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ABSTRACT

The maximum nullity of a simple graph G over a field F is the maximum nullity over all

symmetric matrices over F whose ijth entry (where i 6= j ) is nonzero if and only if ij is an edge

in G and is zero otherwise. The zero forcing number of a graph is the minimum cardinality over

all zero forcing sets. It is known that the zero forcing number of a graph is an upper bound for

the maximum nullity of the graph (see [1]). In this dissertation, we search for characteristics of a

graph that guarantee the maximum nullity of the graph and the zero forcing number of the graph

are the same by studying a variety of graph parameters which bound the maximum nullity of a

graph below. Graph parameters that are considered are a Colin de Verdiére type parameter and

the vertex connectivity. We also use matrices, such as a divisor matrix of a graph and an equitable

partition of the adjacency matrix of a graph, to establish a lower bound for the nullity of the graph’s

adjacency matrix. Last, we introduce a new graph parameter and show that it has the same value

as the nullity of the graph’s adjacency matrix, which is a lower bound for the maximum nullity of

a graph.
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CHAPTER 1. Introduction

Combinatorial matrix theory uses graphs and other combinatorial techniques to establish prop-

erties of matrices. An inverse eigenvalue problem can be described as follows: Given a set of

numbers determine if there exists a matrix with certain properties which has eigenvalues corre-

sponding to the given set. A trivial inverse eigenvalue problem is to construct a symmetric matrix

having eigenvalues λ1, λ2, . . . , λk. The matrix containing diagonal entries λ1, λ2, . . . , λk with zeros

on the off diagonal is a matrix that satisfies such criteria. Changing the required properties of

the matrix changes the difficulty of the problem. Refer to [8] for a survey on inverse eigenvalue

problems more generally. The inverse eigenvalue problem of a graph (IEPG) is a well-known com-

binatorial matrix theory problem. Using tools such as the maximum eigenvalue multiplicity over a

set of matrices gives insight into the solution of the IEPG for some graph families. For instance, if

we know that the maximum multiplicity over a set of matrices is m, then we know that a matrix

having eigenvalues corresponding to a set that contains a number occurring more than m times

does not exist.

The set of symmetric matrices of a graph G over a field F , denoted by S(F , G), is the set of

symmetric matrices A = [aij ] having the same off-diagonal nonzero pattern as the adjacency matrix

of G (for i 6= j, aij 6= 0 ⇐⇒ ij ∈ E(G)) with free diagonal entries (aii ∈ F). The maximum nullity

of a graph G over a field F , denoted by M(F , G) is the maximum nullity over S(F , G). Because

the diagonal of a matrix A ∈ S(F , G) is unrestricted and the nullity of A − λI is the multiplicity

of λ as an eigenvalue of A the maximum multiplicity of matrices in S(F , G) is the same as the

maximum nullity. The minimum rank of a graph G over a field F , denoted by mr(F , G), is the

minimum rank over S(F , G). Whenever the field is not specified, the field is understood to be the

real numbers R. Observe that mr(F , G) + M(F , G) = |G|, where |G| is defined to be the number
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of vertices in the graph G. This makes solving for M(F , G) equivalent to solving the associated

minimum rank problem. See [12] for a discussion on the motivation of the minimum rank problem.

The maximum nullity over a set of matrices that can be described by a graph has been well

studied (see [1, 3, 16]). While determining the maximum nullity over a set of matrices described by a

graph is not easy to compute, there are graph parameters that allow us to bound the maximum nul-

lity. For some graphs, these bounds are enough to determine the maximum nullity. Unfortunately,

the bounds available are not enough to determine the maximum nullity for all graphs.

Let Z be a subset of V (G) such that every vertex in Z is colored blue and all other vertices are

colored white. The color change rule for zero forcing is: A blue vertex can change a white vertex

blue if the white vertex is the only white vertex adjacent to the blue vertex. (Vertices v and u

are said to be adjacent if and only if {v, u} ∈ E(G).) In this case, we say that the blue vertex

forced the white vertex blue. A zero forcing set is a subset of V (G) such that after applying the

color change rule until no more changes are possible, all vertices in G are colored blue. The zero

forcing number of a graph G, denoted by Z(G), is the minimum cardinality over all zero forcing

sets. A chronological list of forces is a sequence of forces performed in the given order. The term

zero forcing refers to forcing entries in the null vector to be zero, which leads to the relationship

that the maximum nullity of a graph is bounded above by the zero forcing number of the graph.

Proposition 1.1. [1, Proposition 2.4] Let G be a graph and let F be a field. Then

M(F , G) ≤ Z(G).

The problem of characterizing graphs that have the property that the maximum nullity of the

graph is equal to zero forcing number of the graph was first posed in [1]. While this problem is still

open, there are many families of graphs that have their maximum nullity equal to their zero forcing

number. A list of families of graphs having this property can be found in [17] including trees,

cycles, complete graphs, complete bipartite graphs, completely subdivided graphs, and graphs with

less than 8 vertices. The zero forcing number of a graph can be computed by using mathematical

software. However, determining the maximum nullity of a graph is a challenging problem.
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A notable contribution of this dissertation is the introduction of a combinatorial technique for

computing the nullity of the adjacency matrix. We apply this and other techniques to establish

M(G) = Z(G) for many additional families of graphs G, in some cases, this is established fro

arbitrary fields. In Chapter 2, we apply the Colin de Vedière parameter ξ and graph minors to

establish a lower bound for the maximum nullity of a graph. Moreover, we use this tool to show

that the maximum nullity and zero forcing number of all extended cube graphs and some circulant

graphs are equal (extended cube graphs and circulant graphs are defined in Chapter 2). In Chapter

3, we use the vertex connectivity of a graph to bound the maximum nullity and determine the

maximum nullity and zero forcing number of some additional circulant graphs. In Chapter 4, we

use known results related to the divisor matrix of an equitable partition of a graph to bound the

maximum nullity for some graphs. In Chapter 5, we use a decomposition for the adjacency matrix

of a graph introduced in [5] by Barrett et al. to determine the nullity of the adjacency matrix.

This allows us to establish field independent minimum rank for a specific subfamily of the extended

cube graph. In Chapter 6, we use the combinatorial technique for computing the nullity of the

adjacency matrix described above to show that the Aztec diamond graphs have field independent

minimum rank.

Graph parameters of interest are the vertex connectivity and a Colin Verdière type parameter.

Equitable partitions, equitable decompositions of the adjacency matrix, and the new parameter

nullity of a graph are use to establish the nullity of the adjacency matrix which serves as a lower

bound for the maximum nullity of the graph. In the remainder of this introduction we define these

terms and families of graphs after a few additional definitions. We also state some results from the

literature that will be used.

A graph, denoted by G, consists of a set V (G) called a vertex set and an edge set E(G) where

the edge set contains two element subsets of the vertex set. For convenience, when {v, u} ∈ E(G)

we may drop the brackets and write vu. The order of a graph, denoted by |G|, is the number of

vertices in the graph. The spectrum of a symmetric matrix A, denoted by spec(A), is the multiset

of eigenvalues of A. The nullity of a symmetric matrix, denoted by null(A), is the number of times
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zero occurs in spec(A). The rank of a symmetric matrix A, denoted by rank(A), is the dimension

of the vector space spanned by the rows of A.

A matrix A ∈ S(G) is said to have the Strong Arnold Property (SAP) if there does not exist a

nonzero symmetric matrix X having the following three properties: (1) AX = 0, (2) A◦X = 0, (3)

I ◦ X = 0 where ◦ is the Hadamard (entrywise) product. The Colin de Verdière type parameter

associated with the maximum nullity is

ξ(G) = max{null(A) |A ∈ S(G) and A has the SAP}.

Clearly ξ(G) ≤ M(G) ≤ Z(G) for all graphs G. The parameter ξ was introduced in 2005 in [4] to

gain more insight on the minimum rank of a graph.

The vertex connectivity, denoted by κ(G), of a graph is the smallest number of vertices needed

to be deleted to disconnect a noncomplete graph and κ(Kn) = n−1. In 2007, building on the work

of Lovász, Saks, Schrijver [19], [18], Hein van der Holst [20] showed that the vertex connectivity of

a graph is a lower bound for the maximum nullity of a graph. Although not published, it is worth

noting that in a AIM workshop the minimum degree and vertex connectivity of a graph were used

to show that the maximum nullity is equal to the zero forcing number for certain circulant graphs.

(In 1962, Frank Harary showed that the vertex connectivity of those graphs is the same as the

minimum degree and they are now called Harary graphs.)

Note that A(G) − λI with λ ∈ Z can be viewed as a matrix over any field F of characteristic

p with each integer interpreted as its residue modulo p. Thus A(G) − λI ∈ S(F , G). When we

view A ∈ Fnxn we write rank(F , A) for the rank which may depend on F . An optimal matrix

over a field F is a matrix A ∈ S(G) such that rank(F , A) = mr(F , G). We say that an integer

matrix A ∈ S(F , G) that has entries −1, 0, 1 on the off diagonal is universally optimal if for all

fields F , rank(F , A) = mr(F , G). The minimum rank of a graph G is said to be field independent

if for all fields F , mr(F , G) = mr(G). The minimum rank problem over fields other than the real

numbers was studied as early as 2004 by Wayne Barrett, Hein van der Holst, and Raphael Loewy

in [6]. In 2009, Dealba, et. al [11] used universally optimal matrices to establish minimum rank

field independence for many graphs listed in [17].
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Proposition 1.2. [11, Corollary 2.3] If A ∈ Zn×n, then rank(Zp, A) ≤ rank(A) for every prime p.

Corollary 1.3. Let G be a graph having the property that for some λ ∈ Z, rank(A(G)−λI) = |G|−

Z(G), or equivalently, null(A(G)− λI) = Z(G). Then the minimum rank of G is field independent

and A(G)− λI is universally optimal, and M(F , G) = Z(G) for all fields F .

Proof. By Proposition 1.1, |G| − mr(F , G) = M(F , G) ≤ Z(G) and by Proposition 1.2 we have

rank(F , A(G)− λI) ≤ rank(A(G)− λI), so null(A(G)− λI) ≤ null(F , A(G)− λI). It follows that

Z(G) ≥ M(F , G) ≥ null(F , A(G)− λI) ≥ null(A(G)− λI) = Z(G).

Therefore, mr(F , G) = rank(F , A(G) + λI) = |G| − Z(G) which shows that G has field inde-

pendent minimum rank and A(G) + λI is universally optimal.

Observation 1.4. Let G be a graph. If there exists a prime p such that mr(Zp, G) 6= mr(G) then

G does not have field independent minimum rank.

A generalized Petersen Graph, denoted by P (n, k), is a graph having a labeled vertex set

{u0, u1, . . . un−1, v0, v1, . . . , vn−1} and edge set
{
{uiui+1 mod n}, {vivi+k mod n}, {uivi} : i = 0, 1, 2,

. . . , n − 1
}

, for n ≥ 3 and k a positive integer less than bn2 c. In [2], the adjacency matrix was

used to show that the maximum nullity is equal to the zero forcing number for certain generalized

Petersen graphs.

Theorem 1.5. [2, Theorem 2.4] Let r be a positive integer. Then

M(P (15r, 2)) = Z(P (15r, 2)) = 6 and M(P (24r, 5)) = Z(P (24r, 5)) = 12

and the maximum nullity is attained by the adjacency matrix.

Corollary 1.6. Let r be a positive integer. Then the two subfamilies P (15r, 2) and P (24r, 5) have

field independent minimum rank with universally optimal matrices. Moreover, for all fields F ,

M(F , P (15r, 2)) = Z(P (15r, 2)) and M(F , P (24r, 5)) = Z(P (24r, 5)).
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The Cartesian product of the graphs G and H, denoted by G�H, has vertex set {(v, w)|v ∈

V (G), w ∈ V (H)} and edge set

{(v1, w1)(v2, w2) | (v1 = v2 and w1w2 ∈ E(H)) or (v1v2 ∈ E(G) and w1 = w2)}.

Theorem 1.7. [1, Theorem 3.8] Let k ≥ 3. Then M(Ck�Pt) = Z(Ck�Pt) = min{k, 2t}.

Example 1.8. By Theorem 1.7, M(C7�P2) = 4 which implies mr(C7�P2) = 10. By computation

via SageMath (see [22]), there does not exist a matrix in S(Z2, C7�P2) having rank equal to 10.

Therefore by Observation 1.4, C7�P2 does not have field independent minimum rank.

Example 1.8 shows that the generalized Petersen graphs do not have field independent minimum

rank field independent since C7�P2 is isomorphic to P (7, 1). It is known that Cn�Pt does not have

field independent minimum rank (see [11, Example 3.5]).

An equitable partition of a graph is a partition of the vertex set V0, V1, . . . , Vk such that for all

v ∈ Vi the number bij of neighbors in Vj is constant for all Vj . Let V0, V1, . . . , Vk be an equitable

partition of V (G). We say a divisor of G is a weighted directed graph with vertex set V0, V1, . . . , Vk

and arc (Vi, Vj) having weight bij if and only if bij 6= 0. The matrix [bij ] is the divisor matrix

associated with the equitable partition V0, V1, . . . , Vk. It is known that an equitable partition of a

graph G can be used to find specific eigenvalues of A(G) (see [9]).

An automorphism of a graph G is an isomorphism φ from V (G) to V (G) such that φ(i) is

adjacent to φ(j) if and only if i is adjacent to j. Let G be a graph with v, u ∈ V (G) and let φ be

an automorphism of G. Define the relation ≈ on the vertices of G by v ≈ u if and only if there

exists a nonnegative integer j for which v = φj(u). This relation is an equivalence relation on the

vertices of G and the equivalence classes are the orbits of φ. Let φ be an uniform automorphism

of G with orbit size k where 1 < k. A transversal of φ is a subset of V (G) containing exactly one

vertex from each orbit of φ. The `-power of transversal T is defined to be the following transversal,

T` = {φ`(v) | v ∈ T}

for ` ∈ {0, 1, 2, . . . , k− 1}. It is straightforward to see that T` is a transversal and ∪k−1`=0T` = V (G).
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Given an automorphism φ, an n×n matrix A = [aij ] associated with the graph G on n vertices

such that

aφ(i),φ(j) = aij

for all i, j ∈ {1, 2, . . . , n}, is called φ−compatible. An n×n matrix A associated with the graph G is

called φ−automorphism compatible if it is φ−compatible for every automorphism φ of G. Recently

in 2017, Barrett et al. used equitable partitions of a graph in [5] to decompose A(G). This

decomposition can be used to determine all eigenvalues of A(G). As a result, this decomposition is

useful for determining a lower bound for the maximum nullity. Moreover, it can be use to establish

a potential candidate for an universally optimal matrix.

A general graph is a graph that may contain loops (edges of the form vv) and/or multi-edges

(two edges containing the same vertices u and v are called multi-edges). Let G be a general graph

and let v, u ∈ V (G). The neighborhood of v in a general graph G, denoted by NG(v), is a multiset

containing vertices of V (G) such that k copies of u are in NG(v) if and only if there are k copies

of uv in E(G). Let X and Y be multisets containing elements of V (G). The general graph Gv+X

is obtained from G by adding one edge vw for each w ∈ NG(x) and for every x ∈ X (see Figure

1.1). Suppose NGv+Y
(v) ⊆ NGv+X

(v). Then the general graph Gv+X−Y is obtained from Gv+X by

deleting one edge vw for each w ∈ NG(y) and for every y ∈ Y (see Figure 1.1). In the case that X

and Y consists of a single vertex x or y, we write Gv+x or Gv+x−y.

We define a color change rule as follows: In a graph G, having each vertex colored red or white,

a white vertex u can be colored red if there exists a white vertex v and multisets of white vertices

X,Y such that

1. u /∈ {v} ∪X ∪ Y , and

2. NGu+Uk
(u) = NGv+X−Y

(v)

for some nonnegative integer k and the multiset Uk containing k copies of u, (whenever k = 0,

Uk is the empty set and NGu+Uk
(u) = NG(u)). In this case we say that u can be colored red by

(v,X, Y, k).
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G 0

1 2

3

4 5

G1+4 0

1 2

3

4 5

G1+4−0 0

1 2

3

4 5

Figure 1.1: This shows the graph G1+4−0.

Example 1.9. Figure 1.1 illustrates the process of creating G1+4−0. Moreover, vertices 1 and 3

have the same neighborhood in G1+4−0, so vertex 3 can be colored red in G by (1, {4}, {0}, 0). We

can also color vertex 5 red. Consider the general graph G1+4−2 in which vertices 1 and 5 have the

same neighborhood in G1+4−2.

A set of red vertices is called a red set, denoted by R, if the vertices v1, v2, . . . , vt of R can be

sequentially colored red. The nullity of a graph G, denoted by null(G), is the maximum cardinality

over the set of all red sets.
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CHAPTER 2. An Application of the Strong Arnold Property

In this section, we use the Colin de Verdière type parameter ξ to show that the maximum nullity

and zero forcing number of various families of graphs are equal.

Example 2.1. By using SageMath (see [15]), A(C8�P3) has the SAP and null(A(C8�P3)) = 6. By

Theorem 1.7, M(C8�P3) = Z(C8�P3) = 6. Therefore, ξ(C8�P3) = M(C8�P3) = Z(C8�P3) = 6.

An edge contraction of a graph G is defined to be a deletion of two adjacent vertices v1 and v2

and an insertion of a vertex u such that uv ∈ E(G) if and only if vv1 ∈ E(G) or vv2 ∈ E(G). A

graph H is a minor of a graph G if H can be constructed from G by performing edge deletions,

vertex deletions, and/or contractions. We write H � G when H is a minor of G. Note that

G � G′ � G′′ implies G � G′′.

Observation 2.2. Let 3 ≤ k ≤ n and 1 ≤ r ≤ t. Then Ck�Pr � Cn�Pt.

Theorem 2.3. [4, Corollary 2.5] If H is a minor of G then ξ(H) ≤ ξ(G).

Definition 2.4. Let H be a minor of G. We say that H is a zero forcing minor of G if Z(G) ≤ Z(H).

Theorem 2.5. Let H be a zero forcing minor of G such that ξ(H) = Z(H). Then ξ(G) = M(G) =

Z(G) = Z(H).

Proof. Given that H is a zero forcing minor, Z(G) ≤ Z(H). By Theorem 2.3, ξ(H) ≤ ξ(G) and it

follows that

Z(H) = ξ(H) ≤ ξ(G) ≤ M(G) ≤ Z(G) ≤ Z(H).

Thus the parameters ξ(G),M(G),Z(G) are equal to Z(H).

Corollary 2.6. Let G = Cn�P3 such that 8 ≤ n. Then

ξ(G) = M(F , G) = Z(G) = 6.
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ECG(1, 2)

Figure 2.1: Applying two vertical and one horizontal subdivision edge insertion on the cube graph
gives ECG(1, 2).

A k-subdivision of an edge, say uv, is an operation on a graph in which edge uv is deleted,

vertices v1, v2, . . . , vk and edges uv1, v1v2, v2v3, . . . , vkv are added. We say the edge uv has been

k-subdivided. Whenever k = 1 we simply say that the edge uv has been subdivided. A k-

subdivision edge insertion on the edges uv and wx is an operation on a graph in which edges

uv and wx are k-subdivided adding vertices v1, v2, . . . , vk and x1, x2, . . . , xk, respectively, and edges

v1x1, v2x2, . . . , vkxk are added. The cube graph Q3 can be described by an 8 - cycle containing

a labeled vertex set {0, 1, . . . , 7} and added edges {{0, 5}, {1, 4}, {2, 7}, {3, 6}} as shown in Figure

2.1.

Proposition 2.7. [20, Lemma 8] For the cube graph, ξ(Q3) = 4 = M(G) = Z(G).

Definition 2.8. (Extended cube graph) A vertical k−subdivision edge insertion on the cube graph

is a k−subdivision edge insertion on the edges {0, 1} and {4, 5}. A horizontal k−subdivision edge

insertion on the cube graph is a k−subdivision edge insertion on the edges {2, 3} and {6, 7},

with the numbering as in Figure 2.1. An extended cube graph, denoted by ECG(t, k), is the cube

graph with a horizontal t−subdivision edge insertion, a vertical k−subdivision edge insertion, and

a relabeling around the cycle containing vertex set {0, 1, . . . , 7 + 2(t+ k)}.

Figure 2.1 shows ECG(1, 2). Notice that ECG(t, k) isomorphic to the graph ECG(k, t). For

simplicity we consider the extended cube graphs with t ≤ k. The graph ECG(1, 1) is called the
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Bidiakis cube. It was shown in [2, Proposition 5.1] that the maximum nullity and zero forcing

number of the Bidiakis cube are the same, motivating the creation of the extended cube graphs.

Observe that in ECG(t, k), as we draw it, the top endpoints of the vertical edges are 0, . . . , k+1,

the left endpoints of the horizontal edges are k+ 2, . . . , t+k+ 3, the lower endpoints of the vertical

edges are t+ k + 4, . . . , t+ 2k + 5 = n− t− 3, and the right endpoints of the horizontal edges are

t+ 2k + 6, . . . , 2t+ 2k + 7 = n− 1.

Observation 2.9. Let G be a graph constructed from the graph H by performing a subdivision

edge insertion. Then H � G.

Proposition 2.10. Let G be an extended cube graph ECG(t, k). Then Z(G) ≤ 4.

Proof. Let n be the number of vertices of G and let r = n− t− 3. The set {0, r, r + 1, n− 1} is a

zero forcing set with simultaneous forces

0 → 1 → 2 → · · · → k + 2

r → r − 1 → r − 2 → · · · → r − (k + 2) = k + t+ 3.

These forcing sequences run simultaneously in parallel, i.e., 0 → 1 and r → r − 1 are simulta-

neous, etc. After the above forces are completed, the following forces run in parallel.

(k + 2) → (k + 2) + 1 → (k + 2) + 3 → · · · → (k + 2) + t

(n− 1) → (n− 1)− 1 → (n− 1)− 2 → · · · → (n− 1)− t = 2k + t+ 6

Corollary 2.11. Let G be the extended cube graph ECG(t, k). Then

ξ(G) = M(G) = Z(G) = 4.

Proof. Let H be the cube graph. By Proposition 2.7, ξ(H) = Z(H) = 4. By Theorem 2.5, H is a

zero forcing minor of G. Thus ξ(G) = M(G) = Z(G) = 4 by Theorem 2.5.

A circulant graph, denoted by Circ[n, S], is a graph with vertex set {0, 1, . . . , n− 1} ⊆ Z and a

connection set S ⊆ {1, 2, . . . , n2 } ⊆ Z, where the edge set of Circ[n, S] is precisely
{
{i, i±s} : s ∈ S}

}
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with arithmetic performed modulo n (see Figure 2.2). For any a ∈ [n], the graphs Circ[n, S] and

Circ[n, aS] are isomorphic whenever a and n are relatively prime. Thus if there exists b ∈ S such

that gcd(b, n) = 1, then 1 ∈ b−1S and Circ[n, S] ∼= Circ[n, b−1S]. For simplicity, all circulant graphs

considered here have 1 in the connection set.
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Figure 2.2: The circulants Circ[8, {1, 2}] and Circ[8, {1, 3}].

Observation 2.12. For positive integer k, the circulant Circ[4k, {1, 3, . . . , 2k − 1}] = K2k,2k and

the circulant Circ[4k + 2, {1, 3, . . . , 2k + 1}] = K2k+1,2k+1.

Proposition 2.13 and Theorem 3.4 below were found by several groups in 2009 and 2010 but

not published. Some of these results were also published in [10]. We state these results and give

formal proofs of the results for clarity.

Proposition 2.13. [14, Proposition 2.1] Let G be a circulant graph Circ[n, S] and let m =

max{i|i ∈ S}. Then Z(G) ≤ 2m.

Proof. We will show that Z = {0, 1, . . . , 2m− 1} is a zero forcing set. Suppose s ∈ S and s 6= m.

Then 1 ≤ s < m and it follows that m± s ∈ Z. If s = m, then m− s = m−m = 0 which implies

m− s ∈ Z. This shows that all neighbors of m except for 2m are in Z; clearly m ∈ Z. Hence

m can force 2m. Using a similar argument m+ i forces 2m+ i for i ∈ {1, 2, . . . , n − 2m − 1}. A

forcing sequence is listed as

m→ 2m, m+ 1→ 2m+ 1, . . . , m+ (n− 2m− 1) = n−m− 1→ 2m+ (n− 2m− 1) = n− 1.
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Observation 2.14. Let n be a multiple of k, G = Cn/k�Pk, and H = Circ[n, {1, k}]. Then

G � H. This is illustrated in Figure 2.3.
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Figure 2.3: By applying edge deletions to Circ[24, {1, 3}] and relabeling the vertices, it is clear that
C8�P3 � Circ[24, {1, 3}].

The next result may also be true for n < 24 but our proof needs n to be big enough to use

results from Z(C8�P3) = Z(Circ[24, {1, 3}]) = 6.

Theorem 2.15. Let n ≥ 24 be a multiple of 3 and let G = Circ[n, {1, 3}]. Then ξ(G) = M(G) =

Z(G) = 6.

Proof. In Example 2.1, we showed that 6 = ξ(C8�P3). By Observations 2.2 and 2.14 C8�P3 �

Cn/3�P3 � G, and Z(G) ≤ 6 by Proposition 2.13. Therefore, C8�P3 is a zero forcing minor of G,

and ξ(G) = M(G) = Z(G) = 6 by Theorem 2.5.

Remark 2.16. For every positive integer t, Circ[2t, {1, t}] is the Moebius ladder graph. The edges

{i, i+ t} of Circ[2t, {1, t}] are the rungs in the Moebius ladder. It was shown in [1, Proposition 3.9]

that all Moebius ladder graphs have both their maximum nullity and zero forcing number equal to

4.
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CHAPTER 3. An Application of Vertex Connectivity

In this section, we use the known results for the vertex connectivity of a graph to show that

the maximum nullity and zero forcing number for some circulant graphs are the same.

Theorem 3.1. [20, Theorem 4] Let G be a graph. Then κ(G) ≤ ξ(G).

Corollary 3.2. Let G be a graph. Then κ(G) ≤ ξ(G) ≤ M(G) ≤ Z(G).

Observation 3.3. Let G be a circulant graph Circ[n, S] such that S does not contain n
2 . Then

δ(G) = 2|S|.

The circulant graph Circ[n, {1, 2, . . . , t}] is called a consecutive circulant. It is known that a

consecutive circulant is a Harary graph (see [21, Example 4.1.4]), and it is shown in [21, Theorem

4.1.5] that the vertex connectivity and the minimum degree of a Harary graph are equal.

Theorem 3.4. [14, Corollary 2.2] Let 2t+ 1 ≤ n and let G = Circ[n, {1, 2, . . . , t}]. Then

κ(G) = δ(G) = ξ(G) = M(G) = Z(G) = 2t.

Proof. By Observation 3.3, δ(G) = 2t. Since G is a Harary graph, κ(G) = δ(G). By Corollary

3.2, we have the following inequalities κ(G) = δ(G) ≤ ξ(G) ≤ M(G) ≤ Z(G). An upper bound for

the zero forcing number of G is 2t, which is given by Proposition 2.13. Therefore, κ(G) = δ(G) =

ξ(G) = M(G) = Z(G) = 2t.

When n is odd and t = bn2 c the circulant Circ[n, {1, 2, . . . , t}] = Kn. The equality of κ, δ, ξ, and,Z

shown for consecutive circulants in Theorem 3.4 is not true for all circulant graphs as shown in the

next example.

Example 3.5. Let G be the graph Circ[8, {1, 3}] = K4,4. By considering G = K4,4, we see that

κ(G) = δ(G) = 4 and Z(G) = 6, since Z(Ka,b) = a+ b− 2. It was shown in [4, Corollary 2.8] that

ξ(G) = min{4, 4}+ 1 = 5.
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For n = 2m + 1, if n is prime, gcd(m− 1, n) = gcd(m,n) = 1. So Circ[n, {1, . . . ,m− 2,m}] ∼=

Kn − Cn ∼= Circ[n, [m− 1]]. However Circ[22, {1, 2, 3, 4, 5, 6, 7, 8, 10}] � Circ[22, {1, 2,

3, 4, 5, 6, 7, 8, 9}]. Thus the discussion below covers graphs that are not consecutive circulants.

Proposition 3.6. Let H = Circ[n, [m] \ {m − 1}] where n > 9 and m = dn/2e − 1. Then

Z(H) ≤ 2(m− 1).

Proof. Observe first that 2(m− 1) = δ(H) ≤ Z(H). We will consider the case when n is odd first.

Then n = 2m + 1. Since m − 1 is not in the connection set, i is not adjacent to i+ (m− 1) or

i− (m− 1). Note that i− (m− 1) ≡ i+n− (m− 1) ≡ i+ 2m+ 1− (m− 1) ≡ i+m+ 2 mod n. It

follows that 0 is not adjacent to m− 1 or m+ 2, and 3 is not adjacent to m+ 2 or m+ 5. Consider

the set Z = V (H) \ {m− 2,m− 1,m+ 2}. Then 0 → m− 2 and 3 → m− 1. After these two

forces any vertex adjacent to m+ 2 can force m+ 2, which shows that Z is a zero forcing set.

When n is even, n = 2m + 2. Since m − 1 and n
2 are not in the connection set, i is not

adjacent to i+ (m− 1), i− (m− 1) ≡ i+m+ 3 or i+ n/2 ≡ i+ (m+ 1). It follows that 0 is not

adjacent to m− 1, m + 1, or m+ 3, and 2 is not adjacent m+ 1, m+ 3, or m+ 5. Consider the

set Z = V (H) \ {2,m− 1,m+ 3}. Then 0→ 2 and 2→ m− 1. Any vertex adjacent to m+ 3 can

force m+ 3, which shows that Z is a zero forcing set.

Theorem 3.7. [7, Theorem 1] Let G be a circulant graph Circ[n, {s1, s2, . . . , sk}]. There exists a

proper divisor d of n such that the number of distinct positive residues modulo d of s1, s2, . . . , sk, n−

sk, n− sk−1, . . . , n− s1 is less than min{d− 1, δ(G)
n d} if and only if κ(G) < δ(G).

Theorem 3.8. Let H = Circ[n, [m] \ {m − 1}] where n ≥ 10 and m = dn/2e − 1. Then κ(G) =

δ(G) = ξ(G) = M(G) = Z(G) = 2(m− 1).

Proof. Since 2(m − 1) = δ(G) = Z(G), we need only to show κ(G) = δ(G). Let d be a positive

divisor of n and let S′ = {1, 2, . . . ,m − 2,m, n − m,n − (m − 2), . . . , n − 1}. If d < m, then

d − 1 ≤ m − 2 and 1, 2, . . . , d − 1 are d − 1 distinct residue of S′ modulo d. Note that d = m is

impossible since m does not divide 2m + 1 or 2m + 2, as m ≥ 3. If n is even and d = n
2 , then
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δ(G)
n d = δ(G)

2 = 2(m−1)
2 = m− 1 < d− 1. Furthermore 1, 2, . . . ,m− 2,m are m− 1 distinct residue

of S′ modulo d which is greater than or equal to δ(G)
n d. Therefore, by Theorem 3.7 it must be the

case that κ(G) = δ(G).
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CHAPTER 4. An Application of Equitable Partitions

In this section we use an equitable partition of a circulant graph to bound the nullity of the

graph. It fact, the lower bound is obtained from the nullity of a circulant graph of small order

which possesses the same connection set as the circulant graph of interest.
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Figure 4.1: Circ[24, {1, 3}] and a relabeling showing how the vertices can be equitably partitioned.

Example 4.1. Figure 4.1 shows the graph of the circulant Circ[24, {1, 3}]. By partitioning the

vertex set of Circ[24, {1, 3}] as in Figure 4.1, it is clear that the partition Vi = {i, i′, i′′} for i =

0, 1, . . . , 7 is an equitable partition of Circ[24, {1, 3}].

Proposition 4.2. [13, Page 196] Let φ be an automorphism of G. Then the orbits of φ give an

equitable partition of V (G).

Note that the equitable partition in Example 4.1 is obtained from the automorphism ϕ(i) = i+8.

Theorem 4.3. [9, Theorem 3.9.5] Let G be a graph and let D be a divisor matrix of some equitable

partition of V (G). Then the eigenvalues of D are eigenvalues of A(G) (including multiplicity).

Theorem 4.4. Let G be the circulant graph Circ[nk, S] where k is a positive integer and S ⊆[⌈
n
2

⌉
− 1
]
. Then the adjacency matrix of the circulant graph Circ[n, S] is a divisor matrix of G.
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Proof. The orbits of the automorphism ϕ(t) ≡ t+ n mod nk of G are

Vi = {r ∈ V (Circ[nk, S]) | r ≡ i mod n}.

Hence the partition V0, V1, . . . , Vn−1 is an equitable partition of G.

Let [bij ] be the divisor matrix of G with respect to the given equitable partition and let [aij ] be

the adjacency matrix of Circ[n, S]. It suffices to show for all i and j, bij ≤ 1 and bij is nonzero if and

only if aij is nonzero. Suppose s1 and s2 are distinct elements in S, ViVj is an arc, and i+ s1 ∈ Vj .

Since s1, s2 ∈
[⌈
n
2

⌉
−1
]
, s1±s2 6≡ 0 mod n which implies i+s1 6≡ i±s2 mod n and i±s2 6≡ j mod n.

Hence i± s2 /∈ Vj . Also s1 ∈
[⌈
n
2

⌉
− 1
]
, so 2s1 6≡ 0 mod n which implies i+ s1 6≡ i− s1 mod n and

i− s1 6≡ j mod n. This shows that i− s1, i+ s2, i− s2 /∈ Vj . Hence bij ≤ 1 for all i and j.

Suppose Vi is adjacent to Vj . Then there exists a vertex ` ∈ Vi and p ∈ Vj such that ` is

adjacent to p, in G. Thus, ` − p ≡ i − j mod n. By definition of adjacency in G, for some s ∈ S,

` ≡ p + s mod nk or ` ≡ p − s mod nk. Hence ` − p ≡ s mod nk or p − ` ≡ s mod nk. Thus,

i− j ≡ `− p ≡ s mod n or i− j ≡ `− p ≡ −s mod n. In either case, i is adjacent to j in Circ[n, S].

Now suppose i is adjacent to j in Circ[n, S] where 0 ≤ i, j ≤ n− 1 as integers. Then it must be the

case that j = i+ s mod n or j = i− s mod n. In Circ[nk, S], i ∈ Vi and i+ s ∈ Vj or i− s ∈ Vj . In

either case, bij 6= 0 in the divisor matrix of G.

When n is even in Theorem 4.4 the connection set cannot be extended to include n
2 .

Example 4.5. Let G = Circ[12, {1, 3}] and H = Circ[6, {1, 3}] = K3,3. Furthermore, using the

equitable partition described in the proof of Theorem 4.4,

V0 = {0, 6}, V1 = {1, 7}, V2 = {2, 8}, V3 = {3, 9},
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b0,1 = 1, b0,2 = 0, b0,3 = 2,

[bij ] =



0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0


,

and A(Circ[6, {1, 3}]) is not the divisor matrix of G. By computation, the eigenvalues of A(G) are

±4,±
√

3,±1, 0 and H is bipartite and 3 - regular which implies ±3 are eigenvalues of H. This

shows that the adjacency matrix of H is not a divisor matrix of G.

The next corollary is a direct result of Theorem 4.3 and Theorem 4.4.

Corollary 4.6. Consider the circulant graph Circ[nk, S] where k is a positive integer and S ⊆[⌈
n
2

⌉
− 1
]
. Then

spec(A(Circ[n, S])) ⊆ spec(A(Circ[nk, S]))

and null(A(Circ[n, S])) ≤ null(A(Circ[nk, S])).

It was shown in Theorem 2.15 that M(Circ[3k, {1, 3}]) = Z(Circ[3k, {1, 3}]) = 6 for k ≥ 8. The

next result establishes field independence, in addition to showing that the maximum nullity equals

the zero forcing number for many additional circulants..

Theorem 4.7. Let k be a positive integer and let ` be an odd integer between 3 and 21. Then

M(Circ[(`2 − 1)k, {1, `}]) = Z(Circ[(`2 − 1)k, {1, `}]) = 2`,

Circ[(`2−1)k, {1, `}] has field independent minimum rank, and its adjacency matrix is an universally

optimal matrix.

Proof. Let n = `2 − 1, S = {1, `}, and G = Circ[nk, S] for k ≥ 1. By Proposition 2.13 and

Proposition 1.1, M(G) ≤ Z(G) ≤ 2`. Thus it suffices to show that null(A(Circ[n, S])) = 2`. This is

easily verified using computer software ( SageMath offers commands for computing the adjacency

matrix of a graphs and its nullity ).
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Conjecture 4.8. For all positive values of k and odd `,

M(Circ[(`2 − 1)k, {1, `}]) = Z(Circ[(`2 − 1)k, {1, `}]) = 2`.

and field independent minimum rank with universally optimal matrix A(G).
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CHAPTER 5. An Application of Equitable Decompositions

In this section, we use the equitable decomposition of the adjacency matrix to establish field

independent minimum rank of a graph. The graphs of interest are the extended cube graphs

ECG(6q + 1, 6q + 1) where q is a nonnegative integer.

Example 5.1. In general, the extended cube graphs do not have field independent minimum rank.

Some extended cube graphs are isomorphic to the Cartesian product of a cycle and a path. For

instance, ECG(0, 3) is isomorphic to C7�P2. It was shown in Example 1.8 that mr(Z2, C7�P2) 6=

mr(C7�P2).

Observation 5.2. The adjacency matrix of a graph is automorphism compatible.

The next theorem is stated in [5] for automorphism compatible matrices, but as noted there it

could be stated for a φ−compatible matrix and we do so.

Theorem 5.3. [5, Theorem 3.8] Let G be a graph on n vertices, let φ be an uniform automorphism

of G of orbit size k, let T0 be a transversal of the orbits of φ, and let A be an φ−compatible matrix

in S(G). Set A` = A[T0,T`], ` = 0, 1, . . . , k − 1, let ω = e2πi/k, and define

Bj =
k−1∑
`=0

ωj`A`, j = 0, 1, . . . , k − 1.

Then for some invertible matrix S

S−1AS = B0 ⊕B1 ⊕ · · · ⊕Bk−1 (5.1)

and

σ(A) = σ(B0) ∪ σ(B1) ∪ · · · ∪ σ(Bk−1).

The decomposition in (5.1) is called an equitable decomposition of A.
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Observation 5.4. Let G be a extended cube graph ECG(t, t) on n vertices and let r = n
4 . Then

the function ϕ(x) ≡ x + r mod n is a uniform automorphism for G. The function ϕ can also be

written as a permutation,

φ = (0, 0 + r, 0 + 2r, 0 + 3r)(1, 1 + r, 1 + 2r, 1 + 3r) · · · (r − 1, r − 1 + r, r − 1 + 2r, r − 1 + 3r).

Furthermore, T0 = {0, 1, . . . , r − 1} is a transversal.

Example 5.5. The following is an example of constructing the eigenvalues of ECG(1, 1) using an

equitable decomposition. As in Observation 5.4,

ϕ(x) ≡ x+ 3 mod 12,

is an automorphism with permutation representation φ = (0, 3, 6, 9)(1, 4, 7, 10)(2, 5, 8, 11), and the

transversals are T0 = {0, 1, 2}, T1 = {3, 4, 5}, T2 = {6, 7, 8}, T3 = {9, 10, 11}. Let

A0 =

φ0(0) = 0 φ0(1) = 1 φ0(2) = 2


0 0 1 0

1 1 0 1

2 0 1 0

, A1 =

φ1(0) = 3 φ1(1) = 4 φ1(2) = 5


0 0 0 0

1 0 0 0

2 1 0 0

,

A2 =

φ2(0) = 6 φ2(1) = 7 φ2(2) = 8


0 0 0 1

1 0 1 0

2 1 0 0

, and A3 =

φ3(0) = 9 φ3(1) = 10 φ3(2) = 11


0 0 0 1

1 0 0 0

2 0 0 0

.

Hence

B0 = A0 +A1 +A2 +A3 =


0 1 2

1 1 1

2 1 0
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and it follows that the spectrum of B0 is {3, 0,−2} with eigenvector x0 = [1,−2, 1]T corresponding

to the eigenvalue 0. Also,

B1 = A0 + iA1 −A2 − iA3 =


0 1 −1− i

1 −1 1

−1 + i 1 0


and the spectrum of B1 is approximately {1.561552, 0,−2.561552} with eigenvector x1 = [i, 1+i, 1]T

corresponding to the eigenvalue 0,

B2 = A0 −A1 +A2 −A3 =


0 1 0

1 1 1

0 1 0


has spectrum {2, 0,−1} with eigenvector x2 = [1, 0,−1]T corresponding to the eigenvalue 0, and

B3 = A0 − iA1 −A2 + iA3 =


0 1 −1 + i

1 1 1

−1− i 1 0


has spectrum approximately {1.561552, 0,−2.561552} with eigenvector x3 = [−1,−1− i, i]T corre-

sponding to the eigenvalue 0. Using SageMath (see [22]), we compute the eigenvalues of ECG(1, 1)

to be approximately

{3, 2, 1.561552, 1.561552, 0, 0, 0, 0,−1,−2,−2.561552,−2.561552}

which is the union of the spectra of B0, B1, B2, B3.

Theorem 5.6. Let G be a extended cube graph ECG(6q + 1, 6q + 1) for some nonnegative integer

q. Then G has field independent minimum rank and A(G) is a universally optimal matrix.

Proof. First we will show that the adjacency matrix of each such extended cube graph has nullity

at least 4. Hence by Corollary 2.11 the adjacency matrix realizes the maximum nullity.

It was shown in Example 5.5 that the nullity of ECG(1, 1) has nullity equal to 4, so we assume

q > 0. Let G be a extended cube graph ECG(6q+ 1, 6q+ 1) and let n be the number of vertices of

G. Consider the uniform automorphism
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ϕ(x) = x+ r mod n

where r = n
4 given by Observation 5.4. By Theorem 5.3, G has the following spectrum

spec(A(G)) = spec(B0) ∪ spec(B1) ∪ spec(B2) ∪ spec(B3)

for the matrices Bi corresponding to ϕ. We show that B0, B1, B2, B3 each have nullity at least 1,

which implies A(G) has nullity at least 4.

The transversals with respect to ϕ are T0 = {0, 1, 2, . . . , r− 1}, T1 = {r, r+ 1, r+ 2, . . . , 2r− 1},

T2 = {2r, 2r + 1, 2r + 2, . . . , 3r − 1}, T3 = {3r, 3r + 1, 3r + 2, . . . , 4r − 1}. Hence k = 4 and

ω = e2πi/4 = i. For the graph ECG(1, 1), let Ã0, Ã1, Ã2, Ã3 be the corresponding matrices used in

Theorem 5.3 to construct B̃0, B̃1, B̃2, B̃3 such that

spec(A(ECG(1, 1))) = spec(B̃0) ∪ spec(B̃1) ∪ spec(B̃2) ∪ spec(B̃3)

and B̃0 = Ã0 + Ã1 + Ã2 + Ã3. Also, let x̃0, x̃1, x̃2 be the eigenvectors of B̃0, B̃1, B̃2 respectively,

corresponding to the eigenvalue 0. It follows that A0, A1, A2, A3 are the matrices

A0 =



Ã0 Ã1 0 0 0 · · · 0

Ã3 Ã0 Ã1 0 0 · · · 0

0 Ã3 Ã0 Ã1 0 · · · 0

...
...

. . .
. . .

. . .
...

...

0 · · · 0 Ã3 Ã0 Ã1 0

0 · · · 0 0 Ã3 Ã0 Ã1

0 · · · 0 0 0 Ã3 Ã0



,
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A1 =



0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

Ã1 0 0 0 0 · · · 0



,

A2 =



0 0 0 · · · 0 0 Ã2

0 0 0 · · · 0 Ã2 0

0 0 0 · · · Ã2 0 0

...
...

...
...

...
...

...

0 0 Ã2 · · · 0 0 0

0 Ã2 0 · · · 0 0 0

Ã2 0 0 · · · 0 0 0



, and A3 = AT1 .

By definition,

Bj = i0jA0 + ijA1 + i2jA2 + i3jA3 = A0 + ijA1 + (−1)jA2 + i3jA3 (5.2)

for j = 0, 1, 2, 3, so the following matrices are constructed

B0 = A0 +A1 +A2 +A3 B1 = A0 + iA1 −A2 − iA3

B2 = A0 −A1 +A2 −A3 B3 = A0 − iA1 −A2 + iA3.

Writing Bj in terms of the matrices Ã0, Ã1, Ã2, Ã3 we get the following matrix
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Ã0 Ã1 0 0 0 0 ··· 0 0 0 (−1)jÃ2+i3jÃ3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 (−1)jÃ2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 (−1)jÃ2 0 0

...
. . .

. . .
. . .

...
...

0 ··· 0 Ã3 Ã0 Ã1 (−1)jÃ2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+(−1)jÃ2 i0jÃ1 0 0 ··· 0

0 ··· 0 0 (−1)jÃ2 Ã3 Ã0 Ã1 0 ··· 0

...
...

. . .
. . .

. . .
...

0 0 (−1)jÃ2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 (−1)jÃ2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

ijÃ1+(−1)jÃ2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


.

For simplicity of notation let x̂1 = −Ã2x̃1 and x̂2 = −x̃2. We show that x0 =
⊕2q+1

m=1 x̃0,

x1 =
⊕q

m=1(x̃1 ⊕ x̂1) ⊕ x̃1, and x2 =
⊕q

m=1(x̃2 ⊕ x̂2) ⊕ x̃2, are eigenvectors corresponding to

eigenvalue 0 for B0, B1, and B2 respectively. Since B3 = BT
1 it follows that B3 also has a zero

eigenvalue so we omit showing that B3 has an eigenvalue of zero. Observe that

B0 =



Ã0 Ã1 0 0 0 0 ··· 0 0 0 Ã2+Ã3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 Ã2 0 0
...

. . .
. . .

. . .
...

...
0 ··· 0 Ã3 Ã0 Ã1 Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 Ã2 Ã3 Ã0 Ã1 0 ··· 0
...

...
. . .

. . .
. . .

...
0 0 Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

Ã1+Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


.

The product B0x0 reduces down to the following vector

Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0

Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0
...

Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0

Ã0x̃0 + Ã1x̃0 + Ã2x̃0 + Ã3x̃0


=



B̃0x̃0

B̃0x̃0
...

B̃0x̃0

B̃0x̃0


= 0,

since B̃0 = Ã0 + Ã1 + Ã2 + Ã3.
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To compute B1x1 consider the fact that x̃1 = [i, 1 + i, 1]T is an eigenvector for B̃1. So by

definition, x̂1 = [−1,−1− i,−i]T and

Ã0x̂1 =


0 1 0

1 0 1

0 1 0



−1

−1− i

−i

 = −A0x̃1

Ã1x̂1 =


0 0 0

0 0 0

1 0 0



−1

−1− i

−i

 =


0

0

−1

 = i


0 0 0

0 0 0

1 0 0




i

1 + i

1

 = iÃ1x̃1.

Since Ã2
2 = I it follows that Ã2x̂1 = −x̃1. Also,

Ã3x̂1 =


0 0 1

0 0 0

0 0 0



−1

−1− i

−i

 =


−i

0

0

 = −i


0 0 1

0 0 0

0 0 0




i

1 + i

1

 = −iÃ3x̃1.

In other words,

Ã0x̂1 = (−1− i)1T , Ã1x̂1 = iÃ1x̃1 , Ã2x̂1 = −x̃1 , and Ã3x̂1 = −iÃ3x̃1

and these values are used to reduce the entries of the next product. We have that B1x1 is

Ã0 Ã1 0 0 0 0 ··· 0 0 0 −Ã2−iÃ3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 −Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 −Ã2 0 0
...

. . .
. . .

. . .
...

...
0 ··· 0 Ã3 Ã0 Ã1 −Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+−Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 −Ã2 Ã3 Ã0 Ã1 0 ··· 0
...

...
. . .

. . .
. . .

...
0 0 −Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 −Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

iÃ1+−Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


x1.
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We show that the product B1x1 is given by the vector,

Ã0x̃1 + Ã1x̂1 + (−Ã1 − iÃ3)x̃1

−−−−−−−−−−−−−−−

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

...

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

−−−−−−−−−−−−−−−

Ã3x̂1 + (Ã0 − Ã2)x̃1 + Ã1x̂1

−−−−−−−−−−−−−−−

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

...

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1)

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1)

−−−−−−−−−−−−−−−

(iÃ1 − Ã2)x̃1 + Ã3x̂1 + Ã0x̃1



= 0
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which implies that both matrices B1 and B3 has a zero eigenvalue. Note the that each entry in the

product takes on one of the following values,

Ã0x̃1 + Ã1x̂1 + (−Ã2 − iÃ3)x̃1 = Ã0x̃1 + iÃ1x̃1 − Ã2x̃1 − iÃ3x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0

Ã3x̃1 + Ã0x̂1 + Ã1x̃1 + (−Ã2x̂1) = (1, 0, 0)T + (−1− i,−1− i,−1− i)T

+ (0, 0, i)T + (i, 1 + i, 1)T = 0

Ã3x̂1 + Ã0x̃1 + Ã1x̂1 + (−Ã2x̃1) = −iÃ3x̃1 + Ã0x̃1 + iÃ1x̃1 − Ã2x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0

Ã3x̂1 + (Ã0 − Ã2)x̃1 + Ã1x̂1 = 0 by (5.2)

(iÃ1 − Ã2)x̃1 + Ã3x̂1 + Ã0x̃1 = iÃ1x̃1 − Ã2x̃1 − iÃ3x̃1 + Ã0x̃1

= (Ã0 + iÃ1 − Ã2 − iÃ3)x̃1 = B̃1x̃1 = 0.

Finally, we compute B2x2,



Ã0 Ã1 0 0 0 0 ··· 0 0 0 Ã2−Ã3

Ã3 Ã0 Ã1 0 0 0 ··· 0 0 Ã2 0

0 Ã3 Ã0 Ã1 0 0 ··· 0 Ã2 0 0
...

. . .
. . .

. . .
...

...
0 ··· 0 Ã3 Ã0 Ã1 Ã2 0 0 ··· 0

0 ··· 0 0 Ã3 Ã0+Ã2 Ã1 0 0 ··· 0

0 ··· 0 0 Ã2 Ã3 Ã0 Ã1 0 ··· 0
...

...
. . .

. . .
. . .

...
0 0 Ã2 0 ··· 0 0 Ã3 Ã0 Ã1 0

0 Ã2 0 0 ··· 0 0 0 Ã3 Ã0 Ã1

−Ã1+Ã2 0 0 0 ··· 0 0 0 0 Ã3 Ã0


x2 =



Ã0x̃2+Ã1(−x̃2)+(Ã2−Ã3)x̃2
−−−−−−−−−−−−−−−

Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)
Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)
Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2

...
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)
Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2
−−−−−−−−−−−−−−−

Ã3(−x̃2)+(Ã0+Ã2)x̃2+Ã1(−x̃2)
−−−−−−−−−−−−−−−

Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)

...
Ã3(−x̃2)+Ã0x̃2+Ã1(−x̃2)+Ã2x̃2
Ã3x̃2+Ã0(−x̃2)+Ã1x̃2+Ã2(−x̃2)
−−−−−−−−−−−−−−−

(−Ã1+Ã2)x̃2+Ã3(−x̃2)+Ã0x̃2



.

Each entry in the previous vector is (Ã0 − Ã1 + Ã2 − Ã3)x̃2 which is zero. This shows that

B2x2 = 0. Since the adjacency matrix of G was used to establish M(G) = Z(G), by Corollary 1.3

the graph G has field independent minimum rank and A(G) is universally optimal matrix.
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Conjecture 5.7. Let t ≡ 0, 1, 2 mod 6 and r be an integer which is greater than bt/6c. Then the

extended cube graphs ECG(t, 6r− t− 4) has field independent minimum rank and their adjacency

matrices are universally optimal.

Using computational software, null(A(ECG(t, 6r − t − 4))) = 4 = Z(ECG(t, 6r − t − 4)) for

every r ∈ {2, . . . , 12} when t ∈ {0, 1, 2, 6, 7, 8} . Note that in Conjecture 5.7 when t = 6q + 1

for some nonnegative integer q it is the case that t ≡ 1 mod 6. Moreover, when r = 2q + 1,

6r − t − 4 = 6q + 1, and r > bt/6c = b6q+1
6 c = q. In this case, ECG(t, 6r − t − 4) is the same as

the graph ECG(6q + 1, 6q + 1) as in Theorem 5.6. Also, t ≡ 1 mod 6 implies 6r− t− 4 ≡ 1 mod 6,

t ≡ 0 mod 6 implies 6r − t− 4 ≡ 2 mod 6, and t ≡ 2 mod 6 implies 6r − t− 4 ≡ 0 mod 6.
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CHAPTER 6. An Application of the Nullity of a Graph

In this section, we use the nullity of the Aztec diamond graphs and to some circulants to compute

the maximum nullity and the zero forcing number, and show that they have field independent

minimum rank with the adjacency matrix as a universally optimal matrix.

Observation 6.1. Let u, v be white vertices of V (G), X and Y be multisets containing white

vertices of V (G), and k be a nonnegative integer. Then u can be colored red by (v,X, Y, k) if and

only if

(k + 1) · rowA(G)(u) = rowA(G)(v) +
∑
x∈X

rowA(G)(x)−
∑
y∈Y

rowA(G)(y). (6.1)

Theorem 6.2. Let G be a simple graph. Then null(G) = null(A(G)).

Proof. Let G be a graph with all vertices initially colored white. Suppose that at some stage

the vertices u1, u2, . . . , uq−1 have been sequentially colored red, the remaining vertices colored

white, and that each rowA(G)(ui) can be expressed as a linear combination of rows indexed W =

V (G) \ {u1, u2, . . . , uq−1}.

Suppose that v and the vertices of X,Y are white and uq can be colored red by (v,X, Y, k).

We show that rowA(G)(ui) for i = 1, 2, . . . , q can each be expressed as a linear combination of rows

indexed by W ′ = W \ {uq}. Let W ′ = {w1, w2, . . . , w`}. By (6.1), rowA(G)(uq) can be expressed

as a linear combination of rows indexed by W ′. We know that, rowA(G)(ui) can be expressed as a

linear combination of the rows associated with the vertices in W = W ′ ∪{uq}. By substituting the

expression for rowA(G)(uq) into that for rowA(G)(ui), we see that rowA(G)(ui) is a linear combination

of rows associated with vertices in W ′. At the conclusion of this process rank(A(G)) ≤ n−null(G),

so null(G) ≤ null(A(G)).

Let W be a set of linearly independent rows of A(G) that forms a basis for the row space of

A(G). Let r = |W | and let v1, v2, . . . , vr be the vertices associated with these rows. Then each row
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not in W , rowA(G)(vj) with j > r, can be written as

c1
d1

rowA(G)(v1) +
c2
d2

rowA(G)(v2) + · · ·+ cr
dr

rowA(G)(vr)

where ci, di ∈ Z and di > 0 for i = 1, . . . , r. By letting d = lcm(d1, d2, . . . , dr) we can write

d · rowA(G)(vj) = c1s1 rowA(G)(v1) + c2s2 rowA(G)(v2) + · · ·+ crsr rowA(G)(vr) (6.2)

where si = d/di ∈ Z. Fix vj corresponding to a row in W . Let ` ∈ {1, 2, . . . , r} such that c`s` > 0.

Let X be the multiset of vertices consisting of c`s`−1 copies of v` and cisi copies of vi for i 6= ` and

cisi > 0 and let Y be the multiset of vertex consisting of cisi copies of vi for cisi < 0. Then vj can

be colored red by (v`, X, Y, d−1). This implies null(G) ≥ n−r ≥ n−rank(A(G)) = null(A(G)).

Corollary 6.3. Let G be a bipartite graph with independent sets B and B̄ such that |B| = |B̄|. Let

R ⊆ B be a red set such that every vertex in R is colored with some (v,X, Y, k) where {v}∪X ∪Y

contains only vertices from B. Then 2|R| ≤ null(A(G)).

The Aztec diamond of order r is a diamond shape configuration of 2r(r+1) unit squares, as

illustrated in Figure 6.1. The Aztec diamond graph of order r, denoted by ADr, is the graph such

that vertices v, u ∈ V (ADr) are adjacent if and only if squares v and u share an edge in the Aztec

diamond of order r. The vertices of ADr are labeled by ordered pairs (i, j) where 1 ≤ i, j ≤ 2r,

r + 1 ≤ i+ j ≤ 3r + 1, and 0 ≤ |j − i| ≤ r.

Proposition 6.4. Let G be a Aztec diamond graph ADr. Then Z(G) ≤ 2r.

Proof. We show that the set Z = {(1, r), (2, r−1), (3, r−2), . . . , (r, 1)}∪{(1, r+1), (2, r+2), (3, r+

3), . . . , (r, 2r)} is a zero forcing set. For i ∈ {1, 2, . . . , r} in order (i, j) can force (i+ 1, j) as long as

(i, j) and (i+ 1, j) exist.

Theorem 6.5. Let ADr be a Aztec diamond graph of order r and F be an arbitrary field. Then

M(F ,ADr) = Z(ADr) = 2r

and field independent minimum rank is established with the universally optimal matrix A(G).
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AD3
(1, 3) (1, 4)

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

Figure 6.1: The Aztec diamond of order 3 and the Aztec diamond graph AD3.

Proof. Let D` = {(i + `, r + 2 + ` − i)|1 ≤ i ≤ r + 1} for 0 ≤ ` ≤ r − 1. Note that the D` are

independent sets and disjoint. Let B = D0 ∪ D1 ∪ D2 ∪ · · · ∪ D(r−1). We show that r vertices

of B can be colored red by other vertices of B. The vertex (r + 1, 1) in the set D0 can be

colored red by
(
(r, 2), {(i, j) ∈ D0|i < r, j is even}, {(i, j) ∈ D0|i < r, j is odd}, 0

)
. See Figure

6.2 for an example. Using a similar argument each D` has a vertex that can be colored red

using only vertices from D`. Since B is partitioned into r sets D`, a total of r vertices that

can be colored red. By Corollary 6.3, 2r ≤ null(ADr). By Theorem 6.2 and Proposition 6.4,

2r ≤ null(A(ADr)) ≤ M(ADr) ≤ Z(ADr) ≤ 2r.

Proposition 6.6. Let n be a multiple of 8. Then,

Z(Circ[n, {1, n2 − 1}]) ≤ n
2 + 2.

Proof. Let G = Circ[n, {1, n2 − 1}]. Then Z = {0, 1, 2, . . . , n2 , n− 1} is a zero forcing set with forces

0→ n/2 + 1, 1→ n/2 + 2, · · · , n/2− 3→ n− 2. This shows that Z(G) ≤ n
2 + 2

Theorem 6.7. Let n be a multiple of 8. Then,

M(Circ[n, {1, n2 − 1}]) = Z(Circ[n, {1, n2 − 1}]) = n
2 + 2
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AD3(3,2)+(1,4)

(1, 3) (1, 4)

(2, 4)(2, 2) (2, 3) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

AD3(3,2)+(1,4)−(2,3)

(1, 3) (1, 4)

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 2) (5, 3) (5, 4) (5, 5)

(6, 3) (6, 4)

Figure 6.2: Coloring (4, 1) red with ((3, 2), {(1, 4)}, {(2, 3)}, 0) in the Aztec diamond graph AD3.

and field independent minimum rank is established with the universally optimal matrix A(G).

Proof. First note that G is bipartite with partite set B = {2k | 0 ≤ k ≤ n
2 −1} and B̄ = {2k+1 | 0 ≤

k ≤ n
2 − 1}. We show that n

4 + 1 vertices from B can be colored red using only white vertices of B.

Note that for every vertex v in {0, 1, 2, . . . , n2 − 1}, v is adjacent to v+ 1, v− 1, v+ n
2 − 1, v+ n

2 + 1,

and v+ n
2 is adjacent v+ n

2 + 1, v+ n
2 −1, v+ n

2 + n
2 −1 ≡ v−1 mod n, v+ n

2 + n
2 + 1 ≡ v+ 1 mod n.

Hence, NG(v) = NG(v+ n
2 ) and v can be colored red by (v+ n

2 , ∅, ∅, 0) where v ∈ {0, 2, 4, . . . , n2 −2}.

This shows that n
4 vertices from B can be colored red. The vertex n

2 can be colored red by

(n2 + 2, {2i : 2|i and n
2 + 2 < 2i ≤ n − 1}, {2i : 2 - i and n

2 + 2 < 2i ≤ n − 1}, 0). Hence, the

vertices of {0, 2, 4, . . . , n2 } can be colored red with the vertices B \ {0, 2, 4, . . . , n2 }. By Corollary

6.3, 2(n4 + 1) = n
2 + 2 ≤ null(G). So by Theorem 6.2 and by Proposition 6.6

n
2 + 2 ≤ null(A(G)) ≤ M(G) ≤ Z(G) ≤ n

2 + 2.
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APPENDIX A. SageMath Code

de f extended cube graph ( t , k ) :

”””

Returns an extended cube graph

: t : a nonnegat ive i n t e g e r

: k : a nonnegat ive i n t e g e r

: r e tu rn s : extended cube graph

”””

n = 2∗( t+k)+8

g = graphs . CycleGraph (n)

v1=[ i+0 f o r i in range ( k+2)]

v2=[ i+k+2 f o r i in range ( t +2)]

v3=[ i+k+t+4 f o r i in range ( k+2)]

v4=[ i +2∗k+t+6 f o r i in range ( t +2)]

h o r i z o n t a l e d g e s = [ ( v2 [ i ] , v4[− i −1]) f o r i in range ( t +2)]

v e r t i c a l e d g e s = [ ( v1 [ i ] , v3[− i −1]) f o r i in range ( k+2)]

g . add edges ( h o r i z o n t a l e d g e s )

g . add edges ( v e r t i c a l e d g e s )

re turn g

de f l i s t m a t r i c e s Z 2 ( g , Z , p=2):

”””

: g : A graph .
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: Z : The zero f o r c i n g number o f the g iven graph .

: r e tu rn s : A s e t o f t u p l e s with e n t r i e s cor respond ing to nonzero d iagona l

e n t r i e s o f a p o t e n t i a l u n i v e r s a l l y optimal matr i ce s .

: Example :

sage : g=graphs . CycleGraph (7 )

. . . . :

sage : l i s t m a t r i c e s Z 2 ( g , 2 )

. . . . :

The graph has 21 matr i ce s that ach i eve minimum rank o f 5 over Z 2

{ (0 , 1 , 2 ) ,

(0 , 1 , 2 , 3 , 5 ) ,

(0 , 1 , 2 , 4 , 6 ) ,

(0 , 1 , 3 , 5 , 6 ) ,

(0 , 1 , 4 ) ,

(0 , 1 , 6 ) ,

(0 , 2 , 3 , 4 , 5 ) ,

(0 , 2 , 4 , 5 , 6 ) ,

(0 , 3 , 4 ) ,

(0 , 3 , 6 ) ,

(0 , 5 , 6 ) ,

(1 , 2 , 3 ) ,

(1 , 2 , 3 , 4 , 6 ) ,

(1 , 2 , 5 ) ,

(1 , 3 , 4 , 5 , 6 ) ,

(1 , 4 , 5 ) ,

(2 , 3 , 4 ) ,

(2 , 3 , 6 ) ,
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(2 , 5 , 6 ) ,

(3 , 4 , 5 ) ,

(4 , 5 , 6)}

”””

import i t e r t o o l s

n = g . order ( )

i n t e g e r s e t = [ i f o r i in range (n ) ]

nonze ro s e t = s e t ( [ ] )

f o r L in range (n+1):

f o r subset in i t e r t o o l s . combinat ions ( i n t e g e r s e t , L ) :

A=g .am( )

f o r i in range (L ) :

j = subset [ i ]

A[ j , j ]=1

A=matrix (GF(p ) ,A)

i f A. rank ( ) == n−Z :

nonze ro s e t . add ( subset )

p r i n t (”The graph has {} matr i ce s that ach ieve minimum rank”

” o f {} over Z {}” . format ( l en ( nonze ro s e t ) , n−Z , p ) )

re turn nonze ro s e t
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