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support; none of this would have come to fruition without them.



vii

ABSTRACT

The necessity to know certain information about the principal minors of a given/desired

matrix is a situation that arises in several areas of mathematics. As a result, researchers

associated two sequences with an n×n symmetric, complex Hermitian, or skew-Hermitian

matrix B. The first of these is the principal rank characteristic sequence (abbreviated

pr-sequence). This sequence is defined as r0]r1 · · · rn, where, for k ≥ 1, rk = 1 if B has a

nonzero order-k principal minor, and rk = 0, otherwise; r0 = 1 if and only if B has a 0

diagonal entry.

The second sequence, one that “enhances” the pr-sequence, is the enhanced principal

rank characteristic sequence (epr-sequence), denoted by `1`2 · · · `n, where `k is either A,

S, or N, based on whether all, some but not all, or none of the order-k principal minors

of B are nonzero.

In this dissertation, restrictions for the attainability of epr-sequences by real sym-

metric matrices are established. These restrictions are then used to classify two related

families of sequences that are attainable by real symmetric matrices: the family of pr-

sequences not containing three consecutive 1s, and the family of epr-sequences containing

an N in every subsequence of length 3.

The epr-sequences that are attainable by symmetric matrices over fields of charac-

teristic 2 are considered: For the prime field of order 2, a complete characterization of

these epr-sequences is obtained; and for more general fields of characteristic 2, some

restrictions are also obtained.

A sequence that refines the epr-sequence of a Hermitian matrix B, the signed en-

hanced principal rank characteristic sequence (sepr-sequence), is introduced. This se-
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quence is defined as t1t2 · · · tn, where tk is either A∗, A+, A−, N, S∗, S+, or S−, based on

the following criteria: tk = A∗ if B has both a positive and a negative order-k principal

minor, and each order-k principal minor is nonzero; tk = A+ (respectively, tk = A−) if each

order-k principal minor is positive (respectively, negative); tk = N if each order-k princi-

pal minor is zero; tk = S∗ if B has each a positive, a negative, and a zero order-k principal

minor; tk = S+ (respectively, tk = S−) if B has both a zero and a nonzero order-k princi-

pal minor, and each nonzero order-k principal minor is positive (respectively, negative).

The unattainability of various sepr-sequences is established. Among other results, it is

shown that subsequences such as A∗N and NA∗ cannot occur in the sepr-sequence of a Her-

mitian matrix. The notion of a nonnegative and nonpositive subsequence is introduced,

leading to a connection with positive semidefinite matrices. Moreover, restrictions for

sepr-sequences attainable by real symmetric matrices are established.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

The necessity to know certain information about the principal minors of a given/desired

matrix is a situation that arises in several areas of mathematics: As stated by Griffin and

Tsatsomeros [8], instances where the principal minors of a matrix are of interest include

the detection of P -matrices in the study of the complementarity problem, Cartan matri-

ces in Lie algebras, univalent differentiable mappings, self-validating algorithms, interval

matrix analysis, counting of spanning trees of a graph using the Laplacian, D-nilpotent

automorphisms, and in the solvability of the inverse multiplicative eigenvalue problem.

A matrix is called (positive) stable if the real part of each of its eigenvalues is posi-

tive [9]. Stable matrices play an important role when studying the asymptotic stability

of solutions of differential systems. A class of matrices that are stable are the Hermi-

tian positive definite matrices —their eigenvalues are real and positive; they happen to

possess two special properties: They are P -matrices, meaning that each principal mi-

nor is positive, and are weakly sign-symmetric (for a definition of the latter term, see

[9] and the references therein). This led to the study of GKK matrices, which are the

weakly sign-symmetric P -matrices [9]. The Gantmacher-Krein-Carlson theorem [5, 7],

which states that a P -matrix is GKK if and only if certain principal minors satisfy the

generalized Hadamard-Fischer inequality [9], led to the following question:

Question 1.1.1. Given a list of 2n− 1 real numbers, when can one find an n×n matrix

whose principal minors are these numbers?
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Given a matrix B, a principal submatrix of B is a submatrix lying in the same set of

rows and columns of B; a minor of B is principal if it is the determinant of a principal

submatrix; a principal minor of B is said to have order k if it is the determinant of a

k × k submatrix. Let us illustrate Question 1.1.1 with two examples.

Example 1.1.2. With the assigned orders, can the entries of the vector

[ 1, 4, 6︸ ︷︷ ︸
Order1

, 0, −3, −1︸ ︷︷ ︸
Order2

, −1︸︷︷︸
Order3

]T ∈ R23−1

be realized as the principal minors of some 3 × 3 Hermitian matrix? The answer is

affirmative: Consider the matrix

B =


1 2 3

2 4 5

3 5 6

 .
Obviously, the principal minors of B of order 1 (i.e., the diagonal entries of B) are 1, 4

and 6. The order-2 principal minors of B are

det

1 2

2 4

 = 0, det

1 3

3 6

 = −3, det

4 5

5 6

 = −1.

Finally, it is easy to check that detB = −1, which is the only principal minor of order 3.

Although the answer was affirmative in the example above, that is not always the

case:

Example 1.1.3. Consider the same question as in Example 1.1.2, but for the vector

[ 0, a, b︸ ︷︷ ︸
Order1

, 0, 0, 0︸ ︷︷ ︸
Order2

, c︸︷︷︸
Order3

]T ∈ R23−1,

where a, b and c are nonzero. The restrictions imposed by the order-1 and order-2

principal minors require the desired Hermitian matrix to have a zero row, meaning that

its determinant is 0 6= c. Hence, the desired matrix does not exist.
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Question 1.1.1 is known as the principal minor assignment problem, and has been

answered set-theoretically by Oeding [15] in the case where the desired matrix is complex

symmetric. This question serves to illustrate the aforementioned interest in the principal

minors of a matrix. We note that Question 1.1.1 remains open for the case when the

desired matrix is real symmetric or Hermitian, for example.

In this dissertation, we confine our attention to the study of the principal minors

of symmetric matrices over a given field, and of Hermitian matrices. The principal

minors of symmetric and Hermitian matrices have attracted considerable attention (see

[1, 2, 3, 10, 11, 15, 16], for example). The focus of this dissertation is on studying

certain sequences associated with a given/desired matrix, where the terms of a sequence

collect certain information about the principal minors of the matrix. The first sequence,

introduced by Brualdi et al. [2], was defined as follows: Given an n×n symmetric matrix

B ∈ F n×n (or Hermitian matrix B ∈ Cn×n), the principal rank characteristic sequence

(abbreviated pr-sequence) of B is defined as pr(B) = r0]r1 · · · rn, where, for k ≥ 1,

rk =


1 if B has a nonzero principal minor of order k, and

0 otherwise,

while r0 = 1 if and only if B has a 0 diagonal entry [2]. We note that the original

definition of the pr-sequence was for real symmetric, complex symmetric and Hermitian

matrices only; Barrett et al. [1] later extended it to symmetric matrices over any field.

For a given n×n matrix B, B[α] denotes the (principal) submatrix lying in rows and

columns indexed by α ⊆ {1, 2, . . . , n}.

Example 1.1.4. Consider the real symmetric matrix

B =



1 1 1 1

1 1 1 1

1 1 1 −1

1 1 −1 1


,
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where pr(B) = r0]r1r2r3r4. Since B does not have a 0 diagonal entry, r0 = 0. Because B

contains at least one principal minor of order 1 that is nonzero (i.e., because it contains

a nonzero diagonal entry), r1 = 1. Note that all the order-2 principal minors are zero;

thus, r2 = 0. Since det(B[{2, 3, 4}]) 6= 0, r3 = 1. Finally, as det(B) = 0, r4 = 0. It

follows that pr(B) = 0]1010.

The second sequence is one that was introduced by Butler et al. [3] as an “enhance-

ment” of the pr-sequence: Given an n × n symmetric matrix B ∈ F n×n (or Hermitian

matrix B ∈ Cn×n), the enhanced principal rank characteristic sequence (abbreviated

epr-sequence) of B is defined as epr(B) = `1`2 · · · `n, where

`k =


A if all of the principal minors of order k are nonzero;

S if some but not all of the principal minors of order k are nonzero;

N if none of the principal minors of order k are nonzero, i.e., if all are zero.

Example 1.1.5. Consider the matrix

B =



1 1 1 1

1 1 1 1

1 1 1 −1

1 1 −1 1


from Example 1.1.4. Since all order-1 principal minors of B are nonzero, `1 = A. Note

that all the order-2 principal minors are zero; thus, `2 = N. Since det(B[{1, 2, 3}]) = 0

and det(B[{2, 3, 4}]) 6= 0, `3 = S. Finally, as det(B) = 0, `4 = N. Hence, epr(B) = ANSN.

It is known that if the epr-sequence of a Hermitian matrix begins with SN, then it

cannot contain an A (see [3, Proposition 2.5]); this result justifies the negative answer

obtained in Example 1.1.3, which serves to illustrate the usefulness of epr-sequences in

the study of principal minors.

This dissertation is devoted to studying the pr- and epr-sequences of symmetric and

complex Hermitian matrices, and to introducing a third sequence:
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Definition 1.1.6. [14] Let B ∈ Cn×n be a Hermitian matrix with epr(B) = `1`2 · · · `n.

The signed enhanced principal rank characteristic sequence (abbreviated sepr-sequence)

of B is the sequence sepr(B) = t1t2 · · · tn, where

tk =



A∗ if `k = A and B has both a positive and a negative order-k principal minor;

A+ if each order-k principal minor of B is positive;

A− if each order-k principal minor of B is negative;

N if each order-k principal minor of B is zero;

S∗ if `k = S and B has both a positive and a negative order-k principal minor;

S+ if `k = S and each order-k principal minor of B is nonnegative;

S− if `k = S and each order-k principal minor of B is nonpositive.

For example, the sepr-sequence of the matrix B from Examples 1.1.4 and 1.1.5 is

sepr(B) = A+NS−N.

A (pr-, epr- or sepr-) sequence is said to be attainable by a class of matrices pro-

vided that there exists a matrix in the class that attains it; otherwise, we say that it is

unattainable (by the given class). For any sepr-sequence σ, the epr-sequence resulting

from removing the superscripts of each term in σ is called the underlying epr-sequence

of σ.

When the pr-sequence was refined (or “enhanced”), the number of potential sequences

involved in the case of an n×n matrix increased from 3(2)n−1 to 2(3)n−1. Now, after the

second refinement, which leads to the sepr-sequence, the potential number of sequences

increases to 3(7)n−1. Although these increments obviously make the determination of

all the sequences that are attainable by an n × n matrix harder, the refinements are

worthwhile, since they reveal more information about the principal minors of a matrix,

while also remaining tractable.
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1.2 Dissertation Organization

The format adopted for this dissertation presents it as a collection of research papers

published or submitted to journals. The present chapter provides the main definitions,

outlines some of the applications of the present work, and provides a short literature

review.

Chapter 2 contains the paper [12], entitled “Classification of families of pr- and epr-

sequences,” which has been published in the journal Linear and Multilinear Algebra. In

this paper, restrictions for the attainability of epr-sequences by real symmetric matrices

are established. These restrictions are then used to classify two related families of se-

quences that are attainable by real symmetric matrices: the family of pr-sequences not

containing three consecutive 1s, and the family of epr-sequences containing an N in every

subsequence of length 3.

In Chapter 3, the paper [13], entitled “The enhanced principal rank characteristic

sequence over a field of characteristic 2,” is presented; this paper has been submitted to

Electronic Journal of Linear Algebra. The focus of this paper is on the epr-sequences

that are attainable by symmetric matrices over fields of characteristic 2. Its main result

is the complete characterization of the epr-sequences that are attainable by symmetric

matrices over the prime field of order 2; for more general fields of characteristic 2, some

restrictions are also obtained.

Chapter 4 presents the paper [14], entitled “The signed enhanced principal rank char-

acteristic sequence,” which has been submitted to Linear and Multilinear Algebra. This

paper introduces the sepr-sequence of a Hermitian matrix (which was defined in the

previous section). There, the unattainability of various sepr-sequences is established;

among other results, it is shown that subsequences such as A∗N and NA∗ cannot occur

in the sepr-sequence of a Hermitian matrix. Moreover, the notion of a nonnegative and

nonpositive subsequence is introduced, leading to a connection with positive semidefi-



7

nite matrices. For Hermitian matrices of orders n = 1, 2, 3, all attainable sepr-sequences

are classified. And for real symmetric matrices, a complete characterization of the at-

tainable sepr-sequences whose underlying epr-sequence contains ANA as a non-terminal

subsequence is established.

Chapter 5 summarizes the results established.

1.3 Literature Review

The purpose of this section is to list/discuss a small selection of known results about

pr- and epr-sequences that have appeared on the literature. It should be noted that

there are no results to list about sepr-sequences, since this sequence was introduced in

[14], which is the subject of Chapter 4.

The study of pr-sequences was started by Brualdi et al. [2], with the focus on real sym-

metric matrices. However, their original definition of the pr-sequence was the following,

which justifies its name:

Definition 1.3.1. [2, Definition 1.1] The principal rank characteristic sequence of an

n× n real symmetric matrix is defined to be pr(B) = r0r1 · · · rn, where, for 0 ≤ k ≤ n,

rk =


1 if B has a principal submatrix of rank k, and

0 otherwise.

For practical purposes, the equivalent definition of the pr-sequence that is used in

the literature, and the one used here, is the one given in Section 1.1. The equivalence of

these definitions is a consequence of a well-known result, which is stated in [1], and by

virtue of which the rank of a symmetric (or Hermitian) matrix is called principal :

Theorem 1.3.2. [1, Theorem 1.1] If B is a symmetric matrix over a field F or a complex

Hermitian matrix, then rank(B) = max{|α| : det(B[α]) 6= 0} (where the maximum over

the empty set is defined to be 0).
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In [2], it was established that the occurrence of two consecutive 0s in the pr-sequence

of a real symmetric matrix implies that the sequence can only contain 0s from that point

forward (see [2, Theorem 4.4]). This result was later generalized for symmetric matrices

over any field and for complex Hermitian matrices (see [1, Theorem 2.1]), which led to

the following important result about epr-sequences:

Theorem 1.3.3. [3, Theorem 2.3] Suppose that B is a symmetric matrix over a field

F or a complex Hermitian matrix, that epr(B) = `1`2 · · · `n, and that `k = `k+1 = N for

some k. Then `i = N for all i ≥ k.

Brualdi et al. [2, Theorem 2.7] applied Jacobi’s determinantal identity to obtain

results about the pr-sequence of the inverse of a matrix. These ideas were extended in

[3] to epr-sequences:

Theorem 1.3.4. [3, Theorem 2.4] (Inverse Theorem.) Suppose that B is a symmetric

matrix over a field F or a complex Hermitian matrix. If epr(B) = `1`2 · · · `n−1A, then

epr(B−1) = `n−1`n−2 · · · `1A.

Given a sequence ti1ti2 · · · tik , the notation ti1ti2 · · · tik indicates that the sequence

may be repeated as many times as desired (or it may be omitted entirely).

The use of probabilistic methods in [3] led to the next result.

Theorem 1.3.5. [3, Theorem 4.4 and Theorem 4.6] Any sequence of the form `1`2 · · · `mN

not ending in S, with `k ∈ {A, S} for k = 1, 2, . . . ,m and t ≥ 0 copies of N, is attainable

by a symmetric matrix over a field of characteristic 0.

By Theorem 1.3.5, any epr-sequence not containing As or Ss after the occurrence of

an N is attainable by a symmetric matrix over a field of characteristic 0. However, we do

not know as much about the attainability of epr-sequences containing the subsequence

NA or NS. The next three results made contributions in this direction.
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Theorem 1.3.6. [3, Corollary 2.7] No symmetric matrix over any field (or complex

Hermitian matrix) can have NSA in its epr-sequence.

Theorem 1.3.7. [3, Theorem 2.14] Neither the epr-sequences NAN nor NAS can occur as

a subsequence of the epr-sequence of a symmetric matrix over a field of characteristic

not 2.

Theorem 1.3.8. [3, Theorem 2.15] In the epr-sequence of a symmetric matrix over a

field of characteristic not 2, the subsequence ANS can occur only as the initial subsequence.

Although Theorems 1.3.6, 1.3.7 and 1.3.8 provide some insight for understanding

epr-sequences containing the subsequence NA or NS, this is far from enough for arriving

at a result analogous to Theorem 1.3.5 —which establishes the attainability of a large

class of sequences— for sequences that are allowed to contain NA or NS as subsequences.

However, we will see in Chapter 2 that there is a class of epr-sequences that allow the

occurrence of NA or NS that can be completely characterized.

As implied above, obtaining a complete characterization of all the epr-sequences

that are attainable by real symmetric matrices (or symmetric matrices over any field)

is a difficult problem. This problem is not as difficult if it is instead considered for

real skew-symmetric matrices, as was done by Fallat et al. in [6], where the following

characterization was established:

Theorem 1.3.9. [6, Theorem 3.3] Suppose `1`2 · · · `n is a given sequence from {A, S, N}.

Then `1`2 · · · `n is the epr-sequence of a real skew-symmetric matrix if and only if the

following conditions hold:

(i) `j = N for j odd;

(ii) if `k = `k+1 = N, then `j = N for all j ≥ k;

(iii) `n 6= S.
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One of the reasons that allowed the characterization for real skew-symmetric matrices

is the fact that when these matrices have odd order, their determinant is zero, which

automatically means that their epr-sequences must contain an N in every odd position.

Unlike real skew-symmetric matrices, symmetric and Hermitian matrices do not impose

such a severe a constraint on their epr-sequences, which is one reason we are still far

away from a similar characterization for these classes of matrices. However, we show

in Chapter 3 that if one considers the epr-sequences of symmetric matrices over the

prime field of order 2, then such a characterization is achievable. Our characterization

in Chapter 3 is inspired by a result of Barrett et al. [1] that completely characterizes the

pr-sequences that can be attained by symmetric matrices over a field of characteristic 2:

Theorem 1.3.10. [1, Theorem 3.1] A pr-sequence of order n ≥ 2 is attainable by an

n × n symmetric matrix over a field of characteristic 2 if and only if it has one of the

following forms:

0]1 1 0, 1]01 0, 1]1 1 0.

Although the study of epr-sequences has focused primarily on symmetric matrices,

it was not until recently, in the paper [4], that the epr-sequences of Hermitian matri-

ces received the attention they deserve. This paper and [1] show that there is a drastic

difference between the epr-sequences attainable by real symmetric matrices and those at-

tainable by Hermitian matrices. For example, the sequences containing the subsequence

NAN, which cannot occur in the epr-sequence of a real symmetric matrix (see Theorem

1.3.7), can in fact occur in the epr-sequence of a Hermitian matrix. The following con-

jecture and theorems provide further illustration of these differences.

Conjecture 1.3.11. [4] If the epr-sequence of a Hermitian matrix contains NAN as a

subsequence, then the sequence is attainable by a real skew-symmetric matrix.

The following two cases of Conjecture 1.3.11 suggest that the answer may be affir-

mative:
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Theorem 1.3.12. [4] If the epr-sequence of a Hermitian matrix starts with NAN, then it

is attainable by a real skew-symmetric matrix.

Theorem 1.3.13. [4] If the epr-sequence of a Hermitian matrix contains NANA as a

subsequence, then it is attainable by a real skew-symmetric matrix.

Conjecture 1.3.11 is very interesting, and provides another incentive for studying

the epr-sequences of Hermitian matrices, which is done in Chapter 4 in the context of

sepr-sequences.
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CHAPTER 2. CLASSIFICATION OF FAMILIES OF PR-

AND EPR-SEQUENCES

A paper published in the journal Linear and Multilinear Algebra

Xavier Mart́ınez-Rivera

Abstract

This paper establishes new restrictions for attainable enhanced principal rank char-

acteristic sequences (epr-sequences). These results are then used to classify two related

families of sequences that are attainable by a real symmetric matrix: the family of prin-

cipal rank characteristic sequences (pr-sequences) not containing three consecutive 1s

and the family of epr-sequences which contain an N in every subsequence of length 3.

Keywords: Principal rank characteristic sequence; enhanced principal rank character-

istic sequence; minor; rank; symmetric matrix

AMS Subject Classifications: 15A15; 15A03; 15B57.

2.1 Introduction

Given an n×n symmetric matrix B over a field F , the principal rank characteristic

sequence (abbreviated pr-sequence) of B is defined as pr(B) = r0]r1 · · · rn, where, for
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k ≥ 1,

rk =


1 if B has a nonzero principal minor of order k, and

0 otherwise,

while r0 = 1 if and only if B has a 0 diagonal entry [2]; the order of a minor is k if it is

the determinant of a k × k submatrix.

The principal minor assignment problem, introduced in [5], asks the following ques-

tion: Can we find an n×n matrix with prescribed principal minors? As a simplification

of the principal minor assignment problem, Brualdi et al. [2] introduced the pr-sequence

of a real symmetric matrix as defined above. An attractive result obtained in [2] is the

requirement that a pr-sequence that can be realized by a real symmetric matrix can-

not contain the subsequence 001, meaning that in the pr-sequence of such matrix, the

presence of the subsequence 00 forces 0s from that point forward. This result was later

generalized by Barrett et al. [1] for symmetric matrices over any field; this led them to

the study of symmetric matrices over various fields, where, among other results, a char-

acterization of the pr-sequences that can be realized by a symmetric matrix over a field

of characteristic 2 was obtained. Although not deeply studied, the family of pr-sequences

not containing three consecutive 1s were of interest in [2], since the pr-sequences of the

principal submatrices of a matrix realizing a pr-sequence not containing three consecu-

tive 1s possess the rare property of being able to inherit the majority of the 1s of the

original sequence; this family will be one of the central themes of this paper.

Due to the limitations of the pr-sequence, which only records the presence or absence

of a full-rank principal submatrix of each possible order, Butler et al. [3] introduced

the the enhanced principal rank characteristic sequence (abbreviated epr-sequence) of an
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n× n symmetric matrix B over a field F , denoted by epr(B) = `1`2 · · · `n, where

`k =


A if all the principal minors of order k are nonzero;

S if some but not all the principal minors of order k are nonzero;

N if none of the principal minors of order k are nonzero, i.e., all are zero.

A (pr- or epr-) sequence is said to be attainable over a field F provided that there

exists a symmetric matrix B ∈ F n×n that attains it; otherwise, we say that it is unattain-

able. Among other results, techniques to construct attainable epr-sequences were pre-

sented in [3], as well as necessary conditions for an epr-sequence to be attainable by

a symmetric matrix, with many of them asserting that subsequences such as NSA, NAN

and NAS, among others, cannot occur in epr-sequences over certain fields. Continuing

the study of epr-sequences, Fallat et al. [4] characterized all the epr-sequences that are

attainable by skew-symmetric matrices.

In this paper, the study of pr- and epr-sequences of symmetric matrices is continued.

Section 2.2 establishes new restrictions for epr-sequences to be attainable over certain

fields. The results from Section 2.2 are then implemented in Section 2.3, where, for

real symmetric matrices, we classify all the attainable pr-sequences not containing three

consecutive 1s. Using this classification, in Section 2.4, a related family of attainable epr-

sequences is classified, namely those that contain an N in every subsequence of length

3. We then conclude with Proposition 2.4.6, where we highlight an interesting property

exhibited by the vast majority of attainable pr-sequences not containing three consecutive

1s; that is, the property of being associated with a unique attainable epr-sequence.

A pr-sequence and an epr-sequence are associated with each other if a matrix (which

may not exist) attaining the epr-sequence also attains the pr-sequence. A subsequence

that does not appear in an attainable sequence is forbidden (and we may also say that it

is prohibited). Moreover, a sequence is said to have order n if it corresponds to a matrix

of order n, while a subsequence has length n if it consists of n terms.
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Let B = [bij] and let α, β ⊆ {1, 2, . . . , n}. Then the submatrix lying in rows indexed

by α, and columns indexed by β, is denoted by B[α, β]; if α = β, then B[α, α] is

abbreviated to B[α]. The matrices 0n, In and Jn are the matrices of order n denoting

the zero matrix, the identity matrix and the all-1s matrix, respectively. The direct sum

of two matrices B and C is denoted by B ⊕ C. Given a graph G, A(G) denotes the

adjacency matrix of G, while Pn and Cn denote the path and cycle, respectively, on n

vertices.

2.1.1 Results cited

The purpose of this section is to list results we will cite frequently, and assign

abbreviated nomenclature to some of them.

Theorem 2.1.1. [2, Theorem 2.7] Suppose B is a nonsingular real symmetric matrix

with pr(B) = r0]r1 · · · rn. Let pr(B−1) = r′0]r
′
1 · · · r′n. Then r′n = rn = 1, while for each i

with 1 ≤ i ≤ n− 1, r′i = rn−i. Finally, r′0 = 1 if and only if B has some principal minor

of order n− 1 that is zero.

Theorem 2.1.2. [2, Theorem 4.4] (00 Theorem) Let B be a real symmetric matrix. Let

pr(B) = r0]r1 · · · rn and suppose that, for some k with 0 ≤ k ≤ n − 2, rk+1 = rk+2 = 0.

Then ri = 0 for all i ≥ k + 1. In particular, rn = 0, so that B is singular.

Theorem 2.1.3. [2, Theorem 6.5] (0110 Theorem) Suppose n ≥ 4 and pr(B) = r0]r1 · · · rn.

If, for some k with 1 ≤ k ≤ n− 3, rk = rk+3 = 0, then ri = 0 for all k + 3 ≤ i ≤ n. In

particular, B is singular.

A generalization of Theorem 2.1.2 in [1] led to an analogous result for epr-sequences

over any field:

Theorem 2.1.4. [3, Theorem 2.3] (NN Theorem) Suppose B is a symmetric matrix over

a field F , epr(B) = `1`2 · · · `n, and `k = `k+1 = N for some k. Then `i = N for all i ≥ k.
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(That is, if an epr-sequence of a matrix ever has NN, then it must have Ns from that point

forward.)

Theorem 2.1.5. [3, Theorem 2.4] (Inverse Theorem) Suppose B is a nonsingular sym-

metric matrix over a field F . If epr(B) = `1`2 · · · `n−1A, then epr(B−1) = `n−1`n−2 · · · `1A.

Each instance of · · · below is permitted to be empty.

Proposition 2.1.6. [3, Proposition 2.5] The epr-sequence SN · · · A · · · is forbidden for

symmetric matrices over any field.

We say that SN · · · A · · · is prohibited when referencing Proposition 2.1.6.

Theorem 2.1.7. [3, Theorem 2.6] (Inheritance Theorem) Suppose that B is a symmetric

matrix over a field F , m ≤ n, and 1 ≤ i ≤ m.

1. If [epr(B)]i = N, then [epr(C)]i = N for all m×m principal submatrices C.

2. If [epr(B)]i = A, then [epr(C)]i = A for all m×m principal submatrices C.

3. If [epr(B)]m = S, then there exist m ×m principal submatrices CA and CN of B

such that [epr(CA)]m = A and [epr(CN)]m = N.

4. If i < m and [epr(B)]i = S, then there exists an m × m principal submatrix CS

such that [epr(CS)]i = S.

Corollary 2.1.8. [3, Corollary 2.7] No symmetric matrix over any field can have NSA in

its epr-sequence. Further, no symmetric matrix over any field can have the epr-sequence

· · · ASN · · · A · · · .

Corollary 3.1.7 will be invoked by just stating that NSA or · · · ASN · · · A · · · is prohib-

ited.

If B is a matrix with a nonsingular principal submatrix B[α], B/B[α] denotes the

Schur complement of B[α] in B [6].
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Theorem 2.1.9. [3, Proposition 2.13] (Schur Complement Theorem) Suppose B is a

symmetric matrix over a field of characteristic not 2 with rankB = m. Let B[α] be a

nonsingular principal submatrix of B with |α| = k ≤ m, and let C = B/B[α]. Then the

following results hold.

1. C is an (n− k)× (n− k) symmetric matrix.

2. Assuming the indexing of C is inherited from B, any principal minor of C is given

by

detC[γ] = detB[γ ∪ α]/ detB[α].

3. rankC = m− k.

4. Any nonsingular principal submatrix of B of order at most m is contained in a

nonsingular principal submatrix of order m.

Theorem 2.1.10. [3, Theorem 2.14] Neither the epr-sequences NAN nor NAS can occur

as a subsequence of the epr-sequence of a symmetric matrix over a field of characteristic

not 2.

We will refer to Theorem 2.1.10 by simply stating that NAN or NAS is prohibited, while

Theorem 4.3.12 below is referenced by stating that ANS ‘must be initial.’

Theorem 2.1.11. [3, Theorem 2.15] In the epr-sequence of a symmetric matrix over a

field of characteristic not 2, the subsequence ANS can only occur as the initial subsequence.

2.2 Restrictions on attainable epr-sequences

In this section, we establish new restrictions on attainable epr-sequences. We

begin with restrictions that apply to fields of characteristic not 2. For convenience, given

a matrix B, we adopt some of the notation in [2], and denote with Bi1i2...ik the principal

minor det(B[{i1, i2, . . . , ik}]).
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Proposition 2.2.1. Let n ≥ 6. Then no n × n symmetric matrix over a field of char-

acteristic not 2 has an epr-sequence starting NSNA · · · .

Proof. Let B = [bij] be an n × n symmetric matrix over a field of characteristic not

2 and let epr(B) = `1`2 · · · `n. Suppose to the contrary that epr(B) = NSNA · · · . Since

`3 = N, and because Bpqr = 2bpqbprbqr for any distinct p, q, r ∈ {1, 2, . . . , n}, B[{1, 2, 3}]

and B[{4, 5, 6}] must each contain a zero off-diagonal entry. Moreover, since `4 = A,

03 is not a principal submatrix of B, implying that B[{1, 2, 3}] and B[{4, 5, 6}] must

each contain a nonzero off-diagonal entry. Since {1, 2, 3} and {4, 5, 6} are disjoint, and

because a simultaneous permutation of the rows and columns of a matrix has no effect

on its determinant, we may assume, without loss of generality, that b12 = b56 = 0 and

that b13, b46 are nonzero. Similarly, since {1, 2, 3} and {4, 5, 6} are disjoint, and because

multiplication of any row and column of a matrix by a nonzero constant preserves sym-

metry and the rank of every submatrix, we may also assume, without loss of generality,

that b13 = b46 = 1. We consider two cases.

Case 1 : b14 = 0. Since `4 = A, (b15b24)
2 = B1245 6= 0; it follows that b15 and b24

are nonzero. Since `3 = N, B135 = 2b15b35 = 0; hence, b35 = 0. Since B[{3, 5, 6}] 6= 03,

b36 6= 0. Since 2b16b36 = B136 = 0, b16 = 0. Then, as B[{1, 2, 6}] 6= 03, b26 6= 0. It follows

that B246 = 2b24b26 6= 0, a contradiction to `3 = N, implying that it is impossible to have

b14 = 0.

Case 2 : b14 6= 0. Since 2b14b34 = B134 = 0, and because 2b14b16 = B146 = 0,

b34 = b16 = 0. Since B[{1, 2, 6}] 6= 03, b26 6= 0. Since 2b24b26 = B246 = 0, b24 = 0. Since

(b14b23)
2 = B1234 6= 0, b23 6= 0. Then, as 2b23b26b36 = B236 = 0, b36 = 0. It follows that

B1356 = 0, a contradiction to `4 = A. �

It should be noted that NSNA and NSNAA are attainable by A(P4) and A(C5), respec-

tively [3], but this does not contradict Proposition 2.2.1, which requires n ≥ 6.
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Proposition 2.2.2. Let B be a symmetric matrix over a field of characteristic not 2

and epr(B) = `1`2 · · · `n. Then NSNA cannot occur as a subsequence of `1`2 · · · `n−2.

Proof. If n ≤ 5, the result follows vacuously. So, assume n ≥ 6. Suppose to the contrary

that NSNA occurs as a subsequence of `1`2 · · · `n−2 and that `k`k+1`k+2`k+3 = NSNA, for

some k with 1 ≤ k ≤ n − 5. By Proposition 2.2.1, k ≥ 2, and, by the NN Theorem,

`k−1 6= N; it follows that B has a (k − 1) × (k − 1) nonsingular principal submatrix,

say B[α]. By the Schur Complement Theorem, B/B[α] has an epr-sequence starting

NXNAYZ · · · , where X, Y, Z ∈ {A, S, N}. The NN Theorem and the fact that NAN is prohibited

imply that X = S; hence, epr(B) starts NSNAYZ · · · , a contradiction to Proposition 2.2.1.

�

With the next result, we generalize (and provide a simpler proof of) [3, Proposition

2.11].

Proposition 2.2.3. Suppose B is a symmetric matrix over a field of characteristic not

2, epr(B) = `1`2 · · · `n and `k`k+1`k+2 = SAN for some k. Then `j = N for all j ≥ k + 2.

Proof. If n = 3, we are done. Suppose n > 3. Suppose that `k`k+1`k+2 = SAN for some k

with 1 ≤ k ≤ n−2. If k = n−2, we are done. Suppose k < n−2. By [3, Corollary 2.10],

which prohibits SANA, `k+3 6= A. Since ANS must be initial, `k+3 6= S. Hence, `k+3 = N.

The desired conclusion now follows from the NN Theorem. �

We now confine our attention to real symmetric matrices. The next result is imme-

diate from Theorem 2.1.3.

Proposition 2.2.4. Let B be a real symmetric matrix and epr(B) = `1`2 · · · `n. Suppose

`k = `k+3 = N for some k ≥ 1. Then `i = N for all i ≥ k+3. In particular, B is singular.

We emphasize that Proposition 2.2.4 asserts that a sequence of the form · · · NXYN · · · Z · · · ,

with X, Y ∈ {A, S, N} and Z ∈ {A, S}, is unattainable by a real symmetric matrix.



22

Given a sequence ti1ti2 · · · tik , ti1ti2 · · · tik indicates that the sequence may be repeated

as many times as desired (or it may be omitted entirely). According to [3, Proposition

2.17], the sequence ANAA is attainable by a symmetric matrix over a field of characteristic

0. [3, Table 1] raises the following question: Does a real symmetric matrix, with an epr-

sequence starting ANA · · ·, always have epr-sequence ANAA? The answer is affirmative;

what follows makes this precise.

Proposition 2.2.5. Any n × n real symmetric matrix with an epr-sequence starting

ANA · · · is conjugate by a nonsingular diagonal matrix to one of ±(Jn−2In). Furthermore,

its epr-sequence is ANAA.

Proof. Let B = [bij] be an n× n real symmetric matrix with an epr-sequence starting

ANA · · ·. Notice that all the diagonal entries of B must have the same sign, as otherwise

there would be a principal minor of order 2 that is nonzero. Let C = [cij] be the matrix

among B and −B with all diagonal entries negative. Let D = [dij] be the n×n diagonal

matrix with d11 = 1/
√
−c11 and djj = sign(c1j)/

√−cjj for j ≥ 2. Now, notice that

every entry of DCD is ±1, every diagonal entry is −1 and every off-diagonal entry in

the first row and the first column is 1. We now show that DCD = Jn − 2In. Since

multiplication of any row and column of a matrix by a nonzero constant preserves the

rank of every submatrix, epr(DCD) = epr(C) = epr(B). Let i, j ∈ {2, 3, . . . , n} be

distinct, α = {1, i, j} and let a be the (i, j)-entry of DCD. A simple computation shows

that det((DCD)[α]) = (a + 1)2. Since every principal minor of order 3 of DCD is

nonzero, a = 1. Then, as i and j were arbitrary, DCD = Jn − 2In. Then, as C = B

or C = −B, it follows that B is conjugate by a nonsingular diagonal matrix to one of

±(Jn − 2In), and that epr(B) = epr(Jn − 2In) = ANAA (see [3, Proposition 2.17]). �

We are now in position to prove the following result.

Theorem 2.2.6. Any epr-sequence of a real symmetric matrix containing ANA as a non-

terminal subsequence is of the form AANAAA.
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Proof. Let B be a real symmetric matrix containing ANA as a non-terminal subsequence.

Let epr(B) = `1`2 · · · `n. Suppose `k+1`k+2`k+3 = ANA for some k with 0 ≤ k ≤ n − 4.

Since NAN and NAS are prohibited, `k+4 = A. If k = 0, the conclusion follows from

Proposition 2.2.5; so, assume k > 0. Suppose `i 6= A for some i with i < k + 1. By the

Inheritance Theorem, B has a (nonsingular) (k+4)×(k+4) principal submatrix B′ whose

epr-sequence `′1`
′
2 · · · `′k+4 ends with ANAA and has `′i 6= A. Then, by the Inverse Theorem,

epr((B′)−1) starts with ANA and epr((B′)−1) 6= ANAA, a contradiction to Proposition 2.2.5.

Thus, epr(B) = AAANAA`k+5 · · · `n, where `k+5 · · · `n may not exist.

We now show that `k+5 · · · `n = A. If n = k + 4, we are done; so, suppose n > k + 4.

We proceed by contradiction, and consider two cases.

Case 1 : `j = N for some j > k + 4. Since `k = A, there exists a k × k principal sub-

matrix of B, say B[α], that is nonsingular. Let C = B/B[α]. By the Schur Complement

Theorem, C has order n− k, epr(C) starts ANA · · · and epr(C) has an N in the (j− k)-th

position; hence, epr(C) 6= ANAA, a contradiction to Proposition 2.2.5. It follows that a

sequence containing ANA as a non-terminal subsequence cannot contain an N from that

point forward, implying that any real symmetric matrix with an epr-sequence containing

ANA is nonsingular.

Case 2 : `j = S for some j > k+4. By the Inheritance Theorem, B has a singular j×j

principal submatrix whose epr-sequence contains ANA, which contradicts the assertion

above.

We conclude that we must have `k+5 · · · `n = A, which completes the proof. �

It is natural to now ask, does Theorem 2.2.6 hold if ANA occurs at the end of the

sequence? According to [3, Table 5], SAANA is attainable, answering the question nega-

tively.

Theorem 2.2.7. Let B be a real symmetric matrix with epr(B) = `1`2 · · · `n. Then SNA

cannot occur as a subsequence of `1`2 · · · `n−2.
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Proof. If n ≤ 4, the result follows vacuously. So, assume n > 4. Suppose to the contrary

that SNA occurs as a subsequence of `1`2 · · · `n−2, and that `k+1`k+2`k+3 = SNA for some

k with 0 ≤ k ≤ n − 5. Since SN · · · A · · · is prohibited, k ≥ 1. Since NAN and NAS are

prohibited, `k+4 = A. Then, as ASNA is prohibited, `k 6= A. And, by Proposition 2.2.2,

`k 6= N; it follows that `k = S. Thus, we have `k · · · `k+4 = SSNAA. We examine the three

possibilities for `k+5 .

Case 1 : `k+5 = A. Now we have `k · · · `k+5 = SSNAAA. By the Inheritance Theorem,

B has a (k + 5)× (k + 5) principal submatrix B′ whose epr-sequence ends with SXNAAA,

where X ∈ {A, S, N}. By the NN Theorem, X 6= N; and, by Proposition 2.2.3, X 6= A; it

follows that X = S. By the Inverse Theorem, epr((B′)−1) contains ANS as a non-initial

subsequence, a contradiction, since ANS must be initial. We conclude that `k+5 6= A.

Case 2 : `k+5 = N. Now we have `k · · · `k+5 = SSNAAN. Since `k = S, B has a k × k

nonsingular principal submatrix, say B[α]. By the Schur Complement Theorem, B/B[α]

has an epr-sequence starting YNAAN · · · , where Y ∈ {A, S, N}. By Theorem 2.2.6, Y 6= A;

since SN · · · A · · · is prohibited, Y 6= S; and, by the NN Theorem, Y 6= N. It follows that we

must have `k+5 6= N.

From Cases 1 and 2 we can deduce that the subsequence SSNAAZ, where Z ∈ {A, N},

cannot occur in the epr-sequence of a real symmetric matrix.

Case 3 : `k+5 = S. Now we have `k · · · `k+5 = SSNAAS. By the Inheritance Theorem,

B has a (k+ 5)× (k+ 5) principal submatrix with an epr-sequence ending with SXNAAY,

where X ∈ {A, S, N} and Y ∈ {A, N}. By the NN Theorem, X 6= N; and, by Proposition

2.2.3, X 6= A. It follows that X = S, which contradicts the assertion above. �

As NAN is prohibited, we have the following corollary to Theorem 4.3.9.

Corollary 2.2.8. The only way SNA can occur in the epr-sequence of a real symmetric

matrix is in one of the two terminal sequences SNA or SNAA.
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We note that the epr-sequences ANSSSNA and ANSSSNAA are attainable [3, Table 1],

implying that SNA is not completely prohibited in the epr-sequence of a real symmetric

matrix. Theorem 2.2.6 and Corollary 2.2.8 lead to the following observation.

Observation 2.2.9. Any epr-sequence of a real symmetric matrix that contains NA as a

non-initial subsequence is of the form · · · NAA.

The following results in this section will be of particular relevance to the main results

in Sections 2.3 and 2.4.

Lemma 2.2.10. Let n be even and B be a nonsingular n × n real symmetric matrix.

Then Jn
2
+1 is not a principal submatrix of B.

Lemma 2.2.11. Let n ≥ 8 be even. Let B be an n × n nonsingular real symmetric

matrix with every entry ±1 and all entries in the first row, the first column, and the

diagonal equal to 1. Suppose that epr(B) = `1`2 · · · `n and that `4 = N. Then every row

and column of B has at most n
2
−1 negative entries. Equivalently, every row and column

of B has at least n
2

+ 1 positive entries.

Proof. Suppose B = [bij] contains a row with n
2

negative entries. Let U = {3, 4, . . . , n
2

+

2}. Without loss of generality, suppose b2j = −1 for all j ∈ U . We claim that B[{1} ∪

U ] = Jn
2
+1. Suppose to the contrary that B[{1} ∪ U ] contains a negative entry; without

loss of generality, we may assume that this entry is b34. It follows that B[{1, 2, 3, 4}] is

nonsingular, a contradiction to `4 = N; hence, B[{1} ∪ U ] = Jn
2
+1. By Lemma 2.2.10, B

is singular, a contradiction to the nonsingularity of B. We conclude that every row and

column of B has at most n
2
− 1 negative entries. �

Theorem 2.2.12. Let n ≥ 8 be even and B be an n×n real symmetric matrix. Suppose

that epr(B) = ANSNSN · · ·. Then B is singular.

Proof. Suppose to the contrary that B is nonsingular. Let B = [bij]. By [2, Proposition

8.1], we may assume that every entry of B is ±1 and all entries in the first row, the first
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column, and the diagonal are equal to 1. By Lemma 2.2.11, every row and column of B

has at least n
2

+ 1 positive entries. Because a simultaneous permutation of the rows and

columns of a matrix has no effect on its determinant, we may assume, without loss of

generality, that the first n
2

+ 1 entries in the second row (and column) are positive. Let

M1 =



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


and M2 =



1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


.

Since M1 and M2 are nonsingular, they are not principal submatrices of B. We now

show by induction on the number of negative entries in the second row that B contains a

row with n
2

negative entries. For the base case, first notice that the nonsingularity of B

implies that B must have a row with at least one negative entry, as otherwise it will have

a repeated row; without loss of generality, we assume that b2n = −1. By Lemma 2.2.10,

B[{1, . . . , n
2

+ 1}] has a negative entry; without loss of generality, suppose b34 = −1.

Then, as B[{2, 3, 4, n}] 6= M2, either b3n or b4n is negative, implying that either the third

or fourth row contains two negative entries. It follows that B must contain a row with

two negative entries.

Now, for the inductive step, suppose the second row contains 2 ≤ k ≤ n
2
− 1 negative

entries. Without loss of generality, suppose b2j = −1 for j ∈ U = {n− k+ 1, . . . , n}. As

in the base case, Lemma 2.2.10 implies that B[{1, . . . , n
2

+ 1}] has a negative entry, and,

again, without loss of generality, we may assume that b34 = −1. SinceB[{1, 2, p, q}] 6= M1

for p, q ∈ U , bpq = 1 for all p, q ∈ U . Similarly, B[{1, 3, 4, j}] 6= M1 and B[{2, 3, 4, j}] 6=

M2 for j ∈ U , implying that b3j 6= b4j for all j ∈ U ; so, suppose b3j = xj and b4j = −xj

for all j ∈ U . Then, as `6 = N, −16(xp−xq)2 = detB[{1, 2, 3, 4, p, q}] = 0 for all p, q ∈ U ;

hence, xp = xq for all p, q ∈ U . It follows that either the third or the fourth row contains

(n− (n− k + 1) + 1) + 1 = k + 1 negative entries. Hence, by induction, B most have a

row with n
2

negative entries; by Lemma 2.2.11, B is singular, a contradiction. �
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We note that Theorem 2.2.12 cannot be generalized for n odd, since, by the Inverse

Theorem, ANSNA is attained by (A(Cn))−1 (see [3, Observation 3.1]).

Proposition 2.2.13. No real symmetric matrix has an epr-sequence starting SSNSNSS · · · .

Proof. Let B = [bij] be a real symmetric with an epr-sequence starting SSNSNSS · · · .

By the Inheritance Theorem, B has a 7× 7 principal submatrix B[α] with epr-sequence

`′1`
′
2N`
′
4N`
′
6A. Without loss of generality, suppose α = {2, 3, . . . , 8}. By the NN Theorem,

`′2, `
′
4, `
′
6 are not N. Since NAN and NSA are prohibited, `′4 = S and `′6 = A. Since ANS must

be initial, `′2 = S. Hence, epr(B[α]) = `′1SNSNAA. Since ASN · · · A is prohibited, `′1 6= A.

Then, as the epr-sequence SSNSNAA is associated with the pr-sequence 1]1101011, which is

unattainable by [1, Proposition 4.1], `′1 6= S; hence, `′1 = N, so that epr(B[α]) = NSNSNAA.

We note that a simultaneous permutation of the rows and columns of a matrix has no

effect on its determinant; thus, since all diagonal entries of B[α] are zero, and because

B contains a nonzero diagonal entry, we may assume, without loss of generality, that

b11 6= 0.

Let C = B[{1} ∪ α] and C = [cij]. Then epr(C) starts with S and epr(C[α]) =

epr(B[α]) = NSNSNAA. Since every 6 × 6 principal submatrix of C[α] is nonsingular,

C[α] contains at least two nonzero entries in each row (and column), as otherwise C[α]

contains a 6 × 6 principal submatrix with a row (and column) consisting of only zeros.

Moreover, we note that c11 = b11 6= 0; because multiplication of any row and column of

a matrix by a nonzero constant preserves the rank of every submatrix, we may assume

without loss of generality that c11 = 1. Since C[α] contains a nonzero principal minor

of order 2, we may assume, without loss of generality, that det((C[α])[{1, 2}]) 6= 0; thus,

−(c23)
2 = C23 = (C[α])[{1, 2}] 6= 0; hence, c23 6= 0, and, without loss of generality, we

may assume that c23 = 1. Since C[α] contains at least two nonzero entries in each row

and column, c2j 6= 0 for some j ∈ {4, 5, 6, 7, 8}; so, we may assume that c24 = 1. It

follows that 2c34 = C234 = 0, and so c34 = 0. Then, as C[α] contains at least two nonzero
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entries in each row and column, c3j 6= 0 for some j ∈ {5, 6, 7, 8}; thus, suppose c35 = 1.

It follows that 2c25 = C235 = 0, and so c25 = 0. Now we have −1 + 2c12c13 = C123 = 0,

−1 + 2c12c14 = C124 = 0 and −1 + 2c13c15 = C135 = 0; it follows that c12, c13, c14

and c15 are nonzero. Let c12 = x; then c13 = c14 = 1/2x and c15 = x. We now show

that each of c16, c17 and c18 is nonzero. Suppose to the contrary that c1j = 0 for some

j ∈ {6, 7, 8}; then −(cij)
2 = C1ij = 0 for all i ∈ {3, 4, . . . , 8} \ {j}; hence, cij = 0 for all

i ∈ {3, 4, . . . , 8}, implying that C[α] contains a row with only one nonzero entry, which

is a contradiction. Without loss of generality, we may assume that c16 = c17 = c18 = 1.

Now, observe that C145 = c45(1 − c45); since all the principal minors of order 3 are

zero, it follows that c45 = 0 or c45 = 1. Besides for the (1, 2)-entry x, we have similar

restrictions for all the remaining unknown entries of C; notice that, for j ∈ {6, 7, 8},

C12j = c2j(2x− c2j), C13j = c3j(1/x− c3j), C14j = c4j(1/x− c4j) and C15j = c5j(2x− c5j).

Similarly, for k ∈ {7, 8}, C16k = c6k(2− c6k). Lastly, C178 = c78(2− c78). It is now clear

that, besides the (1, 2)-entry x, each unknown entry of C is restricted to exactly two

values.

We now show that c45 = 1. Suppose to the contrary that c45 = 0. Since C[α] must

contain at least two nonzero entries in each row and column, without loss of generality,

we may assume that b56 is nonzero, implying that c56 = 2x. Then 4xc36 = C356 = 0,

and therefore c36 = 0. We proceed by examining the only two possibilities for the entry

c26. First, suppose c26 = 0. Since all the principal minors of order 5 of C are zero,

4xc46 = C23456 = 0, implying that c46 = 0. Then C12456 = −4x2 6= 0, a contradiction.

So, suppose c26 = 2x. Since 4xc46 = C246 = 0, c46 = 0. Since C[α] must contain at

least two nonzero entries in each row and column, suppose, without loss of generality,

that c47 6= 0; hence, c47 = 1/x. Since 2c27/x = C247 = 0, c27 = 0. Now, observe that

C13457 = (−2x+2x2c37+c57−xc37c57)/2x3 and C23457 = 2c57/x−2c37c57; since C13457 = 0,

at least one of c37 and c57 is nonzero; then, as C23457 = 0, c37 6= 0, and so c37 = 1/x. It

follows that 2c57/x = C357 = 0, and so c57 = 0. As −4 + 2c67 = C14567 = 0, c67 = 2.
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Then we have C234567 = 0, implying that C[α] has a singular 6× 6 principal submatrix,

which is a contradiction. We conclude that c45 6= 0; hence, c45 = 1.

Now, observe that at least one of c36, c37, c38, c46, c47 and c48 is nonzero, as otherwise

C[α], which is nonsingular, would have two identical rows; thus, without loss of generality,

we assume that c36 6= 0; hence, c36 = 1/x. Similarly, at least one of c27, c28, c57

and c58 is nonzero, as otherwise C[{2, 3, 4, 5, 7, 8}] = (C[α])[{1, 2, 3, 4, 6, 7}], which is

nonsingular, would have two identical rows; without loss of generality, we assume that

c27 6= 0; thus, c27 = 2x. Now the conditions C236 = C237 = C247 = C356 = 0 imply that

c26 = c37 = c47 = c56 = 0.

Finally, we consider the only two possibilities for the entry c57. First, suppose c57 =

2x. Then C234567 = 0, a contradiction. Now, suppose c57 = 0. Since C234567 = −4x2(c46−

1/x)2 is nonzero, c46 = 0. Then −2c67 = C14567 = 0, and so c67 = 0. Since every row

and column of C[α] must contain at least two nonzero entries, it follows that c68 and c78

are nonzero, implying that c68 = c78 = 2. The conditions C278 = C368 = 0 imply that

c28 = c38 = 0. Hence, C23678 = 16 6= 0, a contradiction. �

2.3 Pr-sequences not containing three consecutive 1s

We begin with results that forbid certain pr-sequences not containing three con-

secutive 1s; we then implement these in Theorem 2.3.10, where, for real symmetric

matrices, we classify all the attainable pr-sequences not containing three consecutive 1s.

It is obvious from Theorem 2.1.1 that, with the exception of the 0th term r′0, we can

explicitly determine each term in the pr-sequence of the inverse of a nonsingular real

symmetric matrix B. The next result demonstrates that, when n ≥ 3, r′0 can always be

determined from pr(B) if this sequence does not end with 111.

Remark 2.3.1. Let n ≥ 3, B be a nonsingular real symmetric matrix with pr(B) =

r0]r1 · · · rn−11 and r′0 be the 0th term of pr(B−1).
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(i) If rn−1rn = 01, then r′0 = 1.

(ii) If rn−2rn−1rn = 011, then r′0 = 0.

(i) is immediate from Theorem 2.1.1, since B obviously has a principal minor of order

n− 1 that is zero. As for (ii), first, notice that the penultimate term of epr(B) must be

A, as NSA is prohibited; therefore, B does not have a principal minor of order n− 1 that

is zero, implying that r′0 = 0.

The next proposition generalizes a particular case of [2, Lemma 4.5].

Proposition 2.3.2. Let B be a real symmetric matrix with pr(B) = r0]r1 · · · rn. Suppose

that pr(B) does not contain three consecutive 1s and that r0]r1 6= 1]1. Then, for any m

with 1 ≤ m ≤ n, there exists a principal submatrix B′ of B such that pr(B′) = r0]r1 · · · rm.

Proof. Let 1 ≤ m ≤ n. By [2, Lemma 4.5], B has a principal submatrix B′ with

pr(B′) = r′0]r1r2 · · · rm. Since B does not contain both a zero and a nonzero diagonal

entry, it follows that r′0]r1 = r0]r1, and therefore pr(B′) = r0]r1 · · · rm. �

Corollary 2.3.3. Let σ = r0]r1 · · · rn be a pr-sequence not containing three consecutive

1s. Suppose r0]r1 6= 1]1. If any initial subsequence of σ is unattainable, then σ is

unattainable.

It was shown in [2] that appending 0 to the end of an attainable pr-sequence results in

a new attainable pr-sequence; but what if 0 is appended to an unattainable pr-sequence?

For example, if we append 0 to 1]1011, which is unattainable (see [2, Table 5.4]), we

obtain the attainable pr-sequence 1]10110 (see [2, Table 6.1]). However, there are some

cases where appending 0 preserves unattainability. The next observation, a consequence

of Corollary 2.3.3, illustrates this.

Observation 2.3.4. Let r0]r1 · · · rn be an unattainable pr-sequence not containing three

consecutive 1s. Suppose r0]r1 6= 1]1. Then r0]r1 · · · rn0 is also unattainable.
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Propositions 2.3.5 and 2.3.7 below are corollaries to Theorem 2.2.12.

Proposition 2.3.5. Let B be a real symmetric matrix with epr(B) = ANSNSN · · · . Then,

for k ≥ 1, `2k = N. Furthermore, epr(B) = ANSNSNSNN or epr(B) = ANSNSNSNA.

Proof. Let k ≥ 1. By hypothesis, the first assertion holds for k ≤ 3. Suppose `2k 6= N

for some k > 3. By the Inheritance Theorem, B has a nonsingular 2k × 2k principal

submatrix with epr-sequence ANXNYN · · · A, where X, Y, Z ∈ {A, S, N}. By the NN Theorem,

X and Y are not N. Since NAN is prohibited, X = Y = S, a contradiction to Theorem

2.2.12. The final assertion is immediate from the NN Theorem and the fact that NAN is

prohibited. �

Corollary 2.3.6. The pr-sequence 0]10101010110 is unattainable by a real symmetric

matrix.

Proof. Since 0]1010101011 satisfies the hypothesis of Observation 2.3.4, it suffices to

show that this sequence is unattainable. Suppose that there is a real symmetric matrix

B with pr(B) = 0]1010101011 and epr(B) = `1`2 · · · `n. Obviously, `1 = `n = A and

`2 = `4 = `6 = N. Since NAN is prohibited, `3 = `5 = S. Hence, epr(B) = ANSNSN · · · XA,

where X is not N, which contradicts Proposition 2.3.5. �

Proposition 2.3.7. Let B be a real symmetric matrix with epr(B) = SNSNSN · · · . Then,

for k ≥ 1, `2k = N. Furthermore, epr(B) = SNSNSNSNN or epr(B) = SNSNSNSNA.

Proof. Let k ≥ 1. By hypothesis, the first assertion holds for k ≤ 3. Suppose `2k 6= N

for some k > 3. By the Inheritance Theorem, B has a nonsingular 2k × 2k principal

submatrix with an epr-sequence XNYNZN · · · A, where X, Y, Z ∈ {A, S, N}. By the NN

Theorem, X, Y and Z are not N. Since NAN is prohibited, Y = Z = S. Since SN · · · A · · · is

prohibited, X 6= S, and hence X = A, a contradiction to Theorem 2.2.12. As in Proposition

2.3.5, the final assertion follows from the NN Theorem and the fact that NAN is prohibited.

�
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Corollary 2.3.8. The pr-sequence 1]101010101100 is unattainable by a real symmetric

matrix.

Proof. Suppose there is a real symmetric matrix B with pr(B) = 1]101010101100. Let

epr(B) = `1`2 · · · `n. Obviously, `1 = S and `2 = `4 = `6 = N. Since NAN is prohibited,

`3 = `5 = S. Hence, epr(B) = SNSNSN · · · XYNN, where X and Y are both not N, which

contradicts Proposition 2.3.7. �

Before proving the main result of this section, we need a lemma.

Lemma 2.3.9. Let B be a real symmetric matrix with pr(B) = r0]r1 · · · rn. Suppose

r1r2 · · · rn does not contain three consecutive 1s. Let 1 ≤ k ≤ rank(B)−2. If rkrk+1 = 01,

then either rk+2rk+3 · · · rn = 0110 or rk+2rk+3 · · · rn = 01010

Proof. Suppose rkrk+1 = 01. We proceed by examining the only two possibilities for

rk+2.

Case 1 : rk+2 = 1. Now we have rkrk+1rk+2 = 011. If n = k + 2, then we are done.

Now, suppose n > k + 2. By hypothesis, rk+3 = 0, and therefore, by the 0110 Theorem,

rk+2rk+3 · · · rn = 10, where 0 is non-empty.

Case 2 : rk+2 = 0. Now we have rkrk+1rk+2 = 010. Then, as rank(B) ≥ k + 2, by

the 00 Theorem, rk+3 6= 0; hence, rk+3 = 1, and so rk+2rk+3 = 01. If n = k + 3, then we

are done. Suppose n > k + 3. If rank(B) = k + 3, then we have rk+2rk+3 · · · rn = 010,

where 0 is non-empty. Suppose rank(B) > k+3, i.e., suppose rank(B) ≥ k+4. Thus, so

far we have rkrk+1rk+2rk+3 = 0101, where rk+2rk+3 = 01 and 1 ≤ k + 2 ≤ rank(B) − 2.

Since n is finite, it is evident that reimplementing the steps above by replacing k with

k + 2, and repeating this process until reaching the last term of the sequence, yields the

desired conclusion. �

With the next theorem, we classify all the attainable pr-sequences of order n ≥ 3 not

containing three consecutive 1s.
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Theorem 2.3.10. Let n ≥ 3. A pr-sequence of order n not containing three consecutive

1s is attainable by a real symmetric matrix if and only if it is one of the following

sequences.

1. 0]1000.

2. 0]101010.

3. 0]10110.

4. 0]1010110.

5. 0]1100.

6. 0]11010.

7. 0]110110.

8. 1]0000.

9. 1]0100.

10. 1]0101010.

11. 1]010110.

12. 1]1000.

13. 1]1010100.

14. 1]101100.

15. 1]10101100.

Proof. Let B be a real symmetric matrix with pr(B) = r0]r1 · · · rn not containing three

consecutive 1s. Since 0]0 · · · is forbidden by definition, r0]r1 ∈ {0]1, 1]0, 1]1}. We proceed

by examining all the possibilities for r0]r1r2.
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Case i : r0]r1r2 = 0]10. If r3 = 0, then, by the 00 Theorem, we have sequence (1).

Suppose r3 = 1. Hence, pr(B) starts 0]101 · · · . If rank(B) = 3, then pr(B) = 0]1010,

which is sequence (2). Now, suppose rank(B) > 3. Then r2r3 = 01 and 1 ≤ 2 ≤

rank(B) − 2; hence, by applying Lemma 2.3.9 to pr(B), starting with k = 2, we have

either pr(B) = 0]10101010 or pr(B) = 0]1010110. Hence, by Corollary 2.3.6, pr(B) is

one of the sequences (2), (3) and (4).

Case ii : r0]r1r2 = 0]11. By hypothesis, r3 = 0. If rank(B) = 2, then pr(B) = 0]1100,

which is sequence (5). Now suppose rank(B) > 2. Then n > 3 and, by the 00 Theorem,

r4 6= 0, implying that r4 = 1. Hence, pr(B) starts 0]1101 · · · . If n = 4, then we have

sequence (6). Suppose n > 4. If r5 = 1, then, by the 0110 Theorem, we must have

sequence (7), where 0 may be empty. Now, suppose r5 = 0. If n = 5, then we have

sequence (6). Suppose n > 5. Thus far we have pr(B) = 0]11010 · · · ; it follows from [2,

Theorem 7.2] that r6 = 0, and therefore, by the 00 Theorem, we have sequence (6).

Case iii : r0]r1 = 1]0. If r2 = 0, then, by the 00 Theorem, we have sequence (8). Now,

suppose r2 = 1. Hence, pr(B) starts 1]01 · · · . If rank(B) = 2, then pr(B) = 1]0100,

which is sequence (9). Now, suppose rank(B) > 2. Then r1r2 = 01 and 1 ≤ 1 ≤

rank(B) − 2; hence, by applying Lemma 2.3.9 to pr(B), starting with k = 1, we have

either pr(B) = 1]0101010 or pr(B) = 1]010110. Thus, pr(B) is either sequence (10) or

(11).

Case iv : r0]r1 = 1]1. By hypothesis, r2 = 0. If r3 = 0, then the 00 Theorem

implies that we have sequence (12). Now, suppose r3 = 1. Hence, pr(B) starts 1]101 · · · .

Suppose rank(B) = 3; then pr(B) = 1]1010, and, by [2, Theorem 4.1], 0 is non-empty,

implying that pr(B) = 1]10100, which is sequence (13). Now, suppose rank(B) > 3.

Then r2r3 = 01 and 1 ≤ 2 ≤ rank(B) − 2; hence, by applying Lemma 2.3.9 to pr(B),

starting with k = 2, we have pr(B) = 1]10101010 or pr(B) = 1]1010110; again, it follows

from [2, Theorem 4.1] that in either case 0 must be non-empty, and therefore
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pr(B) = 1]101010100 or pr(B) = 1]10101100. Hence, by Corollary 2.3.8, pr(B) is one of

the sequences (13), (14) and (15).

For the other direction, since appending 0 to the end of an attainable sequence

results in another attainable sequence (see [2, Theorem 2.6]), it suffices to establish

the attainability of each sequence when 0 is empty. We assume that the sequence under

consideration has order n ≥ 3 and provide an n× n real symmetric matrix that attains

it.

1. 0]1000: pr(J3) = 0]100.

2. 0]101010: pr((A(Cn))−1) = 0]10101, with n odd (see [2, Lemma 3.4] and Remark

2.3.1).

3. 0]10110: pr(J4 − 2I4) = 0]1011.

4. 0]1010110: pr(M0101011) = 0]101011, where M0101011 appears in [2, p. 2153].

5. 0]1100: pr(J1 ⊕ J2) = 0]110.

6. 0]11010: pr(J4 − 3I4) = 0]1101.

7. 0]110110: pr(J5 − 3I5) = 0]11011.

8. 1]0000: pr(03) = 1]000.

9. 1]0100: pr((J2 − I2)⊕ 01) = 1]010.

10. 1]0101010: pr(A(Pn)) = 1]010101, with n even (see [2, Lemma 3.3]).

11. 1]010110: pr(A(Cn)) = 1]01011, with n odd (see [2, Lemma 3.4]).

12. 1]1000: pr(J1 ⊕ 02) = 1]100.

13. 1]1010100: pr((A(Cn−1))
−1 ⊕ 01) = 1]101010, with n even (see [2, Lemma 3.4],

Remark 2.3.1 and [2, Theorem 2.3]).
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14. 1]101100: pr((J4 − 2I4)⊕ 01) = 1]10110.

15. 1]10101100: pr(M0101011 ⊕ 01) = 1]1010110, where M0101011 appears in [2, p. 2153].

That concludes the proof. �

We conclude this section with a classification of the attainable pr-sequences that only

contain three consecutive 1s in the initial subsequence 1]11. The primary motivation for

including this result is its application in Section 2.4.

Proposition 2.3.11. The epr-sequences SSNSNSNSSNN and SSNSNSNAA are unattainable

by a real symmetric matrix.

Proof. Suppose to the contrary that there is a real symmetric matrix B with epr(B) =

SSNSNSNSSNN. Notice that rank(B) is odd. If NS is empty, then we have a contradiction

to Proposition 2.2.13. So, suppose NS is non-empty. Let B[α] be a nonsingular 1 × 1

principal submatrix of B. By the Schur Complement Theorem, rank(B/B[α]) is even,

rank(B/B[α]) ≥ 8, and epr(B/B[α]) = XNYNZN · · · , where X, Y, Z ∈ {A, S, N}. Then, as

rank(B/B[α]) ≥ 8, by the NN Theorem, X, Y and Z are not N. Since NAN is prohibited,

Y = Z = S. Thus, we have epr(B/B[α]) = XNSNSN · · · , where X is not N. It follows from

Propositions 2.3.5 and 2.3.7 that rank(B/B[α]) is odd, a contradiction.

Now, suppose SSNSNSNAA is attainable. Then applying [3, Observation 2.19(2)] to this

sequence implies that SSNSNSNSSN is attainable, a contradiction to the first assertion. �

Corollary 2.3.12. The pr-sequence 1]1101010110 is unattainable by a real symmetric

matrix.

Proof. Suppose that there is a real symmetric matrix B with pr(B) = 1]1101010110

and epr(B) = `1`2 · · · `n. Obviously, `1 = S and `3 = `5 = N. By the NN Theorem, and

because NAN is prohibited, `4 = S. Since `2 is not N, it follows from Proposition 2.2.3

that `2 = S. Hence, epr(B) = SSNSN · · ·. We examine two cases.
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Case 1 : 0 is empty. Notice that pr(B) = 1]110101011 = 1]110101011. Moreover,

`n = A and `i = N for all odd i with 3 ≤ i ≤ n− 2. Then, as NAN is prohibited, `j = S for

all even j with 4 ≤ j ≤ n− 3. Therefore, we have epr(B) = SSNSNSNXA, where X is not

N. Since NSA is prohibited, X = A, which contradicts Proposition 2.3.11.

Case 2 : 0 is non-empty. Thus, pr(B) = 1]11010101100 = 1]11010101100. As in

the preceding case, the fact that NAN is prohibited implies that epr(B) = SSNSNSNXYNN,

where X and Y are not N. By Theorem 4.3.9, X = S. Then, as NSA is prohibited, Y = S.

Hence, epr(B) = SSNSNSNSSNN, a contradiction to Proposition 2.3.11. �

Proposition 2.3.13. Let n ≥ 3. A pr-sequence r0]r1 · · · rn, with r1r2 · · · rn not contain-

ing three consecutive 1s, is attainable by a real symmetric matrix if and only if it is one

of the sequences in Theorem 2.3.10 or one of the following sequences.

16. 1]1100.

17. 1]1101010.

18. 1]110110.

Proof. Let B be a real symmetric matrix with pr(B) = r0]r1 · · · rn. Suppose r1r2 · · · rn

does not contain three consecutive 1s. If r0]r1r2 6= 1]11, then pr(B) does not con-

tain three consecutive 1s, and therefore it is one of the sequences listed in Theorem

2.3.10. Thus, suppose r0]r1r2 = 1]11. By hypothesis, r3 = 0. If n = 3, then pr(B)

is sequence (16). So, suppose n > 3. If r4 = 0, then, by the 00 Theorem, pr(B) is

sequence (16). Now, suppose r4 = 1. Then pr(B) starts 1]1101 · · · . If rank(B) = 4, then

pr(B) = 1]11010, which is sequence (17). Now, suppose rank(B) > 4. Hence, r3r4 = 01

and 1 ≤ 3 ≤ rank(B)− 2. It follows from applying Lemma 2.3.9 to pr(B), starting with

k = 3, that pr(B) = 1]110101010 or pr(B) = 1]11010110. Hence, by Corollary 2.3.12,

pr(B) is either sequence (17) or sequence (18).
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For the other direction, as in Theorem 2.3.10, it suffices to show that each sequence

is attainable when 0 is empty. By [2, Theorem 3.7], the sequences 1]110 and 1]11011 are

attainable by Q3,1 and Q5,1, respectively. Finally, 1]110101 is attained by (A(Fn))−1 (see

[2, Lemma 3.5]), where n is even and Fn is the graph on n vertices formed by adding a

pendent edge to Cn−1. �

2.4 Epr-sequences with an N in every subsequence of length 3

This section focuses on epr-sequences with an N in every subsequence of length 3,

and culminates with a classification of all the attainable epr-sequences with this property.

The sequence accounted for in the next result is of particular relevance to the main

result at the end of this section.

Proposition 2.4.1. Let n ≥ 3 and B = [bij] be the n × n real symmetric matrix with

bij = (i− j)2. Then epr(B) = NAAN.

Proof. Suppose that epr(B) = `1`2 · · · `n. It is easy to verify the assertion for n = 3.

Suppose n > 3. Obviously, `1 = N. Let p, q, r, s ∈ {1, 2, . . . , n}, where p < q < r < s.

Since every off-diagonal entry of B is nonzero, we have Bpq = −(bpq)
2 6= 0 and Bpqr =

2bpqbprbqr 6= 0. A simple computation reveals that the order-4 principal minor Bpqrs is

given by

(bpsbqr)
2 + (bprbqs)

2 + (bpqbrs)
2 − 2bprbpsbqrbqs − 2bpqbpsbqrbrs − 2bpqbprbqsbrs =

((p− s)(q − r))4 + ((p− r)(q − s))4 + ((p− q)(r − s))4

−2((p− r)(p− s)(q − r)(q − s))2 − 2((p− q)(p− s)(q − r)(r − s))2

−2((p− q)(p− r)(q − s)(r − s))2 = 0.

Hence, we have `2 = `3 = A and `4 = N. The conclusion now follows from Proposition

2.2.4. �
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Observation 2.4.2. If an attainable pr-sequence does not contain three consecutive 1s,

then an attainable epr-sequence associated with it contains an N in every subsequence of

length 3.

Remark 2.4.3. The converse of Observation 2.4.2 is false. An attainable epr-sequence

starting SS · · · , or starting SA · · · , with an N in every subsequence of length 3, provides

a counterexample. It can be deduced that all counterexamples are of that form, and

therefore that the converse of Observation 2.4.2 is true if additionally we assume that

the pr-sequence does not start with 1]11.

Observation 2.4.4. Let n ≥ 3 and B be a real symmetric matrix with pr(B) =

r0]r1 · · · rn. Then epr(B) contains an N in every subsequence of length 3 if and only

if r1r2 · · · rn does not contain three consecutive 1s

Observation 2.4.4 suggests that we can use Theorem 2.3.10 and Proposition 2.3.13

to classify all the epr-sequences with an N in every subsequence of length 3, as the pr-

sequences associated with these epr-sequences must be those listed on these results.

Theorem 2.4.5. Let n ≥ 3. An epr-sequence of order n with an N in every subsequence

of length 3 is attainable by a real symmetric matrix if and only if it is one of the following

sequences.

1. ANNN.

2a. ANSNA.

2b. ANSNSNN.

3a. ANAA.

3b. ANSSNN.

4a. ANSNAA.
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4b. ANSNSSNN.

5a. AANN.

5b. ASNN.

6a. AANA.

6b. ASNSNN.

7a. AANAA.

7b. ASNSSNN.

8. NNNN.

9. NSNN.

10a. NSNSNA.

10b. NSNSNSNN.

11a. NSNAA.

11b. NSNSSNN.

11c. NAANN.

12. SNNN.

13. SNSNSNN.

14. SNSSNN.

15. SNSNSSNN.

16a. SANN.
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16b. SSNN.

17a. SSNSNA.

17b. SSNSNSNN.

18a. SSNAA.

18b. SSNSSNN.

Proof. Let B be a real symmetric matrix with epr(B) = `1`2 · · · `n. Suppose that

epr(B) contains an N in every subsequence of length 3. It follows from Observation 2.4.4

that pr(B) is one of the sequences listed in Theorem 2.3.10 or Proposition 2.3.13. We

examine the 18 possible cases.

Case 1 : pr(B) = 0]1000. Obviously, epr(B) = ANNN, which is sequence (1).

Case 2 : pr(B) = 0]101010. First, suppose 0 is empty. Then, as NAN is prohibited,

epr(B) = ANSNA, which is sequence (2a). Now, suppose 0 is non-empty. Similarly, since

NAN is prohibited, epr(B) = ANSNSNN, which is sequence (2b).

Case 3 : pr(B) = 0]10110. If 0 is empty, then, as NSA is prohibited, epr(B) = ANAA,

which is sequence (3a). If 0 is non-empty, then, since NSA and NAS are prohibited, we

must have ANSSNN or ANAANN; as the latter sequence is forbidden by Theorem 2.2.6,

epr(B) is sequence (3b).

Case 4 : pr(B) = 0]1010110. Suppose 0 is empty. Since NAN and NSA are prohibited,

epr(B) = ANSNAA, which is sequence (4a). Now suppose 0 is non-empty. Then, as NAN,

NAS and NSA are prohibited, epr(B) is either ANSNSSNN or ANSNAANN; by Theorem 4.3.9,

the latter sequence is forbidden, and thus we have sequence (4b).

Case 5 : pr(B) = 0]1100. Clearly, epr(B) = AANN or epr(B) = ASNN, which are

sequences (5a) and (5b), respectively.
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Case 6 : pr(B) = 0]11010. If 0 is empty, then, as ASNA is forbidden, epr(B) = AANA,

which is sequence (6a). Suppose 0 is non-empty. Since NAN is prohibited, and because

ANS must be initial, epr(B) = ASNSNN, which is sequence (6b).

Case 7 : pr(B) = 0]110110. Suppose 0 is empty. Since NSA and ASN · · · A are pro-

hibited, epr(B) = AANAA, which is sequence (7a). Suppose 0 is non-empty. Moreover,

suppose `2 = A. Obviously, `n = N; but, as ANS must be initial, `4 = A, and therefore

Theorem 2.2.6 implies that `n = A, a contradiction. It follows that we must have `2 = S.

Since ASN · · · A · · · is prohibited, epr(B) = ASNSSNN, which is sequence (7b).

Case 8 : pr(B) = 1]0000. Clearly, epr(B) = NNNN, which is sequence (8).

Case 9 : pr(B) = 1]0100. Since NAN is prohibited, epr(B) = NSNN, which is sequence

(9).

Case 10 : pr(B) = 1]0101010. If 0 is empty, then, as NAN is prohibited, epr(B) =

NSNSNA, which is sequence (10a). Similarly, if 0 is non-empty, epr(B) = NSNSNSNN, which

is sequence (10b).

Case 11 : pr(B) = 1]010110. First, observe that pr(B) = 1]010110. Suppose 0 is

empty. Since NSA and NAN are prohibited, epr(B) = NSNAA, which is sequence (11a).

Suppose 0 is non-empty. Moreover, suppose 10 is empty. Then, as NAS and NSA are

prohibited, epr(B) is NSSNN or NAANN, which are sequences (11b) and (11c), respectively.

Finally, suppose 10 is non-empty. Since NAS, NSA and NAN are prohibited, epr(B) is

either NSNSNSSNN or NSNSNAANN; by Theorem 4.3.9, the latter sequence is forbidden, and

therefore epr(B) is sequence (11b), with SN non-empty.

Case 12 : pr(B) = 1]1000. Obviously, epr(B) = SNNN, which is sequence (12).

Case 13 : pr(B) = 1]1010100. Since SN · · · A · · · is prohibited, it is immediate that

epr(B) = SNSNSNN, which is sequence (13).

Case 14 : pr(B) = 1]101100. As in Case 13, since SN · · · A · · · is prohibited, we must

have epr(B) = SNSSNN, which is sequence (14).
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Case 15 : pr(B) = 1]10101100. Again, as SN · · · A · · · is prohibited, we must have

epr(B) = SNSNSSNN, which is sequence (15).

Case 16 : pr(B) = 1]1100. Clearly, epr(B) is either SANN or SSNN, which are sequences

(16a) and (16b), respectively.

Case 17 : pr(B) = 1]1101010. Since SAN · · · A · · · and SAN · · · S · · · are prohibited by

Proposition 2.2.3, `2 = S. Suppose 0 is empty. Then, as NAN is prohibited, epr(B) =

SSNSNA, which is sequence (17a). Suppose 0 is non-empty. Similarly, since NAN is pro-

hibited, epr(B) = SSNSNSNN, which is sequence (17b).

Case 18 : pr(B) = 1]110110. As in the preceding case, we must have `2 = S. Suppose

0 is empty. Since NSA is prohibited, epr(B) = SSNAA, which is sequence (18a). Suppose

0 is non-empty. Hence, the fact that NAS and NSA are prohibited implies that epr(B) is

either SSNSSNN or SSNAANN; by Theorem 4.3.9, the latter sequence is forbidden, and thus

epr(B) is sequence (18b).

For the other direction, we show that all the sequences listed are attainable, and

assume that the sequence under consideration has order n ≥ 3. Sequence (1) is attained

by Jn. Sequence (2a) is attained by A((Cn)−1) (see [3, Observation 3.1] and the Inverse

Theorem), when NS is non-empty, and by [3, Proposition 2.17], when NS is empty. As

for (2b), applying [3, Observation 2.19(1)] to (2a), results in this sequence. Sequence

(3a) is attainable by [3, Proposition 2.17]. Sequence (3b) is attainable by applying [3,

Observation 2.19(1)] to (3a). Sequence (4a) is attainable by [3, Table 1], and (4b) results

from applying [3, Observation 2.19(1)] to (4a). Sequences (5a) and (5b) are attainable

by [3, Theorem 4.6]. Sequence (6a) is attainable by [3, Proposition 2.17], and (6b)

results from applying [3, Observation 2.19(1)] to (6a). Sequence (7a) is attainable by

[3, Proposition 2.17], and (7b) results from applying [3, Observation 2.19(1)] to (7a).

Sequence (8) is attained by 0n. As for (9), applying [3, Observation 2.19(1)] to the

sequence NA, which is attained by J2 − I2, results in this sequence. Sequence (10a)

is attainable by [3, Observation 3.1], and (10b) results from applying [3, Observation
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2.19(1)] to (10a). Sequence (11a) is attainable by [3, Observation 3.1], while (11b) is

obtained from applying [3, Observation 2.19(1)] to (11a). Sequence (11c) is attainable by

Proposition 2.4.1. Sequence (12) is attainable by [3, Theorem 4.6]. Sequences (13), (14)

and (15) result from applying [3, Observation 2.19(2)] to (2a), (3a) and (4a), respectively.

Sequences (16a) and (16b) are attainable by [3, Theorem 4.6]. According to Proposition

2.3.13, the sequence 1]110101 is attainable; by Proposition 2.2.3, and because NAN is

prohibited, an attainable epr-sequence associated with this pr-sequence, must be SSNSNA,

which is sequence (17a). Sequence (17b) results from applying [3, Observation 2.19(2)]

to (17a). Sequence (18a) is attainable by [3, Table 5], and (18b) is attainable by [3,

Corollary 2.20(2)]. �

If an epr-sequence is attainable, then the pr-sequence associated with it must be

attainable. The converse is not true; this is because an epr-sequence associated with a

pr-sequence may not be unique, since a 1 in the pr-sequence can correspond to an A or S

in the epr-sequence. For example, the epr-sequences NSSN and NAAN, which are associated

with the pr-sequence 1]0110, are each attainable by a real symmetric matrix (see [3, Table

4]). We now show that, for real symmetric matrices, almost all attainable pr-sequences

not containing three consecutive 1s are associated with a unique epr-sequence.

Proposition 2.4.6. Let n ≥ 3 and σ be a pr-sequence that is attainable by an n×n real

symmetric matrix. Suppose σ does not contain three consecutive 1s, σ 6= 0]1100 and that

σ 6= 1]01100. Then there is a unique attainable epr-sequence associated with σ.

Proof. Since the attainable epr-sequences associated with pr-sequences not containing

three consecutive 1s are the epr-sequences (1a)–(15) listed in Theorem 2.4.5, an attainable

epr-sequence associated with σ must be one of these sequences. Note that σ is not

associated with any of the epr-sequences (16a)–(18b), as these are the epr-sequences

that are associated with the pr-sequences listed in Proposition 2.3.13. We consider two

cases.
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Case 1 : σ = 1]010101100. Observe that σ is associated with the epr-sequence (11b)

in Theorem 2.4.5, with SN non-empty. It is easy to see that σ is not associated with any

of the other epr-sequences listed in Theorem 2.4.5, thereby establishing the uniqueness

of the associated epr-sequence (11b).

Case 2 : σ 6= 1]010101100. Then, as σ 6= 1]01100, the epr-sequences (11b) and (11c)

in Theorem 2.4.5 are not associated with σ. Also, it is clear that σ is not associated

with the epr-sequence (11a) in Theorem 2.4.5. Since σ 6= 0]1100, the epr-sequences (5a)

and (5b) in Theorem 2.4.5 are not associated with σ. Thus far we have that σ is not

associated with any of the epr-sequences (5a), (5b), (11a), (11b) or (11c). Hence, σ

must be one of the pr-sequences (1)–(4), (6)–(10) or (12)–(15) in Theorem 2.3.10. Now,

by considering all the possible cases, one easily verifies that an attainable epr-sequence

associated with σ, which must be listed in Theorem 2.4.5, is unique. �
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CHAPTER 3. THE ENHANCED PRINCIPAL RANK

CHARACTERISTIC SEQUENCE OVER A FIELD OF

CHARACTERISTIC 2

A paper submitted to the journal Electronic Journal of Linear Algebra

Xavier Mart́ınez-Rivera

Abstract

The enhanced principal rank characteristic sequence (epr-sequence) of an n×n sym-

metric matrix over a field F was recently defined as `1`2 · · · `n, where `k is either A, S,

or N based on whether all, some (but not all), or none of the order-k principal minors of

the matrix are nonzero. Here, a complete characterization of the epr-sequences that are

attainable by symmetric matrices over the field Z2, the integers modulo 2, is established.

Contrary to the attainable epr-sequences over a field of characteristic 0, our characteri-

zation reveals that the attainable epr-sequences over Z2 possess very special structures.

For more general fields of characteristic 2, some restrictions on attainable epr-sequences

are obtained.

Keywords. Principal rank characteristic sequence; enhanced principal rank character-

istic sequence; minor; rank; symmetric matrix; finite field.
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3.1 Introduction

For an n×n real symmetric matrix B, Brualdi et al. [2] introduced the principal

rank characteristic sequence (abbreviated pr-sequence), which was defined as pr(B) =

r0]r1 · · · rn, where, for k ≥ 1,

rk =


1 if B has a nonzero principal minor of order k, and

0 otherwise,

while r0 = 1 if and only if B has a 0 diagonal entry. This definition was generalized for

symmetric matrices over any field by Barrett et al. [1].

Our focus will be studying a sequence that was introduced by Butler et al. [4] as a

refinement of the pr-sequence of an n×n symmetric matrix B over a field F, which they

called the enhanced principal rank characteristic sequence (abbreviated epr-sequence),

and which was defined as epr(B) = `1`2 · · · `n, where

`k =


A if all the principal minors of order k are nonzero;

S if some but not all the principal minors of order k are nonzero;

N if none of the principal minors of order k are nonzero, i.e., all are zero.

The definition of the epr-sequence was later extended to the class of real skew-symmetric

matrices in [6], where a complete characterization of the epr-sequences realized by this

class was presented. However, things are more subtle for the class of symmetric matrices

over a field F, and thus obtaining a similar characterization presents a difficult problem.

When F is of characteristic 0, it is known that any epr-sequence of the form `1 · · · `n−kN,

with `i ∈ {A, S}, is attainable by an n × n symmetric matrix over F, where N (which

may be empty) is the sequence consisting of k consecutive Ns [4] – if N is empty, note

that we must have `n = A. In general, the subtlety for symmetric matrices becomes

evident once the Ns are not restricted to occur consecutively at the end of the sequence:

Sequences such as NSA, NNA and NNS can never occur as a subsequence of the epr-sequence
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of a symmetric matrix over any field [4]; the same holds for the sequences NAN and NAS

when the field is of characteristic not 2 [4]. Moreover, over fields of characteristic not

2, the sequence ANS can only occur at the start of the sequence [4]. Over the real field,

SNA can only occur as a terminal subsequence, or in the terminal subsequence SNAA [10].

Furthermore, over the real field, we also know that when the subsequence ANA occurs

as a non-terminal subsequence, it forces every other term of the sequence to be A [10].

However, it is unknown what kind of restrictions a subsequence such as SNS imposes

on an attainable sequence (over any field); this is one of the difficulties in arriving at a

complete characterization of the epr-sequences attainable by a symmetric matrix over a

field F. In order to simplify this problem, it is natural to consider the case when F is of

characteristic 2. The analogous problem for pr-sequences was already settled in [1]:

Theorem 3.1.1. [1, Theorem 3.1] A pr-sequence of order n ≥ 2 is attainable by a

symmetric matrix over a field of characteristic 2 if and only if it has one of the following

forms:

0]1 1 0, 1]01 0, 1]1 1 0.

We see that for any two fields of characteristic 2, the class of pr-sequences attainable

by symmetric matrices over each of the two fields is the same. This is not true in the case

of epr-sequences: Consider an epr-sequence starting with AA over the field Z2 = {0, 1},

the integers modulo 2; over this field, any such sequence must be AAA, since any symmetric

matrix attaining this sequence must be the identity matrix. However, in Example 3.2.5

below, it is shown that the epr-sequence AAN is attainable over a field of characteristic

2, implying that not all fields of characteristic 2 give rise to the same class of attainable

epr-sequences. In light of this difficulty, our main focus here will be on the field F = Z2;

after establishing some restrictions for the attainability of epr-sequences over a field

of characteristic 2 at the beginning of Section 3.2, our main objective is a complete

characterization of the epr-sequences that are attainable by symmetric matrices over

Z2 (see Theorems 3.3.2, 3.3.8 and 3.3.11). We find that the attainable epr-sequences
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over Z2 possess very special structures, which is in contrast to the family of attainable

epr-sequences over a field of characteristic 0, which was described above.

Another motivating factor for considering this problem is that it is a simplification

of the principal minor assignment problem as stated in [8], which also served as moti-

vation for the introduction of the pr-sequence in [2]. Note that epr-sequences provide

more information than pr-sequences, and thus are a step closer to the principal minor

assignment problem.

Extra motivation for this problem comes from the observation that there is a one-to-

one correspondence between adjacency matrices of simple graphs and symmetric matrices

over Z2 with zero diagonal, and, more generally, between adjacency matrices of loop

graphs and symmetric matrices over Z2.

It should be noted that, although epr-sequences have received attention after their

introduction in [4] (see [5], [6] and [10], for example), very little is known about epr-

sequences of symmetric matrices over a field of characteristic 2, since the vast majority

of what has appeared on the literature regarding epr-sequences has been focused on fields

of characteristic not 2.

Although Theorem 3.1.1 sheds some light towards settling the problem under consid-

eration, it does not render it trivial by any means; one reason is the observation that two

symmetric matrices may have distinct epr-sequences while having the same pr-sequence:

As it is shown in Theorem 3.3.8 below, the epr-sequences ASAA and ASSA, which are

associated with the pr-sequence 0]1111, are both attainable over Z2.

To highlight a second reason, we state the two results upon which Barrett et al. [1]

relied in order to obtain Theorem 3.1.1 (the latter is a variation of a result of Friedland

[7, p. 426]).

Lemma 3.1.2. [1, Lemma 3.2] Let F be a field of characteristic 2, let B be a symmetric

matrix over F with pr(B) = r0]r1 · · · rn, and let E be an n× n invertible matrix over F.

Then epr(EBET ) = r′0]r1r2 · · · rn for some r′0 ∈ {0, 1}.
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In what follows, Kn denotes the complete graph on n vertices, and A(Kn) denotes

its adjacency matrix.

Lemma 3.1.3. [1, Lemma 3.3] Let B be a symmetric matrix over a field F with charac-

teristic 2. Then B is congruent to the direct sum of a (possibly empty) invertible diagonal

matrix D, and a (possibly empty) direct sum of A(K2) matrices, and a (possibly empty)

zero matrix.

The two lemmas above permitted Barrett et al. [1] to arrive at their characterization

for pr-sequences in Theorem 3.1.1 by restricting themselves to symmetric matrices that

are in the canonical form described in Lemma 3.1.3. We cannot use this approach to

obtain our desired characterization for epr-sequences: Suppose one tries to apply the

congruence described in Lemma 3.1.2 to a symmetric matrix B with epr(B) = ASAN,

which is shown to be attainable in Theorem 3.3.8. Then, because B is singular, and

because multiplication by an invertible matrix preserves the rank of the original matrix,

once B has been transformed into the canonical form described in Lemma 3.1.3, it must

be the case that in this resulting matrix the zero summand is non-empty. Thus, the

resulting matrix has a zero row (and zero column), which implies that it contains a

principal minor of order 3 that is zero. Then, as the principal minors of order 3 of the

original matrix B were all nonzero, the congruence performed did not preserve the third

term of epr(B), which is in contrast to what happens to pr(B), which, with the exception

of the zeroth term, must be preserved completely by Lemma 3.1.2.

We say that a (pr- or epr-) sequence is attainable over a field F provided that there

exists a symmetric matrix B ∈ Fn×n that attains it. A pr-sequence and an epr-sequence

are associated with each other if a matrix (which may not exist) attaining the epr-

sequence also attains the pr-sequence. A subsequence that does not appear in any

attainable sequence is prohibited. We say that a sequence has order n if it corresponds

to a matrix of order n. Let B be an n× n matrix, and let α, β ⊆ {1, 2, . . . , n}; then the

submatrix lying in rows indexed by α, and columns indexed by β, is denoted by B[α, β].
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The matrix obtained by deleting the rows indexed by α, and columns indexed by β, is

denoted by B(α, β). If α = β, then the principal submatrix B[α, α] is abbreviated to

B[α], while B(α, α) is abbreviated to B(α). The matrices On and In denote, respectively,

the zero and identity matrix of order n. We denote by Jm,n the m × n all-1s matrix,

and, when m = n, Jn,n is abbreviated to Jn. The block diagonal matrix formed from two

square matrices B and C is denoted by B⊕C. The matrices B and C are permutationally

similar if there exists a permutation matrix P such that C = P TBP . Given a graph G,

A(G) denotes the adjacency matrix of G.

3.1.1 Results cited

This section lists results that will be cited frequently, with some of them being

assigned abbreviated nomenclature.

Theorem 3.1.4. [4, Theorem 2.3] (NN Theorem.) Suppose B is a symmetric matrix over

a field F, epr(B) = `1`2 · · · `n, and `k = `k+1 = N for some k. Then `i = N for all i ≥ k.

Theorem 3.1.5. [4, Theorem 2.4] (Inverse Theorem.) Suppose B is a nonsingular sym-

metric matrix over a field F. If epr(B) = `1`2 · · · `n−1A, then epr(B−1) = `n−1`n−2 · · · `1A.

Given a matrix B, the ith term in its epr-sequence is denoted by [epr(B)]i.

Theorem 3.1.6. [4, Theorem 2.6] (Inheritance Theorem.) Suppose that B is a symmet-

ric matrix over a field F, m ≤ n, and 1 ≤ i ≤ m.

1. If [epr(B)]i = N, then [epr(C)]i = N for all m×m principal submatrices C.

2. If [epr(B)]i = A, then [epr(C)]i = A for all m×m principal submatrices C.

3. If [epr(B)]m = S, then there exist m ×m principal submatrices CA and CN of B

such that [epr(CA)]m = A and [epr(CN)]m = N.

4. If i < m and [epr(B)]i = S, then there exists an m × m principal submatrix CS

such that [epr(CS)]i = S.
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In the rest of this paper, each instance of · · · is permitted to be empty.

Corollary 3.1.7. [4, Corollary 2.7] (NSA Theorem.) No symmetric matrix over any field

can have NSA in its epr-sequence. Further, no symmetric matrix over any field can have

the epr-sequence · · · ASN · · · A · · · .

Given a matrix B with a nonsingular principal submatrix B[α], we denote by B/B[α]

the Schur complement of B[α] in B [12]. The next fact is a generalization of [4, Propo-

sition 2.13] to any field; the proof is exactly the same, and is omitted here (we note that

the proof was also omitted in [4]).

Theorem 3.1.8. (Schur Complement Theorem.) Suppose B is an n × n symmetric

matrix over a field F, with rankB = r. Let B[α] be a nonsingular principal submatrix of

B with |α| = k ≤ r, and let C = B/B[α]. Then the following results hold.

(i) C is an (n− k)× (n− k) symmetric matrix.

(ii) Assuming the indexing of C is inherited from B, any principal minor of C is given

by

detC[γ] = detB[γ ∪ α]/ detB[α].

(iii) rankC = r − k.

The next result, which is immediate from the Schur Complement Theorem, has been

used implicitly in [4] and [10], but we state it here in the interest of clarity (it should be

noted that this result appeared in [5] for Hermitian matrices).

Corollary 3.1.9. (Schur Complement Corollary.) Let B be a symmetric matrix over

a field F, epr(B) = `1`2 · · · `n, and let B[α] be a nonsingular principal submatrix of

B, with |α| = k ≤ rankB. Let C = B/B[α] and epr(C) = `′1`
′
2 · · · `′n−k. Then, for

j = 1, . . . , n− k, `′j = `j+k if `j+k ∈ {A, N}.
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Observation 3.1.10. [4, Observation 2.19] Let B be a symmetric matrix over a field F,

with epr-sequence `1`2 · · · `n.

1. Form a matrix B′ from B by copying the last row down and then the last column

across. Then the epr-sequence of B′ is `1`
′
2 · · · `′nN with `′i = N if `i = N and `′i = S

otherwise for 2 ≤ i ≤ n.

2. Form a matrix B′′ from B by taking the direct sum with [0]. Then the epr-sequence

of B′′ is `′′1`
′′
2 · · · `′′nN with `′′i = N if `i = N and `′′i = S otherwise for 1 ≤ i ≤ n.

3.2 Restrictions on attainable epr-sequences over a field of

characteristic 2

Before stating our main results in Section 3.3, we devote this section towards

establishing restrictions for the attainability of epr-sequences over a field of characteristic

2.

Observation 3.2.1. (NA-NS Observation.) Let B be a symmetric matrix over a field of

characteristic 2, with epr(B) = `1`2 · · · `n. If `k`k+1 = NA or `k`k+1 = NS for some k,

then k is odd and `j = N when j is odd.

Proof. Let pr(B) = r0]r1 · · · rn. Suppose `k`k+1 = NA or `k`k+1 = NS. Then rkrk+1 = 01.

Since k ≥ 1, Theorem 3.1.1 implies that pr(B) = 1]01 01 0, and therefore that k is odd,

and that `j = N when j is odd. �

Over a field of characteristic 2, the NN Theorem admits a generalization when the

first N occurs in an even position of the epr-sequence, which is immediate from the NA-NS

Observation and the NN Theorem:

Observation 3.2.2. (N-Even Observation.) Let B be a symmetric matrix over a field of

characteristic 2, with epr(B) = `1`2 · · · `n. Suppose `k = N with k even. Then `j = N for

all j ≥ k.
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The next observation establishes another generalization of the NN Theorem for epr-

sequences beginning with S or A, and it is immediate from Theorem 3.1.1.

Observation 3.2.3. Let B be a symmetric matrix over a field of characteristic 2, with

epr(B) = `1`2 · · · `n. Suppose `1 6= N. If `k = N for some k, then `j = N for all j ≥ k.

In the interest of brevity, adopting the notation in [2], the principal minor det(B[I])

is denoted by BI (when I = ∅, B∅ is defined to have the value 1). Moreover, when

I = {i1, i2, . . . , ik}, BI is written as Bi1i2···ik .

The next result will be of particular relevance later in this section, and its proof

resorts to Muir’s law of extensible minors [11]; for a more recent treatment of this law,

the reader is referred to [3].

Lemma 3.2.4. Let n ≥ 2, and let B be a symmetric matrix over a field of characteristic

2, with epr(B) = `1`2 · · · `n. Suppose that `n−1`n = AN. Then every minor of B of order

n− 1 is nonzero.

Proof. Since the desired conclusion is obvious when n = 2, we assume that n ≥ 3. By

hypothesis, every principal minor of B of order n− 1 is nonzero. Let i, j ⊆ {1, 2, . . . , n}

be distinct, and let I = {1, 2, . . . , n} \ {i, j}. Consider the (n − 1) × (n − 1) non-

principal submatrix resulting from deleting row i and column j, i.e., the submatrix

B[I ∪ {j}|I ∪ {i}]. Since I does not contain i and j, using Muir’s law of extensible

minors (see [11] or [3]), one may extend the homogenous polynomial identity

B∅Bij = BiBj − det(B[{i}|{j}]) det(B[{j}|{i}]),

to obtain the identity

BIBI∪{i,j} = BI∪{i}BI∪{j} − det(B[I ∪ {i}|I ∪ {j}]) det(B[I ∪ {j}|I ∪ {i}]).

Since BI∪{i,j} = det(B), and because `n = N, we must have

det(B[I ∪ {i}|I ∪ {j}]) det(B[I ∪ {j}|I ∪ {i}]) = BI∪{i}BI∪{j}.

Then, as `n−1 = A, BI∪{i}BI∪{j} 6= 0, implying that det(B[I ∪ {j}|I ∪ {i}]) 6= 0. �
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3.2.1 Restrictions on attainable epr-sequences over Z2

This section focuses on establishing restrictions for epr-sequences over Z2.

With the purpose of establishing a contrast between the attainable epr-sequences over

Z2 and those over other fields of characteristic 2, the next example exhibits matrices over

a particular field of characteristic 2 attaining epr-sequences that are not attainable over

Z2 (their unattainability over Z2 is established in this section).

Example 3.2.5. Let F = Z2. Consider the field F[z] = {0, 1, z, z+ 1}, where z2 = z+ 1.

For each of the following (symmetric) matrices over the field F[z], epr(Mσ) = σ, where

σ is an epr-sequence.

MAAN =


1 z z + 1

z 1 0

z + 1 0 1

, MASSAN =



z 1 z z + 1 0

1 z z + 1 0 1

z z + 1 z 1 z

z + 1 0 1 z z + 1

0 1 z z + 1 z


,

MNANSNN =



0 z z + 1 1 1 1

z 0 1 1 1 1

z + 1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0


, MSAAA =



1 0 1 1

0 1 z z

1 z 0 1

1 z 1 0


,

MSASN =



1 z z 1

z 1 1 1

z 1 0 1

1 1 1 0


, MSASSA =



1 z z z 1

z 1 0 1 1

z 0 1 1 1

z 1 1 0 1

1 1 1 1 0


.
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Remark 3.2.6.

1. If B is an n × n symmetric matrix over Z2 having an epr-sequence starting with

AA, then B = In. This is because a symmetric matrix with nonzero diagonal must

have each of its off-diagonal entries equal to zero in order to have all of its order-2

principal minors be nonzero.

2. A similar argument shows that if an n × n symmetric matrix B over Z2 has an

epr-sequence starting with NA, then B = A(Kn).

Given a sequence ti1ti2 · · · tik , the notation ti1ti2 · · · tik indicates that the sequence

may be repeated as many times as desired (or it may be omitted entirely).

Proposition 3.2.7. Let n ≥ 2. Then, over Z2, epr(A(Kn)) = NANA when n is even, and

epr(A(Kn)) = NANAN when n is odd.

Proof. Let epr(A(Kn)) = `1`2 · · · `n. Obviously, `1 = N. Observe that, for 2 ≤ q ≤

n, every q × q principal submatrix of B is equal to A(Kq). Since A(Kq) = Jq − Iq,

det(A(Kq)) = (−1)q−1(q − 1) = q − 1 (in characteristic 2). Hence, `q = N when q is odd

and `q = A when q is even. �

Lemma 3.2.8. (NA Lemma.) Let B be a symmetric matrix over Z2, with epr(B) =

`1`2 · · · `n. If `k`k+1 = NA, then `k · · · `n = NANA or `k · · · `n = NANAN.

Proof. Suppose `k`k+1 = NA. If k = 1, then Remark 3.2.6 implies that B = A(Kn), and

therefore that epr(B) = NANA or epr(B) = NANAN (by Proposition 3.2.7). Now, suppose

k ≥ 2, and that `j 6= A for some even integer j > k + 1. By the Inheritance Theorem,

B contains a singular j × j principal submatrix, B′, whose epr-sequence `′1`
′
2 · · · `′j has

`′k`
′
k+1 = NA and `′j = N. Since k ≥ 2, the NN Theorem implies that `′k−1 6= N. Let

B′[α] be a nonsingular (k − 1) × (k − 1) principal submatrix of B′. It follows from the

Schur Complement Theorem that B′/B′[α] is a (symmetric) matrix of order j−k+1, and
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from the Schur Complement Corollary that epr(B′/B′[α]) = NA · · · N. Since epr(B′/B′[α])

begins with NA, B′/B′[α] = A(Kj−k+1) (by Remark 3.2.6). Then, as epr(B′/B′[α]) ends

with N, Proposition 3.2.7 implies that epr(B′/B′[α]) = NANAN; hence, j − k + 1 is odd,

which is a contradiction, since j is even and k is odd. �

The epr-sequence of the matrix MNANSNN in Example 3.2.5 demonstrates that the NA

Lemma cannot be generalized to all fields of characteristic 2.

Theorem 3.2.9. (AA Theorem.) If an epr-sequence containing AA as a non-terminal

subsequence is attainable over Z2, then it is the sequence AAAAA.

Proof. Let B be an n×n symmetric matrix over Z2, with epr(B) = `1`2 · · · `n. Suppose

that `k`k+1 = AA, where k + 1 < n. We now show by contradiction that `k+2 = A; thus,

suppose `k+2 6= A. Hence, by the Inheritance Theorem, B contains a (k + 2) × (k + 2)

principal submatrix C with epr(C) = `′1`
′
2 · · · `′k+2 having `′k`

′
k+1`

′
k+2 = AAN. Note that

C is singular. By Remark 3.2.6, k ≥ 2 (otherwise, C = I3, which is nonsingular). Let

I = {1, 2, . . . , k + 2} \ {1, 2, 3}. By [9, Theorem 2], and because C is over a field of

characteristic 2, the following equation holds:

C2
IC

2
I∪{1,2,3} + C2

I∪{1}C
2
I∪{2,3} + C2

I∪{2}C
2
I∪{1,3} + C2

I∪{3}C
2
I∪{1,2} = 0,

which is the hyperdeterminantal relation obtained from the relation (2) appearing on [9,

p. 635]. Then, as |I| = k − 1, the fact that `′k`
′
k+1`

′
k+2 = AAN leads to a contradiction,

since the quantity on the left side of this relation must be nonzero. Hence, it must be

the case that `k+2 = A. It now follows inductively that `k · · · `n = AAAA.

Now, suppose that `j 6= A for some j < k. Then, as k + 1 < n, the Inverse Theorem

implies that epr(B−1) starts with AA, and that epr(B−1) 6= AAAA. But, by Remark 3.2.6,

B−1 = In, implying that epr(B−1) = AAAA, a contradiction.

Since AAAAA is attained by In, the desired conclusion follows. �

The epr-sequence of the matrix MAAN in Example 3.2.5 shows that the AA Theorem

does not hold for all fields of characteristic 2.
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Theorem 3.2.10. Let n ≥ 3, and let B be a symmetric matrix over Z2, with epr(B) =

`1`2 · · · `n. Suppose that `1 = A and `n−1`n = AN. Then n is even.

Proof. By Lemma 3.2.4, every minor of B of order n−1 is nonzero. We claim that each

row of B contains an even number of nonzero entries; to see this, let k be the number

of nonzero entries of B in row i, and consider a calculation of det(B) via a Laplace

expansion along row i. Because in the field Z2 every number is equal to its negative,

this expansion calculates det(B) by adding k minors of B of order n − 1; since each of

these k minors is nonzero, and because det(B) = 0, it follows that k must be even, as

claimed. Hence, the total number of nonzero entries of B must also be even. Then, as

the number of nonzero off-diagonal entries of a symmetric matrix is always even, it is

immediate that the number of nonzero diagonal entries of B must also be even. Finally,

since the number of nonzero diagonal entries of B is n (because `1 = A), n is even, as

desired. �

We note that the sequence ASSAN is attainable over Z2 when its order is even (see

Theorem 3.3.8), implying that a sequence of the form A · · · AN is not completely pro-

hibited. Moreover, Theorem 3.2.10 does not hold for all fields of characterisitic 2 (see

Example 3.2.5).

In the interest of brevity when proving the next result, define the n× n matrix Rn,k

as follows: For n ≥ 2, let

Rn,k :=

 Ik Jk,n−k

Jn−k,k A(Kn−k)

 ,
where 0 ≤ k ≤ n (we assume that Rn,k = In when k = n, and that Rn,k = A(Kn) when

k = 0).

Proposition 3.2.11. An epr-sequence starting with SA is attainable by a symmetric

matrix over Z2 if and only if it has one of the following forms.

SASA, SASAA, SASAN.
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Proof. Let 0 ≤ k ≤ n be integers. We begin by showing that det(Rn,k) = 0 only when

n is odd and k is even. The desired conclusion is immediate for the case with k = 0

(by Proposition 3.2.7), and, for the case with k = n, it is obvious (since Rn,k = In).

Now, suppose 0 < k < n, and let C = Rn,k. Note that det(C) = det(Ik) det(C/Ik) =

det(C/Ik), where C/Ik is the Schur complement of Ik in C. Then, as

C/Ik = A(Kn−k)− Jn−k,k · Jk,n−k = (1− k)Jn−k − In−k,

det(C) = ((1 − k)(n − k) − 1)(−1)n−k−1 = (k + 1)n + 1 (in characteristic 2). It follows

that det(C) = 1 when n is even, and that det(C) = k when n is odd. We can now

conclude that det(Rn,k) = 0 only when n is odd and k is even, as desired.

Let σ be an epr-sequence starting with SA. For the first direction, suppose that

σ = epr(B) for some symmetric matrix B over Z2. Let σ = `1`2 · · · `n. By hypothesis,

`1`2 = SA. Without loss of generality, suppose that the first k diagonal entries of B are

nonzero, and suppose that the remaining n − k diagonal entries are zero. Note that,

since `1 = S, 1 ≤ k ≤ n − 1. It is easy to verify that the condition that `2 = A implies

that B = Rn,k. It is also easy to see that for any integer m with 3 ≤ m ≤ n, any m×m

principal submatrix of Rn,k is of the form Rm,p, where 0 ≤ p ≤ k (and 0 ≤ m−p ≤ n−k).

The above argument implies that any principal minor of B of order m is nonzero when

m is even, implying that `j = A whenever j is even. Also, observe that for any odd

integer m with 3 ≤ m < n, there exists 0 ≤ p ≤ k even, and 0 ≤ q ≤ k odd, such that

Rm,p and Rm,q are principal submatrices of B; then, as det(Rm,p) = 0 and det(Rm,q) 6= 0,

B contains both a zero and a nonzero principal minor of order m, implying that `j = S

whenever j < n is odd. It now follows that B must have one of the desired epr-sequences.

For the other direction, note that the order-n sequence SASA is attained by the matrix

Rn,1 when n is even. Similarly, (when n is odd) the order-n sequences SASAA and SASAN

are attained by Rn,1 and Rn,2, respectively. �
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As with the previous results, Proposition 3.2.11 cannot be generalized either (see

Example 3.2.5).

An observation following from the NA Lemma, the AA Theorem and Proposition 3.2.11

is in order:

Observation 3.2.12. Let B be a symmetric matrix over Z2, with epr(B) = `1`2 · · · `n.

If `2 = A, then `j = A when j is even.

The previous and the next result also do not hold for all fields of characteristic 2 (see

Example 3.2.5).

Proposition 3.2.13. For any X, the epr-sequence SAXN cannot occur as a subsequence

of the epr-sequence of a symmetric matrix over Z2.

Proof. Let B be an n×n symmetric matrix over Z2, with epr(B) = `1`2 · · · `n. Suppose

`k · · · `k+3 = SAXN for some 1 ≤ k ≤ n − 3, where X ∈ {A, S, N}. By Proposition 3.2.11,

k ≥ 2. By the NSA Theorem, `k−1 6= N. Let B[α] be a (k − 1) × (k − 1) nonsingular

principal submatrix of B. By the Schur Complement Corollary, epr(B/B[α]) = YAZN · · · ,

where Y, Z ∈ {A, S, N}, which contradicts Observation 3.2.12. �

In the epr-sequence of a symmetric matrix over a field of characteristic not 2, [4,

Theorem 2.15] asserts that ANS can only occur as the initial subsequence. Over Z2, the

same restriction holds for ASS:

Proposition 3.2.14. In the epr-sequence of a symmetric matrix over Z2, the subsequence

ASS can only occur as the initial subsequence.

Proof. Let B be an n×n symmetric matrix over Z2, with epr(B) = `1`2 · · · `n. Suppose

to the contrary that `k`k+1`k+2 = ASS for some 2 ≤ k ≤ n − 3. By the Inheritance

Theorem, B contains a (k+ 2)× (k+ 2) principal submatrix B′ with epr(B′) = · · · XAYN,

where X, Y ∈ {A, S, N}. By the NA Lemma, X 6= N, and, by the AA Theorem, X 6= A; hence,

X = S, so that epr(B′) = · · · SAYN, which contradicts Proposition 3.2.13. �
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Once again, the previous result also cannot be generalized to all fields of characteristic

2 (see Example 3.2.5).

Lemma 3.2.15. Let B be a symmetric matrix over Z2, with epr(B) = `1`2 · · · `n. Sup-

pose `k`k+1`k+2 = ASA for some 1 ≤ k ≤ n− 2. Then `1 6= N and the following hold.

1. If `1 = A, then k is odd.

2. If `1 = S, then k is even.

Proof. By the NN Theorem and the NA-NS Observation, epr(B) does not begin with NN,

NA, nor NS; hence, `1 6= N.

(1): Suppose that `1 = A and that k is even. Then, by the Inheritance Theorem, B

contains a (k + 2) × (k + 2) principal submatrix B′ with epr(B′) = A · · · ASA. By the

Inverse Theorem, epr(B−1) = SA · · · AA. Since B−1 is of order k + 2, Proposition 3.2.11

implies that k + 2 is odd, which is a contradiction to k being even.

(2): Suppose that `1 = S and that k is odd. Then, by the Inheritance Theorem,

B contains a (k + 2) × (k + 2) principal submatrix B′ with epr(B′) = S · · · AXA, where

X ∈ {A, S, N}. Since X occurs in an even position, the N-Even Observation implies that

X 6= N; and, by the AA Theorem, X 6= A; hence, X = S. By the Inverse Theorem,

epr((B′)−1) = SA · · · SA. Since (B′)−1 is of order k + 2, Proposition 3.2.11 implies that

k + 2 is even, a contradiction. �

The inverse of the matrix MSASSA in Example 3.2.5, whose epr-sequence is SSASA,

reveals that the previous result also cannot be generalized to all fields of characteristic

2; and, for the same reasons, the following theorem cannot be generalized either.

Theorem 3.2.16. Let B be a symmetric matrix over Z2. Suppose epr(B) contains ASA

as a subsequence. Then epr(B) is one of the following sequences.

1. ASASA;
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2. ASASAA;

3. ASASAN;

4. SASASA;

5. SASASAA;

6. SASASAN.

Proof. Suppose that epr(B) = `1`2 · · · `n, and that `k`k+1`k+2 = ASA. By Lemma 3.2.15,

`1 6= N. We proceed by examining two cases.

Case 1: `1 = S. Because of Proposition 3.2.11, it suffices to show that `2 = A. By

Lemma 3.2.15, k is even. If k = 2, then, obviously, `2 = A. Now, suppose k ≥ 4. By

the Inheritance Theorem, B contains a (k + 2)× (k + 2) principal submatrix, B′, whose

epr-sequence `′1`
′
2 · · · `′k+2 has `′2 = `2 and `′k`

′
k+1`

′
k+2 = A`′k+1A. By the Inverse Theorem,

epr((B′)−1) = `′k+1A · · · `2`′1A. It follows from Observation 3.2.12 that [epr((B′)−1)]j = A

when j is even. Then, as k is even, and because [epr((B′)−1)]k = `2, we must have `2 = A.

Case 2: `1 = A. By Lemma 3.2.15, k is odd. Let 1 < j < k be an odd inte-

ger. By the Inheritance Theorem, B contains a (k + 2) × (k + 2) principal submatrix,

B′, whose epr-sequence `′1`
′
2 · · · `′k+2 has `′j = `j and `′k`

′
k+1`

′
k+2 = A`′k+1A. By the In-

verse Theorem, epr((B′)−1) = `′k+1A · · · `j · · · . It follows from Observation 3.2.12 that

[epr((B′)−1)]i = A when i is even. Since k + 2− j is even, [epr((B′)−1)]k+2−j = A. Then,

as [epr((B′)−1)]k+2−j = `′j = `j, we have `j = A. We conclude that `i = A when i is an

odd integer with 1 < i < k. Then, as `k+1 = S, the AA Theorem implies that `i 6= A when

i is an even integer with 1 < i < k; and, since `k = A, the N-Even Observation implies

that `i 6= N when i is an even integer with 1 < i < k. Hence, epr(B) = ASASA`k+3 · · · `n.

If n = k + 2, then we are done; thus, suppose n ≥ k + 3. Suppose to the contrary

that `q 6= A for some odd integer q with k + 3 ≤ q ≤ n. By the Inheritance Theorem,

B contains a singular q × q principal submatrix, B′, whose epr-sequence `′1`
′
2 · · · `′q has
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`′i = `i = A when i ≤ k + 2 is odd, and, obviously, `′q = N. Let B′[α] be a (necessarily

nonsingular) 1 × 1 principal submatrix of B′. By the Schur Complement Theorem,

B′/B′[α] is a (q − 1) × (q − 1) (symmetric) matrix, and, by the Schur Complement

Corollary, [epr(B′/B′[α])]2 = A, and [epr(B′/B′[α])]q−1 = N. It follows from Observation

3.2.12 that [epr(B′/B′[α])]i = A when i is even. Then, as [epr(B′/B′[α])]q−1 = N, q− 1 is

odd, which is a contradiction to the fact that q is odd. We conclude that `i = A for all

odd i with k + 3 ≤ i ≤ n.

Then, as `k+1 = S, the AA Theorem implies that `i 6= A when i is an even integer

with k + 3 ≤ i ≤ n− 1; and, since at least one of `n−1 and `n must be A (because one of

n− 1 and n must be even) the N-Even Observation implies that `i 6= N when i is an even

integer with k + 3 ≤ i ≤ n− 1. It follows that epr(B) = ASASA when n is odd, and that

either epr(B) = ASASAA or epr(B) = ASASAN when n is even. �

3.3 Main results

In this section, a complete characterization of the epr-sequences that are attain-

able by a symmetric matrix over Z2 is established. We start by characterizing those that

begin with N.

Lemma 3.3.1. Let M1 = A(K2)⊕ A(K2)⊕ · · · ⊕ A(K2) and

M2 =

M1 1n

1Tn O1


be over Z2. Then epr(M1) = NSNA and epr(M2) = NSNAN.

Proof. Let epr(M1) = `1`2 · · · `n. Note that n is even. The desired conclusion is obvious

when n = 2; hence, suppose n ≥ 4. It is clear that `1`2 = NS; thus, by the NA-NS

Observation, epr(M1) has N in every odd position. Clearly, M1 is nonsingular, implying

that `n = A. It remains to show that `j = S when j ≤ n− 1 is even. Since `n = A, by the
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NN Theorem, `j 6= N when j ≤ n − 1 is even. Now, because of the NA Lemma, to show

that `j 6= A when j ≤ n− 1 is even, it suffices to show that `n−2 = S. Clearly, M1({2, 4})

is singular (since it contains a zero row). Then, as `n−2 6= N (because n − 2 is even),

`n−2 = S.

Let epr(M2) = `′1`
′
2 · · · `′n+1. The assertion is clear when n = 2 (note that n is even,

and that M2 is of order n + 1, not n); hence, suppose n ≥ 4. Since (clearly) `′1`
′
2 = NS,

the NA-NS Observation implies that epr(M2) has N in every odd position. Since M1

is a principal submatrix of M2, and because epr(M1) = NSNSNA, it is immediate that

epr(M2) = NSNSN`′nN. We now show that `′n = A. Observe that any n × n principal

submatrix of M2 is either M1, which is nonsingular, or is one that is permutationally

similar to the matrix

C =

C({n}) 1n−1

1Tn−1 O1

 ,
where C({n}) = O1 ⊕ A(K2) ⊕ A(K2) ⊕ · · · ⊕ A(K2). Let C ′ be the matrix obtained

from C by first subtracting its first row from rows 2, 3, . . . , n − 1, and then subtracting

the first column of the resulting matrix from columns 2, 3, . . . , n− 1. Now observe that

det(C ′) = − det(C ′({1, n})), where C ′({1, n}) = A(K2)⊕A(K2)⊕ · · · ⊕A(K2), which is

a nonsingular matrix (of order (n− 2)). Hence, det(C ′) 6= 0. Then, as det(C) = det(C ′),

C is nonsingular. We conclude that `′n = A. �

Theorem 3.3.2. An epr-sequence starting with N is attainable by a symmetric matrix

over Z2 if and only if it has one of the following forms:

1. NANA;

2. NANAN;

3. NSNN;

4. NSNSNA;
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5. NSNSNAN.

Proof. Let σ = `1`2 · · · `n be an epr-sequence with `1 = N. Suppose that σ = epr(B),

where B is a symmetric matrix over Z2. If n = 1, then σ = NSNN with NS and N empty.

Suppose n ≥ 2. If `2 = N, then, by the NN Theorem, σ = NSNNN with NS empty. If `2 = A,

then, by the NA Lemma, σ = NANA or σ = NANAN.

Finally, suppose `2 = S. Since an attainable epr-sequence cannot end in S, n ≥ 3.

By the NA-NS Observation, `j = N when j is odd. Hence, rank(B) is even. We now show

that SNA cannot occur as a subsequence of `1`2 · · · `n−2. Suppose to the contrary that

`k−1`k`k+1 = SNA, where 3 ≤ k ≤ n − 3. Clearly, since `j = N when j is odd, k is odd

and `k+2 = N. By the Inheritance Theorem, B contains a (k + 3) × (k + 3) principal

submatrix B′ with epr(B′) = · · · SNANX, where X ∈ {A, N}. If X = A, then, by the Inverse

Theorem, epr((B′)−1) = NANS · · · , which contradicts the NA Lemma. Hence, X = N, and

therefore epr(B′) = · · · SNANN, which contradicts the NA Lemma. We conclude that SNA

cannot occur as a subsequence of `1`2 · · · `n−2. Now, let r = rank(B); hence, `r 6= N.

Then, as r is even, `r−1 = N (because r − 1 is odd). Since `j = N when j is odd, the NN

Theorem implies that `i 6= N when i ≤ r − 1 is even. We proceed by considering two

cases.

Case 1: r ≥ n − 1. First, suppose r = n − 1. Since r is even, r + 1 = n is odd,

implying that `n = N. Hence, `n−1`n = AN or `n−1`n = SN. Then, as `2 = S, and

because SNA cannot occur as a subsequence of `1`2 · · · `n−2, it follows inductively that

σ = NSNSNAN or σ = NSNSN. Now, suppose r = n; hence, n is even and `n = A. Since

`r−1 = N, `n−1`n = NA. Then, as `2 = S, and because SNA cannot occur as a subsequence

of `1`2 · · · `n−2, it follows inductively that σ = NSNSNA.

Case 2: r ≤ n− 2. Hence, `r+1 · · · `n = NNN. Since `r−1 = N and `r 6= N, `r−1 · · · `n =

NANNN or `r−1 · · · `n = NSNNN; but the former case contradicts the NA Lemma, implying

that `r−1 · · · `n = NSNNN. Then, as `2 = S, and because SNA cannot occur as a subsequence

of `1`2 · · · `n−2, it follows inductively that σ = NSNSNNN.
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For the other direction, we show that each of the sequences listed above is attainable.

Assume that the sequence under consideration has order n. The sequences NANA and

NANAN are attainable by Proposition 3.2.7. When NS is non-empty the sequence NSNN

is attainable by applying Observation 3.1.10(2) to the sequence NANA; and, when NS is

empty, it is attained by On. Finally, the sequences NSNSNA and NSNSNAN are attainable

by Lemma 3.3.1. �

Naturally, due to the dependence of Theorem 3.3.2 on the results of Section 3.2.1,

this theorem does not hold for other fields.

Some lemmas are necessary before stating the second of our three main results in

Theorem 3.3.8.

Lemma 3.3.3. Let n ≥ 4, m ≥ 5, and let

MASA =

 I2 12

1T2 J1

 , MASAA =

I2 J2

J2 I2


be over Z2. Let B = In−3⊕MASA, B

′ = Im−4⊕MASAA, epr(B) = `1`2 · · · `n and epr(B′) =

`′1`
′
2 · · · `′m. Then epr(MASA) = ASA, epr(MASAA) = ASAA, `1`2`3 = `′1`

′
2`
′
3 = ASS, `n−1`n =

SA and `′m−1`
′
m = AA.

Proof. All of the assertions above are easily verified, except `′m−1 = A, which we now

prove. The case with m = 5 is easy to check; thus, suppose m ≥ 6. Note that, since

every 3× 3 principal submatrix of the (4× 4) matrix MASAA is nonsingular, and because

every (m− 5)× (m− 5) principal submatrix of Im−4 is also nonsingular, deleting row i

and column i of B′ results in a matrix that is a direct sum of two nonsingular matrices;

hence, every (m− 1)× (m− 1) principal submatrix of B′ is nonsingular, implying that

`′m−1 = A. �

A matrix that will play an important role here is defined as follows: For n ≥ 2, let

Fn be the n × n matrix resulting from replacing the first diagonal entry of A(Kn) with

1.
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Lemma 3.3.4. Let n ≥ 2, and let Fn be over Z2. Then Fn is nonsingular.

Proof. The assertion is obvious when n = 2; thus, assume n ≥ 3. Observe that

det(Fn) = det(Fn[{1}]) det(Fn/Fn[{1}]) = det(J1) det(Fn/J1) = det(Fn/J1),

where

Fn/J1 = Fn[{2, . . . , n}]− 1n−1 · (J1)−1 · 1Tn−1 = A(Kn−1)− Jn−1 = −In−1.

Hence, det(Fn) = det(−In−1) 6= 0. �

Lemma 3.3.5. Let n = 4k + 2, where k ≥ 1 is an integer. Let m = n
2
, let

B =

Jm Im

Im Im


be over Z2, and let epr(B) = `1`2 · · · `n. Then `1`2`3 = ASS and `n−1`n = AN.

Proof. It is easily seen that `1`2`3 = ASS. Next, we show that `n = N. Observe that

det(B) = det(Im) det(B/Im), where

B/Im = Jm − Im · (Im)−1 · Im = A(Km).

Since m = n
2

= 2k+ 1 is odd, Proposition 3.2.7 implies that A(Km) is singular, implying

that B/Im is singular, and therefore that det(B) = 0; hence, `n = N.

Now, to see that `n−1 = A, note that the (n−1)×(n−1) principal submatrix resulting

from the deletion of the ith row and ith column of B must be one of the following two

matrices:

C1 =

Jm−1 XT

X Im

 , C2 =

Jm X

XT Im−1

 ,
where X = Im(∅, {q}) and q ∈ {1, 2, . . . ,m} is the unique integer such that i = q or

i = m + q (that is, q = i if 1 ≤ i ≤ m, and q = i −m if m + 1 ≤ i ≤ n). Observe that
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det(C1) = det(Im) det(C1/Im) and det(C2) = det(Im−1) det(C2/Im−1), where C1/Im =

Jm−1 −XTX and C2/Im−1 = Jm −XXT are the Schur complements of Im and Im−1 in

C1 and C2, respectively. Since XTX = Im−1, C1/Im = A(Km−1). Then, as m − 1 = 2k

is even, Proposition 3.2.7 implies that C1/Im is nonsingular; hence, det(C1) 6= 0.

Finally, observe that XXT is the m × m matrix resulting from replacing the qth

diagonal entry of Im with 0. Hence, C2/Im−1 is the matrix resulting from replacing the

qth diagonal entry of A(Km) with 1. Then, as C2/Im−1 is permutationally similar to

the nonsingular matrix Fm (see Lemma 3.3.4), C2/Im−1 is nonsingular, implying that

det(C2) 6= 0. �

A worthwhile observation is that the condition that n is equal to 2 modulo 4 in

Lemma 3.3.5 was of relevance when showing that det(B) = 0, as it is consistent with the

proof of Theorem 3.2.10, from which it can be deduced that, in order to have det(B) = 0,

it is necessary for B to contain an even number of nonzero entries in each row (observe

that B contains n
2

+1 = 2(k+1) nonzero entries in each of the first n
2

rows, and 2 nonzero

entries in each of the remaining rows). For the same reasons, the congruence modulo 4

of n in the following lemma will once again be of relevance.

Lemma 3.3.6. Let n = 4k, where k ≥ 2 is an integer. Let m = n
2
, let

B =

Jm−1 W

W T Im+1


be over Z2, where W = [Im−1, Jm−1,2], and let epr(B) = `1`2 · · · `n. Then `1`2`3 = ASS

and `n−1`n = AN.

Proof. It is easily verified that `1`2`3 = ASS. Now we verify that `n = N. Observe that

det(B) = det(Im+1) det(B/Im+1), where B/Im+1 is the Schur complement of B[{m,m+

1, . . . , n}] = Im+1 in B. Note that

B/Im+1 = Jm−1 −WW T = Jm−1 − Im−1 − 2Jm−1 = A(Km−1)− 2Jm−1.
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Hence, B/Im+1 = A(Km−1) (in characteristic 2). Then, as m − 1 = 2k − 1 is odd,

Proposition 3.2.7 implies that B/Im+1 is singular. It follows that det(B) = 0, and

therefore that `n = N.

Now we show that `n−1 = A. Let α1 = {1, 2, . . . ,m− 1}, α2 = {m,m+ 1, . . . , n− 2}

and α3 = {n− 1, n}.

Let B′ be the matrix obtained from B by deleting its ith row and ith column. Let

q = i − (m − 1). Suppose that M1 = B′ if i ∈ α1, that M2 = B′ if i ∈ α2, and that

M3 = B′ if i ∈ α3. It is easy to see that

C1 =

Jm−2 X

XT Im+1

 , C2 =

Jm−1 Y

Y T Im

 , C3 =

Jm−1 Z

ZT Im

 ,
where

X = [Im−1({i}, ∅), Jm−2,2], Y = [Im−1(∅, {q}), Jm−1,2], Z = [Im−1,1m−1].

We proceed to show that B′ is nonsingular by considering the three cases outlined above.

Case 1: B′ = C1. Note that det(C1) = det(Im+1) det(C1/Im+1), where C1/Im+1 is the

Schur Complement of Im+1 in C1, and that

C1/Im+1 = Jm−2 −XXT = Jm−2 − Im−2 − 2Jm−2 = A(Km−2)− 2Jm−2.

Hence, C1/Im+1 = A(Km−2) (in characteristic 2). Then, as m − 2 = 2k − 2 is even,

Proposition 3.2.7 implies that C1/Im+1 is nonsingular, implying that det(C1) 6= 0.

Case 2: B′ = C2. Then det(C2) = det(Im) det(C2/Im), where C2/Im is the Schur

complement of Im in C2, and

C2/Im = Jm−1 − Y Y T = Jm−1 − Im−1(∅, {q}) · Im−1({q}, ∅)− 2Jm−1.

Note that Im−1(∅, {q}) · Im−1({q}, ∅) is the matrix obtained from Im−1 by replacing its

qth diagonal entry with 0. Then, as 2Jm−1 = Om−1 (in characteristic 2), C2/Im is the

matrix obtained from A(Km−1) by replacing its qth diagonal entry with 1. Hence, C2/Im



71

is permutationally similar to the nonsingular matrix Fm−1 (see Lemma 3.3.4). It follows

that C2/Im is nonsingular, and therefore that det(C2) 6= 0.

Case 3: B′ = C3. Then det(C3) = det(Im) det(C3/Im), where C3/Im is the Schur

complement of Im in C3, and

C3/Im = Jm−1 − ZZT = Jm−1 − Im−1 − Jm−1 = −Im−1.

It follows that C3/Im is nonsingular, and therefore that det(C3) 6= 0. �

Lemma 3.3.7. The following epr-sequences are attainable by a symmetric matrix over

Z2.

ASASA, ASASAA, ASASAN.

Proof. The attainability of ASASA follows by observing that, by the Inverse Theorem,

the inverse of any (symmetric) matrix attaining the sequence SASAA, which is attainable

by Proposition 3.2.11, has epr-sequence ASASA.

Now, for n ≥ 4 even, we show that the matrix

B =

 In−2 Jn−2,2

J2,n−2 I2


has epr-sequence ASASAA. Because of Theorem 3.2.16, it suffices to show that epr(B)

begins with ASA, and that it ends with A. Observe that det(B) = det(In−2) det(B/In−2),

where

B/In−2 = I2 − J2,n−2 · (In−2)−1 · Jn−2,2 = I2 − (n− 2)J2.

Since n is even, B/In−2 = I2 (in characteristic 2); hence, B is nonsingular. It is clear

that epr(B) begins with AS. Finally, note that each 3× 3 principal submatrix of B must

be I3 or one of the following:  I2 12

1T2 J1

 ,
J1 1T2

12 I2

 .
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Then, as each of these 3× 3 matrices is nonsingular, epr(B) begins with ASA, as desired.

With n ≥ 5, let B be an n×n symmetric matrix with epr-sequence SASASAN, which is

attainable by Proposition 3.2.11. Note that n is odd. Let α ⊆ {1, 2, . . . , n} with |α| = 1

be such that B[α] is nonsingular. Let epr(B/B[α]) = `′1`
′
2 · · · `′n−1. We now show that

epr(B/B[α]) = ASASAN. By the Schur Complement Corollary, `′j = A when j is odd, and

`′n−1 = N. Since n − 2 is odd, `′n−2 = A. Since `′n−1 = N, the AA Theorem implies that

`′j 6= A when j ≤ n− 3 is even. Finally, as `′n−2 = A, the N-Even Observation implies that

`′j = S when j ≤ n− 3 is even. It follows that epr(B/B[α]) = ASASAN, as desired. �

Before stating our characterization of the epr-sequences that begin with A in the next

theorem, something needs to be clarified: [4, Corollary 2.22] claims that the sequence

ASSAAAA is attainable over Z2; this claim is false: Observe that it contradicts the AA

Theorem. But it should be noted that [4, Corollary 2.22] becomes true once the field is

restricted to be of characteristic 0, since it relies on [4, Proposition 2.18].

Theorem 3.3.8. An epr-sequence of order n, and starting with A, is attainable by a

symmetric matrix over Z2 if and only if it has one of the following forms:

1. AA;

2. ASNN;

3. ASSSA;

4. ASSSAA;

5. ASSSSAN with n even;

6. ASASA;

7. ASASAA;

8. ASASAN.
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Proof. Let σ = `1`2 · · · `n be an epr-sequence with `1 = A. Suppose that σ = epr(B),

where B is a symmetric matrix over Z2. If n = 1 or n = 2, then σ is A, AA, or AN, all of

which are listed above. Suppose n ≥ 3. If `2 = A or `2 = N, then the AA Theorem and

the N-Even Observation imply that σ is either AAAA or ANNN. Now, suppose `2 = S. If

σ contains the subsequence ASA, then, by Theorem 3.2.16, σ is either ASASA, ASASAA, or

ASASAN. Now, suppose σ does not contain ASA. Hence, `3 = N or `3 = S, and n ≥ 4. If

`3 = N, then Observation 3.2.3 implies that σ = ASNNN. Now, assume that `3 = S. Let k

be a minimal integer with 3 ≤ k ≤ n − 1 such that `k`k+1 = SN or `k`k+1 = SA. Hence,

`1`2 · · · `k = ASSS. If `k+1 = N, then Observation 3.2.3 implies that σ = ASSSNN. Now,

assume that `k+1 = A. If n = k + 1, then σ = ASSSA. Thus, suppose n ≥ k + 2.

We now show that n = k + 2. Suppose to the contrary that n ≥ k + 3. By the AA

Theorem, `k+2 6= A. If `k+2 = N, then Observation 3.2.3 implies that σ contains SANN,

which is prohibited by Proposition 3.2.13; hence, `k+2 = S, so that `k`k+1`k+2 = SAS.

Then, as σ does not contain ASA, and because SASN is prohibited by Proposition 3.2.13,

`k+3 = S, implying that σ contains ASS as a non-initial subsequence, which contradicts

Proposition 3.2.14. It follows that n = k + 2, and therefore that σ is either ASSSAA

or ASSSAN; in the case with σ = ASSSAN, Theorem 3.2.10 implies that n is even, and

therefore that σ = ASSSSAN.

Now, we establish the other direction. As before, we assume that the sequence under

consideration has order n. First, the sequence AA is attained by In. The sequence ASNN is

attainable by applying Observation 3.1.10(1) to the sequence AA. To see that ASSSA and

ASSSAA are attainable, observe that the matrices B and B′ in Lemma 3.3.3 must attain

these sequences, respectively, since the epr-sequence of these matrices must be one of

those listed above. Similarly, when n is even, one of the two matrices in the statements

of Lemma 3.3.5 and Lemma 3.3.6 is required to attain the sequence ASSSSAN. Finally,

the attainability of ASASA, ASASAA, and ASASAN follows from Lemma 3.3.7. �
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The reader is once again referred to Example 3.2.5 to see why Theorem 3.3.8 cannot

be generalized to other fields.

As before, we need more lemmas in order to prove the last of our three main results.

For an integer n ≥ 2 and k ∈ {1, 2, . . . , n}, we let enk denote the column vector of

length n with the kth entry equal to 1 and every other entry equal to zero; moreover, let

Gn :=

 J1 (en−11 )T

en−11 Fn−1

 .
Lemma 3.3.9. Let n ≥ 4 be an even integer, let Gn be over Z2, and let epr(Gn) =

`1`2 · · · `n. Then `1`2 = SS and `n−1`n = AN.

Proof. It is easily verified that `1`2 = SS. The final assertion is easy to check when

n = 4; thus, suppose n ≥ 5. Observe that any (n − 1)× (n − 1) principal submatrix of

Gn has one of the following forms: Gn−1, Fn−1 or J1 ⊕ A(Kn−2). Hence, to show that

`n−1`n = AN, it suffices to show that Gn−1, Fn−1 and J1 ⊕A(Kn−2) are nonsingular, and

that Gn is singular. By Lemma 3.3.4, Fn−1 is nonsingular. By Proposition 3.2.7, and

because n− 2 is even, J1 ⊕ A(Kn−2) is also nonsingular.

Finally, we show that det(Gn−1) 6= 0 and det(Gn) = 0. Let q ∈ {n − 1, n}. Ob-

serve that det(Gq) = det(Fq−1) − det(A(Kq−2)). Since det(Fq−1) 6= 0, det(Gq) = 1 −

det(A(Kq−2)) (in characteristic 2). Hence, det(Gq) = 0 if and only if det(A(Kq−2)) 6= 0.

It follows from Proposition 3.2.7 that det(Gq) = 0 if and only if q is even. Then, as n is

even, det(Gn−1) 6= 0 and det(Gn) = 0. �

Lemma 3.3.10. Let n ≥ 5 be an odd integer. Then there exists a symmetric matrix

over Z2 whose epr-sequence `1`2 · · · `n has `1`2 = SS and `n−1`n = AN.

Proof. Clearly, n+ 1 is even and n+ 1 ≥ 6. Let m = n+1
2

, and let

B′ =

Jm Im

Im Im

 , B′′ =
Jm−1 W

W T Im+1

 ,
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where W = [Im−1, Jm−1,2]. Observe that B′ and B′′ are (n + 1) × (n + 1) symmetric

matrices. Let epr(B′) = `′1`
′
2 · · · `′n+1 and epr(B′′) = `′′1`

′′
2 · · · `′′n+1. We consider two cases:

Case 1: n + 1 = 4k + 2 for some integer k ≥ 1. Observe that, by Lemma 3.3.5,

`′n`
′
n+1 = AN. Let α = {n + 1}, let C = B′/B′[α], and let epr(C) = `1`2 · · · `n. We

now show that C is a matrix with the desired properties. By the Schur Complement

Corollary, `n−1`n = AN. To show that `1`2 = SS, first, observe that, by the Schur

Complement Theorem, and because det(B′[α]) = 1 (in characteristic 2),

det(C[{n}]) = det(B′[{n} ∪ α]), det(C[{m}]) = det(B′[{m} ∪ α]),

det(C[{n− 1, n}]) = det(B′[{n− 1, n} ∪ α]), det(C[{1, 2}]) = det(B′[{1, 2} ∪ α]).

Then, by observing that B′[{n}∪α] = I2, that B′[{m}∪α] = J2, that B′[{n−1, n}∪α] =

I3 and that B′[{1, 2}∪α] = J2⊕J1, we conclude that det(C[{n}]) and det(C[{n−1, n}])

are nonzero, and that det(C[{m}]) and det(C[{1, 2}]) are zero. Hence, `1`2 = SS.

Case 2: n+ 1 = 4k for some integer k ≥ 2. Observe that, by Lemma 3.3.6, `′′n`
′′
n+1 =

AN. Let α = {n + 1}, let C = B′′/B′′[α], and let epr(C) = `1`2 · · · `n. As in Case 1,

we show that C is a matrix with the desired properties. By the Schur Complement

Corollary, `n−1`n = AN. To show that `1`2 = SS, first, observe that, by the Schur

Complement Theorem, and because det(B′′[α]) = 1 (in characteristic 2),

det(C[{n}]) = det(B′′[{n} ∪ α]), det(C[{1}]) = det(B′′[{1} ∪ α]),

det(C[{n− 1, n}]) = det(B′′[{n− 1, n} ∪ α]), det(C[{1, 2}]) = det(B′′[{1, 2} ∪ α]).

Then, by observing that B′′[{n}∪α] = I2, B
′′[{1}∪α] = J2, B

′′[{n− 1, n}∪α] = I3 and

B′′[{1, 2} ∪ α] = J3, we conclude that det(C[{n}]) and det(C[{n − 1, n}]) are nonzero,

and that det(C[{1}]) and det(C[{1, 2}]) are zero. Hence, `1`2 = SS. �

Together with Theorems 3.3.2 and 3.3.8, the next result completes the characteriza-

tion of the attainable epr-sequences over Z2.
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Theorem 3.3.11. An epr-sequence starting with S is attainable by a symmetric matrix

over Z2 if and only if it has one of the following forms:

1. SSNN;

2. SSA;

3. SSAA;

4. SSSAN;

5. SASASA;

6. SASASAA;

7. SASAN.

Proof. Let σ = `1`2 · · · `n be an epr-sequence with `1 = S. Suppose that σ = epr(B),

where B is a symmetric matrix over Z2. Since an attainable epr-sequence cannot end

with S, n ≥ 2. If n = 2, then σ is SA or SN. Suppose n ≥ 3. If `2 = A or `2 = N,

then Proposition 3.2.11 and the N-Even Observation imply that σ is either SASA, SASAA,

SASAN, or SNNN. Thus, suppose `2 = S. Hence, by Theorem 3.2.16, σ does not contain

ASA. Let k be a minimal integer with 2 ≤ k ≤ n−1 such that `k`k+1 = SN or `k`k+1 = SA;

in the former case, Observation 3.2.3 implies that σ = SSSNN. Now consider the latter

case, namely `k`k+1 = SA. If n = k + 1, then σ = SSSA. Thus, suppose n ≥ k + 2.

We now show that n = k + 2. Suppose to the contrary that n ≥ k + 3. By the AA

Theorem, `k+2 6= A. If `k+2 = N, then Observation 3.2.3 implies that σ contains SANN,

which is prohibited by Proposition 3.2.13; hence, `k+2 = S, so that `k`k+1`k+2 = SAS.

Then, as σ does not contain ASA, and because SASN is prohibited by Proposition 3.2.13,

`k+3 = S, implying that σ contains ASS as a non-initial subsequence, a contradiction to

Proposition 3.2.14. It follows that n = k + 2, and therefore that σ is either SSSAA or

SSSAN.
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Now, we establish the other direction. We assume that the sequence under consid-

eration has order n. The sequence SSNN is attainable by applying Observation 3.1.10(2)

to the attainable sequence AA. The sequence SSA is attainable by [4, Observation 2.16].

The attainability of SSAA follows by observing that, by the Inverse Theorem, the inverse

of any symmetric matrix attaining the sequence ASSA, which is attainable by Theorem

3.3.8, has epr-sequence SSAA. To see that the sequence SSSAN is attainable, observe that

the argument above forces the matrix Gn in Lemma 3.3.9 to attain this sequence when n

is even, and that it forces the matrix whose existence was established in Lemma 3.3.10 to

attain this sequence when n is odd. Finally, the sequences SASASA, SASASAA and SASAN

are attainable by Proposition 3.2.11. �

To conclude, we note that there is no known characterization of the epr-sequences

that are attainable by symmetric matrices over the real field or any other field besides Z2.

However, the results of Theorems 3.3.2, 3.3.8 and 3.3.11 provide such a characterization

for symmetric matrices over Z2.

Acknowledgements

The author expresses his gratitude to Dr. Leslie Hogben, for introducing him to

the topic of pr- and epr-sequences.

Bibliography

[1] W. Barrett, S. Butler, M. Catral, S. M. Fallat, H. T. Hall, L. Hogben, P. van den

Driessche, M. Young. The principal rank characteristic sequence over various fields.

Linear Algebra and its Applications 459 (2014), 222–236.

[2] R. A. Brualdi, L. Deaett, D. D. Olesky, P. van den Driessche. The principal rank

characteristic sequence of a real symmetric matrix. Linear Algebra and its Applica-

tions 436 (2012), 2137–2155.



78

[3] R. A. Brualdi, H. Schneider. Determinantal identities: Gauss, Schur, Cauchy,

Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Linear Algebra

and its Applications 52/53 (1983), 769–791.

[4] S. Butler, M. Catral, S. M. Fallat, H. T. Hall, L. Hogben, P. van den Driessche, M.

Young. The enhanced principal rank characteristic sequence. Linear Algebra and its

Applications 498 (2016), 181–200.

[5] S. Butler, M. Catral, H. T. Hall, L. Hogben, X. Mart́ınez-Rivera, B. Shader, P. van

den Driessche. The enhanced principal rank characteristic sequence for Hermitian

matrices. Electronic Journal of Linear Algebra 32 (2017), 58–75.

[6] S. M. Fallat, D. D. Olesky, P. van den Driessche. The enhanced principal rank char-

acteristic sequence for skew-symmetric matrices. Linear Algebra and its Applications

498 (2016), 366–377.

[7] S. Friedland. Quadratic forms and the graph isomorphism problem. Linear Algebra

and its Applications 150 (1991), 423–442.

[8] O. Holtz, H. Schneider. Open problems on GKK τ -matrices. Linear Algebra and its

Applications 345 (2002), 263–267.

[9] O. Holtz, B. Sturmfels. Hyperdeterminantal relations among symmetric principal

minors. Journal of Algebra 316 (2007), 634–648.

[10] X. Mart́ınez-Rivera. Classification of families of pr- and epr-sequences. Linear Mul-

tilinear Algebra, to appear. DOI: 10.1080/03081087.2016.1248345.

[11] T. Muir. The law of extensible minors in determinants. Transactions of the Royal

Society of Edinburgh 30 (1883), 1–4.

[12] F. Zhang. The Schur Complement and its Applications. Springer-Verlag, New York,

New York, 2005.

http://dx.doi.org/10.1080/03081087.2016.1248345


79

CHAPTER 4. THE SIGNED ENHANCED PRINCIPAL

RANK CHARACTERISTIC SEQUENCE

A paper submitted to the journal Linear and Multilinear Algebra

Xavier Mart́ınez-Rivera

Abstract

The signed enhanced principal rank characteristic sequence (sepr-sequence) of an

n×n Hermitian matrix is the sequence t1t2 · · · tn, where tk is either A∗, A+, A−, N, S∗, S+,

or S−, based on the following criteria: tk = A∗ if B has both a positive and a negative

order-k principal minor, and each order-k principal minor is nonzero. tk = A+ (respec-

tively, tk = A−) if each order-k principal minor is positive (respectively, negative). tk = N

if each order-k principal minor is zero. tk = S∗ if B has each a positive, a negative, and

a zero order-k principal minor. tk = S+ (respectively, tk = S−) if B has both a zero and

a nonzero order-k principal minor, and each nonzero order-k principal minor is positive

(respectively, negative). Such sequences provide more information than the (A, N, S) epr-

sequence in the literature, where the kth term is either A, N, or S based on whether all,

none, or some (but not all) of the order-k principal minors of the matrix are nonzero.

Various sepr-sequences are shown to be unattainable by Hermitian matrices. In partic-

ular, by applying Muir’s law of extensible minors, it is shown that subsequences such as

A∗N and NA∗ are prohibited in the sepr-sequence of a Hermitian matrix. The notion of

a nonnegative and nonpositive subsequence is introduced, which leads to a connection
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with positive semidefinite matrices. For Hermitian matrices of orders n = 1, 2, 3, all

attainable sepr-sequences are classified. For real symmetric matrices, a complete charac-

terization of the attainable sepr-sequences whose underlying epr-sequence contains ANA

as a non-terminal subsequence is established.

Keywords. Signed enhanced principal rank characteristic sequence; enhanced principal

rank characteristic sequence; minor; rank; Hermitian matrix.

AMS Subject Classifications. 15A15, 15A03, 15B57.

4.1 Introduction

The principal minor assignment problem, introduced in [1], asks the following

question: Can we find an n× n matrix with prescribed principal minors? As a simplifi-

cation of the principal minor assignment problem, Brualdi et al. [2] associated a sequence

with a symmetric matrix, which they defined as follows: Given an n×n symmetric matrix

B over a field F , the principal rank characteristic sequence (abbreviated pr-sequence) of

B is defined as pr(B) = r0]r1 · · · rn, where, for k ≥ 1,

rk =


1 if B has a nonzero principal minor of order k, and

0 otherwise,

while r0 = 1 if and only if B has a 0 diagonal entry [2]. (The order of a minor is k if it

is the determinant of a k× k submatrix.) We note that the original definition of the pr-

sequence was for real symmetric, complex symmetric and Hermitian matrices only; but

Barrett et al. [3] later extended it to symmetric matrices over any field. In the context of

the principal minor assignment problem, the pr-sequence is somewhat limited, as it only

records the presence or absence of a full-rank principal submatrix of each possible order;

thus, in order to provide more insight, the pr-sequence was “enhanced” by Butler et al.

[4] with the introduction of another sequence: Given an n×n symmetric matrix B over a
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field F , the enhanced principal rank characteristic sequence (abbreviated epr-sequence)

of B is defined as epr(B) = `1`2 · · · `n, where

`k =


A if all the principal minors of order k are nonzero;

S if some but not all the principal minors of order k are nonzero;

N if none of the principal minors of order k are nonzero, i.e., all are zero.

There has been substantial work done on pr- and epr-sequences (see [2, 3, 4, 5, 6, 7, 8], for

example). Here, we introduce a sequence that extends the pr- and epr-sequence, which

we think remains tractable, while providing further help for working on the principal

minor assignment problem for Hermitian matrices:

Definition 4.1.1. Let B be a complex Hermitian matrix with epr(B) = `1`2 · · · `n. The

signed enhanced principal rank characteristic sequence (abbreviated sepr-sequence) of B

is the sequence sepr(B) = t1t2 · · · tn, where

tk =



A∗ if `k = A and B has both a positive and a negative order-k principal minor;

A+ if each order-k principal minor of B is positive;

A− if each order-k principal minor of B is negative;

N if each order-k principal minor of B is zero;

S∗ if `k = S and B has both a positive and a negative order-k principal minor;

S+ if `k = S and each order-k principal minor of B is nonnegative;

S− if `k = S and each order-k principal minor of B is nonpositive.

Further motivation for studying pr-, epr- and sepr-sequences are the instances where

the principal minors of a matrix are of interest; as stated in [9], these instances include the

detection of P -matrices in the study of the complementarity problem, Cartan matrices

in Lie algebras, univalent differentiable mappings, self-validating algorithms, interval

matrix analysis, counting of spanning trees of a graph using the Laplacian, D-nilpotent
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automorphisms, and in the solvability of the inverse multiplicative eigenvalue problem

(see [9] and the references therein).

Section 4.2 is devoted to developing some of the tools used to establish results in

subsequent sections. In Section 4.3, various sepr-sequences are shown to be unattainable

by Hermitian matrices, and, at the end, the notion of a nonnegative and nonpositive

subsequence is introduced, which leads to a connection with positive semidefinite matri-

ces. Section 4.4 is devoted to providing a classification of the sepr-sequences of orders

n = 1, 2, 3 that can be attained by an n×n Hermitian matrix. Finally, Section 4.5 focuses

on the sepr-sequences of real symmetric matrices, where a complete characterization of

the sepr-sequences whose underlying epr-sequence contains ANA as a non-terminal sub-

sequence is established.

For the rest of the paper, all matrices are Hermitian. For any sepr-sequence σ, the

epr-sequence resulting from removing the superscripts of each term in σ is called the

underlying epr-sequence of σ. A (pr-, epr- or sepr-) sequence is said to be attainable

by a class of matrices provided that there exists a matrix B in the class that attains it;

otherwise, we say that it is unattainable (by the given class). A subsequence that does

not appear in an attainable sequence is prohibited. A sequence is said to have order n if it

consists of n terms. Given a sequence ti1ti2 · · · tik , the notation ti1ti2 · · · tik indicates that

the sequence may be repeated as many times as desired (or it may be omitted entirely).

Let B = [bij] and let α, β ⊆ {1, 2, . . . , n}; then the submatrix lying in rows indexed by α,

and columns indexed by β, is denoted by B[α, β]; if α = β, then the principal submatrix

B[α, α] is abbreviated to B[α]. The matrices On, In and Jn are the matrices of order n

denoting the zero matrix, the identity matrix and the all-1s matrix, respectively. The

block diagonal matrix with the matrices B and C on the diagonal is denoted by B ⊕C.
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4.1.1 Results cited

This section lists results that will be cited frequently, which will be referenced

by the assigned nomenclature (if any). Each instance of · · · below is permitted to be

empty.

Proposition 4.1.2. [4, Proposition 2.5] No Hermitian matrix can have the epr-sequence

SN · · · A · · · .

Corollary 4.1.3. [4, Corollary 2.7] (NSA Theorem.) No Hermitian matrix can have NSA

in its epr-sequence. Further, no Hermitian matrix can have the epr-sequence · · · ASN · · · A · · · .

For an n× n matrix B with a nonsingular principal submatrix B[α], recall that the

Schur complement of B[α] in B is the matrix B/B[α] := B[αc]−B[αc, α](B[α])−1B[α, αc],

where αc = {1, 2, . . . , n} \ α.

Theorem 4.1.4. [7, Theorem 1.10] (Schur Complement Theorem.) Suppose B is an

n× n Hermitian matrix with rankB = r. Let B[α] be a nonsingular principal submatrix

of B with |α| = k ≤ r, and let C = B/B[α]. Then the following results hold.

(i) C is an (n− k)× (n− k) Hermitian matrix.

(ii) Assuming the indexing of C is inherited from B, any principal minor of C is given

by

detC[γ] = detB[γ ∪ α]/ detB[α].

(iii) rankC = r − k.

Corollary 4.1.5. [7, Corollary 1.11] (Schur Complement Corollary.) Let B be a Hermi-

tian matrix, let epr(B) = `1`2 · · · `n, and let B[α] be a nonsingular principal submatrix

of B, with |α| = k ≤ rankB. Let C = B/B[α] and epr(C) = `′1`
′
2 · · · `′n−k. Then, for

j = 1, . . . , n− k, `′j = `j+k if `j+k ∈ {A, N}.
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In the interest of brevity, the notation BI for det(B[I]) in [2] and [8] is adopted here

(when I = ∅, B∅ is defined to have the value 1). Moreover, when I = {i1, i2, . . . , ik}, BI

is written as Bi1i2···ik .

Given a matrix B, the determinant of the 2× 2 principal submatrix B[{i, j}] can be

stated as an homogenous polynomial identity as follows:

B∅Bij = BiBj − det(B[{i}|{j}]) det(B[{j}|{i}]).

The identity in the next result is already known, and can be obtained by applying Muir’s

law of extensible minors [10] to the above identity (for a more recent treatment of this

law, the reader is referred to [11]).

Remark 4.1.6. Let n ≥ 2, let B be an n × n Hermitian matrix, let i, j ∈ {1, 2, . . . , n}

be distinct, and let I ⊆ {1, 2, . . . , n} \ {i, j}. Then

BIBI∪{i,j} = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2.

Remark 4.1.6 will be invoked as “Muir’s law of extensible minors.”

4.2 The signed enhanced principal rank characteristic

sequence

We begin this section with simple observations, and conclude with results that

will serve as tools in establishing the results of subsequent sections.

Observation 4.2.1. The sepr-sequence of a Hermitian matrix must end in A+, A− or

N.

Given an sepr-sequence t1t2 · · · tn, the negative of this sequence, denoted neg(t1t2 · · · tn),

is the sequence resulting from replacing “+” superscripts with “-” superscripts in t1t2 · · · tn,

and viceversa. For example, the negative of the sequence NS−S∗A∗A+ is NS+S∗A∗A−. Given

a matrix B, the ith term in its sepr-sequence (respectively, epr-sequence) is [sepr(B)]i

(respectively, [epr(B)]i).
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Observation 4.2.2. Let B be an n × n Hermitian matrix, and let i be an integer with

1 ≤ i ≤ n.

1. If i is even, then [sepr(−B)]i = [sepr(B)]i.

2. If i is odd, then [sepr(−B)]i = neg([sepr(B)]i).

The following is immediate from [4, Theorem 2.3].

Theorem 4.2.3. (NN Theorem.) Suppose B is a Hermitian matrix, sepr(B) = t1t2 · · · tn,

and tk = tk+1 = N for some k. Then tj = N for all j ≥ k.

Theorem 4.2.4. (Inverse Theorem.) Suppose B is a nonsingular Hermitian matrix.

(i) If sepr(B) = t1t2 · · · tn−1A+, then sepr(B−1) = tn−1tn−2 · · · t1A+.

(ii) If sepr(B) = t1t2 · · · tn−1A−, then sepr(B−1) = neg(tn−1tn−2 · · · t1)A−.

Proof. Let α ⊆ {1, 2, . . . , n} be nonempty. By Jacobi’s determinantal identity, detB−1[α] =

detB(α)/ detB. The desired conclusions are now immediate. �

The next lemma is proven by replicating part of the proof of [4, Theorem 2.6].

Lemma 4.2.5. Let k and n be integers with 1 ≤ k < n. Suppose that each k-element

subset of {1, 2, . . . , n} is associated with exactly one of two given properties, and that not

every pair of k-element subsets is associated with the same property. Then there exist

distinct integers i, j ∈ {1, 2, . . . , n}, and a (k−1)-element subset I ⊆ {1, 2, . . . , n}\{i, j},

such that I ∪ {i} and I ∪ {j} are not associated with the same property.

Proof. By hypothesis, there exists two lists of indices, say, p1, p2, . . . , pk and q1, q2, . . . , qk,

with property 1 and property 2, respectively. Without loss of generality, we may assume
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that these lists are ordered so that any common indices occur in the same position in

each list. Consider the following lists of indices.

p1, p2, p3, . . . , pk;

q1, p2, p3, . . . , pk;

q1, q2, p3, . . . , pk;

q1, q2, q3, . . . , pk;

· · ·

q1, q2, q3, . . . , qk.

Since the first list corresponds with property 1, and because the last list corresponds with

property 2, somewhere in between these two lists there are two consecutive lists with

one list corresponding with property 1, and the other list corresponding with property

2. Hence, as two consecutive lists differ in at most one position, there exists a (k − 1)-

element subset I ⊆ {1, 2, . . . , n}, and i, j ∈ {1, 2, . . . , n}\I, such that I∪{i} is associated

with property 1, and I ∪ {j} is associated with property 2. �

Lemma 4.2.6. Let B be an n × n Hermitian matrix with [sepr(B)]k = A∗. Then there

exists a (k − 1)-element subset I ⊆ {1, 2, . . . , n}, and i, j ∈ {1, 2, . . . , n} \ I, such that

BI∪{i} > 0 and BI∪{j} < 0.

Proof. Since sepr(B) cannot end in A∗, k < n. Then, as every k-element subset of

{1, 2, . . . , n} is associated with either a positive or a negative order-k principal minor,

but not both, the conclusion follows from Lemma 4.2.5. �

Theorem 4.2.7. (Inheritance Theorem.) Let B be an n× n Hermitian matrix, m ≤ n,

and 1 ≤ i ≤ m.

1. If [sepr(B)]i = N, then [sepr(C)]i = N for all m×m principal submatrices C.

2. If [sepr(B)]i = A+, then [sepr(C)]i = A+ for all m×m principal submatrices C.
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3. If [sepr(B)]i = A−, then [sepr(C)]i = A− for all m×m principal submatrices C.

4. If [sepr(B)]m = A∗, then there exist m×m principal submatrices CA+ and CA− of

B such that [epr(CA+)]m = A+ and [sepr(CA−)]m = A−.

5. If [sepr(B)]m = S+, then there exist m ×m principal submatrices CA+ and CN of

B such that [epr(CA+)]m = A+ and [sepr(CN)]m = N.

6. If [sepr(B)]m = S−, then there exist m ×m principal submatrices CA− and CN of

B such that [sepr(CA−)]m = A− and [sepr(CN)]m = N.

7. If [sepr(B)]m = S∗, then there exist m × m principal submatrices CA+, CA− and

CN of B such that [sepr(CA+)]m = A+, [sepr(CA−)]m = A− and [sepr(CN)]m = N.

8. If i < m and [sepr(B)]i = A∗, then there exists an m×m principal submatrix CA∗

such that [sepr(CA∗)]i = A∗.

9. If i < m and [sepr(B)]i = S+, then there exists an m×m principal submatrix CS+

such that [sepr(CS+)]i = S+.

10. If i < m and [sepr(B)]i = S−, then there exists an m×m principal submatrix CS−

such that [sepr(CS−)]i = S−.

11. If i < m and [sepr(B)]i = S∗, then there exists an m ×m principal submatrix CS

such that [sepr(CS)]i ∈ {S∗, S+, S−}.

12. If i < m and [sepr(B)]i = S∗, then there exists an m ×m principal submatrix C+

such that [sepr(C+)]i ∈ {A∗, S∗, S+}.

13. If i < m and [sepr(B)]i = S∗, then there exists an m ×m principal submatrix C−

such that [sepr(C−)]i ∈ {A∗, S∗, S−}.

Proof. (1)–(3): Statements (1)–(3) simply follow by noting that a principal submatrix

of a principal submatrix, is also principal submatrix.



88

(4)–(7): If [sepr(B)]m = A∗, then B contains an m × m principal submatrix with

positive determinant, say, CA+ , as well as one with negative determinant, say, CA− ;

these two matrices each have the desired sepr-sequence, which establishes Statement (4).

Statements (5)–(7) are established in the same manner as Statement (4).

(8): By Lemma 4.2.6, there exists an (i − 1)-element subset I ⊆ {1, 2, . . . ,m}, and

p, q ∈ {1, 2, . . . ,m}\I, such that BI∪{p} > 0 and BI∪{q} < 0. Then, by arbitrarily adding

m− i−1 indices to I∪{p, q}, to obtain an m-element subset α, one obtains the principal

submatrix B[α], for which [sepr(B[α])]i = A∗.

(9)–(11): These three statements are immediate from [4, Theorem 2.6].

(12) and (13): By hypothesis, there exists two lists of indices, say, p1, p2, . . . , pk and

q1, q2, . . . , qk, such that Bp1,p2,...,pi > 0 and B[q1, q2, . . . , qi] < 0. Without loss of generality,

we may assume that these lists are ordered so that any common indices occur in the same

position in each list. Consider the following lists of indices.

p1, p2, p3, . . . , pk;

q1, p2, p3, . . . , pk;

q1, q2, p3, . . . , pk;

q1, q2, q3, . . . , pk;

· · ·

q1, q2, q3, . . . , qk.

As one moves down these lists, one must eventually encounter two consecutive lists

satisfying one of the following: (i) One list corresponds with a positive principal minor,

and the other corresponds with a negative principal minor; (ii) one list corresponds with

a positive principal minor, and the other corresponds with a zero principal minor. If

every pair of lists does not satisfy (i) or (ii), then each list corresponds with a positive

principal minor, which is a contradiction, since the last list corresponds with a zero

minor. Hence, as two consecutive lists differ in at most one position, the union of these

two (distinct) lists generates an index set of cardinality i+ 1; then, by arbitrarily adding
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m − i − 1 indices to this index set, to obtain an m-element subset α, one obtains the

principal submatrix B[α], for which [sepr(B[α])]i ∈ {S∗, S+} if the two lists used to

generate α satisfy (ii), while [sepr(B[α])]i ∈ {A∗, S∗} if the two lists satisfy (i). Hence,

with C+ = B[α], [sepr(C+)]i ∈ {A∗, S∗, S+}.

Statement (13) is established in the same manner as (12). �

Given an n × n Hermitian matrix B whose sepr-sequence contains S+ (respectively,

S−) in position i, by the Inheritance Theorem, for all m with i < m < n, this matrix

must contain at least one m×m principal submatrix whose sepr-sequence inherits S+ (re-

spectively, S−) in position i. However, the next example reveals that S∗ is not necessarily

inherited.

Example 4.2.8. The (Hermitian) matrix

B =



−1 2 i 4 0

2 0 6 1 8

−i 6 1 i 1 + i

4 1 −i −1 1 + i

0 8 1− i 1− i 0


has sepr-sequence S∗S−S∗A+A+. It is easily verified that none of the sepr-sequences of the

five 4× 4 principal submatrices of B inherit the S∗ appearing in the third position.

With the next result, we add an additional tool to our arsenal for studying epr- and

sepr-sequences, which is analogous to that of the inheritance of an S+, S− or A∗ by a

principal submatrix (see the Inheritance Theorem).

Proposition 4.2.9. Let B be a Hermitian matrix with sepr(B) = t1t2 · · · tn. Suppose

tp ∈ {A∗, A+, A−} and tq = A∗, where 1 ≤ p < q < n. Then there exists a (nonsingular)

p × p principal submatrix B[α] such that the (n − p) × (n − p) (Hermitian) matrix

C = B/B[α] with sepr(C) = t′1t
′
2 · · · t′n−p has t′q−p = tq = A∗.
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Proof. By Lemma 4.2.5, there exist distinct integers i, j ∈ {1, 2, . . . , n}, and a (q − 1)-

element subset I ⊆ {1, 2, . . . , n}\{i, j}, such that detB[I∪{i}] > 0 and detB[I∪{j}] <

0. Let α ⊆ I be a p-element subset. By hypothesis, B[α] is nonsingular. Let C = B/B[α],

sepr(C) = t′1t
′
2 · · · t′n−p and β = I\α. By the Schur Complement Theorem, det(C[β∪{i}])

and det(C[β ∪ {j}]) have opposite signs. Then, as |β ∪ {i}| = |β ∪ {j}| = q − p,

t′q−p ∈ {A∗, S∗}. But, by the Schur Complement Corollary, we must have t′q−p = A∗, as

desired. �

4.3 Sepr-sequences of Hermitian matrices

With our attention confined to Hermitian matrices, in this section we establish

restrictions for the attainability of sepr-sequences.

Proposition 4.3.1. (Basic Proposition.) No Hermitian matrix can have any of the

following sepr-sequences.

1. A∗A+ · · ·;

2. A∗S+ · · ·;

3. A∗N · · ·;

4. S∗A+ · · ·;

5. S∗S+ · · ·;

6. S∗N · · ·;

7. S+A+ · · ·;

8. S−A+ · · ·;

9. NA∗ · · ·;



91

10. NA+ · · ·;

11. NS∗ · · ·;

12. NS+ · · ·.

Proof. To see that the sequences 1, 2, 3, 4, 5 and 6 are prohibited, note that a Hermitian

matrix containing both a positive and a negative diagonal entry, must contain a negative

principal minor of order 2.

The sequences 7 and 8 are prohibited because a Hermitian matrix with both a zero

and a nonzero diagonal entry, must contain a nonpositive principal minor of order 2.

Finally, the fact that the sequences 9, 10, 11, and 12 are prohibited follows from the

fact that the principal minors of order 2 of a Hermitian matrix with zero diagonal are

nonpositive. �

Although the following result is surely known, we offer a brief proof.

Lemma 4.3.2. Let B be a Hermitian matrix with rank(B) = r. Then all the nonzero

principal minors of B of order r have the same sign.

Proof. The conclusion is immediate if B has full-rank; thus, assume that B does not

have full-rank. Let B′ be a nonsingular r × r principal submatrix of B (which must

exist, since B is Hermitian), and, by use of a permutation similarity, suppose B′ is the

leading principal submatrix of order r. Since B is Hermitian, it must have exactly r

nonzero eigenvalues, which we denote by λ1, . . . , λr; moreover, there exists a unitary

matrix U such that B = U∗DU , where D = Λ⊕On−r and Λ = diag(λ1, . . . , λr). Let Ur

be the r × r leading principal submatrix of U . It then follows that B′ = U∗rΛUr. Hence,

det(B′) = | det(Ur)|2
∏r

j=1 λj. Since B′ was arbitrary, it follows that every nonzero

order-r principal minor of B has the same sign as
∏r

j=1 λj. That completes the proof. �

Corollary 4.3.3. Neither the sepr-sequences A∗NN, nor S∗NN, can occur as a subsequence

of the sepr-sequence of a Hermitian matrix.
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Proof. Let B be a Hermitian matrix with sepr(B) containing A∗NN or S∗NN, where the A∗

or S∗ of this subsequence occurs in position k. Then, by the NN Theorem, rank(B) = k.

Hence, by Lemma 4.3.2, every nonzero principal minor of order k has the same sign,

which is a contradiction. �

In order to generalize one of the assertions of Corollary 4.3.3, we will now apply

Muir’s law of extensible minors.

Theorem 4.3.4. Neither the sepr-sequence A∗N, nor NA∗, can occur as a subsequence of

the sepr-sequence of a Hermitian matrix.

Proof. Let B be a Hermitian matrix with sepr(B) = t1t2 · · · tn. Suppose to the contrary

that tktk+1 = A∗N for some k. By Lemma 4.2.6, there exists a (k − 1)-element subset

I ⊆ {1, 2, . . . , n}, and i, j ∈ {1, 2, . . . , n} \ I, such that BI∪{i} > 0 and BI∪{j} < 0; hence,

BI∪{i}BI∪{j} < 0. Now, since I does not contain i and j, and because B is Hermitian,

Muir’s law of extensible minors implies that,

BIBI∪{i,j} = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2.

Then, as BI∪{i}BI∪{j} < 0, BIBI∪{i,j} < 0, implying that BI∪{i,j} 6= 0, a contradiction to

tk+1 = N. It follows that A∗N is prohibited.

To establish the final assertion, we again proceed by contradiction. Suppose tktk+1 =

NA∗ for some k. By the Basic Proposition, k ≥ 2. Since tk+1 = A∗, By Lemma 4.2.6,

there exists a k-element subset I ⊆ {1, 2, . . . , n}, and i, j ∈ {1, 2, . . . , n} \ I, such that

BI∪{i} > 0 and BI∪{j} < 0; hence, BI∪{i}BI∪{j} < 0. Once again, we use the identity

BIBI∪{i,j} = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2.

Since tk = N, we have BI = 0, implying that

0 = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2 < 0,

a contradiction. �
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For the rest of the paper, we invoke Theorem 4.3.4 by just stating that A∗N or NA∗ is

prohibited.

Theorem 4.3.5. For any X, if any of the sepr-sequences A+XA+ or A−XA− occurs in the

sepr-sequence of a Hermitian matrix, then X ∈ {A+, A−}.

Proof. Let B be a Hermitian matrix with sepr(B) = t1t2 · · · tn. Suppose tk = tk+2 = A+

or tk = tk+2 = A−, for some k with 1 ≤ k ≤ n − 2. Suppose to the contrary that

tk+1 6= A+ and tk+1 6= A−. Let epr(B) = `1`2 · · · `n. Let i, j ∈ {1, 2, . . . , n}, with i 6= j,

and I ⊆ {1, 2, . . . , n} \ {i, j}, where |I| = k. Since B is Hermitian, Muir’s law of

extensible minors implies that

BIBI∪{i,j} = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2.

By hypothesis, BIBI∪{i,j} > 0. Then, as i, j and I were arbitrary, we must have

BI∪{i}BI∪{j} > 0 whenever I ⊆ {1, 2, . . . , n} \ {i, j} and i, j ∈ {1, 2, . . . , n} are distinct

(otherwise, the expression on the right side of the above identity would be nonpositive).

It follows that `k+1 = A. By hypothesis, tk+1 = A∗. By Lemma 4.2.6, there exists a

k-element subset I ⊆ {1, 2, . . . , n}, and i, j ∈ {1, 2, . . . , n} \ I, such that BI∪{i} > 0 and

BI∪{j} < 0; hence, BI∪{i}BI∪{j} < 0, which is a contradiction to the above argument. �

Theorem 4.3.5 raises the following question: Can the subsequences A+A+A+, A+A−A+,

A−A−A−, A−A+A− occur in the sepr-sequence of a Hermitian matrix? In Section 4.4, we

demonstrate that the answer is affirmative.

Proposition 4.3.6. For X ∈ {A∗, A+, A−}, the sepr-sequences S+S+ · · · X · · · and S−S+ · · · X · · ·

are prohibited for Hermitian matrices.

Proof. Let B = [bij] be an n × n Hermitian matrix with sepr-sequence S+S+ · · · or

S−S+ · · · . Without loss of generality, we may assume that b11 = 0. Let j ∈ {2, 3, . . . , n}.

By hypothesis, the order-2 principal minor B1j = b11bjj − |b1j|2 = −|b1j|2 is nonnegative,
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implying that bij = 0. Since j was arbitrary, it follows that the first row of B is zero,

implying that B is singular. We conclude that a Hermitian matrix with sepr-sequence

S+S+ · · · , or S−S+ · · · , is singular.

Now, suppose to the contrary thatB has sepr-sequence S+S+ · · · X · · · or S−S+ · · · X · · · ,

where X ∈ {A∗, A+, A−} occurs in position k. By the Inheritance Theorem, B has a

nonsingular k × k principal submatrix with sepr-sequence S+Y · · · or S−Y · · · , where

Y ∈ {A+, S+, N}. It follows from Proposition 4.1.2 and the Basic Proposition that Y = S+,

a contradiction to the assertion in the previous paragraph. �

Corollary 4.3.7. None of the following sepr-sequences can occur as a subsequence of

the sepr-sequence of a Hermitian matrix.

1. S+S∗A+;

2. S−S∗A−;

3. S+S+A+;

4. S−S−A−;

5. S+S−A+;

6. S−S+A−.

Proof. Let B be a Hermitian matrix with sepr(B) = t1t2 · · · tn, where n ≥ 3. Let

k ∈ {1, 2, . . . , n− 2}. We proceed by contradiction.

(1): Suppose that tktk+1tk+2 = S+S∗A+. By the Inheritance Theorem, B contains a

(k + 2) × (k + 2) principal submatrix B′ whose sepr-sequence ends with XYA+, where

X ∈ {A+, S+, N} and Y ∈ {S∗, S+, S−}. By the Inverse Theorem, sepr((B′)−1) = YX · · · A+,

which contradicts the Basic Proposition or Proposition 4.1.2 or Proposition 4.3.6. It

follows that S+S∗A+ is prohibited.
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(2): Suppose that tktk+1tk+2 = S−S∗A−. By the Inheritance Theorem, B contains a

(k+ 2)× (k+ 2) principal submatrix B′ whose sepr-sequence ends with XYA−, where X ∈

{A−, S−, N} and Y ∈ {S∗, S+, S−}. By the Inverse Theorem, sepr((B′)−1) = neg(YX) · · · A−,

which contradicts the Basic Proposition or Proposition 4.1.2 or Proposition 4.3.6. Hence,

S−S∗A− is prohibited.

(3): Suppose that tktk+1tk+2 = S+S+A+. By the Inheritance Theorem, B contains a

(k + 2)× (k + 2) principal submatrix whose sepr-sequence ends with XS+A+, where X ∈

{A+, S+, N}. By the Inverse Theorem, sepr(B−1) = S+X · · · A+. Then, as X ∈ {A+, S+, N},

we have a contradiction to the Basic Proposition or Proposition 4.1.2 or Proposition

4.3.6. It follows that S+S+A+ is prohibited.

(4): Suppose that tktk+1tk+2 = S−S−A−. By the Inheritance Theorem, B contains a

(k + 2)× (k + 2) principal submatrix whose sepr-sequence ends with XS−A−, where X ∈

{A−, S−, N}. By the Inverse Theorem, sepr(B−1) = neg(S−X) · · · A− = S+ neg(X) · · · A−,

which contradicts the Basic Proposition or Proposition 4.1.2 or Proposition 4.3.6.

(5) and (6): If any of S+S−A+ or S−S+A− was a subsequence of sepr(B), then applying

Observation 4.2.2 to sepr(B) would contradict items (3) or (4) above. �

Proposition 4.3.8. None of the following sepr-sequences can occur as a subsequence of

the sepr-sequence of a Hermitian matrix.

1. A+A∗S+;

2. A−A∗S−;

3. S+A∗A+;

4. S−A∗A−;

5. S+A∗S+;

6. S−A∗S−.
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Proof. Let B be a Hermitian matrix containing one of the sequences (1)–(6) in positions

k − 1, k, k + 1. By Lemma 4.2.6, there exists a (k − 1)-element subset I ⊆ {1, 2, . . . , n},

and i, j ∈ {1, 2, . . . , n} \ I, such that BI∪{i} > 0 and BI∪{j} < 0; hence, BI∪{i}BI∪{j} < 0.

But, since BIBI∪{i,j} ≥ 0 by hypothesis, the identity

BIBI∪{i,j} = BI∪{i}BI∪{j} − | det(B[I ∪ {i}|I ∪ {j}])|2

leads to a contradiction. �

Proposition 4.3.9. Let B be a Hermitian matrix with epr(B) = `1`2 · · · `n and sepr(B) =

t1t2 · · · tn. Suppose `k`k+1`k+2 = SNA. Then tktk+1tk+2 = S+NA− or tktk+1tk+2 = S−NA+.

Proof. Suppose to the contrary that tktk+1tk+2 6= S+NA− or tktk+1tk+2 6= S−NA+.

Since NA∗ is prohibited, tktk+1tk+2 ∈ {S∗NA+, S+NA+, S∗NA−, S−NA−}. First, suppose

tktk+1tk+2 ∈ {S∗NA+, S+NA+}. By the Inheritance Theorem, B has a (k+2)×(k+2) princi-

pal submatrix C+ with sepr(C+) ∈ {· · · A∗NA+, · · · S∗NA+, · · · S+NA+}. It now follows from

the Inverse Theorem that sepr(C−1+ ) ∈ {NA∗ · · · , NS∗ · · · , NS+ · · · }, which contradicts the

Basic Proposition.

Finally, suppose tktk+1tk+2 ∈ {S∗NA−, S−NA−}. By the Inheritance Theorem, B has a

(k+2)×(k+2) principal submatrix C− with sepr(C−) ∈ {· · · A∗NA−, · · · S∗NA−, · · · S−NA−}.

Hence, by the Inverse Theorem, sepr(C−1− ) ∈ {neg(NA∗) · · · , neg(NS∗) · · · , neg(NS−) · · · },

which contradicts the Basic Proposition. �

A result analogous to Theorem 4.3.5 follows from Corollary 4.3.7, and Propositions

4.3.8 and 4.3.9.

Theorem 4.3.10. For any X, if any of the sepr-sequences S+XA+ or S−XA− occurs in

the sepr-sequence of a Hermitian matrix, then X ∈ {A+, A−}.

Proposition 4.3.11. For X ∈ {A∗, A+, A−}, the following sepr-sequences are prohibited

for Hermitian matrices.
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1. · · · A+S∗S+ · · · X · · · ;

2. · · · A+S+S+ · · · X · · · ;

3. · · · A+S−S+ · · · X · · · ;

4. · · · A−S∗S− · · · X · · · ;

5. · · · A−S−S− · · · X · · · ;

6. · · · A−S+S− · · · X · · · .

Proof. Let X ∈ {A∗, A+, A−}, and let B be a Hermitian matrix. We first discard the

sequences (1)–(3) simultaneously, and then the sequences (4)–(6).

(1)–(3): Suppose to the contrary that sepr(B) = · · · A+YS+ · · · X · · · , where Y ∈

{S∗, S+, S−} and X occurs in position k. By the Inheritance Theorem, B has a nonsingular

k× k principal submatrix B′ whose sepr-sequence contains A+WZ, where W ∈ {S∗, S+, S−}

and Z ∈ {A+, S+, N}. By Theorem 4.3.5, Z 6= A+. Since B′ is nonsingular, the NSA The-

orem implies that Z 6= N. It follows that Z = S+. Hence, B′ contains A+WS+. Then,

as B′ is nonsingular, the Inverse Theorem implies that sepr((B′)−1) contains one of the

prohibited sequences S+WA+ and neg(S+WA+) = S− neg(W)A−, which contradicts Corollary

4.3.7.

(4)–(6): Suppose to the contrary that sepr(B) = · · · A−YS− · · · X · · · , where Y ∈

{S∗, S+, S−} and X occurs in position of k. By the Inheritance Theorem, B has a

nonsingular k × k principal submatrix B′ whose sepr-sequence contains A−WZ, where

W ∈ {S∗, S+, S−} and Z ∈ {A−, S−, N}. By Theorem 4.3.5, Z 6= A−. Since B′ is nonsingu-

lar, the NSA Theorem implies that Z 6= N. It follows that Z = S−. Hence, B′ contains

A−WS−. Then, as B′ is nonsingular, the Inverse Theorem implies that sepr((B′)−1) con-

tains one of the prohibited sequences S−WA− and neg(S−WA−) = S+ neg(W)A+, which again

contradicts Corollary 4.3.7. �
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Proposition 4.3.12. Let B be a Hermitian matrix with epr(B) = `1`2 · · · `n and sepr(B) =

t1t2 · · · tn. Suppose `k`k+1`k+2 = ANS. Then tktk+1tk+2 = A+NS− or tktk+1tk+2 = A−NS+.

Proof. Suppose to the contrary that tktk+1tk+2 6= A+NS− and tktk+1tk+2 6= A−NS+.

Clearly, tk+1 = N. Since A∗N is prohibited, tk 6= A∗. Hence, tktk+1tk+2 ∈

{A+NS∗, A+NS+, A−NS∗, A−NS−}. In each case, by the Inheritance Theorem, B has a (k +

2) × (k + 2) principal submatrix B′ with sepr(B′) = A+NA+ or sepr(B′) = A−NA−, a

contradiction to Theorem 4.3.5. �

A natural question to answer is, does a result analogous to Theorems 4.3.5 and

4.3.10 hold for subsequences of the form A+XS+ and A−XS−? In other words, are the

sequences A+XS+ and A−XS− prohibited in the sepr-sequence of a Hermitian matrix when

X /∈ {A+, A−}? The answer is negative: An n×n positive semidefinite matrix with nonzero

diagonal and rank n− 1, and containing principal minors of order 2 and 3 that are equal

to zero, serves as a counterexample (by Theorem 4.3.16 below, the sepr-sequence of such

a matrix begins with A+S+S+). A simple example is B = I3 ⊕ J2. Also, observe that

−B begins with A−S+S− (see Observation 4.2.2). With that being said, a relatively

similar result to Theorems 4.3.5 and 4.3.10 can still be obtained, which is an immediate

consequence of Propositions 4.3.8, 4.3.11 and 4.3.12:

Theorem 4.3.13. For any X and for Y ∈ {A∗, A+, A−}, if any of the sepr-sequences

· · · A+XS+ · · · Y · · · or · · · A−XS− · · · Y · · · is attainable by a Hermitian matrix, then X ∈

{A+, A−}.

Corollary 4.3.14. Any Hermitian matrix with an sepr-sequence containing any of the

following subsequences is singular.

1. A+S∗S+;

2. A+S+S+;

3. A+S−S+;
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4. A−S∗S−;

5. A−S+S−;

6. A−S−S−.

Proposition 4.3.15. Let B be a Hermitian matrix with epr(B) = `1`2 · · · `n and sepr(B) =

t1t2 · · · tn. Suppose `k`k+1`k+2 = SNS for some k with 1 ≤ k ≤ n− 2. Then tktk+1tk+2 =

S∗NS∗, or tktk+1tk+2 = S+NS−, or tktk+1tk+2 = S−NS+.

Proof. We proceed by contradiction. Suppose that tktk+1tk+2 /∈ {S∗NS∗, S+NS−, S−NS+}.

Hence, tktk+1tk+2 is one of the sequences in the set

{S∗NS+, S∗NS−, S+NS∗, S+NS+, S−NS∗, S−NS−}.

We examine four cases:

Case 1 : tktk+1tk+2 = S∗NS+. Let B[α] be a k × k nonsingular principal subma-

trix with det(B[α]) > 0. By the Schur Complement Theorem, B/B[α] is an (n −

k) × (n − k) Hermitian matrix with every diagonal entry equal to zero; moreover,

rank(B/B[α]) = rank(B) − k ≥ (k + 2) − k = 2, implying that B/B[α] has a nonzero

principal minor of order 2, say, det((B/B[α])[{i, j}]). Since B/B[α] has zero diagonal,

det((B/B[α])[{i, j}]) < 0. By the Schur Complement Theorem,

det((B/B[α])[{i, j}]) = detB[{i, j} ∪ α]/ detB[α].

Then, as detB[α] > 0, detB[{i, j} ∪ α] < 0, a contradiction to tk+2 = S+.

Case 2 : tktk+1tk+2 = S∗NS−. Let B[α] be a k × k nonsingular principal subma-

trix with det(B[α]) < 0. Just as in Case 1, B/B[α] is an (n − k) × (n − k) Hermi-

tian matrix with zero diagonal, and with a nonzero principal minor of order 2. Let

det((B/B[α])[{i, j}]) be a nonzero principal minor of order 2. Since B/B[α] has zero

diagonal, det((B/B[α])[{i, j}]) < 0. As in Case 1, by the Schur Complement Theorem,

det((B/B[α])[{i, j}]) = detB[{i, j} ∪ α]/ detB[α].



100

Then, as detB[α] < 0, detB[{i, j} ∪ α] > 0, a contradiction to tk+2 = S−.

Case 3 : tktk+1tk+2 ∈ {S+NS∗, S+NS+}. By the Inheritance Theorem, B has a (k+2)×

(k+2) principal submatrixB′ with sepr(B′) = t′1t
′
2 · · · t′k+2 having t′k+1t

′
k+2 = NA+ and t′k ∈

{A+, S+, N}. By the NN Theorem, t′k 6= N. It follows that t′kt
′
k+1t

′
k+2 ∈ {A+NA+, S+NA+},

which contradicts Theorems 4.3.5 and 4.3.10.

Case 4 : tktk+1tk+2 ∈ {S−NS∗, S−NS−}. By the Inheritance Theorem, B has a (k+2)×

(k+2) principal submatrixB′ with sepr(B′) = t′1t
′
2 · · · t′k+2 having t′k+1t

′
k+2 = NA− and t′k ∈

{A−, S−, N}. By the NN Theorem, t′k 6= N. It follows that t′kt
′
k+1t

′
k+2 ∈ {A−NA−, S−NA−}, a

contradiction to Theorems 4.3.5 and 4.3.10. �

4.3.1 Nonnegative and nonpositive sepr-sequences

We call a subsequence of an sepr-sequence nonnegative (respectively, nonpositive)

if each of its terms is in {A+, S+, N} (respectively, {A−, S−, N}).

Theorem 4.3.16. Let B be an n × n Hermitian matrix, and let σ = x1x2 · · ·xk be a

nonnegative subsequence of sepr(B), where 2 ≤ k ≤ n. Then x2x3 · · ·xk = A+ S+ N.

Proof. We first show that if xq = N for some q > 1, then xj = N for all j ≥ q. To

see this, suppose xq = N for some q > 1. If xq−1 = N, then our claim follows from the

NN Theorem. Now, suppose xq−1 6= N. Since the subsequences A+NA+, S+NA+, A+NS+,

and S+NS+ are prohibited by Theorems 4.3.5 and 4.3.10, and by Propositions 4.3.12 and

4.3.15, xq−1xqxq+1 = S+NN or xq−1xqxq+1 = A+NN; hence, our claim now follows from the

NN Theorem. Now we examine three cases based on the value of x1.

Case 1 : x1 = A+. If x2 = N, then, by the above assertion, we must have xj = N for

j ≥ 2, so that x2x3 · · ·xk = NN. Now, suppose x2 = S+. If k = 2, then x2x3 · · ·xk = S+,

and therefore we are done; thus, suppose k > 2. Then, as A+S+A+ is prohibited by

Theorem 4.3.5, σ = A+S+N · · · or σ = A+S+S+ · · · . If σ = A+S+N · · · , then the assertion

in the previous paragraph implies that σ = A+S+NN, so that x2x3 · · · xk = S+NN. Now,
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suppose σ = A+S+S+ · · · . Let p be a minimal integer with 3 ≤ p ≤ k − 1 such that

xpxp+1 = S+A+ or xpxp+1 = S+N (if no such p exists, then x2x3 · · ·xk = S+S+S+). Note

that x2x3 · · · xp = S+S+S+. Since S+S+A+ is prohibited by Theorem 4.3.10, xpxp+1 = S+N.

Hence, by the assertion in the first paragraph, x2x3 · · ·xk = S+S+S+NN. Observe that we

have shown that any nonnegative subsequence of sepr(B) that starts with A+ is of the

form σ = A+ A+ S+ N.

Case 2 : x1 = S+. If x2 = A+, then x2x3 · · ·xk is a nonnegative subsequence starting

with A+, and therefore, by applying Case 1 to this subsequence, we have x2x3 · · ·xk =

A+ A+ S+ N. If x2 = N, then, by the assertion in the first paragraph, x2x3 · · ·xk = NN.

Now, suppose x2 = S+. If k = 2, then x2x3 · · ·xk = S+, and therefore we are done; thus,

suppose k > 2. Let p be a minimal integer with 2 ≤ p ≤ k − 1 such that xpxp+1 =

S+A+ or xpxp+1 = S+N (if no such p exists, then x2x3 · · · xk = S+S+). Observe that

x2x3 · · ·xp = S+S+. Since x1 = S+, and because S+S+A+ is prohibited by Theorem 4.3.10,

xpxp+1 = S+N. Hence, by the assertion in the first paragraph, x2x3 · · ·xk = S+S+NN.

Case 3 : x1 = N. If x2 = N, then the NN Theorem implies that x2x3 · · ·xk = NN. If

x2 = A+, then, by applying Case 1 to x2x3 · · ·xk, we have x2x3 · · ·xk = A+ A+ S+ N.

Now, suppose x2 = S+. Then, by applying Case 2 to x2x3 · · · xk, we obtain that σ =

N S+ A+ S+ N; but, as NSA is prohibited by the NSA Theorem, it follows that A+ is empty,

and therefore that σ = N S+ S+ N, implying that x2x3 · · ·xk = S+ S+ N. �

By simply replacing “+” superscripts with “−” superscripts, and “nonnegative” with

“nonpositive,” in the proof of Theorem 4.3.16, one obtains a proof for a result analogous

to Theorem 4.3.16:

Theorem 4.3.17. Let B be an n × n Hermitian matrix, and let σ = x1x2 · · ·xk be a

nonpositive subsequence of sepr(B), where 2 ≤ k ≤ n. Then x2x3 · · ·xk = A− S− N.

A corollary to Theorem 4.3.16 relates nonnegative sepr-sequences to positive semidef-

inite matrices:
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Corollary 4.3.18. Let B be a (Hermitian) positive semidefinite matrix. Then

sepr(B) = A+ S+ N, where N is nonempty if S+ is nonempty.

Proof. Let sepr(B) = t1t2 · · · tn. Since the principal minors of a (Hermitian) positive

semidefinite matrix must be nonnegative, sepr(B) must be nonnegative. It is easy to see

that if t1 = N, B = On, implying that sepr(B) = NN. Now, suppose t1 = S+. Then, as

B contains at least one zero diagonal entry, B contains at least one zero principal minor

of order 2; hence, t2 6= A+, and thus, by Theorem 4.3.16, t2t3 · · · tn = S+NN, implying

that sepr(B) = S+S+NN. Finally, if t1 = A+, the desired conclusion is immediate from

Theorem 4.3.16. �

4.4 Sepr-sequences of order n ≤ 3

This section is devoted towards classifying all the sepr-sequences of orders n =

1, 2, 3 that can be attained by Hermitian matrices.

For n = 1, it is obvious that the only attainable sepr-sequences are A+, A− and N.

For n = 2, there are a total of 21 sepr-sequences ending in A+, A− or N; of these,

the 3 sequences that start with S∗ are not attainable, since a matrix of order 2 only

contains two diagonal entries. Of the remaining 18 sequences, A∗A+, A∗N, S+A+, S−A+

and NA+ are not attainable by the Basic Proposition. That leaves 13 sequences, which

constitute the sepr-sequences of order n = 2 that are attainable by Hermitian matrices.

These 13 sequences are listed in Table 4.1, where a Hermitian matrix attaining each

sequence is provided; in the case where the matrix provided is expressed as the negative

of another matrix, its sepr-sequence can be verified by applying Observation 4.2.2 to the

sepr-sequence of the corresponding matrix.

Example 4.4.1. Matrices for Table 4.1:

MA∗A− =

1 1

1 −1

, MS+A− =

1 1

1 0

 .
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Table 4.1: All sepr-sequences of order n = 2 that are attainable by Hermitian matrices.

Sepr-sequence Hermitian matrix Result
A∗A− MA∗A− Example 4.4.1
A+A+ I2
A+A− 2J2 − I2
A+N J2
A−A+ −I2
A−A− −(2J2 − I2)
A−N −J2
NA− J2 − I2
NN O2

S+A− MS+A− Example 4.4.1
S+N diag(1, 0)
S−A− −MS+A− Example 4.4.1
S−N diag(−1, 0)

As just shown, the results developed before this section sufficed to decide the at-

tainability of all the sepr-sequences of order n = 2. However, for n = 3, there remain

sequences unaccounted for.

Proposition 4.4.2. (Order-3 Proposition) For any X, the sepr-sequences S∗S∗X, S∗A∗X,

A∗S∗X and XS∗N are prohibited as the sepr-sequence of a 3× 3 Hermitian matrix.

Proof. To see why S∗S∗X and S∗A∗X are prohibited, observe that any 3 × 3 Hermitian

matrix whose sepr-sequence starts with S∗ cannot contain a positive principal minor of

order 2, since such a matrix does not contain two nonzero diagonal entries having the

same sign.

To discard A∗S∗X, note that a 3× 3 Hermitian matrix with an sepr-sequence starting

with A∗ must contain at least two negative principal minors of order 2. Then, as a 3× 3

matrix contains only 3 principal minors of order 2, a 3 × 3 Hermitian matrix cannot

have an sepr-sequence starting with A∗S∗, since it cannot have both a zero and a positive

principal minor of order 2.

Finally, the fact that XS∗N is prohibited follows from Lemma 4.3.2, since a Hermitian

matrix attaining this sequence would have rank 2. �

Since the underlying epr-sequence of an attainable sepr-sequence must also be attain-

able, to decide the attainability of the sepr-sequences of order 3, we will take advantage
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of what is known about the epr-sequences of 3 × 3 Hermitian matrices. We proceed by

first determining the sepr-sequences that are attainable by Hermitian matrices but not

by real symmetric matrices, and then we determine the remaining ones, namely those

that can be attained by real symmetric matrices.

It was established in [7] that NAN is the only epr-sequence of order 3 that is attainable

by a Hermitian matrix but not by a real symmetric matrix. Since NA∗N and NA+N are

not attainable by a Hermitian matrix (because of the Basic Proposition), the only sepr-

sequence of order 3 that is attainable by a Hermitian matrix but not by a real symmetric

matrix is NA−N.

It now remains to determine the sepr-sequences that are attainable by real symmetric

matrices. The epr-sequences of order 3 that are attainable by real symmetric matrices

are listed in [4, Table 3], which are AAA, AAN, ANA, ANN, ASA, ASN, NAA, NNN, NSN, SAA,

SAN, SNN, SSA and SSN. Then, as an attainable sepr-sequence must end in A+, A− or N,

by counting the sepr-sequences whose underlying epr-sequence is one of those just listed,

we find that only 130 sepr-sequences are potentially attainable (note that we are not

counting the sequence NA−N among these 130 sequences, since we are now only counting

those that are attainable by real symmetric matrices). We now discard certain sequences

from these 130 sequences, and show that the remaining ones are all attainable. The

3 sepr-sequences starting with A∗A+ are not attainable by the Basic Proposition; that

leaves 127 sequences. The 10 sequences having one of the forms A+XA+ or A−XA−, with

X /∈ {A+, A−}, are not attainable by Theorem 4.3.5; that leaves 117 sequences. The 11

sequences containing the prohibited subsequences A∗N and NA∗ are discarded; that leaves

106 sequences. Of the remaining sequences (which do not include the already-discarded

sequence S∗A∗N), 13 are discarded by the Order-3 Proposition; that leaves 93 sequences.

The 3 sequences of the form A∗S+X, as well as NA+A+, NA+A− and NS+N, are discarded

by the Basic Proposition; that leaves sequences 87 sequences. The 9 sequences starting

with XA+, where X ∈ {S∗, S+, S−}, are discarded by the Basic Proposition; that leaves 78
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sequences. The 8 sequences of the form S+XA+ and S−XA−, with X ∈ {A∗, S∗, S+, S−}, are

discarded by Theorem 4.3.10; that leaves 70 sequences. The sequence S∗NN is discarded

by the Basic Proposition; that leaves 69 sequences. The sequences S+S+A− and S−S+A+

are discarded by Proposition 4.3.6; that leaves 67 sequences. Finally, the 3 sequences

of the form S∗S+X are discarded by the Basic Proposition; that leaves 64 sequences,

which constitute the sepr-sequences of order n = 3 that are attainable by real symmetric

matrices. By adding the sequence NA−N to these 64 sequences, we obtain all the sepr-

sequences that are attainable by Hermitian matrices; these 65 sequences are listed in

Table 4.2, where a Hermitian matrix attaining each sequence is provided.

Example 4.4.3. Matrices for Table 4.2:

MA∗A−A+ =


1 2 2

2 1 2

2 2 −1

, MA+A+A− =


1 1 −1

1 2 1

−1 1 2

, MA+A−A+ =


1 2 2

2 1 2

2 2 1

,

MA+A−A− =


1 2 −2

2 1 2

−2 2 1

, MA∗A−N =


1 2 0

2 1
√
3

0
√
3 −1

, MA+A+N =


2 1 1

1 2 −1

1 −1 2

,

MA+A−N =


1 2 2

2 1 7

2 7 1

, MA∗S−A+ =


−1 −1 0

−1 −1 −1

0 −1 1

, MA+S∗A− =


1 −2 −4

−2 4 2

−4 2 4

,

MA+S+A− =


1 1 0

1 1 1

0 1 1

, MA+S−A− =


1 1 2

1 1 3

2 3 1

, MA∗S−N =


−1 0 0

0 1 1

0 1 1

,

MA+S−N =


1 2 2

2 1 1

2 1 1

, MNA−N =


0 i 1

−i 0 1

1 1 0

, MNS−N =


0 1 0

1 0 0

0 0 0

,
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MS+A∗A− =


2 1 1

1 2 2

1 2 0

, MS+A−A+ =


1 1 1

1 0 1

1 1 0

, MS+A−A− =


2 1 1

1 0 2

1 2 0

,

MS∗A−N =


1 0 1

0 −1 1

1 1 0

, MS+A−N =


2 2 1

2 0 2

1 2 0

, MS∗S−A+ =


1 0 1

0 −1 0

1 0 0

,

MS+S−A− =


1 0 0

0 0 1

0 1 0

, MS+S+N =


2 1 0

1 2 0

0 0 0

, MS+S−N =


1 1 1

1 0 0

1 0 0

.

Table 4.2: All sepr-sequences of order n = 3 that are attainable by Hermitian matrices.

Sepr-sequence Hermitian matrix Result
A∗A∗A+ diag(1,−1,−1)
A∗A∗A− diag(−1, 1, 1)
A∗A−A+ MA∗A−A+ Example 4.4.3
A∗A−A− −MA∗A−A+ Example 4.4.3
A+A∗A− (−MA∗A−A+ )−1 Example 4.4.3
A+A+A+ I3
A+A+A− MA+A+A− Example 4.4.3
A+A−A+ MA+A−A+ Example 4.4.3
A+A−A− MA+A−A− Example 4.4.3
A−A∗A+ −(−MA∗A−A+ )−1 Example 4.4.3
A−A+A+ −MA+A+A− Example 4.4.3
A−A+A− −I3
A−A−A+ −MA+A−A− Example 4.4.3
A−A−A− −MA+A−A+ Example 4.4.3
A∗A−N MA∗A−N Example 4.4.3
A+A+N MA+A+N Example 4.4.3
A+A−N MA+A−N Example 4.4.3
A−A+N −MA+A+N Example 4.4.3
A−A−N −MA+A−N Example 4.4.3
A+NA− −(J3 − 2I3)
A−NA+ J3 − 2I3
A+NN J3
A−NN −J3
A∗S−A+ MA∗S−A+ Example 4.4.3
A∗S−A− −MA∗S−A+ Example 4.4.3
A+S∗A− MA+S∗A− Example 4.4.3
A+S+A− MA+S+A− Example 4.4.3
A+S−A− MA+S−A− Example 4.4.3
A−S∗A+ −MA+S∗A− Example 4.4.3
A−S+A+ −MA+S+A− Example 4.4.3
A−S−A+ −MA+S−A− Example 4.4.3
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Table 4.2 (continued): All sepr-sequences of order n = 3 that are attainable by Hermitian

matrices.

Sepr-sequence Hermitian matrix Result

A∗S−N MA∗S−N Example 4.4.3

A+S+N J1 ⊕ J2

A+S−N MA+S−N Example 4.4.3

A−S+N −(J1 ⊕ J2)

A−S−N −MA+S−N Example 4.4.3

NA−A+ J3 − I3

NA−A− −(J3 − I3)

NA−N MNA−N Example 4.4.3

NNN O3

NS−N MNS−N Example 4.4.3

S∗A−A+ (−MA+S∗A− )−1 Example 4.4.3

S∗A−A− −(−MA+S∗A− )−1 Example 4.4.3

S+A∗A− MS+A∗A− Example 4.4.3

S+A−A+ MS+A−A+ Example 4.4.3

S+A−A− MS+A−A− Example 4.4.3

S−A∗A+ −MS+A∗A− Example 4.4.3

S−A−A+ −MS+A−A− Example 4.4.3

S−A−A− −MS+A−A+ Example 4.4.3

S∗A−N MS∗A−N Example 4.4.3

S+A−N MS+A−N Example 4.4.3

S−A−N −MS+A−N Example 4.4.3

S+NN J1 ⊕O2

S−NN −(J1 ⊕O2)

S∗S−A+ MS∗S−A+ Example 4.4.3

S∗S−A− −MS∗S−A+ Example 4.4.3

S+S∗A− (−MS∗S−A+ )−1 Example 4.4.3

S+S−A− MS+S−A− Example 4.4.3

S−S∗A+ −(−MS∗S−A+ )−1 Example 4.4.3

S−S−A+ −MS+S−A− Example 4.4.3

S∗S−N diag(1,−1, 0)

S+S+N MS+S+N Example 4.4.3

S+S−N MS+S−N Example 4.4.3

S−S+N −MS+S+N Example 4.4.3

S−S−N −MS+S−N Example 4.4.3
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4.5 Sepr-sequences of real symmetric matrices

This section focuses on real symmetric matrices, and its main result is a complete

characterization of the sepr-sequences whose underlying epr-sequence contains ANA as a

non-terminal subsequence (see Theorem 4.5.6).

Proposition 4.5.1. For any X, the sepr-sequence NXS∗N cannot occur in the sepr-sequence

of a real symmetric matrix.

Proof. Let B be a real symmetric matrix with sepr(B) containing NXS∗N, where the

penultimate term of this subsequence occurs in position k. By [6, Proposition 2.4],

rank(B) = k. It follows from Lemma 4.3.2 that the nonzero principal minors of order k

of B have the same sign, which contradicts our hypothesis. �

Proposition 4.5.2. Let B be a real symmetric matrix with epr(B) = `1`2 · · · `n and

sepr(B) = t1t2 · · · tn. Suppose `1`2`3 = ANA. Then t1t2t3 = A+NA− or t1t2t3 = A−NA+.

Furthermore, the following hold.

1. If t1t2t3 = A+NA−, then ti = A− for i ≥ 4.

2. If t1t2t3 = A−NA+, then ti = A+ for odd i ≥ 4, and tj = A− for even j ≥ 4.

Proof. By [6, Proposition 2.5], B is conjugate by a nonsingular diagonal matrix to one of

the matrices ±(Jn−2In). Since sepr(B) remains invariant under this type of conjugation,

we may assume that B = ±(Jn − 2In). It is now easy to check that t1t2t3 = A+NA− or

t1t2t3 = A−NA+. We examine each case separately.

Case 1 : t1t2t3 = A+NA−. Hence, B = −(Jn−2In). Let k be an integer with 4 ≤ k ≤ n.

Observe that any order-k principal submatrix is of the form −(Jk − 2Ik); hence, each

order-k principal minor is 2k−1(2− k) < 0 (the eigenvalues of −(Jk − 2Ik) are 2− k and

2, with multiplicity 1 and k − 1, respectively). It follows that tk = A−.
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Case 2 : t1t2t3 = A−NA+. Hence, B = Jn−2In. The desired conclusion now follows by

applying Observation 4.2.2 to the matrix −B, which, by Case 1, has sepr(B) = A+NA−A−.

�

Corollary 4.5.3. The sepr-sequence A−NA+A+ cannot occur as a subsequence of the

sepr-sequence of a real symmetric matrix.

Proof. If a real symmetric matrix existed with an sepr-sequence containing A−NA+A+,

then, by the Inheritance Theorem, it would contain a principal submatrix whose sepr-

sequence ends with A−NA+A+, and whose inverse has sepr-sequence A+NA− · · · A+ (see the

Inverse Theorem), which would contradict Proposition 4.5.2. �

Corollary 4.5.4. Let B be a real symmetric matrix with sepr(B) = t1t2 · · · tn, and let k

be an integer with k ≤ n− 2. Then the following hold.

1. If tk−1tktk+1tk+2 = A+NA−A+, then k is odd.

2. If tk−1tktk+1tk+2 = A−NA+A−, then k is even.

Proof. Suppose tk−1tktk+1tk+2 = A+NA−A+. If k were even, then, by Observation

4.2.2, sepr(−B) would contain A−NA+A+, which would contradict Proposition 4.5.3. That

establishes Statement (1). Statement (2) is proven similarly. �

Lemma 4.5.5. Let B be a real symmetric matrix with epr(B) = `1`2 · · · `n and sepr(B) =

t1t2 · · · tn. Suppose `k−1`k`k+1 = ANA, where k ≤ n− 2. Then ti ∈ {A+, A−} for all i 6= k

and tk+1 = neg(tk−1).

Proof. If k = 2, then all the conclusions are immediate from Proposition 4.5.2; thus,

we assume that k ≥ 3. By [6, Theorem 2.6], ti ∈ {A∗, A+, A−} for all i 6= k. By Theorem

4.3.5, and because A∗N and NA∗ are prohibited, tk−1tktk+1 = A+NA− or tk−1tktk+1 = A−NA+;

hence, tk+1 = neg(tk−1). We now show by contradiction that ti 6= A∗ for all i 6= k; thus,

suppose tj = A∗ for some j 6= k. We proceed by examining two cases.
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Case 1 : j < k. Since tk+2 ∈ {A∗, A+, A−}, the Inheritance Theorem implies that B

has a (necessarily nonsingular) (k+ 2)× (k+ 2) principal submatrix B′ with sepr(B′) =

· · · A∗ · · · XN neg(X)Y, where X, Y ∈ {A+, A−}. By the Inverse Theorem,

sepr((B′)−1) = ZN neg(Z) · · · A∗ · · · , where Z ∈ {A+, A−}; now observe that this contradicts

Proposition 4.5.2.

Case 2 : j > k. Since tk−2 ∈ {A∗, A+, A−}, Proposition 4.2.9 implies that there exists

a (necessarily nonsingular) (k − 2) × (k − 2) principal submatrix B[α] such that the

sepr-sequence of C = B/B[α] has A∗ in the (j − (k − 2))-th position. By the Schur

Complement Corollary, epr(C) = ANA · · · ; hence, by Proposition 4.5.2, sepr(C) does not

contain A∗, which leads to a contradiction. �

We are now in position to completely characterize all the sepr-sequences that are

attainable by real symmetric matrices and whose underlying epr-sequence contains ANA

as a non-terminal subsequence.

Theorem 4.5.6. Let σ = t1t2 · · · tn be an sepr-sequence whose underlying epr-sequence

is `1`2 · · · `n. Suppose `k−1`k`k+1 = ANA, where 2 ≤ k ≤ n− 2. Let α = {1, . . . , n− 1} \

{k − 1, k}. Then σ is attainable by a real symmetric matrix if and only if one of the

following holds.

1. σ = A+A+NA−A−A−;

2. k is odd, tk−1tktk+1tk+2 = A+NA−A+ and ti+1 = neg(ti) for all i ∈ α;

3. k is even, tk−1tktk+1tk+2 = A−NA+A− and ti+1 = neg(ti) for all i ∈ α.

Proof. First, we show that if any of Statements (1)–(3) holds, then σ is attainable.

Suppose (1) holds. Let B = −(Jn − kIn). We claim that sepr(B) = σ. Obviously,

[sepr(B)]1 = A+ = t1. Since every principal submatrix of order q ≥ 2 is of the form

−(Jq − kIq), each principal minor of order q is kq−1(k − q). Hence, [sepr(B)]q = A+ = tq

for 2 ≤ q ≤ k − 1, [sepr(B)]k = N = tk, and [sepr(B)]q = A− = tq for k + 1 ≤ q ≤ n.
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It follows that sepr(B) = σ. To show that σ is attainable if Statements (2) or (3) hold,

let C = Jn − kIn. Note that each principal minor of order q ≥ 2 is (−k)q−1(q − k) =

(−k)q(k − q). It is now easy to check that sepr(C) = σ, with σ as in Statement (2) or

(3), depending on the parity of k.

For the other direction, suppose σ is attainable by a real symmetric matrix, say, B,

so that sepr(B) = σ = t1t2 · · · tn. By Lemma 4.5.5, ti ∈ {A+, A−} for all i 6= k and tk+1 =

neg(tk−1). It follows that tk−1tktk+1 = A+NA− or tk−1tktk+1 = A−NA+. Since A−NA+A+

is prohibited by Corollary 4.5.3, tk−1tktk+1tk+2 must be either A+NA−A−, A+NA−A+ or

A−NA+A−. We now examine these three possibilities in two cases.

Case i : tk−1tktk+1tk+2 = A+NA−A−. We now show that sepr(B) = A+A+NA−A−A−. We

start by showing that ti = A+ for all i ≤ k− 2. Suppose to the contrary that there exists

j ≤ k−2 such that tj = A−. By the Inheritance and Inverse Theorems, the sepr-sequence

of the inverse of any (necessarily nonsingular) (k+2)×(k+2) principal submatrix of B has

the form A+NA− · · · A+ · · · , which contradicts Proposition 4.5.2. We conclude that ti = A+

for all i ≤ k − 2. Now we show that ti = A− for all i ≥ k + 3. Suppose to the contrary

that there exists j ≥ k + 3 such that tj = A+. Then, as every principal minor of order

k− 2 is positive, the Schur Complement Theorem and the Schur Complement Corollary

imply that for any (necessarily nonsingular) (k − 2)× (k − 2) principal submatrix B[α],

sepr(B/B[α]) = A+NA− · · · A+ · · · , which contradicts Proposition 4.5.2. We conclude that

sepr(B) = A+A+NA−A−A−. Then, as σ = sepr(B), Statement (1) holds. Note that we

have shown that if the sepr-sequence of a real symmetric matrix contains A+NA−A−, then

its sepr-sequence must be A+A+NA−A−A−.

Case ii : tk−1tktk+1tk+2 = A+NA−A+ or tk−1tktk+1tk+2 = A−NA+A−. By Corollary 4.5.4,

k is odd if tk−1tktk+1tk+2 = A+NA−A+, and k is even if tk−1tktk+1tk+2 = A−NA+A−. Thus,

it remains to show that ti+1 = neg(ti) for all i ∈ α, from which it would follow that

either Statement (2) or Statement (3) holds. Suppose to the contrary that ti+1 6= neg(ti)

for some i ∈ α; hence, ti+1 = ti. Let sepr(−B) = t′1t
′
2 · · · t′n. It follows from Observation
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4.2.2 that t′k−1t
′
kt
′
k+1t

′
k+2 = A+NA−A− and that t′i+1 = neg(t′i). Now, observe that the last

sentence at the end of Case i implies that sepr(−B) = A+A+NA−A−A−. Hence, t′i+1 = t′i.

Then, as t′i+1 = neg(t′i), we must have t′i+1 = t′i = N, a contradiction. We conclude that

it must be the case that ti+1 = neg(ti) for all i ∈ α, implying that either Statement (2)

or Statement (3) holds. �

To see that Theorem 4.5.6 cannot be generalized to Hermitian matrices, the reader

is referred to [7, Theorem 3.3]. Moreover, Theorem 4.5.6 cannot be generalized to in-

clude the case when ANA occurs as a terminal sequence, since the epr-sequence SAANA is

attainable by a real symmetric matrix (see [4, Table 5]).
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CHAPTER 5. GENERAL CONCLUSIONS

In Chapter 2, new restrictions for the attainability of epr-sequences by the class of real

symmetric matrices were established, which allowed for a classification of two families of

sequences that are attainable by real symmetric matrices: the family of pr-sequences not

containing three consecutive 1s and the family of epr-sequences containing an N in every

subsequence of length 3. In the context of real symmetric matrices, the classification of

the latter family served as an attempt to understand those epr-sequences that are not

covered by Theorem 1.3.5, namely those that are allowed to contain the subsequences

NA and NS, which, as was argued above, remain difficult to understand.

In Chapter 3, the question of whether there were fields over which the existing tools

could allow one to obtain a complete characterization of the epr-sequences that are

attainable by symmetric matrices was considered, where it was shown that such a char-

acterization was indeed possible for the field Z2. Thanks to this characterization, the

principal minor assignment problem for symmetric matrices over Z2 can be reduced as

follows: For each attainable epr-sequence `1`2 · · · `n containing one or more Ss, determine

what integers can be assigned to each S in order to guarantee the existence of a matrix,

B, for which the following two conditions hold: (i) epr(B) = `1`2 · · · `n; (ii) if `k = S and

the number assigned to `k is sk, then the number of nonzero order-k principal minors of

B is sk.

In Chapter 4, a sequence that “enhances” the epr-sequence, the sepr-sequence, was in-

troduced for the class of Hermitian matrices, which provides further aid towards studying

the principal minors of Hermitian matrices. The level of “enhancement” was evidenced
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in part by the fact that the presence of some subsequences of length 2 (namely A∗N and

NA∗) in an sepr-sequence was shown to imply that the sequence is unattainable. Hence,

for some lists of 2n−1 real numbers, there exists some k ∈ {1, 2, . . . , n−1} such that the

non-realizability of these numbers as the principal minors of a Hermitian matrix can be

deduced based on just
(
n
k

)
+
(
n
k+1

)
of their numbers. Epr-sequences are not capable of be-

ing this efficient, since any sequence of length 2 can appear in an attainable epr-sequence

(in the case of symmetric or Hermitian matrices).

In the context of Hermitian matrices, there are only three sequences of length 3 whose

presence in an epr-sequence always implies that the epr-sequence is not attainable: NNA,

NNS and NSA [1]. However, as we saw in Chapter 4, in the case of sepr-sequences, there

are numerous sequences of length 3 that lead to the same conclusion (that is true even if

we do not consider those sequences whose underlying epr-sequence is NNA, NNS or NSA).

This is obviously further aid for the study of principal minors of Hermitian matrices.
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