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Abstract. Based on Furusawa’s theory [7], we present an integral representation for
the L-function L(s, π× τ), where π is a cuspidal automorphic representation on GSp4

related to a holomorphic Siegel modular form, and where τ is an arbitrary cuspidal
automorphic representation on GL2. As an application, a special value result for this
L-function in the spirit of Deligne’s conjecture is proved.

1 Introduction

Let F be a number field and A its ring of adeles. Let π be a cuspidal, automorphic representation of GSp4(A),
and let τ be a cuspidal, automorphic representation of GL2(A). In his paper [7], Furusawa has obtained an
integral representation for the GSp4×GL2 partial L-function LS(s, π×τ) by integrating an Eisenstein series
on a unitary group GU(2, 2;L), where L is a quadratic extension of F , against a cusp form in the space of
π. Furusawa carried out the relevant local p-adic calculations in the case where all the data is unramified,
and the relevant archimedean calculations in the case of “matching weights”. This was sufficient to prove a
special value result for L(s, π × τ) in the case where π and τ come from holomorphic modular forms with
respect to the full modular group.

Furusawa’s theory has been refined and extended in the works [17] and [20]. In [17] it was shown that the
GL2 representation τ can have arbitrarily high conductor, as long as its central character remains unramified.
At the archimedean place, the condition on the weights was relaxed. In [20] it was shown that Furusawa’s
method still works in certain cases of square-free ramification, both for τ and π. These more general integral
representations lead to special value results for a wider class of holomorphic modular forms.

In the present paper we will still assume that π is of the type considered in Furusawa’s original work, but
we will remove any restriction on τ . Over the number field Q, this means that π is related to a holomorphic
Siegel modular form for Sp4(Z), but we will allow arbitrary cuspidal twists π× τ . In a future work we would
like to combine this method with the converse theorem for GL4 (see [4]) in order to lift holomorphic Siegel
modular forms (which are non-generic) to the group GL4, which is one reason why it is important to be able
to twist with arbitrary cuspidal GL2 representations.

Via a “basic identity” proved in [7], Furusawa’s global integrals factor into an Euler product of local zeta
integrals of the form

Z(s,W#
v , Bv) =

∫
R(Fv)\GSp4(Fv)

W#
v (ηh, s)Bv(h) dh. (1)

Here, the function Bv is a vector in a suitable Bessel model of πv. The group R is the corresponding “Bessel
subgroup” of GSp4. The function W#

v is a section in a family of induced representations on the local unitary
group GU(2, 2;L)(Fv) (the element η is a certain fixed element in the unitary group). The main point in
Furusawa’s theory is to choose the functions Bv and W#

v such that the integrals (1) are non-zero for all
places v.

In view of the nature of the representation π, natural choices of Bessel functions Bv present themselves,
namely as the spherical vector at finite places, and as a highest weight vector in the archimedean case. The
“correct” choice of section W#

v is more delicate. For a finite place v, the choice of W# in [17] or [20] is a bit
ad hoc and hence not applicable to the case of general τv. Here, we will obtain a more natural and canonical
choice which works for all representations τv and leads to a much simplified integral calculation in the cases
of overlap with [17]. We shall prove that the relevant induced representation on GU(2, 2;L)(Fv) admits a sort
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of local newform theory with respect to a certain sequence of compact-open subgroups (Theorem 3.4.5). The
minimal level coincides with that of τv, the local GL2 representation from which the induced representation
is constructed. Moreover, at this minimal level, the space of invariant vectors is one-dimensional. In this
sense there is a unique local newform and we let W#

v be this newform. We believe that this choice of local
vector in the ramified case is, conceptually, one of the most important contributions of this paper. We hope
that it will shed some light on ramified integral calculations in different settings.

Our choice of section in the archimedean case is novel as well, which allows us to remove a certain assumption
on the GSp4 weight (condition (4.3.3) in [7] and Assumption 2 in [17], 5.1). But more importantly, the current
approach works for non-matching parity in the GSp4 and GL2 weights. Hence, for a real place and suitable
W#
v , the local integrals (1) are always non-zero. The precise value of the integral is given in Theorem 4.4.1,

which is our archimedean main theorem.

In the final part of this paper we demonstrate how to apply the local theorems in order to derive a global
integral representation for L(s, π× τ), where the cuspidal automorphic representation π of GSp4(AQ) comes
from a holomorphic Siegel modular form, and τ is an arbitrary cuspidal, automorphic representation of
GL2(AQ). Theorem 5.5.1 contains the precise result in the case that τ comes from a holomorphic elliptic
cusp form of the same weight (even though such a restriction on τ is not necessary). We further use this
integral representation to prove a special value result for L(s, π× τ); see Theorem 5.7.1. Results of this kind
have appeared in [1], [7] and [20]. The special value result of this paper substantially adds to the previously
known cases, in the sense that it allows elliptic modular forms (with the same weight) of any level and
nebentypus. In particular, we allow the weights to be odd (the smallest possible odd weight for a full level
cuspidal Siegel modular form is 35).

After some definitions and preliminary remarks, we review Furusawa’s general theory in Sect. 2.5. Following
this we develop the non-archimedean theory. The main result here is the local integral representation
Theorem 3.5.1, but the existence of a “local newform” in certain induced representations stated in Theorem
3.4.5 is possibly of independent interest. For example, the uniqueness of the distinguished vector is helpful
in proving a functional equation, which will be the topic of a future work. After the non-archimedean theory
we develop the archimedean theory, with the local integral representation Theorem 4.4.1 as the archimedean
main result. The final sections contain the global applications mentioned above.

We would like to thank Abhishek Saha, with whom we had several helpful discussions on the subject of this
paper.

2 General setup

In this section, we will recall the basic definitions as stated in Sect. 2 of [17]. For simplicity we will make
all definitions over a local field, but it is clear how to define the corresponding global objects. Let F be a
non-archimedean local field of characteristic zero, or F = R. We fix three elements a, b, c ∈ F such that
d := b2 − 4ac 6= 0. Let

L =

{
F (
√
d) if d /∈ F×2,

F ⊕ F if d ∈ F×2.
(2)

In case L = F ⊕F , we consider F diagonally embedded. If L is a field, we denote by x̄ the Galois conjugate
of x ∈ L over F . If L = F ⊕ F , let (x, y) = (y, x). In any case we let N(x) = xx̄ and tr(x) = x+ x̄.

2.1 The unitary group

We now define the symplectic and unitary similitude groups. Let H = GSp4 and G = GU(2, 2;L) be the
algebraic F -groups whose F -points are given by

H(F ) = {g ∈ GL4(F ) : tgJg = µ(g)J, µ(g) ∈ F×},
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G(F ) = {g ∈ GL4(L) : tḡJg = µ(g)J, µ(g) ∈ F×},

where J =
[

12

−12

]
. Note that H(F ) = G(F ) ∩ GL4(F ). As a minimal parabolic subgroup we choose

the subgroup of all matrices that become upper triangular after switching the last two rows and last two
columns. Let P be the standard maximal parabolic subgroup of G(F ) with a non-abelian unipotent radical.
Let P = MN be the Levi decomposition of P . We have M = M (1)M (2), where

M (1)(F ) = {


ζ

1
ζ̄−1

1

 : ζ ∈ L×}, (3)

M (2)(F ) = {


1

α β
µ

γ δ

 : α, β, γ, δ ∈ L×, µ = ᾱδ − βγ̄ ∈ F×}, (4)

N(F ) = {


1 z

1
1
−z 1




1 w y
1 y

1
1

 : w ∈ F, y, z ∈ L}. (5)

Note that M (2)(F ) ∼= GU(1, 1;L)(F ), where GU(1, 1;L) is defined analogously to G = GU(2, 2;L). The
modular factor of the parabolic P is given by

δP (


ζ

1
ζ̄−1

1




1
α β

µ
γ δ

) = |N(ζ)µ−1|3 (µ = ᾱδ − βγ̄), (6)

where | · | is the normalized absolute value on F . By Lemma 2.1.1 of [17], the map

L× ×GL2(F ) −→ GU(1, 1;L)(F ), (7)

(λ,
[
α β
γ δ

]
) 7−→ λ

[
α β
γ δ

]
,

is surjective with kernel {(λ, λ−1) : λ ∈ F×}. Hence, if τ is a representation of GL2(F ), and if χ0 is
a character of L× such that χ0

∣∣
F×

coincides with the central character of τ , then we can extend τ to a
representation of GU(1, 1;L)(F ) by

τ(λ
[
α β
γ δ

]
) = χ0(λ)τ(

[
α β
γ δ

]
). (8)

This construction will be used frequently in the following. Every irreducible, admissible representation of
GU(1, 1;L)(F ) is of the form (8).

2.2 The Bessel subgroup

Recall that we fixed three elements a, b, c ∈ F such that d = b2 − 4ac 6= 0. Let

S =
[
a b

2
b
2 c

]
, ξ =

[
b
2 c
−a −b2

]
.

Then F (ξ) = F + Fξ is a two-dimensional F -algebra isomorphic to L. If L = F (
√
d) is a field, then an

isomorphism is given by x + yξ 7→ x + y
√
d

2 . If L = F ⊕ F , then an isomorphism is given by x + yξ 7→
(x+ y

√
d

2 , x− y
√
d

2 ). The determinant map on F (ξ) corresponds to the norm map on L. Let

T (F ) = {g ∈ GL2(F ) : tgSg = det(g)S}. (9)
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One can check that T (F ) = F (ξ)×. Note that T (F ) ∼= L× via the isomorphism F (ξ) ∼= L. We consider
T (F ) a subgroup of H(F ) via

T (F ) 3 g 7−→
[
g

det(g) tg−1

]
∈ H(F ).

Let

U(F ) = {
[

12 X
12

]
∈ H(F ) : tX = X}

and R(F ) = T (F )U(F ). We call R(F ) the Bessel subgroup of H(F ) (with respect to the given data a, b, c).
Let ψ be any non-trivial character F → C×. Let θ : U(F )→ C× be the character given by

θ(
[

1 X
1

]
) = ψ(tr(SX)). (10)

Explicitly,

θ(


1 x y

1 y z
1

1

) = ψ(ax+ by + cz). (11)

We have θ(t−1ut) = θ(u) for all u ∈ U(F ) and t ∈ T (F ). Hence, if Λ is any character of T (F ), then the map
tu 7→ Λ(t)θ(u) defines a character of R(F ). We denote this character by Λ⊗ θ.

2.3 Parabolic induction from P (F ) to G(F )

Let (τ, Vτ ) be an irreducible, admissible representation of GL2(F ), and let χ0 be a character of L× such
that χ0

∣∣
F×

coincides with ωτ , the central character of τ . Then the pair (χ0, τ) defines a representation of
M (2)(F ) as in (8) on the same space Vτ . We denote this representation by χ0×τ . If Vτ is a space of functions
on GL2(F ) on which GL2(F ) acts by right translation, then χ0 × τ can be realized as a space of functions
on M (2)(F ) on which M (2)(F ) acts by right translation. This is accomplished by extending every W ∈ Vτ
to a function on M (2)(F ) via

W (λg) = χ0(λ)W (g), λ ∈ L×, g ∈ GL2(F ). (12)

If Vτ is the Whittaker model of τ with respect to the character ψ, then the extended functions W satisfy
the transformation property

W (


1

1 x
1

1

 g) = ψ(x)W (g), x ∈ F, g ∈M (2)(F ). (13)

If s is a complex parameter, χ is any character of L× and χ0 × τ is a representation of M (2)(F ) as above,
we denote by I(s, χ, χ0, τ) the induced representation of G(F ) consisting of functions f : G(F ) → Vτ with
the transformation property

f(


ζ

1
ζ̄−1

1




1
λα λβ

N(λ)(αδ − βγ)
λγ λδ

ng)

=
∣∣N(ζλ−1)(αδ − βγ)−1

∣∣3(s+ 1
2 )
χ(ζ)χ0(λ)τ(

[
α β
γ δ

]
)f(g). (14)
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Now assume that Vτ is the Whittaker model of τ with respect to the character ψ of F . If we associate to each
f as above the function on G(F ) given by Wf (g) = f(g)(1), then we obtain another model IW (s, χ, χ0, τ) of
I(s, χ, χ0, τ) consisting of functions W : G(F )→ C. These functions satisfy

W (


ζ

1
ζ̄−1

1




1
λ

N(λ)
λ

 g) = |N(ζλ−1)|3(s+ 1
2 )χ(ζ)χ0(λ)W (g), ζ, λ ∈ L×, (15)

and

W (


1 z

1
1
−z 1




1 w y
1 y x

1
1

 g) = ψ(x)W (g), w, x ∈ F, y, z ∈ L. (16)

See Sect. 2.5 for more on various models for the induced representation.

2.4 The local integral

Let (π, Vπ) be an irreducible, admissible representation of H(F ). Let the Bessel subgroup R(F ) be as defined
in Sect. 2.2; it depends on the given data a, b, c ∈ F . We assume that Vπ is a Bessel model for π with respect
to the character Λ ⊗ θ of R(F ). Hence, Vπ consists of functions B : H(F ) → C satisfying the Bessel
transformation property

B(tuh) = Λ(t)θ(u)B(h) for t ∈ T (F ), u ∈ U(F ), h ∈ H(F ).

Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ) such that Vτ is the ψ−c–Whittaker
model of τ (we assume c 6= 0). Let χ0 be a character of L× such that χ0

∣∣
F×

= ωτ . Let χ be the character
of L× which satisfies

χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)−1. (17)

Let W#( · , s) be an element of IW (s, χ, χ0, τ) for which the restriction of W#( · , s) to the standard maximal
compact subgroup of G(F ) is independent of s, i.e., W#( · , s) is a “flat section” of the family of induced
representations IW (s, χ, χ0, τ). By Lemma 2.3.1 of [17], it is meaningful to consider the integral

Z(s,W#, B) =
∫

R(F )\H(F )

W#(ηh, s)B(h) dh. (18)

Here,

η =


1
α 1

1 −ᾱ
1

 , where α =


b+
√
d

2c
if L is a field,(b+

√
d

2c
,
b−
√
d

2c

)
if L= F ⊕ F.

(19)

As explained in Sect. 2.5 below, see in particular (29), these local integrals appear in integral representations
for global GSp4×GL2 L-functions. Therefore, being able to make choices for the functions W# and B such
that Z(s,W#, B) is non-zero leads to such integral representations. In the following we shall demonstrate
that this is always possible for local GSp4(F ) representations π that are relevant for the global application
to Siegel modular forms we have in mind. In the real case we shall assume that π is a holomorphic discrete
series representation and that B corresponds to the highest weight vector. In the p-adic case we shall assume
that π is an unramified representation and that B corresponds to the spherical vector.

The generic GL2(F ) representation τ , however, will be completely arbitrary. In the non-archimedean case,
we will restrict our attention to ramified representations τ , since the unramified case has been done in [7]. In
both the archimedean and non-archimedean cases, W# will be a vector in the induced representation which
has a suitable right transformation property under the maximal compact subgroup of H(F ) depending on
that of the Bessel vector B.
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2.5 Review of Furusawa’s theory

In this section we recall some of the theory of [7] relevant for this paper. For simplicity we work over the
ground field Q.

Bessel models

Let a, b, c ∈ Q such that D = 4ac − b2 > 0 is a non-square in Q×. Then L = Q(
√
−D) is an imaginary

quadratic field extension of Q. Let AL be the ring of adeles of L. The adelic points T (A) of the group defined
in (9) satisfies T (A) ∼= A×L and T (Q) ' L×.

We fix the additive character ψ =
∏
p ψp of Q\A for which ψp has conductor Zp for all primes p and for

which ψ∞(x) = e−2πix for x ∈ R. Let U be the unipotent radical of the Siegel parabolic subgroup of H. Let
θ be the character of U(A) given by

θ(
[

1 X
1

]
) = ψ(tr(SX)), X ∈M2(A), X = tX.

As in Sect. 2.2, R = TU is the Bessel subgroup defined by S. Let Λ be a Hecke character of L, i.e., a
character of T (Q)\T (A) ∼= L×\A×L . Then the map

tu 7−→ Λ(t)θ(u), t ∈ T (A), u ∈ U(A),

is a character of R(Q)\R(A), which we denote by Λ⊗ θ.

Let π = ⊗πp be a cuspidal, automorphic representation of H(A). Let Vπ be the space of automorphic
forms realizing π. Assume that a Hecke character Λ as above is chosen such that the restriction of Λ to A×
coincides with ωπ, the central character of π. For each φ ∈ Vπ consider the corresponding Bessel function

Bφ(g) =
∫

ZH(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1φ(rg) dr, (20)

where ZH is the center of H. If one of these integrals is non-zero, then all are non-zero, and we obtain a
model BΛ,θ,ψ(π) of π consisting of functions on H(A) with the obvious transformation property on the left
with respect to R(A). In this case, we say that π has a global Bessel model of type (S,Λ, ψ). It implies that
the local Bessel model BΛp,θp,ψp(πp) exists for every p. In fact, there is a canonical isomorphism⊗

p

BΛp,θp,ψp(πp) ∼= BΛ,θ,ψ(π).

If (Bp)p is a collection of local Bessel functions Bp ∈ BΛp,θp,ψp(πp) such that Bp
∣∣
H(Zp)

= 1 for almost all p,
then this isomorphism is such that ⊗pBp corresponds to the global function

B(g) =
∏
p

Bp(gp), g = (gp)p ∈ H(A). (21)

Global induced representations

The Eisenstein series E(h, s) entering into the global integral (26) below will be defined from a section
in a global induced representation of G(A). We therefore now discuss various models of such induced
representations. Let (τ, Vτ ) be a cuspidal, automorphic representation of GL2(A). Let χ0 be a character of
L×\A×L such that the restriction of χ0 to A× concides with ωτ , the central character of τ . Then, as in (8)
in the local case, χ0 can be used to extend τ to a representation of M (2)(A), denoted by χ0 × τ . Let χ be
another character of L×\A×L , considered as a character of M (1)(A). This data defines a family of induced
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representations I(s, χ, χ0, τ) of G(A) depending on a complex parameter s. The space of I(s, χ, χ0, τ) consists
of functions ϕ : G(A)→ Vτ with the transformation property

ϕ(m1m2ng) = δP (m1m2)s+1/2χ(m1)(χ0 × τ)(m2)ϕ(g), m1 ∈M (1)(A), m2 ∈M (2)(A), n ∈ N(A).

Since the representation τ is given as a space of automorphic forms, we may realize I(s, χ, χ0, τ) as a space
of C-valued functions on G(A). More precisely, to each ϕ as above we may attach the function fϕ on G(A)
given by fϕ(g) = (ϕ(g))(1). Each function fϕ has the property that GL2(A) 3 h 7→ fϕ(hg) is an element of
Vτ , for each g ∈ G(A). Let IC(s, χ, χ0, τ) be the model of I(s, χ, χ0, τ) thus obtained. A third model of the
same representation is obtained by attaching to f ∈ IC(s, χ, χ0, τ) the function

Wf (g) =
∫

Q\A

f
(

1
1 x

1
1

 g)ψ(cx)dx, g ∈ G(A). (22)

The map f 7→Wf is injective since τ is cuspidal. In fact, f can be recovered from Wf via the formula

f(g) =
∑
λ∈Q×

Wf

(
1

λ
λ

1

 g), g ∈ G(A). (23)

Let IW (s, χ, χ0, τ) be the space of all functions Wf . Now write τ ∼= ⊗τp with local representations τp of
GL2(Qp). We also factor χ = ⊗χp and χ0 = ⊗χ0,p, where χp and χ0,p are characters of

∏
v|p L

×
v . Then

there are isomorphisms
I(s, χ, χ0, τ) ∼−−−−→ ⊗pI(s, χp, χ0,p, τp)

∼
y y=

IC(s, χ, χ0, τ) ∼−−−−→ ⊗pI(s, χp, χ0,p, τp)

∼
y y∼

IW (s, χ, χ0, τ) ∼−−−−→ ⊗pIW (s, χp, χ0,p, τp)

(24)

Here, the local induced representation I(s, χp, χ0,p, τp) consists of functions taking values in a model Vτp
of τp; see Sect. 2.3 for the precise definition. Assume that Vτp = W(τp, ψ−cp ) is the Whittaker model of
Vτp with respect to the additive character ψ−cp . If we attach to each fp ∈ I(s, χp, χ0,p, τp) the function
Wfp(g) = fp(g)(1), then we obtain the model IW (s, χp, χ0,p, τp) of the same induced representation. The
bottom isomorphism in diagram (24) is such that if Wp ∈ IW (s, χp, χ0,p, τp) are given, with the property
that Wp

∣∣
G(Zp)

= 1 for almost all p, then the corresponding element of IW (s, χ, χ0, τ) is the function

W (g) =
∏
p≤∞

Wp(gp), g = (gp)p ∈ G(A). (25)

The global integral and the basic identity

As above let (τ, Vτ ) be a cuspidal, automorphic representation of GL2(A), extended to a representation of
M (2)(A) via a character χ0 of L×\A×L . Let further (π, Vπ) be a cuspidal, automorphic representation of

H(A) which has a global Bessel model of type (S,Λ, ψ), where S =
[
a b/2
b/2 c

]
as above. Define the character

χ of L×\A×L by
χ(a) = Λ(ā)−1χ0(ā)−1, a ∈ A×L .

Let f(g, s) be an analytic family in IC(s, χ, χ0, τ). For Re(s) large enough we can form the Eisenstein series

E(g, s; f) =
∑

γ∈P (Q)\G(Q)

f(γg, s).
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In fact, E(g, s; f) has a meromorphic continuation to the entire plane. In [7] Furusawa studied integrals of
the form

Z(s, f, φ) =
∫

H(Q)ZH(A)\H(A)

E(h, s; f)φ(h) dh, (26)

where φ ∈ Vπ. Theorem (2.4) of [7], the “Basic Identity”, states that

Z(s, f, φ) =
∫

R(A)\H(A)

Wf (ηh, s)Bφ(h) dh, η =


1
α 1

1 −ᾱ
1

 , α =
b+
√
d

2c
, (27)

where R(A) is the Bessel subgroup determined by (S,Λ, ψ), and Bφ is the Bessel function corresponding
to φ; see (20). The function Wf ( · , s) appearing in (27) is the element of IW (s, χ, χ0, τ) corresponding to
f( · , s) ∈ IC(s, χ, χ0, τ); see (22) for the formula relating f and Wf .

Factorization

The importance of the basic identity lies in the fact that the integral on the right side of (27) is Eulerian.
Namely, assume that f( · , s) corresponds to a pure tensor ⊗fp via the middle isomorphism in (24). Assume
that Wp ∈ IW (s, χp, χ0,p, τp) corresponds to fp ∈ I(s, χp, χ0,p, τp). Then

Wf (g, s) =
∏

p≤∞

Wp(gp, s), g = (gp)p ∈ G(A),

see (25). Assume further that the global Bessel function Bφ factorizes as in (21). Then it follows from (27)
that

Z(s, f, φ) =
∏
p≤∞

Zp(s,Wp, Bp), (28)

where
Zp(s,Wp, Bp) =

∫
R(Qp)\H(Qp)

Wp(ηh, s)Bp(h) dh. (29)

Furusawa has calculated the local integrals (29) in the case where all the data is unramified. The result is
that

Zp(s,Wp, Bp) =
L(3s+ 1

2 , π̃p × τ̃p)
L(6s+ 1, χp

∣∣
Q×p

)L(3s+ 1, τp ×AI(Λp)× (χp
∣∣
Q×p

))
. (30)

Here, AI(Λp) denotes the representation of GL2(Qp) obtained from the character Λp via automorphic in-
duction. A ∼ over a representation denotes its contragredient. Therefore, up to finitely many factors and
up to L-functions with well-known analytic properties, the global integral (26) represents the GSp4 × GL2

L-function L(s, π̃ × τ̃).

In order to obtain more detailed information about the analytic properties of L(s, π̃ × τ̃), one has to take
the ramified and archimedean places into account as well. As is evident from (29), the choice of local vectors
Wp ∈ IW (s, χp, χ0,p, τp) and Bp ∈ BΛp,θp,ψp(πp) is crucial. Any time these vectors can be chosen such that
all local integrals (29) are non-zero, one obtains an integral representation for L(s, π̃ × τ̃), with possibly
finitely many undesirable Euler factors which need to be controlled as well.

3 Local non-archimedean theory

In this section we evaluate the local zeta integral (18) in the non-archimedean setting. The key steps are
the choices of the vector W# and the actual computation of the integral Z(s,W#, B). The vector B will be
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chosen to be the spherical vector in π. For W#, we want to choose a vector in the induced representation
that is right invariant under KH = H(o). We will show that such vectors exist and will obtain a canonical
one using the newform theory for GL2.

3.1 Notation

Let F be a non-archimedean local field of characteristic zero. Let o, p, $, q be the ring of integers, prime
ideal, uniformizer and cardinality of the residue class field o/p, respectively. Recall that we fix three elements
a, b, c ∈ F such that d := b2 − 4ac 6= 0. Let L be as in (2). We shall make the following assumptions:

(A1) a, b ∈ o and c ∈ o×.

(A2) If d 6∈ F×2, then d is the generator of the discriminant of L/F . If d ∈ F×2, then d ∈ o×.

We set the Legendre symbol as follows,

(L
p

)
:=

 −1, if d 6∈ F×2, d 6∈ p (the inert case),
0, if d 6∈ F×2, d ∈ p (the ramified case),
1, if d ∈ F×2 (the split case).

(31)

If L is a field, then let oL be its ring of integers. If L = F ⊕ F , then let oL = o ⊕ o. Note that x ∈ oL if
and only if N(x), tr(x) ∈ o. If L is a field then we have x ∈ o×L if and only if N(x) ∈ o×. If L is not a field
then x ∈ oL, N(x) ∈ o× implies that x ∈ o×L = o× ⊕ o×. Let $L be the uniformizer of oL if L is a field and
set $L = ($, 1) if L is not a field. Note that, if (Lp ) 6= −1, then N($L) ∈ $o×. Let α ∈ oL be as in (19).
Then, by Lemma 3.1.1 of [17],

oL = o + αo. (32)

We fix the following ideal in oL,

P := poL =


pL if

(
L
p

)
= −1,

p2
L if

(
L
p

)
= 0,

p⊕ p if
(
L
p

)
= 1.

(33)

Here, pL is the maximal ideal of oL when L is a field extension. Note that P is prime only if
(
L
p

)
= −1. We

have Pn ∩ o = pn for all n ≥ 0.

3.2 The spherical Bessel function

Let (π, Vπ) be an unramified, irreducible, admissible representation of H(F ). Then π can be realized as
the unramified constituent of an induced representation of the form χ1 × χ2 o σ, where χ1, χ2 and σ are
unramified characters of F×; here, we used the notation of [21] for parabolic induction. Let

γ(1) = χ1χ2σ, γ(2) = χ1σ, γ(3) = σ, γ(4) = χ2σ.

Then γ(1)γ(3) = γ(2)γ(4) is the central character of π. The numbers γ(1)($), . . . , γ(4)($) are the Satake
parameters of π. The degree-4 L-factor of π is given by

∏4
i=1(1− γ(i)($)q−s)−1.

Let Λ be any character of T (F ) ∼= L×. We assume that Vπ is the Bessel model with respect to the character
Λ⊗ θ of R(F ); see Sect. 2.2. Let B ∈ Vπ be a spherical vector. By [25], Proposition 2-5, we have B(1) 6= 0,
which implies that necessarily Λ

∣∣
o×L

= 1. For l,m ∈ Z let

h(l,m) =


$2m+l

$m+l

1
$m

 . (34)
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Then, as in (3.4.2) of [7],

H(F ) =
⊔
l∈Z

⊔
m≥0

R(F )h(l,m)KH , KH = H(o). (35)

The double cosets on the right hand side are pairwise disjoint. Since B transforms on the left under R(F )
by the character Λ⊗ θ and is right KH -invariant, it follows that B is determined by the values B(h(l,m)).
By Lemma (3.4.4) of [7] we have B(h(l,m)) = 0 for l < 0, so that B is determined by the values B(h(l,m))
for l,m ≥ 0.

In [25], 2-4, Sugano has given a formula for B(h(l,m)) in terms of a generating function. It turns out that
for our purposes we only require the values B(h(l, 0)). In this special case Sugano’s formula reads∑

l≥0

B(h(l, 0))yl =
H(y)
Q(y)

, (36)

where

Q(y) =
4∏
i=1

(
1− γ(i)($)q−3/2y

)
(37)

and

H(y) =


1− q−4Λ($)y2 if

(
L
p

)
= −1,

1− q−2Λ($L)y if
(
L
p

)
= 0,

1− q−2
(
Λ($L) + Λ($$−1

L )
)
y + q−4Λ($)y2 if

(
L
p

)
= 1.

(38)

3.3 Double coset decompositions

Let KG = G(F ) ∩GL4(oL), a maximal compact subgroup. We define the principal congruence subgroups

Γ(Pr) := G(F ) ∩


1 + Pr Pr Pr Pr

Pr 1 + Pr Pr Pr

Pr Pr 1 + Pr Pr

Pr Pr Pr 1 + Pr

 (39)

with P as in (33). For r = 0 we understand that Γ(Pr) = KG.

The main result of this section is the double coset decomposition in Proposition 3.3.5 below. In Proposition
3.3.5, we obtain representatives for P (F )\G(F )/KH and P (F )\G(F )/KHΓ(Pr), and the corresponding
double cosets in KG. This will be crucial for the definition of W#. For this, the first step is r = 1. We have
to treat the case

(
L
p

)
= 1 separately, for which we need Lemma 3.3.1. We then obtain the disjointness of

various double cosets in Lemma 3.3.2. Using these, we obtain the r = 1 case in Lemma 3.3.4. And, finally,
the general case is done in Proposition 3.3.5.

We start with the following lemma, which will be used for the split case of Lemma 3.3.4.

3.3.1 Lemma. Let k be a field. Let P4(k) be the parabolic subgroup of GL4(k) consisting of matrices of
the form 

∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗

 .
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Let GSp4(k) be defined using the symplectic form

[
0 12

−12 0

]
, considered as a subgroup of GL4(k). Then

GL4(k) = P4(k)GSp4(k) t P4(k)t1GSp4(k), where t1 =


1

1
1

1

 .
Proof. It is easy to see that the double cosets represented by 1 and t1 are disjoint. We have to show
that every element of GL4(k) lies in one of these two double cosets. Let W4 be the Weyl group of GL4.
Representatives for the generators of W4 are given by

t1 =


1

1
1

1

 , t2 =


1

1
1

−1

 , t3 =


1

1
1

1

 . (40)

Note that t2 ∈ P4(k). The Bruhat decomposition for GL4(k) implies that

GL4(k) = P4 t P4t1


1 ∗

1
1

1

 t P4t3


1

1
1
∗ 1



t P4t1t2


1 ∗

1 ∗
1

1

 t P4t1t3


1 ∗

1
1
∗ 1

 t P4t3t2


1

1 ∗ ∗
1

1



t P4t1t2t3


1 ∗

1 ∗
1
∗ 1

 t P4t1t3t2


1 ∗

1 ∗ ∗
1

1

 t P4t3t2t1


1 ∗ ∗ ∗

1
1

1



t P4t1t2t3t2


1 ∗

1 ∗ ∗
1
∗ 1

 t P4t1t3t2t1


1 ∗ ∗ ∗

1 ∗
1

1

 t P4t1t2t3t2t1


1 ∗ ∗ ∗

1 ∗
1
∗ 1

 , (41)

where we simply wrote P4 for P4(k). Each of these cosets can be reduced to one of the first two by multiplying
with suitable elements of GSp4(k) on the right. For example,

P4t3


1

1
1
∗ 1

GSp4(k) = P4t3


1 ∗

1
1

1

GSp4(k) = P4t3GSp4(k)

= P4t1t1t3GSp4(k) = P4t1GSp4(k).

Similary,

P4t3t2t1


1 ∗ ∗ ∗

1
1

1

GSp4(k) = P4t2t3t2t1


1 ∗ ∗

1
1

1

GSp4(k) = P4t3t2t3t1


1 ∗ ∗

1
1

1

GSp4(k)

= P4t3t2


1
∗ 1 ∗

1
1

GSp4(k) = P4t3


1

1
1

∗ ∗ 1

GSp4(k). (42)

11



If the element in the lower left corner is zero, then we are reduced to the case worked out above. If the
element in the lower left corner of (42) is non-zero, then, using[

1
x 1

]
=
[
−x−1 1

x

][
1

1

][
1 x−1

1

]
, (43)

we get

P4t3


1

1
1

∗ ∗ 1

GSp4(k) = P4t3


∗ ∗

1
1
∗

 t2t1t2


1 ∗
1

1
1




1
1

1
∗ 1

GSp4(k)

= P4t3t2t1t2


1 ∗

1
1

1




1
1

1
∗ 1

GSp4(k)

= P4t3t2t1t2


1 ∗

1
1

1

GSp4(k) = P4t3t2t1t2


1

1 ∗
1

1

GSp4(k)

= P4t3t2t1t2GSp4(k) = P4t2t3t2t1GSp4(k) = P4t3t2t3t1GSp4(k)
= P4t3GSp4(k) = P4t1GSp4(k).

In a similar way, all cosets occuring in (41) can be reduced to one of the first two after multiplication on the
right with GSp4(k). Finally, for elements of the second coset, we have

P4t1


1 ∗

1
1

1

GSp4(k) = P4t1


1

1
1
∗ 1

GSp4(k) = P4t1GSp4(k).

This concludes the proof.

We return to the group G(F ). Recall that

η =


1
α 1

1 −ᾱ
1

 , α as in (19). (44)

For any m ≥ 0, we let

ηm =


1 0

α$m 1
1 −ᾱ$m

0 1

 . (45)

For systematic reasons, we let η∞ be the identity matrix.

3.3.2 Lemma. Let KG = G(F ) ∩GL4(oL) as before.

i) The subsets of KG given by

P (o)ηmKH , m ∈ {0, 1, 2, . . . ,∞}, (46)

are pairwise disjoint.
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ii) Let r ≥ 1. The subsets of KG given by

P (o)ηmKHΓ(Pr), m ∈ {0, . . . , r}, (47)

are pairwise disjoint.

Proof. i) Let g = pηmk with k ∈ KH and

p =


ζ

a b
ζ̄−1µ

c d




1 z
1

1
−z̄ 1




1 x y
1 ȳ

1
1

 ∈ P (o) (µ = ād− bc̄).

A calculation shows that the (3, 2)-coefficient of gJ tg is given by

(gJ tg)3,2 = aµ$mζ̄−1(ᾱ− α) (48)

and that the (3, 4)-coefficient of gJ tg is given by

(gJ tg)3,4 = cµ$mζ̄−1(ᾱ− α) (49)

(with the understanding that the right sides of (48) and (49) are zero if m =∞). Since at least one of a or
c is in o×L , it follows that the function on KG given by

g 7−→ min
(
v((gJ tg)3,2), v((gJ tg)3,4)

)
(50)

takes different values on the double cosets (46).

ii) The argument is similar as in i); one considers the valuation of the (3, 2)- and the (3, 4)-coefficient of gJ tg
mod Pr.

3.3.3 Lemma. Let r be a positive integer and

γ ∈ G(F ) ∩


o×L Pr oL oL
oL o×L oL oL
Pr Pr o×L oL
Pr Pr Pr o×L

 . (51)

Then γ can be written in the form

γ = pηmh, p ∈ P (o), h ∈ KH , ηm =


1

α$m 1
1 −ᾱ$m

1

 ,
with a uniquely determined m ∈ {0, 1, 2, . . . ,∞}.

Proof. The uniqueness of m follows from Lemma 3.3.2; we will show that such an m exists. The group (51)
has an Iwahori decomposition, enabling us to write

γ =
[

1 B
1

][
A
tĀ−1

][
1
C 1

]
, A ∈

[
o×L Pr

oL o×L

]
, B ∈

[
oL oL
oL oL

]
, C ∈

[
Pr Pr

Pr Pr

]
.

Decomposing A further in the form
[

o×L Pr

o×L

][
1
oL 1

]
, and multiplying on the left with an appropriate element

of P (o), we may assume that

γ =


1
z 1

1 −z̄
1




1
1

x1 ȳ 1
y x2 1

 , x1, x2 ∈ Pr ∩ F, y ∈ Pr, z ∈ oL.
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Observing that oL = o + αo and multiplying on the right with an appropriate elements of KH , we may
assume that

γ =


1
αz 1

1 −ᾱz
1




1
1
ᾱy 1

αy 1

 , y, z ∈ o. (52)

If y = z = 0, then γ = 1 = η∞, and we are done. Assume that y and z are not both zero. Then the identities
1

1
1

−yz−1 1




1
αz 1

1 −ᾱz
1




1
1
ᾱy 1

αy 1

 =


1
αz 1

1 −ᾱz
1




1
1

−αᾱyz 1
−yz−1 1


(53)

(for yz−1 ∈ o) and
1

1
−1

1 −zy−1




1
αz 1

1 −ᾱz
1




1
1
ᾱy 1

αy 1

 =


1
αy 1

1 −ᾱy
1




1
1

αᾱyz −1
1 −zy−1


(54)

(for zy−1 ∈ o) show that we may assume

γ =


1
αz 1

1 −ᾱz
1

 , z ∈ o. (55)

By using appropriate unit diagonal matrices, we see that such a γ defines the same element of the double
coset space P (F )\G/KH as ηm, where m = v(z).

3.3.4 Lemma. We have the disjoint union

KG = P (o)KHΓ(P) t P (o)ηKHΓ(P). (56)

Proof. The disjointness follows from Lemma 3.3.2 ii). To prove that each element of KG is contained in
one of the double cosets, we will distinguish three cases depending on the value of

(
L
p

)
.

Let us first assume that
(
L
p

)
= −1. In this case, P is the maximal ideal in oL. Using KG/Γ(P) ' G(o/p) and

the Bruhat decomposition of the group G(o/p), we see that a set S of representatives of P (o)\KG/KHΓ(P)
can be chosen from {wb : w ∈W, b ∈ B(o)}. Here, W is the eight element Weyl group of GU(2, 2) and B is
the Borel subgroup. Since wb = (wbw−1)w and w ∈ KH , we see that S can be chosen from the opposite of
the Borel subgroup. Since diagonal elements are in P (o), elements of S can be chosen of the form

1
z 1

1 −z̄
1




1
1

x1 ȳ 1
y x2 1

 , z, y ∈ oL, x1, x2 ∈ o.

Since oL = o + αo and we can modify the elements of S by elements of KH on the right, it follows that the
elements of S can be chosen of the form

1
αz 1

1 −ᾱz
1




1
1
ᾱy 1

αy 1

 , z, y ∈ o.
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Using (53) and (54), we see that the elements of S can be chosen of the form
1
αz 1

1 −ᾱz
1

 , z ∈ o.

Finally, using unit diagonal matrices, we may assume that z ∈ {0, 1}. The assertion follows.

Next, let us assume that
(
L
p

)
= 0. In this case P = p2

L, where pL is the maximal ideal of oL. We also have
oL/pL ∼= o/p, and thus oL = o + pL. Moreover, KG/Γ(pL) ∼= KH/Γ(p), so that

KG = KHΓ(pL).

The coset representatives for Γ(pL)/Γ(P) are given by matrices in KG, where the diagonal entries are in
1+pL and the off-diagonal entries are in pL. It is easy to show that any matrix g in Γ(pL) can be written as a
product g1g2g3, where g1 ∈ U(F )∩Γ(pL), g3 ∈ Ū(F )∩Γ(pL) and g2 is a diagonal matrix in Γ(pL). Here, U(F )
is the unipotent radical of the Borel subgroup and Ū(F ) is the opposite of U(F ). Since U(F ) ∩ Γ(pL) and
diagonal matrices are contained in P (o), and since we can modify coset representatives of P (o)\KG/KHΓ(P)
by elements of KH on the right, such a set S of representatives can be chosen from

1
z 1

1 −z̄
1




1
1
ȳ 1

y 1

 , z, y from a set of representatives for pL/P.

Let w0 ∈ o be the mod p unique element such that α−w0 ∈ pL. Note that α−w0 6∈ P by Lemma 3.1.1 (ii)
of [17]. Hence, we can take the set {(α − w0)x : x ∈ o/p} as representatives of pL/P. Since we can modify
elements of S by elements of KH on the right, we see that S can be chosen from

1
αz 1

1 −ᾱz
1




1
1
ᾱy 1

αy 1

 , z, y from a set of representatives for o/p.

The assertion now follows by imitating the steps in the proof of the case
(
L
p

)
= −1.

Finally, assume that
(
L
p

)
= 1. In this case L = F ⊕ F . Accordingly, we can write every element g ∈ G as a

pair (g1, g2) with matrices g1, g2 ∈ GL4(F ). The condition tḡJg = µ(g)J translates into g2 = µ(g)J−1 tg−1
1 J .

Hence, we obtain an isomorphism

G
∼−→ GL4(F )×GL1(F ),

g = (g1, g2) 7−→ (g1, µ(g)). (57)

Under this isomorphism, the parabolic subgroup P (F ) is mapped onto P4(F )×GL1(F ), where

P4(F ) =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗

 ⊂ GL4(F )

is the parabolic subgroup of GL4(F ) of the same shape as P . The group KG is mapped onto GL4(o)× o×.
The principal congruence subgroup Γ(P) is mapped onto Γ4(p) × (1 + p), where Γ4(p) is the principal
congruence subgroup of level p in GL4(F ). And the group KH = GSp4(o) is mapped onto

KH
4 := {(g, µ(g)) ∈ GL4(F )×GL1(F ) : g ∈ GSp4(o)}.
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Therefore,

P (o)\KG/KHΓ(P) ∼= (P4(o)× o×)\(GL4(o)× o×)/KH
4 (Γ4(p)× (1 + p))

∼= P4(o)\GL4(o)/GSp4(o)Γ4(p)
∼= P4(o/p)\GL4(o/p)/GSp4(o/p).

By Lemma 3.3.1, this double coset space is represented by the elements 1 and t1. The assertion therefore
follows from the easily checked fact that the element η ∈ KG maps to an element representing the same
double coset as t1 in P4(o/p)\GL4(o/p)/GSp4(o/p). This completes the proof.

3.3.5 Proposition. Let ηm be as in (45). Let η∞ be the identity matrix. We have the following disjoint
double coset decompositions.

i)

KG =
⊔

0≤m≤∞

P (o)ηmKH .

ii) For any r ≥ 0,

KG =
⊔

0≤m≤r

P (o)ηmKHΓ(Pr).

iii)

G(F ) =
⊔

0≤m≤∞

P (F )ηmKH .

iv) For any r ≥ 0,

G(F ) =
⊔

0≤m≤r

P (F )ηmKHΓ(Pr).

Proof. Using the Iwasawa decomposition, iii) follows from i) and iv) follows from ii). In view of the
disjointness stated in Lemma 3.3.2, ii) follows from i) by multiplying on the right with Γ(Pr). Hence it is
enough to prove i). The disjointness was already proved in Lemma 3.3.2.

Let g ∈ KG. Then, by Lemma 3.3.4, either g = pγk or g = pηγk, where p ∈ P (o), γ ∈ Γ(P), and k ∈ KH .
In the first case we write γ according to Lemma 3.3.3. In the second case we write ηγ according to Lemma
3.3.3. The assertion follows.

The following lemma shows that the first r − 1 double cosets occuring in i) are the same as those occurring
in ii) of Proposition 3.3.5.

3.3.6 Lemma. For any 0 ≤ m < r, we have

P (o)ηmKHΓ(Pr) = P (o)ηmKH

and
P (F )ηmKHΓ(Pr) = P (F )ηmKH .

Proof. We will prove the second equality; the argument for the first one is the same. By Proposition 3.3.5,
for any r > 0,

G(F ) =
⊔

0≤m<r

P (F )ηmKH tX, X =
⊔

r≤m≤∞

P (F )ηmKH ,

and also
G(F ) =

⊔
0≤m<r

P (F )ηmKHΓ(Pr) t Y, Y = P (F ) ηrKHΓ(Pr).

For m ≥ r, we have ηm ∈ P (F )KHΓ(Pr) = P (F )ηrKHΓ(Pr). Hence X ⊂ Y . Evidently, for m < r, we
have P (F )ηmKH ⊂ P (F )ηmKHΓ(Pr). It follows that P (F )ηmKH = P (F )ηmKHΓ(Pr).
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3.4 New- and oldforms for GU(2, 2)

Using the double coset decompositions from the previous section, we shall determine the structure of the
spaces of vectors in the induced representations I(s, χ, χ0, τ) invariant under the groups KHΓ(Pr), r ≥ 0.
Here, τ is a representation of GL2(F ), and χ, χ0 are appropriately chosen characters of L×; see Sect. 2.3. It
turns out that these spaces of invariant vectors are zero if r < n, where pn is the conductor of τ . If r = n,
then the space of invariant vectors is one-dimensional; in this sense there is a unique newform. For r > n,
the dimensions of the spaces of invariant vectors grow quadratically. We start by recalling some familiar
GL2 theory.

The GL2 newform

We define congruence subgroups of GL2(F ), as follows. For n = 0, let K(0)(p0) = GL2(o). For n > 0, let

K(0)(pn) =
[

1 + pn o
pn o×

]
. (58)

The following result is well known (see [3], [6]).

3.4.1 Theorem. Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ). Then the spaces

Vτ (n) = {v ∈ Vτ : τ(g)v = v for all g ∈ K(0)(pn)}

are non-zero for n large enough. If n is minimal with Vτ (n) 6= 0, then dim(Vτ (n)) = 1. For r ≥ n, we have
dim(Vτ (r)) = r − n+ 1.

If n is minimal such that Vτ (n) 6= 0, then pn is called the conductor of τ , and any non-zero vector in Vτ (n)
is called a local newform.

3.4.2 Lemma. Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ) with conductor pn.
We assume that Vτ is the Whittaker model of τ with respect to the character of F given by ψ−c(x) = ψ(−cx),
where c ∈ o×. Let W (0) be a local newform. Then W (0)(1) 6= 0. If W (0) is normalized such that W (0)(1) = 1,
then the following formulas hold.

i) If τ is a supercuspidal representation, or τ = ΩStGL(2) is a twist of the Steinberg representation with
a ramified character Ω, or τ is a principal series representation α×β with two ramified characters α, β
(such that αβ−1 6= | |±1), then

W (0)(
[
$l

1

]
) =

{
1 if l = 0,

0 if l 6= 0.

ii) If τ = α×β is a principal series representation with an unramified character α and a ramified character
β, then

W (0)(
[
$l

1

]
) =

{
(β($)q−1/2)l if l ≥ 0,

0 if l < 0.

iii) If τ = ΩStGL(2) is a twist of the Steinberg representation with an unramified character Ω, then

W (0)(
[
$l

1

]
) =

{
(Ω($)q−1)l if l ≥ 0,

0 if l < 0.
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iv) If τ = α× β is a principal series representation with unramified characters α and β, then

W (0)(
[
$l

1

]
) =

 q−l/2
l∑

k=0

α($)kβ($)l−k if l ≥ 0,

0 if l < 0.

To prove this lemma, one can use formulas for the local newform with respect to the congruence subgroup

GL2(o) ∩
[

o o
pn 1 + pn

]
(given, amongst other places, in [22]), together with the local functional equation.

An auxiliary lemma

We will derive a lemma which will be used in the proof of Theorem 3.4.5 further below.

3.4.3 Lemma. Let α be as in (19). Let x ∈ oL be such that x ∈ o+Pn and αx ∈ o+Pn for a non-negative
integer n. Then x ∈ Pn.

Proof. Using (32) and (33), first note that o + Pn = o +αpn. Let x = y+αz, with y ∈ o and z ∈ pn. Since
α2 = αb/c−a/c, we get αx = −az/c+α(y+ bz/c). Now, αx ∈ o+Pn implies that y+ bz/c ∈ pn and hence,
y ∈ pn. This proves that x ∈ Pn.

Recall that KG is the maximal compact subgroup of G(F ) and that KH = GSp4(o). Let the principal
congruence subgroups Γ(Pr) of KG be defined as in (39). For m ≥ 0, let ηm be as in (45).

3.4.4 Lemma. Let

m̂ =


ζ

a′ b′

µζ̄−1

c′ d′

 ∈M(F ) and n̂ =


1 z

1
1
−z 1




1 w y
1 y

1
1

 ∈ N(F ).

Let m, r be integers such that r > m ≥ 0. If A := η−1
m m̂n̂ηm ∈ KHΓ(Pr) then c′ ∈ Pr−m and a′ζ̄−1 ∈

1 + Pr−m.

Proof. Suppose A := η−1
m m̂n̂ηm ∈ KHΓ(Pr). First note that KHΓ(Pr) ⊂ M4(o + Pr). Looking at the

(3, 2), (4, 2) coefficients of A, we see that c′, ᾱc′$m ∈ o + Pr. By Lemma 3.4.3, we obtain c′$m ∈ Pr and
hence c′ ∈ Pr−m, as required.

Note that m̂n̂ ∈ KG and c′ ∈ Pr−m ⊂ P implies that ζ, a′, d′ ∈ o×L . The upper left 2× 2 block of A is given
by [

ζ + αzζ$m zζ
αa′$m − α$m(ζ + αzζ$m) a′ − αzζ$m

]
.

We will repeatedly use the following fact:

If x ∈ o + Pr, then x ≡ x̄ (mod (α− ᾱ)Pr). (59)

For if x = y + αz with y ∈ o and z ∈ pr, then x − x̄ = (α − ᾱ)z. Applying this to the matrix entries of A,
we get zζ ≡ z̄ζ̄ (mod (α− ᾱ)Pr), and then

a′ − ā′ ≡ (α− ᾱ)zζ$m (mod (α− ᾱ)Pr), ζ − ζ̄ ≡ (ᾱ− α)zζ$m (mod (α− ᾱ)Pr). (60)

Using ζ + αzζ$m ≡ ζ̄ + ᾱz̄ζ̄$m (mod (α− ᾱ)Pr) and (60), we get from the (2, 1) coefficient of A that

(a′$m − ζ̄$m)(α− ᾱ) ≡ 0 (mod (α− ᾱ)Pr).

Hence a′$m − ζ̄$m ≡ 0 (mod Pr), so that a′ζ̄−1 ∈ 1 + Pr−m, as required.
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New- and oldforms in I(s, χ, χ0, τ)

Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ). We assume that Vτ is the Whit-
taker model of τ with respect to the character of F given by ψ−c(x) = ψ(−cx). Let pn be the conductor of
τ , where n is a non-negative integer. Let W (0) ∈ Vτ (n) be the local newform as in Lemma 3.4.2. Observe
that the central character ωτ is trivial on 1 + pn. We choose any character χ0 of L× such that

χ0|F× = ωτ and χ0|1+Pn = 1. (61)

(for n = 0 we mean that χ0 is unramified). Given an unramified character Λ of L×, we define the character
χ of L× by the formula

χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)−1. (62)

Let I(s, χ, χ0, τ) be the parabolically induced representation of G(F ) as defined in Sect. 2.3. Explicitly, the
space of I(s, χ, χ0, τ) consists of functions W : G(F )→ C with the transformation properties (15) and (16).
The following result shows that there is an essentially unique vector in I(s, χ, χ0, τ) right invariant under
KHΓ(Pn). This vector will be our choice of local section which will be used to evaluate the non-archimedean
local zeta integrals (18).

3.4.5 Theorem. Let χ, χ0 and τ be as above. Let pn, n ≥ 0, be the conductor of τ . Let

V (r) := {W ∈ I(s, χ, χ0, τ) : W (gγ, s) = W (g, s) for all g ∈ G(F ), γ ∈ KHΓ(Pr)}.

Then

dim(V (r)) =

{ (r − n+ 1)(r − n+ 2)
2

if r ≥ n,
0 if r < n.

Proof. Let W ∈ V (r). By Proposition 3.3.5, W is completely determined by its values on ηm, 0 ≤ m ≤ r.

Let r ≥ m ≥ 0. For any
[
a′ b′

c′ d′

]
∈ K(0)(pr−m) (see (58)), we have

1
a′ b′

µ
c′ d′

 ∈M(F )N(F ) ∩ ηmKHΓ(Pr)η−1
m , µ = a′d′ − b′c′.

It follows that

W (ηm) = W (


1

a′ b′

µ
c′ d′

 ηm) = τ(
[
a′ b′

c′ d′

]
)W (ηm).

Hence, for 0 ≤ m ≤ r, a necessary condition for vm := W (ηm) is that it is invariant under K(0)(pr−m). Since
the conductor of τ is pn, we conclude that vm = 0 if r −m < n. Therefore dim(V (r)) = 0 for all r < n.

Now suppose that r ≥ n. We will show that, for any m such that r−m ≥ n, if vm is chosen to be any vector
in Vτ (r −m), then we obtain a well-defined function W in V (r). For m = r this is easy to check, since in
this case n = 0 and all the data is unramified. Assume therefore that r > m. We have to show that for
m1n1ηmk1γ1 = m2n2ηmk2γ2, with mi ∈M(F ), ni ∈ N(F ), ki ∈ KH and γi ∈ Γ(Pr),

|N(ζ1) · µ−1
1 |3(s+1/2)χ(ζ1) (χ0 × τ)(

[
a′1 b

′
1

c′1 d
′
1

]
)vm = |N(ζ2) · µ−1

2 |3(s+1/2)χ(ζ2) (χ0 × τ)(
[
a′2 b

′
2

c′2 d
′
2

]
)vm. (63)

We have η−1
m m−1

2 m1n
∗ηm ∈ KHΓ(Pr), where n∗ ∈ N(F ) depends on m1,m2, n1, n2. Let

m̂ := m−1
2 m1 =


ζ

ã b̃
µζ̄−1

c̃ d̃

 , n∗ =


1 z

1
1
−z 1




1 w y
1 y

1
1

 .
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Then ζ ∈ o×L and µ ∈ o×. By definition, ζ1 = ζ2ζ and µ1 = µ2µ. Hence (63) is equivalent to

χ(ζ) (χ0 × τ)(
[
a′1 b

′
1

c′1 d
′
1

]
)vm = (χ0 × τ)(

[
a′2 b

′
2

c′2 d
′
2

]
)vm. (64)

Using Lemma 3.4.4, we get ãζ̄−1 ∈ 1 + Pr−m and c̃ ∈ Pr−m. Hence, using (61) and (62) (with unramified
Λ) and the fact that vm ∈ Vτ (r −m),

χ(ζ) (χ0 × τ)(
[
a′1 b

′
1

c′1 d
′
1

]
)vm = χ(ζ) (χ0 × τ)(

[
a′2 b

′
2

c′2 d
′
2

][
ã b̃

c̃ d̃

]
)vm

= χ(ζ)χ0(ã) (χ0 × τ)(
[
a′2 b

′
2

c′2 d
′
2

][
1 b̃/ã

c̃/ã d̃/ã

]
)vm

= χ0(ζ̄−1)χ0(ã) (χ0 × τ)(
[
a′2 b

′
2

c′2 d
′
2

]
)vm

= (χ0 × τ)(
[
a′2 b

′
2

c′2 d
′
2

]
)vm,

as claimed.

Now, using the formula for dim(Vτ (r −m)) from Theorem 3.4.1 completes the proof of the theorem.

3.5 The zeta integral

As in the previous section let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(F ) with
conductor pn. We assume that Vτ is the Whittaker model of τ with respect to the additive character
ψ−c(x) = ψ(−cx). Let the characters χ0 and χ of L× be as in (61), resp. (62). In the induced representation
I(s, χ, χ0, τ), consider the spaces V (r) of invariant vectors defined in Theorem 3.4.5. Taking r = n in this
theorem, we see that dim(V (n)) = 1. The proof of Theorem 3.4.5 shows that, in the model IW (s, χ, χ0, τ) of
I(s, χ, χ0, τ) consisting of complex-valued functions (see Sect. 2.3), V (n) is spanned by the unique function
W#( · , s) with the following properties.

• If g /∈M(F )N(F )ηKHΓ(Pn), then W#(g, s) = 0.

• If g = mnηkγ with m ∈M(F ), n ∈ N(F ), k ∈ KH , γ ∈ Γ(Pn), then W#(g, s) = W#(mη, s).

• For ζ ∈ L× and
[
a′ b′

c′ d′

]
∈ GU(1, 1;L)(F ),

W#(


ζ

1
ζ̄−1

1




1
a′ b′

µ
c′ d′

 η, s) = |N(ζ) · µ−1|3(s+1/2)χ(ζ)W (0)(
[
a′ b′

c′ d′

]
). (65)

Here µ = ā′d′−b′c̄′ and W (0) is the newform in τ as defined in Lemma 3.4.2, but extended to a function
on GU(1, 1;L)(F ) via the character χ0 as in (12).

It is this function W# for which we will evaluate the local integral Z(s,W#, B) defined in (18). The other
ingredient in this integral is the Bessel function B, which is the spherical vector in the Bessel model of an
unramified representation (π, Vπ) of H(F ) with respect to the character Λ⊗ θ of R(F ); see Sect. 3.2. In the
following we shall assume n > 0, since for unramified τ the local integral has been computed by Furusawa;
see Theorem (3.7) in [7]. Since both functions B and W# are right KH -invariant, it follows from (35) that
the integral (18) is given by

Z(s,W#, B) =
∑
l,m≥0

B(h(l,m))W#(ηh(l,m), s)Vmq3m+3l. (66)
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Here, as in Sect. 3.5 of [7],

Vm =
∫

T (F )\T (F )
h
$m

1

i
GL2(o)

dt.

We will only need the value of V0, which is normalized to be equal to 1. To compute the integral (66), we
need to know for what values of l,m does ηh(l,m) belong to the support of W#. Since ηh(l,m) = h(l,m)ηm,
with h(l,m) ∈ M(F ) and ηm as in (45), all that is relevant is for what values of m is ηm in the support of
W#. The support of W# is P (F )ηKHΓ(Pn) = P (F )ηKH (see Lemma 3.3.6). Hence, by Proposition 3.3.5
iii), only η0 = η is in the support. It follows that the integral (66) reduces to

Z(s,W#, B) =
∑
l≥0

B(h(l, 0))W#(ηh(l, 0), s)q3l. (67)

By (62) and (65),

W#(ηh(l, 0), s) = |N($l)$−l|3(s+1/2)χ($l)W (0)(
[
$l

1

]
)

= q−3(s+1/2)lωπ($−l)ωτ ($−l)W (0)(
[
$l

1

]
). (68)

We will consider three cases for the representation τ according to the values of the newform W (0) given in
Lemma 3.4.2.

Case 1: Let τ be either a supercuspidal representation, or a twist ΩStGL(2) of the Steinberg representation
with a ramified character Ω, or a principal series representation α×β with two ramified characters α, β (such
that αβ−1 6= | |±1). In each of these cases, using Lemma 3.4.2 i), we have

Z(s,W#, B) = 1. (69)

Case 2: Let τ = α × β be a principal series representation with an unramified character α and a ramified
character β. Then, by Lemma 3.4.2 ii) and (68),

Z(s,W#, B) =
∑
l≥0

B(h(l, 0))q−3(s+ 1
2 )lωπ($−l)ωτ ($−l)(β($)q−1/2)lq3l

=
∑
l≥0

B(h(l, 0))
(
q−3s+1(ωπα)−1($)

)l
.

Let $L be the uniformizer of oL if L is a field, and set $L = ($, 1) if L is not a field. If L/F is a ramified
field extension, we assume in addition that NL/F ($L) = $. Then, using the notations from Sect. 3.2,

Z(s,W#, B) =
H(y)
Q(y)

with y = q−3s+1(ωπα)−1($). (70)

Explicitly,

Q(y) =
4∏
i=1

(
1− γ(i)($)q−3/2q−3s+1(ωπα)−1($)

)
=

4∏
i=1

(
1− q−3s− 1

2 (γ(i)α)−1($)
)
, (71)

and

H(y) =


1−

(
Λ(ωπα)−2

)
($)q−6s−2 if

(
L
p

)
= −1,

1− Λ($L)(ωπα)−1($)q−3s−1 if
(
L
p

)
= 0,

(1− Λ($L)(ωπα)−1($)q−3s−1)(1− Λ($$−1
L )(ωπα)−1($)q−3s−1) if

(
L
p

)
= 1.

(72)
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Case 3: Let τ = ΩStGL(2) with an unramified character Ω of F×. Then, using Lemma 3.4.2 iii) and (68), a
similar calculation as in Case 2 shows that

Z(s,W#, B) =
H(y)
Q(y)

with y = q−3s+1/2(ωπΩ)−1($). (73)

We now get the following theorem, which is our main non-archimedean result.

3.5.1 Theorem. Let π be an irreducible, admissible, unramified representation of GSp4(F ) and let τ be an
irreducible, admissible representation of GL2(F ). Let B be the unramified Bessel function given by formula
(36). Let W# be the element of IW (s, χ, χ0, τ) defined in Sect. 3.5. Then the local zeta integral Z(s,W#, B)
defined in (18) is given by

Z(s,W#, B) =
L(3s+ 1

2 , π̃ × τ̃)
L(6s+ 1, χ|F×)L(3s+ 1, τ ×AI(Λ)× χ|F×)

Y (s), (74)

where

Y (s) =



1 if τ = α× β, α, β unramified,
L(6s+ 1, χ|F×) if τ = α× β, α unram., β ram.,

(
L
p

)
= ±1,

OR τ = α× β, α unram., β ram.,(
L
p

)
= 0 and βχL/F ramified,

OR τ = ΩStGL(2), Ω unramified,
L(6s+ 1, χ|F×)

1− Λ($L)(ωπβ)−1($)q−3s−1
if τ = α× β, α unram., β ram.,

(
L
p

)
= 0,

and βχL/F unramified,
L(6s+ 1, χ|F×)L(3s+ 1, τ ×AI(Λ)× χ|F×) if τ = α× β, α, β ramified,

OR τ = ΩStGL(2), Ω ramified,
OR τ supercuspidal.

In (74), π̃ and τ̃ denote the contragredient of π and τ , respectively. The symbol AI(Λ) stands for the GL2(F )
representation attached to the character Λ of L× via automorphic induction, and L(3s+1, τ×AI(Λ)×χ|F×)
is a standard L-factor for GL2 ×GL2 ×GL1.

Proof. If τ = α×β with unramified α and β, then this is Theorem (3.7) in Furusawa’s paper [7]. If τ = α×β
with unramified α and ramified β (Case 2 above), then, from the local Langlands correspondence, we have
the following L-functions attached to the representations π̃× τ̃ of GSp4(F )×GL2(F ) and τ ×AI(Λ)×χ|F×
of GL2(F )×GL2(F )×GL1(F ),

L(s, π̃ × τ̃) =
4∏
i=1

(
1− (γ(i)α)−1($)q−s

)−1 (75)

and

1
L(s, τ ×AI(Λ)× χ|F×)

=



1−
(
Λ(ωπα)−2

)
($)q−2s if

(
L
p

)
= −1,

1− Λ($L)(ωπα)−1($)q−s if
(
L
p

)
= 0 and

βχL/F ram.,
(1− Λ($L)(ωπα)−1($)q−s)(1− Λ($L)(ωπβ)−1($)q−s) if

(
L
p

)
= 0 and

βχL/F unram.,
(1− Λ($L)(ωπα)−1($)q−s)(1− Λ($$−1

L )(ωπα)−1($)q−s) if
(
L
p

)
= 1.

(76)
The desired result therefore follows from (71) and (72). If τ is an unramified twist of the Steinberg repre-
sentation (Case 3 above), then the result was proved in Theorem 3.8.1 of [17]. In all remaining cases (i.e.,
Case 1 above) we have L(s, π̃ × τ̃) = 1, so that the theorem follows from (69). This completes the proof.

22



4 Local archimedean theory

In this section we evaluate the local zeta integral (18) in the real case. As in the non-archimedean case, the
key steps are the choices of the vector W# and the actual computation of the integral Z(s,W#, B).

4.1 Notations

We recall some of the definitions and basic facts from Sect. 4.1 of [17]. Let G = GU(2, 2; C) as in
Sect. 2.1 (with F = R and L = C). Consider the symmetric domains H2 := {Z ∈ M2(C) : i( tZ̄ −
Z) is positive definite} and h2 := {Z ∈ H2 : tZ = Z}. The group G+(R) := {g ∈ G(R) : µ2(g) > 0} acts on
H2 via (g, Z) 7→ g〈Z〉, where

g〈Z〉 = (AZ +B)(CZ +D)−1, for g =
[
A B
C D

]
∈ G+(R), Z ∈ H2.

Under this action, h2 is stable by H+(R) = GSp+
4 (R). The group K∞ = {g ∈ G+(R) : µ2(g) = 1, g〈I〉 = I}

is a maximal compact subgroup of G+(R). Here, I =
[
i
i

]
∈ H2. Explicitly,

K∞ = {
[
A B
−B A

]
: A,B ∈M(2,C), tĀB = tB̄A, tĀA+ tB̄B = 1}.

By the Iwasawa decomposition
G(R) = M (1)(R)M (2)(R)N(R)K∞, (77)

where M (1)(R), M (2)(R) and N(R) are as defined in (3), (4) and (5). A calculation shows that

M (1)(R)M (2)(R)N(R) ∩K∞ = {


ζ

α β
ζ

−β α

 : ζ, α, β ∈ C, |ζ| = 1, |α|2 + |β|2 = 1, αβ̄ = βᾱ}. (78)

Note also that

M (2)(R) ∩K∞ = {


1

α β
1

−β α

 : α, β ∈ C, |α|2 + |β|2 = 1, αβ̄ = βᾱ}, (79)

and that there is an isomorphism

(S1 × SO(2))/{(λ,
[
λ
λ

]
) : λ = ±1} ∼−→M (2)(R) ∩K∞,

(λ,
[
α β
−β α

]
) 7−→


1

λα λβ
1

−λβ λα

 . (80)

For g ∈ G+(R) and Z ∈ H2, let J(g, Z) = CZ + D be the automorphy factor. Then, for any integer l, the
map

k 7−→ det(J(k, I))l (81)

defines a character K∞ → C×. If k ∈M (2)(R)∩K∞ is written in the form (80), then det(J(k, I))l = λle−ilθ,
where α = cos(θ), β = sin(θ). Let KH

∞ = K∞∩H+(R). Then KH
∞ is a maximal compact subgroup, explicitly

given by

KH
∞ = {

[
A B
−B A

]
: tAB = tBA, tAA+ tBB = 1}.
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Sending
[
A B
−B A

]
to A − iB gives an isomorphism KH

∞
∼= U(2). Recall that we have chosen a, b, c ∈ R

such that d = b2 − 4ac 6= 0. In the archimedean case we shall assume that d < 0 and let D = −d. Then
R(
√
−D) = C. The group T (R) defined in (9) is given by

T (R) = {
[
x+ yb/2 yc
−ya x− yb/2

]
: x, y ∈ R, x2 + y2D/4 > 0}. (82)

Let

T 1(R) = T (R) ∩ SL(2,R) = {
[
x+ yb/2 yc
−ya x− yb/2

]
: x, y ∈ R, x2 + y2D/4 = 1}. (83)

We have T (R) ∼= C× via
[
x+ yb/2 yc
−ya x− yb/2

]
7→ x+ y

√
−D/2. Under this isomorphism T 1(R) corresponds

to the unit circle. We have

T (R) = T 1(R) · {
[
ζ
ζ

]
: ζ > 0}. (84)

As in [7], p. 211, let t0 ∈ GL2(R)+ be such that T 1(R) = t0SO(2)t−1
0 . We will make a specific choice of t0

when we choose the matrix S =
[
a b/2
b/2 c

]
below. It is not hard to see that

H(R) = R(R) ·
{λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
 : λ ∈ R×, ζ ≥ 1

}
·KH
∞. (85)

Here, R(R) = T (R)U(R) is the Bessel subgroup. One can check that all the double cosets in (85) are disjoint.

4.2 The Bessel function

Recall that we have chosen three elements a, b, c ∈ R such that d = b2 − 4ac < 0. We will now make the

stronger assumption that S =
[
a b/2
b/2 c

]
∈ M2(R) is a positive definite matrix. Set D = 4ac − b2 > 0, as

above. Given a positive integer l ≥ 2, consider the function B : H(R)→ C defined by

B(h) :=

{
µ2(h)l det(J(h, I))−l e−2πi tr(Sh〈I〉) if h ∈ H+(R),
0 if h /∈ H+(R),

(86)

where I =
[
i
i

]
. Note that the function B only depends on the choice of S and l. Recall the character θ of

U(R) defined by θ(
[

1 X
1

]
) = ψ(tr(SX)). It depends on the choice of additive character ψ, and throughout

we choose ψ(x) = e−2πix. Then the function B satisfies

B(tuh) = θ(u)B(h) for h ∈ H(R), t ∈ T (R), u ∈ U(R), (87)

and
B(hk) = det(J(k, I))lB(h) for h ∈ H(R), k ∈ KH

∞. (88)

Property (87) means that B satisfies the Bessel transformation property with the character Λ⊗ θ of R(R),
where Λ is trivial. In fact, by the considerations in [25] 1-3, or by [18] Theorem 3.4, B is the highest
weight vector (weight (−l,−l)) in a holomorphic discrete series representation (or limit of such if l = 2) of
PGSp4(R) corresponding to Siegel modular forms of degree 2 and weight l. By (87) and (88), the function
B is determined by its values on a set of representatives for R(R)\H(R)/KH

∞. Such a set is given in (85).
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4.3 The function W#

Let (τ, Vτ ) be a generic, irreducible, admissible representation of GL2(R) with central character ωτ . We
assume that Vτ =W(τ, ψ−c) is the Whittaker model of τ with respect to the non-trivial additive character
x 7→ ψ(−cx). Note that S positive definite implies c > 0. Let W (0) ∈ Vτ have weight l1. Then W (0) has the
properties

W (0)(gr(θ)) = eil1θW (0)(g), g ∈ GL2(R), r(θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
∈ SO(2), (89)

and

W (0)(
[

1 x
1

]
g) = ψ(−cx)W (0)(g), g ∈ GL2(R), x ∈ R. (90)

Let l2 be an integer of the same parity as l1; further below in (101) we will be more specific. Let χ0 be the
character of C× with the properties

χ0

∣∣
R× = ωτ , χ0(ζ) = ζ−l2 for ζ ∈ C×, |ζ| = 1. (91)

Such a character exists since ωτ (−1) = (−1)l1 = (−1)l2 . We extend W (0) to a function on M (2)(R) via

W (0)(ζg) = χ0(ζ)W (0)(g), ζ ∈ C×, g ∈ GL2(R); (92)

see (12). We will need the values of W (0) at elements
[
t

1

]
for t 6= 0. For this we consider the Lie algebra

g = gl(2,R) and its elements

R =
[

0 1
0 0

]
, L =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, Z =

[
1 0
0 1

]
.

In the universal enveloping algebra U(g) let ∆ = 1
4 (H2 + 2RL + 2LR). Then ∆ lies in the center of U(g)

and acts on Vτ by a scalar, which we write in the form −( 1
4 + ( r2 )2) with r ∈ C. In particular,

∆W (0) = −
(1

4
+
(r

2

)2)
W (0). (93)

If one restricts the function W (0) to
[
t1/2

t−1/2

]
, t > 0, then (93) reduces to the differential equation

satisfied by the classical Whittaker functions. Hence, there exist constants a+, a− ∈ C such that

W (0)(
[
t 0
0 1

]
) =

 a+ωτ ((4πct)1/2)W l1
2 ,

ir
2

(4πct) if t > 0,

a−ωτ ((−4πct)1/2)W− l12 , ir2
(−4πct) if t < 0.

(94)

Here, W± l12 , ir2
denotes a classical Whittaker function; see [2, p. 244], [13]. According to (17), we let χ be

the character of C× given by
χ(ζ) = χ0(ζ̄)−1. (95)

We interpret χ as a character of M (1)(R) ∼= C×. We wish to define a function W# of the form

W#(m1m2nk, s) = δ
s+1/2
P (m1m2)f(k)χ(m1)W (0)(m2), (96)

where m1 ∈ M (1)(R), m2 ∈ M (2)(R), n ∈ N(R) and k ∈ K∞, for some analytic function f on K∞. Any
such W# would be a legitimate section of the induced representation IC(s, χ, χ0, τ) considered in Sect. 2.3.
In addition, we would like W# to satisfy the right transformation property

W#(gk, s) = det(J(k, I))−lW#(g, s) for g ∈ G(R), k ∈ KH
∞. (97)

We need this property so that the function B(g)W#(g, s) will be right invariant under KH
∞; see (88). The

following lemma gives the precise conditions to be satisfied by the function f so that W# is well-defined.
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4.3.1 Lemma. Let f be a function on K∞. For ζ ∈ C, set ζ̂1 =


ζ

1
ζ

1

 and ζ̂2 =


1

ζ
1

ζ

.

For θ ∈ R, set r̂(θ) =


1

cos(θ) sin(θ)
1

− sin(θ) cos(θ)

. We can define a function W#( · , s) on G(R) by formula

(96) if and only if f satisfies, for all k ∈ K∞, ζ ∈ S1 and θ ∈ R, the conditions

f(ζ̂1k) = χ(ζ)f(k), f(ζ̂2k) = χ0(ζ)f(k), (98)

f(r̂(θ)k) = eil1θf(k). (99)

Proof. This is obtained by direct computation.

We will now demonstrate how to obtain a function f on K∞ satisfying all the required conditions. We define
four functions â, b̂, ĉ, d̂ on K∞ by

â(g) = a-coefficient of J(g tg, I), b̂(g) = b-coefficient of J(g tg, I),

ĉ(g) = c-coefficient of J(g tg, I), d̂(g) = d-coefficient of J(g tg, I).

The function J(g, Z) was defined in Sect. 4.1. Here, we have written J(g tg, I) as
[
a b
c d

]
. Since h th = 1 for

all h ∈ KH
∞, each of these functions is right KH

∞ invariant. Calculations show that

â(ζ̂1g) = ζ2â(g), â(ζ̂2g) = â(g), b̂(ζ̂1g) = ζb̂(g), b̂(ζ̂2g) = ζb̂(g),

ĉ(ζ̂1g) = ζĉ(g), ĉ(ζ̂2g) = ζĉ(g), d̂(ζ̂1g) = d̂(g), d̂(ζ̂2g) = ζ2d̂(g).

for ζ ∈ S1, as well as

â(r̂(θ)g) = â(g), b̂(r̂(θ)g) = eiθ b̂(g), ĉ(r̂(θ)g) = e−iθ ĉ(g), d̂(r̂(θ)g) = d̂(g)

for all θ ∈ R.

4.3.2 Lemma. Let l be any integer. Let t1, t2, t3 be integers of the same parity satisfying t1 ≥ t2 ≥ −t3 ≥
−2l − t2. Then there exists a real analytic function f on K∞ with the following properties.

• For all h ∈ KH
∞,

f(gh) = det(J(h, I))−lf(g).

• For all ζ ∈ S1,
f(ζ̂1g) = ζt1f(g), f(ζ̂2g) = ζt2f(g).

• For all θ ∈ R,
f(r̂(θ)g) = eit3θf(g).

In fact, for any integer t ≥ 0 such that all exponents in the function

f(g) = â(g)
t1−t2

2 +t b̂(g)
t2+t3

2 −t ĉ(g)
t2−t3

2 +l−t d̂(g)t det(J(g, I))−l

are non-negative, this function has the desired properties.
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Proof. This follows from the above transformation properties of â, b̂, ĉ, d̂. In order to obtain a well-defined
function, we need to make sure all exponents are non-negative integers.

With l being the weight of our Siegel modular form and l1 being the weight of our function W (0) ∈ Vτ , we
now make the choice t = 0 and t3 = l1 in the above lemma, and t1 = t2 as small as possible. We obtain the
analytic function on K∞ given by

f(g) =
{
b̂(g)l1−l det(J(g, I))−l if l ≤ l1,
ĉ(g)l−l1 det(J(g, I))−l if l ≥ l1.

(100)

This function satisfies (98) with

χ(ζ) = χ0(ζ) = ζl2 , where l2 =
{
l1 − 2l if l ≤ l1,
−l1 if l ≥ l1.

(101)

It also satisfies (99), and can therefore be used to define the function W# on G(R) via

W#(m1m2nk, s) = δ
s+1/2
P (m1m2)χ(m1)W (0)(m2)f(k). (102)

Here, m1 ∈M (1)(R), m2 ∈M (2)(R), n ∈ N(R) and k ∈ K∞. It is clear that W#( · , s) satisfies (97), since f
has the corresponding property. By Lemma 2.3.1 of [17], we have

W#(ηtuh, s) = θ(u)−1W#(ηh, s) (103)

for t ∈ T (R), u ∈ U(R), h ∈ G(R) and

η =


1
α 1

1 −ᾱ
1

 , α =
b+
√
−D

2c
, D = 4ac− b2.

Note that, if l = l1, then W# coincides with the archimedean section used in [7] and [17].

4.4 The local archimedean integral

Let B and W# be as defined in Sect. 4.2 and 4.3. By (87) and (103), it makes sense to consider the integral

Z(s,W#, B) =
∫

R(R)\H(R)

W#(ηh, s)B(h)dh. (104)

Our goal in the following is to evaluate this integral. The function W#(ηh, s)B(h) is right invariant under
KH
∞. Using this fact and the disjoint double coset decomposition (85), we obtain

Z(s,W#, B) = π

∫
R×

∞∫
1

W#
(
η

λt0
[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
 , s)

B
(λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
)(ζ − ζ−3)λ−4 dζ dλ; (105)

see (4.6) of [7] for the relevant integration formulas. The above calculations are valid for any choice of

a, b, c as long as S =
[
a b/2
b/2 c

]
is positive definite. To compute (105), we will fix D = 4ac − b2 and make
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special choices for a, b, c. First assume that D ≡ 0 (mod 4). In this case, let S(−D) :=
[
D
4 0
0 1

]
. Then

η =


1√
−D
2 1

1
√
−D
2
1

, and we can choose t0 =
[

21/2D−1/4

2−1/2D1/4

]
. From (86) we have

B
(λt0

[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]
) =

{
λle−2πλD1/2 ζ2+ζ−2

2 if λ > 0,

0 if λ < 0.
(106)

Next we rewrite the argument of W# as an element of MNK∞,

η

λt0
[
ζ
ζ−1

]
tt−1

0

[
ζ−1

ζ

]


=


λ

D− 1
4

(
ζ2+ζ−2

2

)− 1
2

D
1
4

(
ζ2+ζ−2

2

) 1
2


D 1

4

(
ζ2+ζ−2

2

) 1
2

D−
1
4

(
ζ2+ζ−2

2

)− 1
2





×


1 −iζ2

0 1
1 0
−iζ2 1

[k0 0
0 k0

]
, where k0 = (ζ2 + ζ−2)−1/2

[
ζ−1 iζ
iζ ζ−1

]
∈ SU(2).

With f as in (100), we have

f(
[
k0 0
0 k0

]
) = il+l2

(ζ2 + ζ−2

2

)−(l+l2)

.

Therefore, by (102),

W#
(
η

λt0
[
ζ
ζ−1

]
t−1
0

[
ζ−1

ζ

]
 , s)

= il+l2
(ζ2 + ζ−2

2

)−(l+l2)∣∣∣λD− 1
2
(ζ2 + ζ−2

2
)−1
∣∣∣3(s+ 1

2 )

ωτ (λ)−1W (0)(
[
λD

1
2
(
ζ2+ζ−2

2

)
0

0 1

]
). (107)

Let q ∈ C be such that ωτ (y) = yq for y > 0. It follows from (94), (106) and (107) that

Z(s,W#, B) = il+l2a+πD−
3s
2 −

3
4 + q

4 (4π)
q
2

∞∫
0

∞∫
1

λ3s+ 3
2 +l− q2

(ζ2 + ζ−2

2

)−3s− 3
2 + q

2−l−l2

W l1
2 ,

ir
2

(
4πλD1/2 ζ

2 + ζ−2

2
)
e−2πλD1/2 ζ2+ζ−2

2 (ζ − ζ−3)λ−4 dζ dλ. (108)

The substitution u = (ζ2 + ζ−2)/2 leads to

Z(s,W#, B) = il+l2a+πD−
3s
2 −

3
4 + q

4 (4π)
q
2

∞∫
1

∞∫
0

λ3s− 3
2 +l− q2 u−3s− 3

2 + q
2−l−l2
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W l1
2 ,

ir
2

(4πλD1/2u)e−2πλD1/2u dλ

λ
du.

We will first compute the integral with respect to λ. For a fixed u substitute x = 4πλD1/2u to get

Z(s,W#, B) = il+l2a+πD−3s− l
2 + q

2 (4π)−3s+ 3
2−l+q

∞∫
1

u−6s−2l−l2+q

∞∫
0

W l1
2 ,

ir
2

(x)e−
x
2 x3s− 3

2 +l− q2
dx

x
du.

Using the integral formula for the Whittaker function from [13, p. 316], we get

Z(s,W#, B) = il+l2a+πD−3s− l
2 + q

2 (4π)−3s+ 3
2−l+q

Γ(3s+ l − 1 + ir
2 −

q
2 )Γ(3s+ l − 1− ir

2 −
q
2 )

Γ(3s+ l − l1
2 −

1
2 −

q
2 )

∞∫
1

u−6s−2l−l2+qdu

= il+l2a+πD−3s− l
2 + q

2
(4π)−3s+ 3

2−l+q

6s+ 2l + l2 − q − 1
Γ(3s+ l − 1 + ir

2 −
q
2 )Γ(3s+ l − 1− ir

2 −
q
2 )

Γ(3s+ l − l1
2 −

1
2 −

q
2 )

.

(109)

Here, for the calculation of the u-integral, we have assumed that Re(6s+2l+ l2−q−1) > 0. In all of this we
assumed D ≡ 0 mod 4. If D ≡ 3 mod 4, one can proceed as in Sect. 4.4 of [17]. We summarize the results.

4.4.1 Theorem. Let l and D be positive integers such that D ≡ 0, 3 mod 4. Let S(−D) =
[
D/4

1

]
if

D ≡ 0 mod 4 and S(−D) =
[

(1 +D)/4 1/2
1/2 1

]
if D ≡ 3 mod 4. Let B : GSp4(R) → C be the function

defined in (86), and let W#( · , s) be the function defined in (102). Let l2 ∈ Z be as in (101). Then, for
Re(6s+ 2l + l2 − q − 1) > 0, the local archimedean integral (18) is given by

Z(s,W#, B) = il+l2a+πD−3s− l
2 + q

2
(4π)−3s+ 3

2−l+q

6s+ 2l + l2 − q − 1
Γ(3s+ l − 1 + ir

2 −
q
2 )Γ(3s+ l − 1− ir

2 −
q
2 )

Γ(3s+ l − l1
2 −

1
2 −

q
2 )

.

(110)
Here, q ∈ C is related to the central character of τ via ωτ (y) = yq for y > 0. The number r ∈ C is such that
(93) holds.

Note that, if l ≥ l1, so that l2 = −l1, the formula in the theorem simplifies to

Z(s,W#, B) = il−l1
a+

2
πD−3s− l

2 + q
2 (4π)−3s+ 3

2−l+q
Γ(3s+ l − 1 + ir

2 −
q
2 )Γ(3s+ l − 1− ir

2 −
q
2 )

Γ(3s+ l − l1
2 + 1

2 −
q
2 )

. (111)

In particular, for l = l1, we recover Theorem 4.4.1 of [17]. We point out that in our present approach
the number l1 (the GL2 weight) can be chosen independently of l (the GSp4 weight), including the case of
different parity.

5 An application: special values

Let A be the ring of adeles of Q. Let π be a cuspidal, automorphic representation of H(A) associated with
a holomorphic Siegel cusp form Φ of degree 2. Our local results are strong enough to obtain an integral
representation for the GSp4 × GL2 L-function L(s, π × τ), where τ is an arbitrary cuspidal, automorphic
representation of GL2(A). In the case that τ comes from a holomorphic cusp form of the same weight as
Φ, but with arbitrary level and character, we will use the integral representation to obtain a special L-value
result that fits into the general conjecture of Deligne on special values of L-functions.
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5.1 Siegel modular forms and Bessel models

We would like to apply the theory outlined above to the case where π comes from a holomorphic Siegel
modular form of full level. Following [7], we will impose a condition on the Fourier coefficients of this
modular form guaranteeing the existence of a suitable Bessel model for π. Let Γ2 = Sp4(Z). For a positive
integer l we denote by Sl(Γ2) the space of Siegel cusp forms of degree 2 and weight l with respect to Γ2. Let
Φ ∈ Sl(Γ2) be a Hecke eigenform. It has a Fourier expansion

Φ(Z) =
∑
S>0

a(S,Φ)e2πitr(SZ),

where S runs through all symmetric, semi-integral, positive definite matrices of size two. We shall make the
following assumption3 about the function Φ.

Assumption: a(S,Φ) 6= 0 for some S =
[
a b/2
b/2 c

]
such that b2 − 4ac = −D < 0, where −D is the

discriminant of the imaginary quadratic field Q(
√
−D).

Strong approximation allows for the definition of an adelic function φ = φΦ on H(A) by

φ(γh∞k0) = µ2(h∞)l det(J(h∞, I))−lΦ(h∞〈I〉), (112)

where γ ∈ H(Q), h∞ ∈ H+(R), k0 ∈
∏
p<∞

H(Zp). Here I =
[
i
i

]
, and J(g, Z) = CZ + D for g =

[
A B
C D

]
and Z in the Siegel upper half space. Note that φ has archimedean weight (l, l) and is a lowest weight vector
with respect to the action of the Lie algebra. The complex conjugate function φ̄ has weight (−l,−l) and is
a highest weight vector; if φ lies in a space of automorphic forms realizing a representation π, then φ̄ lies in
a space of automorphic forms realizing the contragredient representation π̃. Let ψ =

∏
p
ψp be the character

of Q\A which has conductor Zp at every finite prime p and such that ψ∞(x) = e−2πix for x ∈ R. Let

S(−D) =



[
D
4 0
0 1

]
if D ≡ 0 (mod 4),[

1+D
4

1
2

1
2 1

]
if D ≡ 3 (mod 4).

(113)

Our quadratic extension is L = Q(
√
−D). Let T be the subgroup of GL2 defined in (9) with S = S(−D).

Let Λ be an ideal class character of Q(
√
−D), i.e., a character of

T (A)/T (Q)T (R)
∏
p<∞

(T (Qp) ∩GL2(Zp)),

to be specified further below. Note that if we write Λ = ⊗vΛv with characters Λv of L×v , then Λ∞ is trivial
and Λv is unramified for each finite v. We define the global Bessel function of type (S,Λ, ψ) associated to φ̄
by

Bφ̄(h) =
∫

ZH(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1φ̄(rh)dr, (114)

where θ(
[

1 X
1

]
) = ψ(tr(S(−D)X)). From [25, (1-17), (1-19), (1-26)], we have, for h∞ ∈ H+(R),

Bφ̄(h∞) = µ2(h∞)l det(J(h∞, I))−l e−2πi tr(S(−D)h∞〈I〉)
h(−D)∑
j=1

Λ(tj)−1a(Sj ,Φ), (115)

3The “Assumption 2” from [7] and [17], namly that l is a multiple of the number of roots of unity in Q(
√
−D), is no longer

needed in our current approach.
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and Bφ̄(h∞) = 0 for h∞ 6∈ H+(R). Here, h(−D) is the class number of Q(
√
−D), the elements tj ,

j = 1, . . . , h(−D), are representatives of the ideal classes of Q(
√
−D), and Sj , j = 1, . . . , h(−D), are

representatives of the SL2(Z) equivalence classes of primitive semi-integral positive definite matrices of dis-
criminant −D corresponding to tj . Thus, by the Assumption above, there exists a Λ such that Bφ̄(I4) 6= 0.
We fix such a Λ. Let B be the space of Bessel functions generated by Bφ̄ under right translation. Let
B = B1⊕ . . .⊕Bj be a decomposition into irreducible components. Each Bi has a holomorphic discrete series
representation with scalar minimal K-type (l, l) as its archimedean component, and a spherical representa-
tion determined by the Hecke p-eigenvalues as its component at a finite prime p. Therefore, all the Bi are
isomorphic. It follows from the uniqueness of local Bessel models that all spaces Bi are identical, i.e., B is
irreducible4. If π = ⊗πp is any of the irreducible components of the automorphic representation generated
by φ, then the representation of H(A) on B is π̃ = ⊗π̃p. Since the vector Bφ̄ is H(Zp) invariant for each
finite p, and a highest weight vector at the archimedean place, it follows that Bφ̄ is a pure tensor. More
precisely,

Bφ̄(g) = a(Λ)
∏
p≤∞

Bp(gp), g = (gp)p ∈ H(A), (116)

where B∞ is the function given in (86), where Bp, p < ∞, is the spherical vector in the local Bessel model

BΛp,θp,ψp(π̃p), normalized by Bp(1) = 1 (see Sect. 3.2), and where a(Λ) =
h(−D)∑
j=1

Λ(tj)a(Sj ,Φ).

5.2 Elliptic modular forms as adelic functions

Let Sl(N,χ′) be the space of holomorphic cusp forms on the complex upper half plane h1 of weight l with
respect to Γ0(N) and nebentypus χ′. Here N =

∏
p p

np is any positive integer and χ′ is a Dirichlet character
modulo N . Then Ψ ∈ Sl(N,χ′) satisfies

Ψ
(az + b

cz + d

)
= χ′(d)(cz + d)lΨ(z) for z ∈ h1 and

[
a b
c d

]
∈ Γ0(N) (117)

and has a Fourier expansion

Ψ(z) =
∞∑
n=1

bne
2πinz. (118)

We will assume that Ψ is primitive, which means that Ψ is a newform, a Hecke eigenform, and is normalized
so that b1 = 1. We will now define a function fΨ on GL2(A) associated to Ψ. For this, let ω = ⊗ωp be the
character of A×/Q× defined as the composition

A× = Q× × R×+ ×
( ∏
p<∞

Z×p
)
−→

∏
p|N

Z×p −→
∏
p|N

(Zp/pnpZp)× ∼= (Z/NZ)×
χ′−→ C×.

By definition, for primes p - N , the local character ωp of Q×p is unramified and satisfies χ′(p) = ωp(p)−1.
Furthermore, ω∞ is trivial on R×+ and ω∞(−1) = (−1)l. For primes p|N , ωp is trivial on 1 + pnpZp.
Furthermore, for any positive integer a coprime to N ,

χ′(a) =
∏
p|N

ωp(a). (119)

Let K(0)(N) :=
∏
p|N

K(0)(pnpZp)
∏
p-N

GL2(Zp) with the local congruence subgroups K(0)(pnZp) = GL2(Zp) ∩[
1 + pnZp Zp
pnZp Zp

]
as in (58). Let K0(N) :=

∏
p|N

K0(pnpZp)
∏
p-N

GL2(Zp), where K0(pnZp) = GL2(Zp) ∩

4Since multiplicity one for GSp(4) is still an issue, we are being careful here and avoid assuming that φ itself generates an
irreducible representation.
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[
Zp Zp
pnZp Zp

]
. Evidently, K(0)(N) ⊂ K0(N). Let λ be the character of K0(N) given by

λ(
[
a b
c d

]
) :=

∏
p|N

ωp(ap). (120)

With these notations, we now define the adelic function fΨ by

fΨ(γmk) = λ(k)
det(m)l/2

(γi+ δ)l
Ψ
(αi+ β

γi+ δ

)
, (121)

where γ ∈ GL2(Q), m =
[
α β
γ δ

]
∈ GL+

2 (R) and k ∈ K0(N). Using (117), (119) and (120), it is easy to check

that fΨ is well-defined. Let VΨ be the space of right translates of fΨ, on which the group GL2(A) acts by
right translation to give an irreducible, cuspidal, automorphic representation τ = τΨ. Note that the central
character ωτ of τ is given by the character ω associated to χ′.

5.2.1 Lemma. Let τ = ⊗τp be the decomposition of τ into a restricted tensor product of local representa-
tions. Let the global character ψ be as in Sect. 5.1. Consider the function

W (0)(g) =
∫

Q\A

ψ(x)fΨ(
[

1 x
1

]
g) dx,

which is a vector in the global ψ−1 Whittaker model W(τ, ψ−1) = ⊗W(τp, ψ−1
p ) corresponding to the

automorphic form fΨ. This function is a pure tensor of local Whittaker functions,

W (0)(g) =
∏
p≤∞

W (0)
p (gp), g = (gp) ∈ GL2(A). (122)

For each finite p, the function W
(0)
p is the local newform in W(τp, ψ−1

p ) described in Lemma 3.4.2. If the

normalization is such that W
(0)
p (1) = 1 for all finite p, then

W (0)
∞ (

[
t 0
0 1

]
) =

{
e−2πttl/2 if t > 0,
0 if t < 0.

(123)

The constants appearing in (94) are a+ = (4π)−l/2b1 = (4π)−l/2 and a− = 0. Furthermore,

W (0)
∞ (g

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
) = eilθW (0)

∞ (g) for all g ∈ GL2(R), θ ∈ R. (124)

Proof. By definition, the function fΨ, and hence the function W (0), is right invariant under K(0)(pnpZp) for
each finite p. Our requirement that Ψ is a newform implies that np is the conductor of the local representation
τp. This implies that W (0) factors as in (122), and that W (0)

p is the local newform, for each finite p. Formula
(123) follows from a standard calculation. The equality a+ = (4π)−l/2 follows from the fact that for the
classical Whittaker function in (94) we have ir = l−1 (for the discrete series representation of lowest weight
l under consideration) and the explicit formula

W l
2 ,
l−1
2

(x) = e−x/2xl/2 for all x > 0. (125)

The property (124) follows from (121).
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5.3 Choosing the global characters

In the following we will make a choice for the section fΛ(g, s) ∈ IC(s, χ, χ0, τ) appearing in the global integrals
(26) and (27). We will choose fΛ as a pure tensor ⊗fp via the middle isomorphism in (24). Each fp will
be chosen to be the local section corresponding to the function W# from the local integral representations
obtained in Theorem 3.5.1 (non-archimedean case) and Theorem 4.4.1 (archimedean case). We have to make
sure, however, that the local data entering these theorems, in particular the characters χ, χ0 and Λ, fit into
a global situation.

5.3.1 Lemma. Let L be an imaginary quadratic field extension of Q. Let ω = ⊗ωp be a character of
Q×\A×. Let l2 be an integer such that (−1)l2 = ω∞(−1). Then there exists a character χ0 = ⊗χ0,v of
L×\A×L such that

i) the restriction of χ0 to A× coincides with ω, and

ii) χ0,∞(ζ) = ζl2 for all ζ ∈ S1.

Proof. Since ω is trivial on L× ∩ A× = Q×, we can extend ω to a character of L×A× in such a way that
ω
∣∣
L×

= 1. Since S1 ∩ (L×A×) = {±1}, we can further extend ω to a character of S1L×A× in such a way
that ω(ζ) = ζl2 for all ζ ∈ S1. For each finite place v of L we will choose a compact subgroup Uv of o×L,v
such that ω can be extended to S1L×A×

(∏
v<∞ Uv

)
, with ω trivial on

∏
v<∞ Uv and Uv = o×L,v for almost

all v. Hence, the Uv should be chosen such that ω is trivial on
(∏

v<∞ Uv
)
∩ S1L×A×. We consider the

intersection ( ∏
v<∞

Uv
)
∩ S1L×A× =

( ∏
v<∞

Uv
)
∩ C×L×

( ∏
p<∞

Z×p
)
. (126)

Let zαx be an element of this intersection, where z ∈ C×, α ∈ L× and x ∈
∏
p<∞ Z×p . We have α ∈

L× ∩
∏
v<∞ o×L,v = o×L , which is a finite set, say {α1, . . . , αm}. For i such that αi /∈ Q, choose a prime p

such that αi /∈ Z×p . Then choose a place v lying above p, and choose Uv so small that αi /∈ UvZ×p . Then the
intersection (126) equals ( ∏

v<∞
Uv
)
∩ C×Q×

( ∏
p<∞

Z×p
)
. (127)

We can choose Uv even smaller, so that ω is trivial on this intersection. We can therefore extend ω to a
character of

S1L×A×
( ∏
v<∞

Uv
)

= C×L×
( ∏
v<∞

Uv
)( ∏

p<∞
Z×p
)
. (128)

in such a way that ω is trivial on
∏
v<∞ Uv. The group (128) is of finite index in C×L×

(∏
v<∞ o×L,v

)
, and

therefore of finite index in A×L (using the finiteness of the class number). By Pontrjagin duality, we can now
extend ω to a character χ0 of A×L with the desired properties.

We apply this lemma with ω = ωτ , the central character of the representation τ of GL2(A) generated by the
cusp form Ψ, and with l2 = −l. We let χ0 = ⊗χ0,v be a character of L×\A×L satisfying properties i) and ii)
of the lemma. Let χ be the character of L×\A×L defined by

χ(ζ) = Λ(ζ̄)−1χ0(ζ̄)−1, ζ ∈ A×L , (129)

where Λ is as in Sect. 5.1. Since Λ∞ is trivial, we have

χ∞(ζ) = χ0,∞(ζ) = ζl2 for all ζ ∈ S1. (130)
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5.4 Defining the global section

Let the characters χ and χ0 be chosen as in the previous section. Let fΨ be the function defined in (121),
and let W (0) be the corresponding Whittaker function as in Lemma 5.2.1. We extend W (0) to a function on
GU(1, 1;L)(A) via

W (0)(ζg) = χ0(ζ)W (0)(g) for ζ ∈ A×L , g ∈ GL2(A).

If W (0)
p are the local components of W (0) as in (122), then the extended function factors again as W (0)(g) =∏

p≤∞W
(0)
p (gp) with local functions extended to GU(1, 1;Lp)(Qp) ∼= M (2)(Qp) via

W (0)
p (ζg) = χ0,p(ζ)W (0)

p (g) for ζ ∈ L×p , g ∈ GL2(Qp).

Here, Lp is the quadratic algebra L ⊗Q Qp. Let s be a complex parameter. For each finite prime p, let
W#
p ( · , s) be the element of IWp(s, χp, χ0,p, τp) defined at the beginning of Sect. 3.5; see in particular (65).

Recall that the support of W#
p ( · , s) is contained in M(Qp)N(Qp)ηH(Zp)Γ((poLp)np), where oLp is the ring

of integers in Lp, and where Γ denotes a principal congruence subgroup as in (39). The element η is defined
in (27). For the archimedean place we define W#

∞( · , s) as in Sect. 4.3. Since we are considering the case
l1 = l, the function f in (100) simplifies to f(g) = det(J(g, I))−l for all g ∈ K∞. Hence, the formula for
W#
∞( · , s) is

W#
∞(m1m2nk, s) = δ

s+1/2
P (m1m2)χ∞(m1)W (0)

∞ (m2) det(J(k, I))−l, (131)

where m1 ∈M (1)(R), m2 ∈M (2)(R), n ∈ N(R) and k ∈ K∞. The local functions W#
p ( · , s) for all places p

define a global function

W#(g, s) :=
∏
p≤∞

W#
p (gp, s), g = (gp) ∈ GU(2, 2;L)(A). (132)

Hence W#( · , s) is an element of the global induced representation IW (s, χ, χ0, τ).

5.4.1 Lemma. The function W#( · , s) has the following properties.

i) Let η be the element of G(Q) defined in (27), and let ηN be the element of G(A) whose p-component
is η for p|N and 1 for p - N . Then

W#(g, s) = 0 if g 6∈M(A)N(A)ηK∞K
#
G (N) = M(A)N(A)ηNK∞K

#
G (N).

ii) W#( · , s) is right invariant under the compact group

K#
G (N) =

∏
p|N

H(Zp)Γ((poLp)np)
∏
p-N

G(Zp).

iii) We have
W#(gk, s) = det(J(k, I))−lW#(g, s) for all g ∈ G(A), k ∈ K∞. (133)

iv) If m = m1m2, mi ∈M (i)(A), n ∈ N(A), k = k0k∞, k0 ∈ K#
G (N), k∞ ∈ K∞, then

W#(mnηNk, s) = δ
1
2 +s

P (m)χ(m1) det(J(k∞, I))−lW (0)(m2). (134)

Recall that δP (m1m2) = |NL/Q(m1)µ1(m2)−1|3.

Proof. i), ii) and iii) are immediate from properties of the local functions. iv) follows from (65) and (131).

Now let fΛ( · , s) : G(A)→ C be the element of IC(s, χ, χ0, τ) corresponding to W#( · , s). By (23),

fΛ(g, s) =
∑
λ∈Q×

W#
(

1
λ

λ
1

 g, s), g ∈ G(A). (135)
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5.4.2 Lemma. The function fΛ( · , s) has the following properties.

i) fΛ(g, s) = 0 if g 6∈M(A)N(A)ηNK∞K
#
G (N).

ii) fΛ( · , s) is right invariant under the compact group K#
G (N).

iii) We have
fΛ(gk, s) = det(J(k, I))−lfΛ(g, s) for all g ∈ G(A), k ∈ K∞. (136)

iv) If m = m1m2, mi ∈M (i)(A), n ∈ N(A), k = k0k∞, k0 ∈ K#
G (N), k∞ ∈ K∞, then

fΛ(mnηNk, s) = δ
1
2 +s

P (m)χ(m1) det(J(k∞, I))−lfΨ(m2). (137)

Proof. i), ii) and iii) follow from the corresponding properties of the function W#( · , s) given in Lemma
5.4.1.

iv) Using (134), we calculate

fΛ(mnηNk, s) =
∑
λ∈Q×

W#
(
m1


1

λ
λ

1

m2nηNk, s
)

=
∑
λ∈Q×

δ
1
2 +s

P (


1

λ
λ

1

m)χ(m1) det(J(k∞, I))−lW (0)(
[
λ

1

]
m2)

= δ
1
2 +s

P (m)χ(m1) det(J(k∞, I))−l
∑
λ∈Q×

W (0)(
[
λ

1

]
m2)

= δ
1
2 +s

P (m)χ(m1) det(J(k∞, I))−lfΨ(m2).

This concludes the proof.

5.5 The global integral representation

Observing (28), (29) and (30), as well as the local Theorems 3.5.1 and 4.4.1, we now obtain the following
result.

5.5.1 Theorem. Let Φ ∈ Sl(Γ2) be a Hecke eigenform satisfying the Assumption made in Sect. 5.1. Let φ
be the adelic function corresponding to Φ, and let π be an irreducible component of the cuspidal, automorphic
representation generated by φ. Let τ be the irreducible, cuspidal, automorphic representation of GL2(A)
generated by a primitve cusp form Ψ ∈ Sl(N,χ′), where N is a positive integer and χ′ is a Dirichlet character
modulo N . Let the global characters χ, χ0 and Λ, as well as the global section fΛ ∈ IC(s, χ, χ0, τ), be chosen
as above. Then the global integral (26) is given by

Z(s, fΛ, φ̄) =
( ∏
p≤∞

Yp(s)
) L(3s+ 1

2 , π × τ̃)
L(6s+ 1, ω−1

τ )L(3s+ 1, τ̃ ×AI(Λ))
(138)

with

Y∞(s) = a(Λ)πD−3s− l
2 (4π)−3s+ 3

2−
3l
2

Γ(3s+ 3l
2 −

3
2 )

6s+ l − 1
. (139)

Here, AI(Λ) is the automorphic representation of GL2(A) obtained from Λ via automorphic induction. The
factor Yp(s) is one for almost all p and depends on τp; its precise definition is given in Theorem 3.5.1. The
constant a(Λ) is defined at the end of Sect. 5.1.
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Proof. Everything follows from the local Theorems 3.5.1 and 4.4.1, but we have to observe certain normal-
izations. For example, the global Bessel function Bφ̄ differs from the product of the local Bessel functions
Bp (used in the local theorems) by a constant; see (116). This explains the factor a(Λ) in (139). Recall
that χ0

∣∣
A× = ωτ and Λ

∣∣
A× = ωπ = 1. Therefore, by (129), χ

∣∣
A× = ω−1

τ . It follows that τ × (χ
∣∣
A×) ∼= τ̃ .

Substituting this into Theorem 3.5.1, we obtain the finite Euler factors in (138). By Theorem 4.4.1, in its
simplified version (111), the archimedean Euler factor is given by

Z(s,W#
∞, B∞) = il−l1

a+

2
πD−3s− l

2 + q
2 (4π)−3s+ 3

2−l+q
Γ(3s+ l − 1 + ir

2 −
q
2 )Γ(3s+ l − 1− ir

2 −
q
2 )

Γ(3s+ l − l1
2 + 1

2 −
q
2 )

. (140)

Here, q = 0 since the archimedean central character is trivial on R>0. The number l1, the GL2 weight, is
equal to l; see (124). We have a+ = (4π)−l/2 by Lemma 5.2.1. Furthermore, ir = ±(l − 1) for the discrete
series representation in question. Substituting all of these quantities leads to formula (139).

Remark: While, for simplicity’s sake, we have formulated the theorem above only for τ coming from a
holomorphic cusp form of the same weight as Φ, our local theorems are flexible enough to obtain an integral
representation with π as above and τ an arbitrary cuspidal, automorphic representation of GL2(A). In this
more general case we would let l1 ∈ Z be any of the weights occuring in τ , and let l2 be the integer defined
in (101). Then the hypotheses of Lemma 5.3.1 are satisfied, so that we obtain global characters χ0 and χ.
We would define a function f : K∞ → C as in (100) and W#

∞ : G(R)→ C as in (102). The non-archimedean
sections W#

p would be chosen as above. With these choices, equation (138) still holds, with Y∞(s) replaced
by a(Λ) times the archimedean local zeta integral given in (110).

5.6 The classical Eisenstein series on GU(2, 2)

For Z =
[
∗ ∗
∗ z22

]
∈ H2, let us denote z22 by Z∗. Let Ẑ = i

2 ( tZ̄ − Z) for Z ∈ H2. Let Im(z) denote the

imaginary part of a complex number z, and let I =
[
i
i

]
∈ H2.

5.6.1 Lemma. Let fΛ be the function defined in (135). For any g ∈ G+(R),

fΛ(gηN , s) = µ2(g)l det(J(g, I))−l
( det ĝ〈I〉

Im(g〈I〉)∗
)3s+ 3

2−
l
2
Ψ((g〈I〉)∗). (141)

Proof. This follows from a direct calculation as in as in Lemma 5.4.1 of [17].

As in Sect. 2.5, let
E(g, s; fΛ) =

∑
γ∈P (Q)\G(Q)

fΛ(γg, s).

This series is absolutely convergent for Re(s) > 1
2 . By Lemma 5.4.2 iii), this function satisfies E(gk, s; fΛ) =

det(J(k, I))−lE(gk, s; fΛ) for all g ∈ G(A) and k ∈ K∞. It follows that the function on G(A) given by
µ2(g)−l det(J(g, I))lE(g, s; fΛ) is right invariant under K∞. Since K∞ is the stabilizer of I ∈ H2, we can
define a function E on H2 by the formula

E(Z, s) := µ2(g)−l det(J(g, I))lE
(
g,
s

3
+
l

6
− 1

2
; fΛ

)
, (142)

where g ∈ G+(R) is such that g〈I〉 = Z. The series that defines E(Z, s) is absolutely convergent for
Re(s) > 3− l/2 (see [11]). We have l ≥ 10 (see [12]), so that one can set s = 0 to obtain an Eisenstein series
E(Z, 0) on H2. It follows from Lemma 5.6.1 that E(Z, 0) is holomorphic. This Eisenstein series is a modular
form of weight l with respect to

Γ#
G(N) := G(Q) ∩G+(R)K#

G (N).
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Its restriction to h2 is a modular form of weight l with respect to Γ#
G(N) ∩ H(Q) = Sp4(Z). We remark

that the Eisenstein series constructed in [17] defines, upon restriction to h2, a modular form with respect to
a certain congruence subgroup Γ#

H(N) of level N . The fact that the Eisenstein series E obtained above is
a modular form with respect to the full modular group Sp4(Z) is a direct consequence of the choice of the
non-archimedean sections W#

p in Sect. 3. Let

E(Z, 0) =
∑
S≥0

b(S, E)e2πi tr(SZ)

be the Fourier expansion of E(Z, 0), where S runs through all hermitian half-integral (i.e., S =
[
t1 t̄2
t2 t3

]
, t1, t3 ∈

Z,
√
−D t2 ∈ oQ(

√
−D)) positive semi-definite matrices of size 2× 2. By [10],

b(S, E) ∈ Q̄ for any S. (143)

Here Q̄ denotes the algebraic closure of Q in C. The following lemma shows that the global integral Z(s, fΛ, φ̄)
defined in (26) (with φ̄ replacing φ) can be expressed as the Petersson inner product of two classical modular
forms.

5.6.2 Lemma. We have

Z
( l

6
− 1

2
, fΛ, φ̄

)
=

1
2

∫
Sp4(Z)\h2

E(Z, 0)Φ̄(Z)(det(Y ))l−3 dX dY,

where Z = X + iY .

Proof. The proof follows exactly as in the proof of Lemma 5.4.2 of [17]. It is even simpler in this case since
E(Z, 0) is a modular form with respect to Sp4(Z).

5.7 The special value

If Φ′ ∈ Sl(Γ2) is a Hecke eigenform, then the subfield Q(Φ′) of Q, obtained by adjoining the Hecke eigenvalues
of Φ′ to Q, is a totally real number field. For a subring A of C, let Sl(Γ2, A) be the space of modular forms
whose Fourier coefficients are contained in A. By [14], we can assume that Φ ∈ Sl(Γ2,Q(Φ)). Arguing as in
the proof of Lemma 5.4.3 of [17], we get the following result.

5.7.1 Lemma. We have
Z( l6 −

1
2 , fΛ, φ̄)

〈Φ,Φ〉
∈ Q̄, (144)

where

〈Φ,Φ〉 =
∫

Sp4(Z)\h2

Φ(Z)Φ̄(Z)(det(Y ))l−3 dX dY.

Let 〈Ψ,Ψ〉1 = (SL2(Z) : Γ1(N))−1
∫

Γ1(N)\h1

|Ψ(z)|2yl−2 dx dy, where Γ1(N) := {
[
a b
c d

]
∈ Γ0(N) : a, d ≡ 1

(mod N)}. We have the following generalization of Theorem 4.8.3 of [7].

5.7.1 Theorem. Let Φ be a cuspidal Siegel eigenform of weight l with respect to Γ2 satisfying the assump-
tion from Section 5.1 and Φ ∈ Sl(Γ(2),Q(Φ)). Let Ψ ∈ Sl(N,χ′) be a primitive form, with N =

∏
pnp

any positive integer and χ′ any Dirichlet character modulo N . Let πΦ and τΨ be the irreducible, cuspidal,
automorphic representations of GSp4(A) and GL2(A) corresponding to Φ and Ψ. Then

L( l2 − 1, πΦ × τ̃Ψ)
π5l−8〈Φ,Φ〉〈Ψ,Ψ〉1

∈ Q̄. (145)
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Proof. By Theorem 5.5.1, we have

Z(
l

6
− 1

2
, fΛ, φ̄) = Cπ4−2l L( l2 − 1, πΦ × τ̃Ψ)

L(l − 2, ω−1
τ )L( l−1

2 , τΨ ×AI(Λ))
, (146)

where
C = a(Λ)D−l+

3
2 2−4l+6 (2l − 5)!

∏
p|N

Yp(
l

6
− 1

2
).

For p|N , the Yp are defined in Theorem 3.5.1. We first claim that C ∈ Q. Note that, since ωτ is a character
of finite order, we obtain Lp(l− 2, ω−1

p ) ∈ Q. It follows from an argument as in the proof of Proposition 3.17
of [19] that Lp((l − 1)/2, τp × AI(Λp)) ∈ Q̄. This gives Yp( l6 −

1
2 ) ∈ Q̄ in all cases, except if τp = αp × βp,

with αp unramified, βp ramified,
(Lp
p

)
= 0 and βpχLp/Qp is unramified. In this case,

Yp(
l

6
− 1

2
) =

Lp(l − 2, ω−1
p )

1− Λ($L)(ωπβ)−1(p)p−l/2+1/2
. (147)

We have ωπ ≡ 1 and Λ($L) = ±1. Using the fact that α(p)β(p) = ωp(p) ∈ Q̄ and Lp((l−1)/2, τp×AI(Λp)) ∈
Q̄, it can be deduced from the third line of (76) that β(p) ∈ Q̄. It follows that the right hand side of (147)
lies in Q̄. This proves our claim. Now it is well-known that

L(l − 2, ω−1
τ )

πl−2
∈ Q̄ (148)

(see, e.g., [15], VII.2; the adelic L-function L(s, ω−1
τ ) coincides with the Dirichlet L-function L(s, χ′), and

we have (−1)l−2 = χ′(−1)). Using [23], by the same argument as in the proof of Theorem 4.8.3 in [7], we
get

L( l−1
2 , τΨ ×AI(Λ))
π2l−2〈Ψ,Ψ〉1

∈ Q̄. (149)

The assertion now follows by combining (146), (148) and (149) with Lemma 5.7.1.

In [7], special value results for full level elliptic modular forms are obtained. In [1], holomorphic modular
forms for full level, a range of weights and all critical values are considered. In [20], certain squarefree levels
for both the Siegel cusp form and elliptic cusp form are considered.
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