m)s1s2) = —w@3Ag ;mCimy, ifl=—1 and m > mg;
ApmCyg s if I > 0 and m > my.

16
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0, ifl<—-2orm<mg—1;
B(h(l,m)s15251) = { wq®AgmChmy, ifl=—1and m > m;
—%Al,mcmo, if I > 0 and m > mg.
d)
0, ifl<—-2orm<mg—1;
B(h(l,m)s1525182) = { —wqA9mChy, ifl=—1and m > my;
A1LmCrn,s if1 >0 and m > my.

iii) Let my > 1.
a) If (%) =0 and s € {1, s9, $251, 25182}, then, for all [,
B(h(l,0)Wy,s18) = 0.
b) If (%) =1,s € {1,9,89281, 828182} and w = %C‘/E, then, for all [,
B(h(l,0)Wys1s) = 0.
iv) Let mg = 0.

a) If (%) = —1 then

Co=0.
b) Suppose (%) =0, then
i
B(h(l,0) W, s1) — { e B4
ii.
0, ifl < —2;
B(h(lv O)Wu}03132) == —wq3CO7 Ifl = —1’

A 0Co, if1 > 0.
iil.
0 ifl < =2

B(h(l,0)Wy,s15281) = { w’q2A1+1 0Co, ifl> —1.

iv.
0, ifl < =2

B(h(l,0)Wy,s1525152) = { —wqA410C, ifl>—1.

¢) Suppose (%) =0and A =Qo Ny ,p, then
Co = 0.

d) Suppose (%) = 1. Then for s € {1, s2, 5281, $28152}

B(h(1,0)W_, !

2—;/3818) = mB(h(l, O)W_b;;ﬁ 818).

e) Suppose (%) =1 and wA((1,@)) = —1.

1.
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ii.
ifl < —1;
B(h(l,o)w%sl lUB W_b+\/251) 1fl 2 0

iii.

0, ifl < -1
B(h(l,0)W _y vz s152) LA 0B(W_yyas1), if1>0.
2¢c

iv.

ifl < -2
B(h(l’O)W’b;cﬁslsQSl { —qul+1 oB(W_,,+\/381), ifl 2 —1.
2¢

0, ifl <=2
B(h(LO)W%C\/gSlSQSlSQ) = WAL 1.0BW _yoyas1), ifl>—1.
2c

f) Suppose (%) =1 and wA((l,w)) # —1.
i
0, ifl < —1;

B(h(l,0)W _, vas1) = _ )
( ( ) [2%,\/381) 7#(117@))14[’000’ if 1 Z 0.

il.

0, ifl < -1,
B(h(l,O)W,b;\/gSLSQ) = {

mz‘lz 0Co, if1>0.
1i1.
0, ifl < -2

B(h(l,O)W, fslsgsl): 1) .
% %ALH_ OC\’O7 lfl Z —1.

iv.

B(h(l,0)W =0 ifis =2
) —b41/d51528182) = w(g— .
b;c 4 WA1+1 000, if [ Z —1.

The above proposition immediately gives us the following corollary.

3.9 Corollary. For any character A, we have

dim(B(A,0)") < 1. (54)

3.3 Well-definedness of B

In this section, we will show that a function B on H(F'), which is right I-invariant, satisfies (11) and with
values on the double coset representatives of R(F)\H (F)/I given by Proposition 3.8, is well defined. Hence,

we have to show that
r18k1 = rosks = B(rlskl) = B(’I“QSkJQ)

for r1,79 € R(F),ki,ks € I and any double coset representative s. This is obtained in the following
proposition.

3.10 Proposition. Let s be any double coset representative from Proposition 3.3 and the values B(s) be
as in Proposition 3.8. Let t € T(F),u € U(F) such that s~*tus € 1. Then

A(t)f(u) =1 or B(s) = 0.

18



y 11X . o lz+by/2 ey oy .
Proof. Let t = [ det(g)* _1] and u = [ 1}, with g = { X ="'X. We will go

g —ay x—by/2|
through various values of double coset representatives s, assume s~ 'tus € I and obtain the conclusion of the
proposition.

Well-definedness for s = h(l,m)s’ with s’ € W: If s’ € {s1, 5182, 518281, $1528152} then we only consider
m > 0. We have x + de =x— %y + cya. (In the split case, we consider the same identity with
(x + y@,x — y@)) Let us assume s tus € I. For any s’, we see that = £ by/2 € o*. If s’ €

{1, 89, 8251, 525152} we have y € p™*+! and 3:—|—\/Ey/2 € 0¥ + P If s’ € {51, 5152,515251, 51525152}
we have y € p™ and z + V/dy/2 € 0* +P™. Hence, for any s', we have g € GLy(0). This implies

, . X I+2m pl+m , X pl+2m+1 pl+m
s = 781 = € |: pl+7n pl :| ) § = 82 = € |: pl+m pl :| ’
, I+2m+1 pl+m+1 , I+2m I+m
3:5231:>XE|: l+m+1 ! :|7 828182:>XE|: I+m l+1:|>
p p p p
, +2m pl+m+1 , [+2m-+1 pl+m+1
s = 818981 = X € [pl+m+1 le }, 5 = 595152,51525152 = X € [pl"’m"’l pl+1

Now looking at the values of B(h(l,m)s’),s’ € W from Proposition 3.8, we get that either B(s) =0
or A(t) =0(u) = 1.

(%) = 0: Let woy be the unique element of o/p such that wy + o & of. Let s = h(l,0)W,,,s’, with s’ €
{51, 5152, 515281, $1825182}. If mg > 1, then we have B(s) = 0. Hence, assume that my = 0. Note that
x+ y@ =1z —by/2 — cwoy + c(wo + )y and a + bwy + cw? € p. We see that s~'tus € I implies that

b
Yy € o, xi(§+cw0)yeox.

Hence, we have = + y@ € 0. This implies that g € GLa(0) and A(t) = 1.

Well-definedness for s = h(l,0)W,,,s1: We have B(h(l,0)W,,,s1) = 0 if [ < —1. Hence, assume
that [ > 0. In this case, we get

_ Lyl
[ 1 l}gX[l iﬂo} € L};l pl} C [00] and hence 6(u) = 1.

—Wo p 00

Well-definedness for s = h(l,0)W,,,s182: We have B(h(l,0)W,,,s152) = 0if | < —2. Hence, assume
that [ > —1. In this case, we get

1 1 —wp pt p!
[—wol}gX[ 1 }e Lﬂl plet
If I > 0, then we get 6(u) = 1, as required. If [ = —1, then let

1 L—wo| _ |x1 22 . .
[U’O JQX[ 1 }_[Ism]’wwhxl’xz’m?’ew 0,74 € 0.

Set 1 = 2+ (b/2+ cwo)y, €2 = & — (b/2+ cwg)y. Using the fact that X is symmetric and 33, € p,
we conclude that xze; — x269 € 0. Now 0(u) = ¥ (tr(SX)) is equal to

¢(detl(g) (a((x n b?y)xl —yc(zz +wozy)) + byar: + (z + b?y)(xg + wor1))
+elyalzz +woy) + (z + %y)(w%:vl + wo (@ + 73) + 7)) ))
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1

b
— ¢(m ((m + Ey)(xlﬁgjo +cxy) + xgﬁgjoyc — mgﬁgoyc + (z2e2 — z3€1)Cwy

+ 1'361(b —+ 2C’ZUO)>)
=1

Here, we have used that x3e; — z2e5 € 0,04 2cwy € p and ¥ is trivial on o.

Well-definedness for s = h(l,0)Wy,,s15251: We have B(h(l,0)Wy,s15251) = 0 if [ < —2. Hence,
assume that [ > —1. In this case, we get

1 1 —w pl +1
[—wol}gX[ 10} € [lerl El+1 .

If I > 0, then we get (u) = 1, as required. If [ = —1, then using similar arguments (much easier
since z3,x3 € 0) as in the case s = h(l,0)W,,,$152, we can conclude that 6(u) = 1.

Well-definedness for s = h(l,0)Wy,,s1525152: We have B(h(l,0)W,,s1525152) = 0if I < —2. Hence,
assume that [ > —1. In this case, we get

1 1— 141 141 00
[—wo 1}9)([ 100} € [El+l Ez+1} C [0 a] and hence 0(u) = 1.

(%) =1: Let w = (=b =+ V/d)/(2c). Note that a + bw + cw® € p. Let s = h(l,0)W,s’, with s’ €

{81, 8182, 818281, s1828182}. If mg > 1, then we have B(s) = 0. Hence, assume that mg = 0. We
see that s~'tus € I implies that

d d d
y € a,:r:l:yg € 0*, which implies that (x + %,x - %) €o;.

Hence, we get A(t) = 1. Also, = + %y =x+ @ — c(%ﬁ)y € 0, and hence, x + %y € o. This gives
us g € Mz(0). Since det(g) = (= + y@)(x - y@) € 0*, we get g € GLy(0).

Well-definedness for s = h(l,0)W,,s',w = %C‘/E and s’ = s1, s152: We have B(h(l,0)W,,s") =0 if
I < —1. Hence, assume that [ > 0. In this case, we get

plp! o
_ /ANAE lfS = 51
—w 1 1 p°op e
|:pl pl+1:|, 1f8 = 5182

Since g € GLo(0), we get, X € [z Z}, in either case and hence, 6(u) = 1, as required.

Well-definedness for s = h(l,0)W,,s15251, w = %C\/&: We have B(h(l,0)W,,818281) = 01if I < —2.
Hence, assume that [ > —1. In this case, we get

1 1 —w pl pl+1
{—w J!JX{ 1 ] € LJZ+1 pltt |
If I > 0, then we get 6(u) = 1, as required. If [ = —1, then let

{_lw 1}gX[1 1w] = {2 Z}, with z; € w0, z9, 3,24 € 0.

Imitating the calculation of the well-definedness for s = h(l,0)Wy,, $12, (£> = 0, replacing wq

p
by w = _bzic‘/g, we get
0(u) = w(; ((w + b—y)(mlﬁo + cxy) + z23° ye — x380 ye + (z2€2 — x3€1)cw + w3e1 (b + 2cw)))
det(g) 2 w w w
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=1.

Here, e = 2 + (4 + cw) and €2 = 2 — (£ + cw).

Well-definedness for s = h(l,0)W,, 51828182, w = %C‘/E: We have B(h(l,0)Wy,s1828182) = 0if [ <
—2. Hence, assume that [ > —1. In this case, we get

1 1 —w pl+1 pl+1
{—w 1}9){{ 1 ] € LJZ+1 pltt |
Since g € GL2(0), we get, X € [Z Z}, and hence, 6(u) = 1, as required. [

3.4 Criterion for dim(B(A,0)!) =1

In the previous sections, we have explicitly obtained a well-defined function B, which is right I-invariant
and satisfies (11). The values of B on the double coset representatives of R(F)\H (F)/I were obtained, in
Proposition 3.8, using one or more of the conditions (12)-(14). To show that the function B is actually an
element of B(A,0)!, we have to show that the conditions (12)-(14) are satisfied by B for every h € H(F).
In fact, it is sufficient to show that B satisfies (12)-(14) when h is any double coset representative of
R(F)\H(F)/I. The computations for checking this are long but not complicated. We will describe the
calculation for h = h(l,m) below.

For w,y € o,w,y # 0, we have the matrix identities

1 i 1 w! —w 1 w!
w 1 1 —w~ ! 1
1 —w| 1 51 —w! 1 (55)
1] i —w 1 —w —w™ !l 1
1 1 [t y! —y 1 y!
1 1 1 1
y 1 o 1 52 —y! 1 (56)
| 1 1 1

Using (55) and Lemmas 3.1, 3.2, 3.6, we have

Z B(h(l,m)siWys1) + B(h(l,m)s1) = Z B(h(l,m)Wy,-151) + B(h(l,m)) + B(h(l,m)s1)
weo/p wui‘oéép
= Y B(h(l,m)Wys1) + B(h(l,m)).
wEO/p

By Proposition 3.8, we see, for every value of mg, m, [, (%), that the above quantity is equal to zero. Next,

we have

B(h(l,m)no) = B(h(l,m) h(—1,0)s28182) = B(h(l — 1,m)s28182) = wB(h(l,m)).

w

Here, we have again used Proposition 3.8 and the identities A;_1 ,, = (—wq?®)A;,. Finally, using (56),
1

> B(h(l,m) y 1 | BRm)sy)
yeo/p 1
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= B(h(l,m))+ > B(h(l,m) . $2) + B(h(l,m)s2)
yeo/p 1
0

y#
= B(h(l,m)) + Y ¢law' T ™y)B(h(l,m)s).
y€Eo/p

By Proposition 3.8, if I < —1, then both B(h(l,m)) and B(h(l,m)s3) are equal to zero, and if { > 0, then
B(h(l,m)s2) = —=1/qB(h(l,m)). Hence, in either case, the above quantity is zero.

This shows that, for h = h(l, m), the function B satisfies (12) - (14), as required. The calculation for other
values of h follows in a similar manner. Hence, we get the following theorem.

3.1 Theorem. Let A be a character of L*. Let B(A,0)! be the space of smooth functions on H(F), which
are right I-invariant, satisfy (11) and the Hecke conditions (12) - (14). Then

0, ifA=Q0Ngand (%) € {~1,0};

(57)
1, otherwise.

dim(B(A, 0)") = {
Note that the condition on A, in the case (%) € {—1,0}, follows from Proposition 3.8, iv)a) and iv)c).

3.5 Existence of Bessel model

In this section we will obtain the existence of a (A, §)-Bessel model for 7. In case A is a unitary character, we
will act with the Hecke algebra of H(F) on a non-zero function in B(A, #)!. We will define an inner product
on this Hecke module and also show that the Hecke module has a unique, up to a constant, function which is
right I-invariant (the same function that we started with). This will lead to the proof that the Hecke module
is irreducible and is isomorphic to 7, thus giving a (A, 8)-Bessel model for .

In case A is not unitary (this can happen only if L = F @ F') we will obtain a Bessel model for 7 using the
Whittaker model.

Hecke module

The Hecke algebra H of H(F') is the space of all complex valued functions on H (F') which are locally constant
and compactly supported, with convolution product defined as follows,

(fi* f2)(g) := / fi(h) fa(h™ g)dh, for f1,f € H,g € H(F). (58)
H(F)

We refer the reader to [2] for details on Hecke algebras of p-adic groups and Hecke modules. Let A be a
character of L* such that B(A,0)' # 0. Let B € B(A,6)" be the unique, up to a constant, function whose
values are described in Proposition 3.8. Define the action of f € H on B by

(R(})B)(g) = / F(h)B(gh)dh. (59)
H(F)

This is a finite sum and hence converges for all f. Let
Ve :={R(f)B: f € H}. (60)
Since R(f1)R(f2)B = R(f1 * f2)B, we see that Vp is a Hecke module. Note that every function in Vp

transforms on the left according to A ® 6.
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Inner product on Hecke module

Let us now assume that A is a unitary character. Note that, by the comments in the begining of Sect. 3.2,

if L is a field, then A is always unitary. In this case, we will define an inner product on the space Vg.

Let

us start by computing some volumes required for the calculation of the norm of B. For any double coset
representative s of R(F)\H(F)/I, let us set I, := s 'R(F)s N 1. Using arguments as in Sect. 3.7.1, 3.7.2 of

[9], we get the following lemma regarding the volume of I;.

3.11 Lemma. If (%) =0, then set w = wy, the unique element in o/p such that wo+a & o7 . If(

then let w € {(=b++/d)/(2¢)}. Let 1 > 0.
i) If s € {h(l,m)sy : m > 1} U{h(l,0)Wys1}, then (vol(I,))~! = (1 — (%)q_l)q‘lm‘*‘?’l.
i) If s € {h(l,m) : m > 0} U {h(l,m)s1s2 : m > 1} U {h(l,0)Wy,s182}, then (vol(I,))~!
(%)qfl)q4m+3l+1.

iii) If s € {h(l,m)s2 : m > 0} U {h(l,m)s1s2s1 : m > 1} U {h(l,0)W,, 815281}, then (vol(Is))~!

%)q—l)q4m+3l+2'

iv) If s € {h(l,m)s2s1 : m > 0} U {h(l,m)s1s98182 : m > 1} U {h(l,0)W,, 81528182}, then (vol(Iy))~*

1- <%>q—l)q4m+3l+3'
v) If s € {h(l,m)s25182 : m > 0}, then (vol(I5))~t = (1 — (%)qil)q‘lm*?’”‘l,

3.12 Lemma. The norm

/ h)[2dh
R(F)\
is finite. In particular,
amg—3 .
(= (§)o ) ot Coal?, o 2 1
0 if mo = ,(g):—l OR
(B,B) mo =0, (%) =0,A=Q0Np/p;
vol(I) gq;%)iﬁq*?q\cd : ifmo=0,(%) =0,A#Q0Npp;
-1
2t Y2 D BW_ s, ifmo =0, (£) = LwA((L,®)) = L
5 2 —1 1 .
(1723*3 + (21(17511*3)(11@'(13-("_(21—"_; )|CO| , ifmg =0, (%) =1, A((Lw)) # -1

Here, C,, := B(h(0,m)) and the measure is normalized so that vol(KH) = 1.

Proof. We have

Bh)Pdh= Y / B(R)|2dh = |2/dh
R(F)\H(F) SER(FNH(F)/T R(p)\R(F)sI SER(F )\H AT
_ 2 vol(I)
S YLl

sSER(F)\H(F)/I
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Let us first assume that mg > 1. Recall that A;,, = ¢*™°~*(¢=*)"™(~wq~3)!. By Propositions 3.3, 3.8 and
Lemma 3.11, we get

B,B
( II> (( +1+ o )OS Az gt (g +q+1+ ) S Az, ghm
vo ( ) >0 >0
m>mo—1 m>m0
H(@P+P+d) D AT+ Y A%,mff“”“) |Cino|?
m>mg m>mo—1

Substituting the value of A; ,, and using geometric series, we get the result. The value of (B, B) in the other
cases are computed in a similar manner. =

Let L2(R(F)\H(F),A ® 0) := {¢ : H(F) — C : smooth, ¢(rh) = (A ® 0)(r)¢(h) for r € R(F),h €
F), fR(F)\H(F) | ¢(h) |* dh < oo}. The previous lemma tells us that B € L?(R(F)\H(F),A ® ). It is an

easy exercise to see that, in fact, for any f € H, we have R(f)B € L*(R(F)\H(F),A®0). Now, we see that
Vp inherits the inner product from L?(R(F)\H(F),A ® ). For f1, fo € H, we obtain

(R(f1)B, R(f2)B) = / (R(f1)B)(9)(R(f2)B)(9)dg. (62)

R(F\H(F)

3.13 Lemma. For f € H, define f* € H by f*(g9) = f(g~!). Then we have

(B1, R(f)B2) = (R(f")Bi, Ba), for any B1, Bz € Vp. (63)

Proof. The lemma follows by a formal calculation. [

Irreducibility of Vg

3.14 Lemma. Let V} be the subspace of functions in Vp that are right I-invariant. Then

dim(V3) = 1.

Proof. We know that Vé is not trivial since B € VEI;. Let x1 € 'H be the characteristic function of I and
set f1 := vol(I)"!x1. Then, by definition, any B’ € V}, satisfies R(fi)B’ = B’. Let f € H be such that
B’ = R(f)B = R(f * fi)B. Here, we have used that B € V}. Then

= R(f1)B' = R(f)(R(f * fi)B) = R(fi+ f  f1) B

But fi; * f * fi € Hi, the Iwahori Hecke algebra. Since B is an eigenfunction of Hj, we see that B’ € CB.
Hence, dim(V}) = 1, as required. m

3.15 Proposition. Let 7 = QStgs;,, be the Steinberg representation of H(F'), twisted by an unramified,
quadratic character Q). Let A be a character of L* such that dim(B(A,0)!) = 1. Let Vg be as in (60). If A
is unitary, then Vg is irreducible and isomorphic to .

Proof. Let us assume, to the contrary, that Vp is reducible. Let W be an H-invariant subspace. Let W+
be the complement of W in Vg with respect to the inner product (, ) defined in (62). Using Lemma 3.13,
we see that W is also H-invariant. Write B = By + B, with By € W, B, € W, Let fi be as defined in the
proof of Lemma 3.14. Since W, W+ are H-invariant, we see that R(f;)B; € W and R(f;)B, € W+. Since
B is right I-invariant, we see that By = R(f1)B; and By = R(f1)Bs. By Lemma 3.14, we obtain, either
B = B; or B = B;. Since Vg is generated by B, we have either W = Vg or W = 0. Hence, we see that Vg
is an irreducible Hecke module, which contains a unique, up to a constant, vector which is right I-invariant.
This uniquely characterizes the Steinberg representation of H(F'), and hence, Vi is isomorphic to . ]
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Generic representations have split Bessel models

Let us now assume that A is not a unitary character. This can happen only if L = F & F. In this case, we
will use the fact that QStasp, is a generic representation. We will now show that any irreducible, admissible,
generic representation of H(F') has a split Bessel model.

Let S = {b?? béﬂ be such that b? — 4ac is a square in F*. One can find a matrix A € GLa(0) such that
S = tASA = 1/2 1/2} In this case, T/ (F) := {g € GLa(F) : t9S’g = det(g)S’'} = AT (F)A. The

group Ts/ (F') embedded in H(F') is given by

T
{ Y cxyy € FX)L

T

Let 6’ be the character of U(F') obtained from S” and A’ be the character of T/ (F') obtained from A. Then
it is easy to see that 7 has a (A, 0)-Bessel model if and only if it has a (A’,6')-Bessel model. So, we will

_ 1/2
assume that S = {1/2 }

Let (7, V) be an irreducible, admissible representation of H(F). For c¢1,co € F*, consider the character
ey e, Of the unipotent radical Ny (F') of the Borel subgroup given by

1 = x *

1 *
'(/)01702( 1 Y ) = ’Qb(cl.%‘ + ch)'
-z 1
The representation m of H(F') is called generic if Homy, (p)(7,%¢, ¢,) # 0. In this case there is an associated

Whittaker model W(m, ., .,) consisting of functions H(F) — C that transform on the left according to
Yey cp. FOr W € W(m, 9, ¢,), there is an associated zeta integral

Yy
26wy = [ fwi| T e dsary, (64)
Fx F T 1

This integral is convergent for Re(s) > sg, where s¢ is independent of W ([13], Proposition 2.6.3). More
precisely, the integral converges to an element of C(¢™*), and therefore has meromorphic continuation to all
of C. Moreover, there exists an L-factor of the form

Lom) = grmye Q) €CIX]L Q) =1
such that
ZL((Z’TS) e Clg™?,¢°] for all W € W(m, ¢, 5 )- (65)

(This is proved in [13] Proposition 2.6.4 for 7 with trivial central character.)
3.16 Lemma. Let (7,V) be an irreducible, admissible, generic representation of H(F') with trivial central

character. Let o be a unitary character of F*, and let s € C be arbitrary. Then there exists a non-zero
functional fs , : V — C with the following properties.
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i) For allz,y,z € F andv € V,

1 Ty
feoln(| 1Y ) = dlew) fuo ). (66)
1
ii) For allxz € F* andv €V,
xr
Falnl| 1L o) = o) a2 ), (67)

Proof: We may assume that V = W(m, 9., ¢,). Let so € R be such that Z(s, W) is absolutely convergent
for Re(s) > sg. Then the integral

Yy
Zusw)= [ fwi] Y e dedy (68)

Fx F T 1

is also absolutely convergent for Re(s) > sg, since o is unitary. Note that these are the zeta integrals for
the twisted representation om. Therefore, by (65), the quotient Z, (s, W)/L(s,omn) is in C[g~*,¢°] for all
W € W(m, e, ¢,). Now, for Re(s) > sg, we define

Zy (s, m(w)W) B 1
T Leom where w = 1 . (69)

-1

fs,a(W) =

Straightforward calculations show that (66) and (67) are satisfied. For general s, since the quotient (69) is
entire, we can define f; , by analytic continuation. [

3.17 Proposition. Let (7,V) be an irreducible, admissible, generic representation of H(F) with trivial
central character. Then m admits a split Bessel functional with respect to any character A of T(F') that
satisfies A’FX =1.

Proof: As mentioned earlier, we can take S = [ . Let s € C and o be a unitary character of F'*

1/2
1/2
such that

T

A( ) = o(x) " | o H/2 for all z € F*.

T

Let fs, be as in Lemma 3.16. We may assume that ¢; = 1, so that fs ,(m(u)v) = 8(u)v for all u € U(F') by
(66). We have

T
Fowl| 1 Do) =M@ fe(e)  forallze FX (70)

x
by (67). Since A|,, =1 we in fact obtain f, (7 (t)v) = A(t)fs o (v) for all t € T(F). Hence f, . is a Bessel
functional as desired. n

Let us remark here that, in the split case, for values of s € C outside the range of convergence of the zeta
integral, we do not have an explicit formula for the Bessel functional. This, in turn, is also reflected in the
fact that it is not very easy to define an inner product on the space Vi (defined in (60)), although it is
known that the Steinberg representation is square-integrable.
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Main result on existence and uniqueness of Bessel models

3.2 Theorem. Let m = QStgsp, be the Steinberg representation of H(F), twisted by an unramified
quadratic character Q. Let A be a character of L™ such that A |px= 1. If L is a field, then w has a
(A, 0)-Bessel model if and only if A # Qo Ny ,p. If L is not a field, then w always has a (A, 6)-Bessel model.
In case w has a (A, 0)-Bessel model, it is unique.

In addition, if © has a (A, #)-Bessel model, then the Iwahori spherical vector of w is a test vector for the
Bessel functional if and only if A satisfies the following conditions.

i) Aliyp=1, ie., ¢(A) <1 (see (22) for definition of c(A)).

i) If (%) = 1 and A is unramified, then A((1,w)) # Q(w).

Proof. If 7 has a (A, #)-Bessel model, then it contains a unique vector in B(A,#)!. By Theorem 3.1, the
dimension of B(A,#)! is one, which gives us the uniqueness of Bessel models.

Now we will show the existence of the Bessel model. Let A be a character of L™, with A |px= 1, such that,
if L is a field, A # Qo Np/p . We know, by Proposition 3.1, that dim(B(A, 6)!) = 1. If A is unitary, then
Proposition 3.15 tells us that Vg is a (A, 6)-Bessel model for 7. If A is not unitary, then we use the fact that
7 is a generic representation in the split case. Then Proposition 3.17 gives us the result.

The statement regarding the test vector can be deduced from Proposition 3.8 and the fact that a Bessel
function B corresponds to a test vector if and only if B(1) # 0. L]

4 Integral representation of the non-archimedean local L-function

In this section, using the explicit values of the Bessel function obtained in Proposition 3.8, we will obtain
an integral representation of the L-function for the Steinberg representation m of H(F') twisted by any
irreducible, admissible representation 7 of GLo(F'). For this, we will use the integral obtained by Furusawa
in [4]. Let us briefly describe the setup.

4.1 The unitary group, parabolic induction and the local integral

Let G = GU(2,2; L) be the unitary similitude group, whose F-points are given by
G(F) :={g € GL4(L) : ‘gJg = pa(9)J, pa(g) € F*}, (71)

1o
1,
the subgroup of all matrices that become upper triangular after switching the last two rows and last two
columns. Let P be the standard maximal parabolic subgroup of G(F) with a non-abelian unipotent radical.
Let P = M N be the Levi decomposition of P. We have M = MM M) where

where J = . Note that H(F) = G(F) N GL4(F). As a minimal parabolic subgroup we choose

¢ 1
uOE) (| 1 |icery m@m = © Pleamy,
~ 1)
1 =z 1 w oy
NF ={] ! . 1 Y |iweF yzeL}) (72)
=1 1
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The modular factor of the parabolic P is given by

¢ 1
oo(| - S TS — b - 3 73
P( C_l w ) - | (C):u ‘ (N =« ﬂ7)7 ( )
1 ¥ 6
where | - | is the normalized absolute value on F. Let (7,V;) be an irreducible, admissible representation

of GLy(F'), and let xo be a character of L* such that XO‘FX coincides with w,, the central character of
7. Let us assume that V, is the Whittaker model of 7 with respect to the character ¥»~¢ (we assume that
¢ # 0). Then the representation (X, g) — xo(\)7(g) of L* x GLy(F) factors through {(A\, A1) : A € F*}, and
consequently defines a representation of M (?)(F) on the same space V;. Let x be a character of L* | considered
as a character of M) (F). Extend the representation y x xo x 7 of M(F) to a representation of P(F) by
setting it to be trivial on N(F). If s is a complex parameter, set I(s, x, Xo0,7) = Indgggw‘;ﬂ/z X X X X0 X T).
Let (m,V;) be the twisted Steinberg representation of H(F'). We assume that V; is a Bessel model for =
with respect to a character A ® 6 of R(F'). Let the characters x, xo and A be related by

X(€) = A Q) 'xo(O)7" (74)

Let W#(-,s) be an element of I(s, Y, X0, 7) for which the restriction of W# (-, s) to the standard maximal
compact subgroup of G(F) is independent of s, i.e., W#(-,s) is a “flat section” of the family of induced
representations I(s, x, Xo, 7). By Lemma 2.3.1 of [9], it is meaningful to consider the integral

Z(s) = / W# (nh, 5)B(h) dh, (75)
ROPRH(E)
where
1
a 1
77_ 1 —a . (76)
1

This is the local component of the global integral considered in Sect. 5.2 below.

4.2 The GLy newform
Let us define K9 (p°) = GLy(0) and, for n > 0,

(77)

K (p™) = GLa(0) N {1 :np Oox } .

As above, let (7,V;) be a generic, irreducible, admissible representation of GLa(F’) such that V; is the ¢ ~°-
Whittaker model of 7. It is well known that V; has a unique (up to a constant) vector W), called the
newform, that is right-invariant under K(®) (p™) for some n > 0. We then say that 7 has conductor p”. Let

l
us normalize W) so that W) (1) = 1. We will need the values of W) evaluated at [w 1}, for I > 0.

The following table gives these values (refer Sect. 2.4 [15]).
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r wor| <)
1
a x (3 with «, 8 unramified, a3~" #| |+ q’%%
o X ( with o unramified, 8 ramified, a8~ #| |*! | w,(@)a(w L)g 2
supercuspidal OR ramified twist of Steinberg 1 ifl=0
OR o x 8 with «, 8 ramified, ="' #||*! 0 if1>0
V'Star,, with ' unramified Q' (wh)g™

We extend W) to a function on M®)(F) via

WM (ag) = xo(@)WM(g),  aeL*, ge GLy(F). (78)

4.3 Choice of A and W#

We will choose a character A of L* such that 7 has a (A, §)-Bessel model and the Iwahori spherical vector
is a test vector for the Bessel functional. Noting that A |px is the central character of m and using Theorem
3.2, we impose the following conditions on A.

1 A|F>< =1

i)
ii) If L is a field, then A # Qo Ny
iii) ¢(A) <

)

iv) If L is not a field and ¢(A) = 0, then wA((1,w)) # —1.

Note that this implies that Al,xq = 1. For n > 1, let I'(!8") be the principal congruence subgroup of the
maximal compact subgroup K¢ := G(o) of G(F), defined by

L(P"):={9e K:g=1 (mod P")}. (79)

We prove the following lemma, which will be crucial for the well-definedness of W# below.

4.1 Lemma. Let (7,V;) be a generic, irreducible, admissible representation of GLo(F') with conductor
p™,m > 0. Set ng = max{1,n} and let

€ M(F) and

>
I

€ N(F).

g\
=
—
—
—<

Suppose we have A :=n~limnn € IT'(P"0). Then we get
i) ¢ €m0 and o/ € 1+ Pro.

! /
i) for any {“} b}] € GU(L,1; L)(F),
c dy

/ b/ /b/ / b/
owor [ B 1a 0] = wod 4 i)

1
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Proof. Using Lemma 2.1 i), it is easy to show that for n >0
z €0+ P" and ax € 0o + P implies x € P". (80)

First note that II'(P") C My(o + P™). Looking at the (4,1), (4,2) coefficient of A, we see that ¢/, ac’ €
o+ . By (80), we obtain ¢’ € ", as required.

Observe that mn € K¢ and ¢/ € gm0 C P implies that ¢,a’,d’ € o). The upper left 2 x 2 block of A is
given by
¢+ az¢ =18
ad —a(C+ az()) d —az( |

We will repeatedly use the following fact:
Ifx€eo+ P, then x =z (mod (o — @)P"°). (81)

For, if x = y + az with y € 0 and 2z € p"°, then z — T = (o — @)z. Applying this to the matrix entries of A,
we get 2( = 2¢ (mod (o — @)P"0), and then

a —a =(a—a)z¢ (mod (a— a)PBm), (—(=(a—a)2¢ (mod (a— a)Pm). (82)
Using ¢ + az¢ = ( + @z( (mod (a — a)P™) and (82), we get from the (2,1) coefficient of A that
(@ =Qla—a)=0 (mod (a—a)p"™).
Hence @’ — ( =0 (mod ™), so that a’¢(~* € 1 + P, as required. This proves part i) of the lemma.

Looking at the (1,2) coefficient of A, we see that z{ € P. Looking at the (1,1) coefficient of A, we see that
€0 +P.

w0 ) = xoma@w |4 B ]| af )
= ACHwC o@w (|5 | ]

— W(l)({all bll])

/ !/
¢y dj

dja dJd
lies in K (©)(pmo). L]

/ /!
Here, we have used the fact that A is trivial on 0™ + 3, xo is trivial on 143" and the matrix [ L b/a ]
Let ng = max{1,n}, as above. Given a complex number s, define the function W#(-,s) : G(F) — C as
follows.

i) If g ¢ M(F)N(F)nIT(P0), then W# (g, s) = 0.
ii) If g = mnnky with m € M(F), n € N(F), k € I, v € ("), then W# (g, s) = W#(mn, s).

/AN
iii) For ¢ € L* and [‘z, g,} e MA(F),
¢ 1
1 a/ b/ B s al b/
we(] L =0 e wo ). e
1 c d

Here u = a/d' —b'c.
By Lemma 4.1, we see that W# is well-defined. It is an element of I(s, X, X0, T)-
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4.4 Support of W#

Let us choose W# as above and B as in Proposition 3.8, with B(1) = 1. Note that B(1) # 0 by the comments
in the begining of Sect. 4.3. Then the integral (75) becomes

Z(sy= Y. > WHh(l,m)t,s)B(h(l,m)t)V;", (84)

l€Z,m>0 t
where t corresponds to the double coset representatives from Proposition 3.3 and
VE™ = vol(R(F)\R(F)h(l, m)tl).

To compute (84), we need to find out for what values of I,m,t is nh(l,m)t in the support of W#. Write
nh(l,m) = h(l,m)n,,, where

1

wma 1

Nm = 1 m=| - (85)

Since h(l,m) € M(F), we need to know for which values of m,t is 1,,t in the support of W#. This is done
in the following lemma.

4.2 Lemma. Let t be any double coset representative from Proposition 3.3. Then n,,t lies in the support,
M NqIT(B™), of W# if and only if m =0 and t = 1.

Proof. Let us first consider the case m > 0. Note that it is enough to show that n,,t ¢ M NnI['(*). For
any double coset representative ¢, we have t~'n,,t = 1 (mod ) and hence t~'n,,t € T'(B). So it is enough
to show that t ¢ M NnI['(B) for any t. Suppose, there are /i € M,n € N such that A = n~lmnt € IT(P).

Write
¢ 1 =z 1

w
a b € M(F), - 1 1 7

HC71 ) n= 1
c d -z 1 1

Note that 7,7 € K¢ and

’ﬁ’L:

o+°‘B Py o+P o+
0+P o+P o+P o+P
TEC 3" ¢ osp o4p
RY RY B oo+P

Using (80), we obtain for each t € W, that ¢/, d’ € B, a contradiction. Let us now consider the case m = 0.
First let ¢ = 1. Taking ' = 72 = 1, we easily see that n € M NnIT' ("), as required. Now assume that
t # 1. Suppose, there are 1 € M,7n € N such that A = n~lmnant € IT(P). Here, 1, 7 are as described
above.

i) Let t = so. We have
(3,1) coefficient of A = d<(4, 1) coefficient of A) —pul L

Since A € IT'(P) implies that the (3,1) and (4,1) coefficient of A is in B, the above identity gives us
u¢ 1 € P, which is a contradiction.

ii) Let t € {s281,525182}. We have
(3,2) coefficient of A = &((4, 2) coefficient of A) — ¢t

Since A € IT'(B) implies that the (3,2) and (4,2) coefficient of A is in ‘B, the above identity gives us
puC~t € P, which is a contradiction.
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Now, let w € o0 be such that o +w ¢ o7 .

i) Let t = Wy,s1. Looking at the (4, 1) coefficient of A, we obtain ¢ € 8. Looking at the (4, 3) coefficient
of A and using o +w ¢ o] gives us d € P, which is a contradiction.

ii) Let t = Wy, s182. Looking at the (4,3) coefficient of A, we see that ¢ € . This implies that the (3, 3)
coefficient of A is in P, a contradiction.

iii) Let t = Wy,s18281, Wi, s1825182. The (3,4), (4,4) coefficient of A gives us ¢,ac € 0 +B. (80) implies
that ¢ € B. Hence, the (4,4) coefficient of A is in 3, a contradiction.

This completes the proof of the lemma. m

4.5 Integral computation

From Lemma 4.2, we see that the integral (84) is equal to

Z(s) =Y _ W#(nh(1,0),5)B(h(l,0))V}"°. (86)

1>0
Arguing as in Sect. 3.5 of [4], we get
_(L)s1
pro_ 1 (5
b+ 2+ ¢?)

From Proposition 3.8 and (83), we get

B(h(,0)) = (~wg™?)' (57)
1 l
WHGh(1,0),8) = 4 Don (O[] (55)
Let us set C' = 7(17(%)(171)(1 We have
T (1+9)2(1+g¢?) "
1 l
2(6) = 0 () o+, (w0 (| ) (59)
1>0

We will now substitute the value of W), from the table obtained in Sect. 4.2, into (89) for all possible GLy
representations 7.

T = a x 3, with «, 8 unramified and af~! # | |*!': We get

1

Z(s) = .
) = i el ) o g ) )
T = a x 3, with o unramified, 3 ramified and a8~ # | [*!: We get
2(s) = : (91)
o= 1+ wa(w1)g3s—2"
T = a x 3, with «a, 8 ramified and a3~ ! # | |[*1: We get
Z(s) = C. (92)
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7 supercuspidal, OR 7 = 'Stgy,, with ' ramified: We get
Z(s) = C. (93)

7 = 'StgL,, with Q' unramified: We get

1
Z(s)=C . 94
(®) 1+ wQ (w=1)g=33 (94)

Let 7 denote the contragradient of the representation 7. We have the following L-functions for the represen-
tation m = QStggp,, with Q unramified and quadratic, twisted by 7.

3

(1—Q@)a(w g 2) 11— Qw)B(w Y)g*2)"!,  if 7 = a x 3, unramified,
aft# | [F
(1—Q@)a(w g 2)L, if 7 = a x [, @ unramified,
3 ramified o371 # | |*;
(1- Q@) (@ Vg )1 - Qo) (w g 27, if 7 = Q'Star,, ' unramified;
1, otherwise.

L(s,mxT) =

(95)
From (90)-(95), we get the following theorem on the integral representation of L-functions.

4.1 Theorem. Let m = QStqsp, be the Steinberg representation of GSp,(F') twisted by an unramified,
quadratic character Q). Let T be any irreducible, admissible representation of GLo(F'). Let Z(s) be the
integral defined in (64). Choose B as in Sect. 3 and W# as in Sect. 4.3. Then we have

1
Z(s) =Y'(s)L(3s + 50 X 7, (96)
where .
iy C=Qw)(w g 372), ifT =Q'StgL,, Y unramified;
Y'(s) = . 2
C, otherwise.
Here, C = (1_(%)(1)(1

(1+9)*(1+4?)

5 Global theory

In the previous section, we computed the non-archimedean integral representation of the L-function L(s, m X
7) for the Steinberg representation of GSp, twisted by any GLy representation. In [4], the integral has
been computed for both 7 and 7 unramified. In [10], the integral has been calculated for an unramified
representation 7 twisted by any ramified GLg representation 7. Also, in [10], the archimedean integral has
been computed for mo, a holomorphic (or limit of holomorphic) discrete series representation with scalar
minimal K-type, and 7, any representation of GL2(R). In this section, we will put together all the local
computations and obtain an integral representation of a global L-function. We will start with a Siegel
cuspidal newform F of weight | with respect to the Borel congruence subgroup of square-free level. We will
obtain an integral representation of the L-function of F' twisted by any irreducible, cuspidal, automorphic
representation 7 of GLy(A). When 7 is obtained from a holomorphic cusp form of the same weight [ as F,
we obtain a special value result for the L-function, in the spirit of Deligne’s conjectures.

5.1 Siegel modular form and Bessel model

Let M be a square-free positive integer and ! be any positive integer. Let

* 0 *x x

X ok % %
B(M):={geSp,(Z):¢g= 00 # # (mod M)}.

0 0 0 =«



Let F be a Siegel newform of weight { with respect to B(M). We refer the reader to Sect. 8 of [14] or [16]
for definition and details on newforms with square-free level. The Fourier expansion of F' is given by

Z A 27rztr(TZ

T>0

where T runs over all semi-integral, symmetric, positive definite 2 x 2 matrices. We obtain a well-defined
function ® = & on H(A), where A is the ring of adeles of Q, by

¢(7hmk0) - ﬂ?(hoo)l det(‘](hoov Z.12))7ZF‘(hoo <i12>)7 (97)
where v € H(Q), hoo € HY(R), ko € [[ H(Z,) [] I,. Let Vi be the space generated by the right translates
ptM p|M

of ®r and let mr be one of the irreducible components. Then mp = ®,, where 7, is a holomorphic discrete
series representation of H(R) of lowest weight ([, 1), for a finite prime p { M, 7, is an irreducible, unramified
representation of H(Q,), and for p | M, m, is a twist €2,Stgsp, of the Steinberg representation of H(Q,) by
an unramified, quadratic character €,,.

For a positive integer D = 0,3 (mod 4), set
20
4 if D=0 (mod 4),
14D 1
i if D=3 (mod 4).

Let L = Q(v/—D) and T'(A) ~ A} be the adelic points of the group defined in (9). Let R(A) = T(A)U(A)
be the Bessel subgroup of H(A). Let A be a character of

T(A)/T@QT®R) [[ 7(Z,) [] 77, (99)
ptM p|M
where, T(Z,) = T(Q,) N GLy(Zy) and T)) = T(Z,) NTY. Here I') = {g € GLy(Zy) : g = [I 2} (mod pZ,)}.

Note that, under the isomorphism (10), T19 corresponds to Z) + por,, where or,, is the ring of integers of
the two dimensional algebra L ®g Q. Let ¢ be a character of Q\A that is trivial on Z, for all primes p and
satisfies 1 (z) = e~ 2™ for all x € R. We define the global Bessel function of type (A, #) associated to ® by

Bg(h) = / (A®6)(r)" ®(rh)dr, (100)
Zr(A)R(Q)\R(A)

where 0([1 )1(]) = ¢(tr(SX)) and ®(h) = ®(h). If By is non-zero, then Bj is non-zero for any ¢ € mp. We

say that mp has a global Bessel model of type (A, 0) if Bg # 0. We shall make the following assumption on
the representation 7.

Assumption: 7 has a global Bessel model of type (A, 6) such that

A1l: —D is the fundamental discriminant of Q(v/—D).
A2: A is a character of (99).
A3: For p | M, if L ®Q, is split and A, is unramified, then Q,(w,)A,((1,w,)) # 1.

5.1 Remark. In [4], [9], [10] and [14], non-vanishing of a suitable Fourier coefficient of F' is assumed, while
in [11], the existence of a suitable global Bessel model for mp is assumed. Let us explain the relation of
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the above assumption to non-vanishing of certain Fourier coefficients of F. Let {t;} be a set of represen-
tatives for (99). One can take t; € GLg(As). Write t; = yjm;k;, with v; € GL2(Q),m; € GL3 (R) and
Kj € [lpar GL2(Zp) [T, 9. Set S; := det(y;)~' ';S(—D)y;. Note that {S;}; is a subset of the set of

representatives of IT°(M) equivalence classes of primitive, semi-integral positive definite 2 x 2 matrices of
discriminant —D.

From [14] or [18], we have, for ho, € H'(R),

B (hoo) = p2(hoo ) det (T (hroo, 1))t e~ 27 tr(S(=D)hec{T) )ZA (101)

and Bg(heo) = 0 for ho & HT(R). Suppose that there is a semi-integral, symmetric, positive definite 2 x 2
matrix T satisfying

i) —D = det(2T) is the fundamental discriminant of L = Q(v/—D).
ii) T is T°(M) equivalent to one of the S;.
iii) The Fourier coefficient A(T) # 0.

Then it is clear from (101) that one can choose a A such that parts A1, A2 of the assumption are satisfied.
If M =1 (as in [4], [9], [10]) or, every prime p | M is inert in L (as in [14]), then {S;}; is the complete set of
representatives of I'(M) equivalence classes and hence, condition i) above implies condition ii) to give the
assumption from [4], [9], [10] and [14]. We have to include part A3 of the assumption to guarantee that the
Iwahori spherical vector in m,, for p | M, is a test vector for the Bessel functional.

Let us abbreviate a(A) = Y A(t;)A(S;). For h € H(A), we have
= mn Bp(hp)

where, By, is as defined in [10], for a finite prime p { M, B, is the spherical vector in the (A,,8,)-Bessel
model for m,, and for p | M, B, is the vector in the (A, 6,)-Bessel model for m, defined by Proposition 3.8
and 3.10. For p < oo, we have normalized the B, so that B,(1) = 1.

5.2 Global induced representation and global integral

Let 7 = ®7, be an irreducible, cuspidal, automorphic representation of GL2(A) with central character w;.
For every prime p < oo, let p"» be the conductor of 7,,. For almost all p, we have n, = 0. Set N = Hp pre.
Choose l; to be any weight occurring in 7o.. Let xo be a character of A} such that xolpx = w, and
X0,00(¢) = ¢* for any ¢ € S. Here, I3 depends on I3 and [ by the formula

Lo -2 if 1 <1y,
27\ -4 ifl>1

as in [10]. The existence of such a character is guaranteed by Lemma 5.3.1 of [10]. Define another character
x of AY by
X(€) = xo(Q)TTA(Q) !

Let I(s, x0,X,7) be the induced representation of G(A) obtained in an analogous way to the local situation
in Sect. 4.1. We will now define a global section fA (g, s). Let us realize the representation 7 as a subspace of
L?(GL2(Q)\GL2(A )) and let f be the automorphic cusp form such that the space of 7 is generated by the
right translates of f The function f corresponds to a cuspidal Hecke newform on the complex upper half
plane Then, f is factorizable. Write f ® fp such that fOO is the function of weight /1 in 7. For p < oo,
f is the unique newform in Tp with f»(1) = 1. Using yo, extend f to a function of GU(1,1; L)(A).
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For a finite prime p, set
G(Zp) if pt MN;
KS = 0((pog,)"*), if p | M;
H(Z,)T((por,)™), if p| N,pt M.

Here, in the second case, n,, o = max(1,n,). Set K¢(M,N) = [] KpG and let K, be the maximal compact
p<oo
subgroup of G(R). Let n be the element of G(Q) defined in (76). Let nas,n be the element of G(A) such
that the p-component is given by 1 for p | MN and by 1 for p4 MN. For s € C, define fo(-,s) on G(A) b
D) falg.s) =0if g & M(A)N (A v Koo KE(M, N).

i) If m = mimg, m; € MD(A), n € N(A), k = kokoo, ko € KG(M, N), koo € Ko, then

fa(mnmagnk, ) = 5é+5<m>x<ml>f<m2>f<km>. (102)

Recall that dp(mimsa) = |Np,q(ma)ps(me) 3.

Here, MM (A), M@ (A), N(A) are the adelic points of the algebraic groups defined by (72) and f is the
function on K defined in [10] as follows

fg) = b(g)h—tdet(J(g,ile)) "t if 1 <ly;
P o) det(J(g,i12) ™, i 1>

Here, we have J(g'g,ils) = [a(g) Q(g) ] As in [10], it can be checked that fa is well-defined. For Re(s)

¢(g) d(g)
large enough we can form the Eisenstein series
E(g,sifa):= >, fa(r9,9). (103)
TEP(Q\G(Q)

In fact, E(g, s; fo) has a meromorphic continuation to the entire plane. In [4], Furusawa studied integrals of
the form

Zogno)= [ Eusfaendn, (104
H(Q)Zu (A)\H(A)
where ¢ € V;. Theorem (2.4) of [4], the “Basic Identity”, states that

Zs.in0)= [ Wiyah.s)Ba(h) dn (105)
R(A\H (A)
where By is the Bessel function corresponding to ¢ and Wy, is the function defined by

1

Wi = [ a1y T|e)ulendn gecia)
Q\A 1

The function Wy, is a pure tensor and we can write Wy, (g,s) =[], W (gp,s). Then we see that WZ is as
defined in [10]. For a finite prime p { M, the W} is the function defined in Sect. 4.5 of [10]. For p | M, the
W} is as in Sect. 4.3. It follows from (105) that

s, fa.®) = [[ Zo(s, W, By),

p<oo
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where
Zy(s, W}, B,) = / W (nh, s)By(h) dh.
R(Qp)\H(Qy)

When p t MN,p < oo, the integral Z, is evaluated in [4]. For p = co or p | N,p t M, the integral Z, is
calculated in Theorems 3.5.1 and 4.4.1 of [10]. For p | M, the integral Z, is calculated in Theorem 4.1.
Putting all of this together we get the following global theorem.

5.1 Theorem. Let F be a Siegel cuspidal newform of weight | with respect to B(M ), where [ is any positive
integer and M is square-free, satisfying the assumption stated in Sect. 5.1. Let ® be the adelic function
corresponding to F', and let mr be an irreducible component of the cuspidal, automorphic representation
generated by ®. Let T be any irreducible, cuspidal, automorphic representation of GLy(A). Let the global
characters x, xo and A, as well as the global section fa € I(s, X, X0, T), be chosen as above. Then the global
integral (104) is given by

L(3s+%,7mx7)

7 Y 27 106
wnt (PI;O[O ) L(6s +1,wr ') L(3s + 1,7 x AZ(A)) o
with 3 J
L (4m) 73t TBs+l—1+4)T(Bs+1-1-%)

— l-‘rlz 35—*
Yoo(s) = a(A)i (e Py I(3s+1— 4 -1

(107)

Here, AZ(A) is the automorphic representation of GLa(A) obtained from A via automorphic induction. The
factor Y,(s) is one for pt MN. For p { M,p | N, the factor Y,(s) is given in Theorem 3.5.1 of [10]. For
p | M, we have Y,(s) = L,(6s + l,w;pl)L(Ss + 1,7, x AZ(Ap))Y, (s), where Y, (s) is given in Theorem 4.1.
The number r and a™t are as in the archimedean calculation in [10], and the constant a(A) is defined in Sect.
5.1.

5.3 Special values of L-functions

In this section, we will use Theorem 5.1 to obtain a special value result for the L-function in the case that 7
corresponds to a holomorphic cusp form of the same weight as F. Let ¥ € S;(V, '), the space of holomorphic
cusp forms on the complex upper half plane by of weight | with respect to I'o(N) and nebentypus x’. Here
N = Hp p™? is any positive integer and ' is a Dirichlet character modulo N. ¥ has a Fourier expansion

[e's)

_ 2mwinz

= E bpe .
n=1

We will assume that ¥ is primitive, which means that ¥ is a newform, a Hecke eigenform and is normalized
so that by = 1. Let w = Quw,, be the character of A*/Q* defined as the composition

= x®Y x ([[ ) — [z — [{@/pz)* = @/Ne X5

p<oo p|N p|N
Let KO(N) := [] K©(pm) [ GL2(Z,) with the local congruence subgroups K© (pm) = GL2(Z,) N
pIN pIN

[1;,5%1) %] as n (7). Let Ko(N) = [T Ko(p™) T] GLaZ,), where Ko(p") = GLa(,) 1 [

Evidently, K(©(N) C Ky(N). Let A be the character of Ky(N) given by

a([¢ 8] = Tentan (108)

p|N

ZP ZP
P"Zy Ty |
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With these notations, we now define the adelic function fy by

et(m)!/? al
Faiomk) = M) SO (MDY,

(vi+0)}  \~yi+6
where v € GL3(Q), m = [?; ?} € GLJ(R) and k € Ko(N). Define a character o, as in the previous
section, with Iy = —I. Using xo, extend fy to a function on GU(1,1;L)(A). We can take f = foin

(102) and obtain the section fy. Now, Lemma 5.4.2 of [10] gives us that, for ¢ € G*(R), the function
wa(g)~tdet(J(g,i12)) E(g, s; fo) only depends on Z = g(ils). Let us define the function & on Hy := {Z €

Ms(C) : i('Z — Z) is positive definite} by the formula

£(7,5) = male) " det(J(g,12)) B9, 5 + ¢ — 51/n), (109)
where g € GT(R) is such that g(ily) = Z. The series that defines £(Z,s) is absolutely convergent for
Re(s) > 3—1/2 (see [7]). Let us assume that [ > 6. Now, we can set s = 0 and obtain a holomorphic Eisenstein
series £(Z,0) on Hy. Let T'%(M, N) := G(Q) N GT(R)KY(M, N). We have I'“(M,N) N H(Q) = B(M).
Then £(Z,0) is a modular form of weight I with respect to I'“(M, N). Its restriction to bz, the Siegel upper
half space, is a modular form of weight  with respect to B(M). By [6], we know that the Fourier coefficients

of £(Z,0) are algebraic.

Set V(M) := [Spy(Z) : B(M)] ~and define, for any two Siegel modular forms F, F; of weight [ with respect
to B(M), the Petersson inner product by

(Fl,F2>:%V(M) / F(Z)Fy(Z)(det(Y)) "3 dX dY.

B(M)\b2
Arguing as in Lemma 5.6.2 of [10] or Proposition 9.0.5 of [14], we get

Z(¢— 50 n®) = (E(2,0), F). (110)
Let T)(M) := {g € Spy(Z) : g = 1 (mod M)} be the principal congruence subgroup of Sp,(Z). Let
us denote the space of all Siegel cusp forms of weight I with respect to T'?) (M) by S;(I'®(M)). For a
Hecke eigenform F € S;(T?(M)), let Q(F) be the subfield of C generated by all the Hecke eigenvalues
of F. From [5, p. 460], we see that Q(F) is a totally real number field. Let S;(T®(M),Q(F)) be the
subspace of S;(I'®) (M)) consisting of cusp forms whose Fourier coefficients lie in Q(F). Again by [5, p. 460],
S;(T®)(M)) has an orthogonal basis {F;} of Hecke eigenforms F; € S;(T'®) (M), Q(F;)). In addition, if F is
a Hecke eigenform such that F € S;(I'® (M), Q(F)), then one can take F; = F' in the above basis. Hence,
let us assume that the Siegel newform F' of weight [ with respect to B(M) considered in the previous section

satisfies F € Sy(I'® (M), Q(F)). Then, arguing as in Lemma 5.4.3 of [9], we have

where Q is the algebraic closure of Q in C. Let (¥, W)y := (SLa(Z) : T1(N))~t [ |¥(2)[*y' 2 dx dy,
1 (N)\by
where I'1(N) := { ZZ] € To(N) : a,d =1 (mod N)}. We have the following generalization of Theorem

4.8.3 of [4].

5.2 Theorem. Let [, M be positive integers such that | > 6 and M is square-free. Let I be a cuspidal Siegel
newform of weight [ with respect to B(M) such that F € S;(T®) (M), Q(F)), satisfying the assumption from
Sect. 5.1. Let ¥ € S;(N, x') be a primitive form, with N = [[ p™», any positive integer, and x’, any Dirichlet
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character modulo N. Let g and 7y be the irreducible, cuspidal, automorphic representations of GSp,(A)
and GL3(A) corresponding to F' and ¥. Then

Lt —1,7p x 7 _
(2 ,TF T\I/) c Q
7r5l_8<Fa F><\117\II>1

(112)

Proof. Arguing as in the proof of Theorem 5.7.1 of [10], together with (110) and (111), we get the theorem.

Special value results like the one above have been obtained in [1], [4], [9], [10] and [14].
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