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ABSTRACT

The power domination problem seeks to find the minimum number of sensors called phasor

measurement units (PMUs) to monitor an electric power network. In this dissertation, we present

two variations of the power domination problem.

The first variation is infectious power domination, which is a new way to generalize the power

domination problem to hypergraphs using the infection rule from Bergen et al. (2018). We compare

to the previous generalization by Chang and Roussel (2015). We examine general bounds; graph

families such as complete k-partite hypergraphs, circular arc hypergraphs, and trees; and the impact

of edge/vertex removal, linear sums, Cartesian products, and weak coronas.

The second variation considers how the minimum number of sensors and their placement changes

when k sensors are allowed to fail. The PMU-defect robust power domination number is also a

novel parameter, generalizing the work done by Pai, Chang, and Wang (2010) by allowing multiple

sensors to be placed at the same location. We give general bounds, explicit values for some complete

bipartite graphs, and computational results for small square grid graphs. We also give a new proof

of the power domination number for trees and conjecture the PMU-defect robust power domination

number for trees.
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CHAPTER 1. GENERAL INTRODUCTION

During the Northeast Blackout in 2003, over 50 million people in North America lost power for

up to two days [12]. This cascading power failure led to the Energy Policy of 2005, which resulted

in an increase in the use of Phasor Measurement Units (PMUs). These sensors monitor the power

grid and help indicate when conditions could lead to a blackout. While PMUs are useful, budget

constraints mean that we must find an optimal placement using the fewest sensors possible. This

became known as the PMU placement problem.

1.1 The power domination problem and graph theory

The PMU placement problem was redefined in graph theoretic terms in 2002 by Haynes et al.

[10]. The process was simplified by Brueni and Heath in 2005 [6] and is now known as the power

domination problem.

A graph G is a set of vertices, V (G), and a set of edges, E(G). Each edge consists of a set of

two distinct unordered vertices. We say that vertices u and v are neighbors if {u, v} ∈ E(G). The

closed neighborhood of a vertex v ∈ V (G) is denoted N [v] and is the set of neighbors of v together

with v. The power domination process on a graph G with initial set S ⊆ V proceeds recursively:

1. B =
⋃
v∈S

N [v]

2. While there exists v ∈ B such that exactly one neighbor, say u, of v is not in B, add u to B.

Step 1 is referred to as the domination step and each repetition of step 2 is called a zero forcing

step. During the process, we say that a vertex in B is observed and a vertex not in B is unobserved.

A power dominating set of a graph G is an initial set S such that B = V (G) at the termination of

the power domination process. For an example, see Figure 1.1. The power domination number of

a graph G is the minimum cardinality of a power dominating set of G and is denoted by γP (G).
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Initial PMU Placement Domination Step Zero Forcing Step

Zero Forcing Step Zero Forcing Step

Figure 1.1 Power domination on a graph G

The power domination problem seeks to find a minimum power dominating set and the power

domination number for a given graph.

The initial set of vertices, S, represents the placement of PMUs in the network. A PMU can

directly take measurements for the vertex where it is placed and all neighboring vertices, which

is modeled by the domination step. Then, Kirchhoff’s Law and Ohm’s Law can be used to solve

a system of equations for the one missing value if there is an observed vertex for which only one

neighbor is unobserved. This is precisely what occurs in the zero forcing step. Thus, the power

domination number is the minimum number of PMUs needed to monitor the given network and

the vertices in a minimum power dominating set give the PMU placement.

The PMU placement problem makes a connection between two other problems: domination

and zero forcing. The connection with zero forcing was first used by Dean et al. in 2011 [9]

and then described more generally in Benson et al. in 2018 [3]. Domination utilizes only the

domination step to observe the entirety of a graph. For an overview of domination in graphs, see

[11]. Zero forcing is a graph propagation process defined by a color change rule that began as a
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bound for the maximum nullity of a family of real symmetric matrices associated with a graph [2]

and independently in control of quantum systems [7]. The zero forcing step in power domination

is an application of this color change rule.

The PMU placement problem is NP-complete, as shown in [10]. Finding an optimal placement

of the minimum number of PMUs is not solvable for most actual applications. However, theoretical

results can yield bounds to determine how many PMUs are required and also give an idea of the

structure of an optimal placement. Due to its connections to the related problems of domination

and zero forcing, the power domination problem has also become interesting mathematically beyond

the initial application.

In this dissertation, we examine two variations of the power domination problem. The first

builds on an area of interest to graph theorists by defining a new extension to hypergraphs. The

second is more application focused and explores how to find a placement of PMUs that is robust

to sensor defects.

1.2 From graphs to hypergraphs

A hypergraph is a generalization of a graph in which the edges are allowed to be unordered

sets of any number of distinct vertices. Power domination was first generalized to hypergraphs by

Chang and Roussel in 2015 [8]. Chang and Roussel’s generalization follows power domination on

graphs closely; there is a domination step followed by a zero forcing step called the observation

step. Specifically, their observation step uses one vertex v to observe a single edge that contains all

unobserved neighbors of v. However, this is not the only way to generalize the zero forcing step to

hypergraphs. Instead of only allowing one vertex to observe the other vertices in an edge, we use

the infection process defined by Bergen et al. in 2018 [4] as the second step in what we call the

infectious power domination process. That is, we use a domination step followed by an infection

step in which a set of vertices A infects a single edge that contains both A and all uninfected

vertices that are contained in edges with the set A.
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In Chapter 2, we introduce the infectious power domination number of a hypergraph, which

is the minimum size of an initial set of infected vertices so that the infectious power domination

process terminates with every vertex infected. We then explore this novel parameter by way of

general upper/lower bounds; an examination of specific hypergraph families; and bounds for how

the infectious power domination number behaves under various hypergraph operations, including

vertex/edge removal, linear sums, Cartesian products, and weak coronas. This chapter is modified

from [5].

1.3 Maintaining power grid monitoring in the event of PMU failure

While PMUs are useful for monitoring the power grid to prevent cascading blackouts, they

operate in real world conditions and are susceptible to mistakes. Errors can include things such as

data corruption, time synchronization issues, or data loss [1]. As such, redundant PMUs are used

in order to corroborate data and confirm if there is an issue with the power grid or a sensor [1].

How do we decide where to place PMUs if we know that some of them may be inaccurate or faulty?

In 2010, Pai, Chang, and Wang defined fault-tolerant power domination [13]. This problem

asks for a set of vertices that describes a placement of PMUs that will still monitor the graph if

some subset of the PMUs fail. Choose an initial set of vertices S, but before beginning the power

domination process, remove any k vertices from S to create S′. If S′ is a power dominating set

regardless of which k vertices are removed to create S′ from S, then we say that S is a k-fault-

tolerant power dominating set.

We consider a similar question. Let the initial set S instead be a multiset of vertices, that is,

multiple PMUs may be placed at a single vertex. Then k vertices are removed to create S′ from

S. If S′ is still a power dominating set regardless of which k vertices are removed from S to create

S′, we say that S is a k-robust power dominating set. This power domination process is called

PMU-defect-robust power domination.

PMU-defect-robust power domination focuses on issues with an individual PMU failing. Such

failure could be in the form of data corruption or data loss. Fault-tolerant power domination focuses
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on failures based on location, so there is no advantage to placing multiple PMUs at a single site.

For instance, if GPS signal is inconsistent at a site, placing multiple PMUs at the site may not

correct the time synchronization error. Depending on the type of failure to be prevented, it may

be better to have PMUs spread through the power network. On the other hand, it may prove to

be more cost effective to place multiple PMUs at a single location than to place many PMUs at

different sites.

In Chapter 3, we introduce the k-robust power domination number of a graph, which is the

minimum size of an initial multiset of vertices such that every vertex is observed at the termina-

tion of the PMU-defect-robust power domination process. We investigate this new parameter by

determining general upper/lower bounds and examining specific graph families such as complete

bipartite graphs, grid graphs, and trees.

1.4 References

[1] Reliability guideline: PMU placement and installation. North American Electric Reliability

Corporation, Dec. 2016. URL https://www.nerc.com/comm/PC_Reliability_Guidelines_

DL/Reliability%20Guideline%20-%20PMU%20Placement.pdf.

[2] AIM Minimum Rank—Special Graphs Work Group. Zero forcing sets and the minimum rank

of graphs. Linear Algebra and its Applications, 428(7):1628–1648, 2008.

[3] K. F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevska, and B. Wissman. Zero

forcing and power domination for graph products. Australasian Journal of Combinatorics, 70

(2):221–235, 2018.

[4] R. Bergen, S. Fallat, A. Gorr, F. Ihringer, K. Meagher, A. Purdy, B. Yang, and G. Yu. Infection

in hypergraphs. Discrete Applied Mathematics, 237:43–56, 2018.

[5] B. Bjorkman. Infectious power domination of hypergraphs. Discrete Mathematics, 343(3):

111724, 2020.

https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability%20Guideline%20-%20PMU%20Placement.pdf
https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability%20Guideline%20-%20PMU%20Placement.pdf


6

[6] D. J. Brueni and L. S. Heath. The PMU placement problem. SIAM Journal on Discrete

Mathematics, 19(3):744–761, 2005.

[7] D. Burgarth and V. Giovannetti. Full control by locally induced relaxation. Physical Review

Letters, 99 10:100501, 2007.

[8] G. J. Chang and N. Roussel. On the k-power domination of hypergraphs. Journal of Combi-

natorial Optimization, 30(4):1095–1106, 2015.

[9] N. Dean, A. Ilic, I. Ramirez, J. Shen, and K. Tian. On the power dominating sets of hypercubes.

In 2011 14th IEEE International Conference on Computational Science and Engineering, pages

488–491. IEEE, 2011.

[10] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning. Domination in graphs

applied to electric power networks. SIAM Journal on Discrete Mathematics, 15(4):519–529,

2002.

[11] T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of domination in graphs. CRC

Press, 2013.

[12] J. R. Minkel. The 2003 northeast blackout–five years later. Scientific American, 2008. URL

https://www.scientificamerican.com/article/2003-blackout-five-years-later/.

[13] K.-J. Pai, J.-M. Chang, and Y.-L. Wang. Restricted power domination and fault-tolerant

power domination on grids. Discrete Applied Mathematics, 158(10):1079–1089, 2010.

https://www.scientificamerican.com/article/2003-blackout-five-years-later/


7

CHAPTER 2. INFECTIOUS POWER DOMINATION OF HYPERGRAPHS

Modified from a manuscript published in Discrete Mathematics, Volume 343, Issue 3

Beth Bjorkman

Department of Mathematics, Iowa State University

Abstract

The power domination problem seeks to find the placement of the minimum number of

sensors needed to monitor an electric power network. We generalize the power domination

problem to hypergraphs using the infection rule from Bergen et al (2018): given an initial set

of observed vertices, S0, a set A ⊆ S0 may infect an edge e if A ⊆ e and for any unobserved

vertex v, if A∪{v} is contained in an edge, then v ∈ e. We combine a domination step with this

infection rule to create infectious power domination. We compare this new parameter to the

previous generalization by Chang and Roussel (2015). We provide general bounds and determine

the impact of some hypergraph operations.

Keywords: Power domination, hypergraph, infection number

2.1 Overview

The power domination problem seeks to find the placement of the mimimum number of sensors

(called Phase Measurement Units or PMUs) needed to monitor an electric power network. In [8],

Haynes et al. defined the power domination problem in graph theoretic terms by placing PMUs at

a set of initial vertices and then applying observation rules to the vertices and edges of the graph.

These observation rules consist of an initial domination step followed by what is now called the zero

forcing process [5], [2]. Zero forcing is a graph propagation process that has its roots in determining

the maximum nullity of the family of real symmetric matrices associated with the graph [1] and

independently in control of quantum systems [6].
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As a graph theory problem, zero forcing and its variants (including power domination) have

been well studied and become interesting mathematically beyond the motivating applications. In

particular, zero forcing has been generalized to hypergraphs in several different ways. Bergen et

al. defined the infection number of a hypergraph in [3] to generalize the zero forcing process to

hypergraphs. In [10], Hogben defines the zero forcing number of a hypergraph based on the skew

symmetric zero forcing number of a graph and the maximum nullity of a family of hypermatrices.

Chang and Roussel define k-power domination for hypergraphs in [7], which is a power domination

process when k = 1. From this rule in [7], Hogben also defines the power domination zero forcing

number in [10].

Just as a power domination rule can be used to define a zero forcing process for hypergraphs, a

zero forcing process can be used to define a power domination process for hypergraphs. Hogben’s

zero forcing number is less useful for power domination, as the zero forcing number of a hypergraph

can be zero, which eliminates the real world connection to sensor placement.

Our premise is to use Bergen et. al’s definition of infection [3] to define infectious power dom-

ination of hypergraphs and compare this to the definition of power domination of hypergraphs

introduced by Chang and Roussel. Both generalizations of power domination to hypergraphs re-

duce to the power domination problem for graphs when H is 2-uniform, i.e. H is a graph (Prop.

1.1 in [3] and page 1097 in [7]). However, Chang and Roussel’s definition focuses on allowing one

vertex to observe others whereas infectious power domination utilizes the fact that there may be

multiple observed vertices in an edge which can be used to observe the edge. Using multiple vertices

to observe an edge may be more natural as a model for physical problems, as this represents using

measurements from multiple sensors.

In Section 2.2 we will review preliminary definitions from past work. Then in Section 2.3 we

formally define infectious power domination and compare it to both the infection number and the

power domination number. In Section 2.4 we determine general bounds for the power domination

number and by extension the infectious power domination number. Section 2.5 consists of results

for the infectious power domination number including hypergraphs which have infectious power
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domination number one and hypertrees. Section 2.6 determines bounds for the infectious power

domination number for various hypergraph operations such as edge/vertex removal, linear sum,

Cartesian products, and weak coronas. We make concluding remarks in Section 2.7.

2.2 Preliminaries

We use Bretto’s Hypergraph Theory [4] as a reference for hypergraph notation and definitions.

A hypergraph, H = (V (H), E(H)), is a set of vertices V (H) along with a set of edges E(H) so

that E(H) is a subset of the power set of V (H). In the case that there is a constant k such that

|e| = k for all e ∈ E(H), we say that H is k-uniform and denote such a hypergraph by H(k).

A path in a hypergraph H is a sequence of vertices and edges

v1, e1, v2, e2, . . . , v`, e`, v`+1

so that the vi are distinct vertices, the ei are distinct edges, and vi, vi+1 ∈ ei for 1 ≤ i ≤ `. We say

that the path v1, e1, v2, e2, . . . , v`, e`, v`+1 is a path from v1 to v`+1 and has length `. A hypergraph

is said to be connected if there is a path from any vertex to any other vertex. We say that a

hypergraph H is reduced if for all distinct edges e, e′ ∈ E, e 6⊆ e′ and e′ 6⊆ e; that is, no edge is

contained in another edge. We may reduce a given hypergraph by removing every edge that is a

proper subset of another edge. Throughout what follows, we will consider only hypergraphs with

at least one edge that are reduced.

The closed neighborhood of a vertex a ∈ V is N [a] =
⋃

a∈e∈E
e. The (open) neighborhood of a ∈ V

is N(a) = N [a]\{a} and an element of N(a) is called a neighbor of a. The degree of a vertex a ∈ V ,

denoted deg(a), is the number of edges that contain a. If deg(a) = 0, that is, a is not contained in

any edge, we say that a is an isolated vertex. An edge consisting of exactly one vertex is called a

loop. If vertices a and b are neighbors, we say that a is adjacent to b. When vertex a is contained

in edge e we say that e is incident to a.

An induced subhypergraph H′ of a hypergraph H = (V,E) has a vertex set V ′ ⊆ V and the edge

set is

E′ = {ei ∩ V ′ 6= ∅ : ei ∈ E, and either ei is a loop or |ei ∩ V ′| ≥ 2}.
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In this case, we say that V ′ induces the subhypergraphH′. Note that ifH is a k-uniform hypergraph

that H′ need not be uniform.

A dominating set of a hypergraph H is a set of vertices D ⊆ V (H) so that for every vertex

v ∈ V \D, there exists an edge e ∈ E(H) for which v ∈ e and e∩D 6= ∅ [9]. That is, a dominating

set is D ⊆ V (H) so that V = ∪d∈DN [d]. The size of a minimum dominating set of H is called the

domination number of H and is denoted by γ(H).

Definition 2.2.1. [3] The infection rule is defined so that a nonempty set A of infected vertices

can infect the vertices in an edge e if

1. A ⊆ e, and

2. if v is an uninfected vertex such that A ∪ {v} is a subset of some edge in the hypergraph,

then v ∈ e.

An initial set of infected vertices S0 is called an infection set if after repeated application of

the infection rule all vertices become infected. The size of a minimum infection set is called the

infection number of the hypergraph H and is denoted by I(H).

Definition 2.2.2. [7] The 1-power domination process consists of an initial subset of the vertices,

S0, called the power dominating set and the observation rules:

a. A vertex in the power dominating set observes itself and all of its neighbors.

b. If all unobserved neighbors of an observed vertex v are in one edge incident to v, then these

unobserved vertices become observed as well.

We refer to step a as the domination step and each repetition of b as an observation step.

In this case, we say that a set of vertices A observes a set of vertices B if A causes B to become

observed. A power dominating set of a hypergraph H is an initial set so that every vertex in H

is observed at the termination of the 1-power domination process. The power domination number

of a hypergraph H, denoted γP (H), is the minimum cardinality of a power dominating set of H.
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This is the same as a 1-power dominating set and the 1-power domination number as defined in [7]

(originally denoted by γ1P (H)).

2.3 Infectious power domination

We can now generalize power domination to hypergraphs based on the definition of infection in

[3].

Definition 2.3.1. Suppose H = (V,E) is a hypergraph. The infectious power domination process

on H with initial set S0 ⊆ V proceeds by:

1. S =
⋃
v∈S0

N [v].

2. While there exists a nonempty A ⊆ S so that A can infect the vertices in an edge e using

Definition 2.2.1, add the vertices of e to S.

Definition 2.3.2. An infectious power dominating set of a hypergraph H is an initial set S0 such

that every vertex in H is in S after the termination of the infectious power domination process. The

infectious power domination number of a hypergraph H is the minimum cardinality of an infectious

power dominating set of H, which we denote by γPI
(H).

We say that a vertex in S is infected and that a set of vertices A infects a set of vertices B if A

causes B to join S. We call step 1 the domination step and each repetition of step 2 an infection

step.

As an infection set can infect a graph without needing the domination step, such a set is also

an infectious power dominating set. Thus we have the following observation.

Observation 2.3.3. For any hypergraph H, γPI
(H) ≤ I(H).

Chang and Roussel’s definition in [7], restated in Definition 2.2.2, is equivalent to Definition 2.3.1

with the restriction that A must always be a single vertex. Thus, the first inequality in proposition

2.3.4 is immediate and is also an easy consequence of Theorem 2.4 in [10]. Additionally, as power



12

domination and infectious power domination consist of a domination step with the addition of the

observation or infection step, the domination number gives the second inequality.

Proposition 2.3.4. For any hypergraph H, γPI
(H) ≤ γP (H) ≤ γ(H).

The first inequality in Proposition 2.3.4 is not an equality, as shown in Example 2.3.5.

3

9 5

12

8

4

2

10 6

1

11 7

Figure 2.1 A hypergraph H(3) with γPI
(H(3)) < γP (H(3)).

Example 2.3.5. For the hypergraph H(3) in Figure 2.1, γPI
(H(3)) = 1 < γP (H(3)) = 2.

By symmetry, we need only check {2}, {3}, and {4} as possible infectious power dominating

sets or power dominating sets of size 1.

• S0 = {2}: 2 observes 1 and 3. Then 1 and 2 have no unobserved neighbors and 3 has

unobserved neighbors in {3, 12, 9} and {3, 4, 5}, and no other subset of {1, 2, 3} is contained

edge with unobserved vertices so no observation (or infection) step can occur.

• S0 = {4}: 4 observes {3, 4, 5}. Vertex 3 is in {1, 2, 3} and {3, 12, 9}. Vertex 5 is in {5, 6, 7}

and {9, 8, 5}. Thus no more subsets of the observed vertices can observe an edge, nor can an

infection step occur.

• S0 = {3}: 3 observes 1, 2, 4, 5, 9, and 12. The only observed vertices adjacent to unobserved

vertices are 5 and 9. Vertex 5 is contained in {9, 8, 5} and {5, 6, 7} so cannot observe an edge



13

by itself. Similarly, {9} cannot observe an edge. Thus no observation step can occur and

so {3} is not a power dominating set. However, {9, 5} can infect {9, 8, 5}. Then 5 infects

{5, 6, 7} and 9 infects {9, 10, 11}. Thus γPI
(H(3)) = 1.

For the power domination number, no one vertex is a power dominating set and so γP (H(3)) > 1.

There is a power dominating set of size two: let S0 = {3, 5}. In the domination step, vertices 1, 2,

4, 6, 7, 8, 9, and 12 become observed. Then {9} observes {9, 10, 11}. Therefore {3, 5} is a power

dominating set of H(3) and γP (H(3)) = 2.

Next we present examples showing that the infection number can be drastically different from

the power domination number and infectious power domination number, particularly in the case of

a k-uniform hypergraph when n is large and k is small. The complete k-uniform hypergraph, K(k)
n ,

is the k-uniform hypergraph with vertex set {1, 2, . . . , n} and edge set all k-sets of the vertex set.

Proposition 2.3.6. [3, Lemma 3.1] I
(
K(k)
n

)
= n− k + 1.

The next result is immediate as N [v] = V (K(k)
n ) for any v ∈ V (K(k)

n ).

Proposition 2.3.7. γPI

(
K(k)
n

)
= γP

(
K(k)
n

)
= γ

(
K(k)
n

)
= 1.

For a less trivial example of the potential gap between the infection number and the infectious

power domination number, we consider the complete k-partite hypergraph, K(k)
n1,n2,...,nk , which is the

hypergraph that has its vertex set partitioned into k disjoint parts V1, . . . , Vk where |Vi| = ni. The

edge set is the set of all k-sets with exactly one element from each Vi. Note that K(k)
n1,n2,...,nk is

k-uniform by definition.

Proposition 2.3.8. [3, Lemma 3.4] I
(
K(k)
n1,...,nk

)
= n1 + n2 + · · ·+ nk − k.
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Proposition 2.3.9. For the complete k-partite hypergraph, we have the following:

γ
(
K(k)
n1,...,nk

)
=


1 min

1≤`≤k
(n`) = 1

2 otherwise

γP

(
K(k)
n1,...,nk

)
= γPI

(
K(k)
n1,...,nk

)
=


1 min

1≤`≤k
(n`) ≤ 2

2 otherwise

.

Proof. If any ni = 1, then the sole vertex in Vi is adjacent to every other vertex and so 1 =

γ
(
K(k)
n1,...,nk

)
≥ γP

(
K(k)
n1,...,nk

)
≥ γPI

(
K(k)
n1,...,nk

)
≥ 1.

For the remainder of the proof, assume that n` ≥ 2 for all `. To determine the domina-

tion number, consider any vertex vi ∈ Vi. We see that vi has at least one non-neighbor and so

γ
(
K(k)
n1,...,nk

)
≥ 2. Consider S0 = {v, u} where v and u are adjacent (in different parts). Then v is

adjacent to all non-neighbors of u and u is adjacent to all non-neighbors of v. Therefore, {u, v} is

a domination set and so 2 = γ
(
K(k)
n1,...,nk

)
≥ γP

(
K(k)
n1,...,nk

)
≥ γPI

(
K(k)
n1,...,nk

)
.

Next we consider the case in which min1≤`≤k(n`) ≥ 3. We will show that γPI

(
K(k)
n1,...,nk

)
≥ 2.

Choosing one vertex vi ∈ Vi infects all of the neighbors of vi in the domination step and the

uninfected vertices consist of the ni − 1 ≥ 2 non-neighbors of vi. Let wi, w
′
i be two of these non-

neighbors. Suppose A is a set of infected vertices such that A∪{wi} ⊆ e. Then e′ = (e\{wi})∪{w′i}

is also an edge. However, A∪{w′i} ⊆ e′ and w′i 6∈ e. Thus the non-neighbors of vi cannot be infected.

Therefore, 2 ≤ γPI

(
K(k)
n1,...,nk

)
≤ γP

(
K(k)
n1,...,nk

)
≤ γ

(
K(k)
n1,...,nk

)
= 2.

For the remainder of the proof, we assume that, without loss of generality, n1 = 2. Let V1 =

{v1, v′1} and consider S0 = {v1}. We will show that γP

(
K(k)
n1,...,nk

)
≤ 1. For the power domination

number, after the domination step only v′1 is unobserved. Let vj ∈ Vj with j 6= 1. Then there

exists an edge e such that v′1, vj ∈ e. Moreover, as v′1 is the only unobserved vertex, all unobserved

neighbors of vj are in one edge incident to vj , namely, in e, and so v′1 becomes observed. Therefore,

1 ≥ γP
(
K(k)
n1,...,nk

)
≥ γPI

(
K(k)
n1,...,nk

)
≥ 1.
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Again we see that if the number of vertices is large and k is small, the discrepancy between the

infection number and the infectious power domination number may be large.

2.4 General bounds

In this section, we give bounds for the power domination number and infectious power domi-

nation number in terms of the degrees of the vertices, the number of edges, the size of the edges,

and the number of vertices.

Proposition 2.4.1. Let H be a connected hypergraph. If H has at least one vertex of degree at

least 3, then γPI
(H) ≤ γP (H) ≤ |{v ∈ V (H) : deg(v) ≥ 3}|. If deg(v) ≤ 2 for all vertices v of H,

then γPI
(H) = γP (H) = 1.

Proof. First, assume that H has at least one vertex of degree at least 3. Let S0 be the set of

vertices with degree at least 3. After the domination step, any remaining unobserved vertex has

degree at most two. Moreover, each vertex in S1 = N(S0) \ S0 has degree at most two. One of

these two edges contains only observed vertices and so each vertex in S1 can observe the precisely

one edge containing observed vertices incident to it. Each of these newly observed vertices are now

in at most one edge containing unobserved vertices and so can observe that remaining edge. This

continues until the entire graph is observed.

On the other hand, if deg(v) ≤ 2 for all v ∈ V (H), then select one vertex. After the domination

step, the entire graph will become observed in the same way as in the previous case.

Proposition 2.4.2. For any connected hypergraph H with at least two edges, we have

γPI
(H) ≤ γP (H) ≤ |E(H)| − 1.

This bound is tight.

Proof. If we select one vertex from each edge of H save one, then in the domination step we observe

all but at most one edge. This edge is then the unique edge containing unobserved vertices and so

can be observed via the observation step as H is connected.
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It follows that any connected hypergraph H with exactly two edges has γPI
(H) = 1 and so we

see that the bound is tight.

The next upper bound is similar to Proposition 1.2 in [3].

Proposition 2.4.3. Let H be a nontrivial hypergraph on n vertices with at least two edges and let

k be the size of the largest edge in H. Then γPI
(H) ≤ γP (H) ≤ n− k. This bound is tight.

Proof. Let e be the largest edge of H. Let S0 = V (H) \ e. As H is connected with at least two

edges, at least one vertex, say v, in e is adjacent to a vertex which is not in e, i.e. v is adjacent

to a vertex in S0. Thus in the domination step v becomes observed. Then all of the unobserved

neighbors of v are contained in e and so they become observed in the observation step.

Consider the hypergraph H consisting of n vertices with two edges: one edge containing n− 1

vertices and the other containing one vertex from the first edge and the remaining vertex. The

vertex in the intersection of the two edges infects all of the vertices in the domination step. Thus

γPI
(H) = 1 = n− (n− 1).

For another upper bound, we may utilize the following domination bound from [9] with Propo-

sition 2.3.4.

Proposition 2.4.4. [9, Theorem 2] If H is a hypergraph with all edges of size at least three and

no isolated vertex then γ(H) ≤ |V (H)|
3 .

Corollary 2.4.5. If H is a hypergraph with all edges of size at least three and no isolated vertex

then γPI
(H) ≤ γP (H) ≤ |V (H)|

3 .

Corollary 2.4.5 does not utilize the observation (or infection) step. For graphs, the well known

domination upper bound of |V (G)|
2 was improved for power domination to |V (G)|

3 in [11]. We con-

jecture the following similar result.

Conjecture 2.4.6. For any connected hypergraph H on at least 4 vertices with |e| ≥ 3 for all

e ∈ E(H), then γPI
(H) ≤ γP (H) ≤ |V (H)|

4 .
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The X-private neighborhood of a vertex v ∈ X is the set

pn(v,X) = N(v) \
⋃

x∈X\{v}

N [x],

a variant of the definition in [11]. The members of pn(v,X) are the X-private neighbors of v.

Zhao, Kang, and Chang’s proof from [11] is a counting argument in which they find two S0-

private neighbors for each vertex in the power dominating set, giving the bound via the inequality

|V (G)| ≥ |S0|+ 2|S0|.

However, this strategy does not translate to hypergraphs. Consider the hypergraph L
(3)
1 shown

in Figure 2.2. We will use L
(3)
1 to build a family of hypergraphs which achieves the bound in

Conjecture 2.4.6, but in which any minimum power dominating set contains a vertex with at most

two private neighbors.

v

x

w

y z

Figure 2.2 Shown is L
(3)
1 . The edges are {w, x, v}, {w, x, y}, and {w, x, z}.

The hypergraph L
(3)
q is constructed by taking q copies of L

(3)
1 , say L

(3)
1,i , with vertex sets

{vi, xi, yi, zi, wi} for each 1 ≤ i ≤ q. Identify wi with vi+1 for 1 ≤ i ≤ q − 1 and wq with v1. Then

L (3)
q =

 ⋃
1≤i≤q

{xi, yi, zi, wi},
⋃

1≤i≤q
E
(
L

(3)
1,i

) .



18

For an example, L
(3)
3 is shown in Figure 2.3. We construct the family L = {L (3)

q : q ≥ 2}.

x1w1

y1

z1

x3

w3

y3

z3

x2

w2

y2

z2

Figure 2.3 Shown is L
(3)
3 , with the identifications w1 = v2, w2 = v3, and w3 = v1.

Proposition 2.4.7. The family of hypergraphs L satisfies

γPI
(L (3)

q ) = γP (L (3)
q ) = γ(L (3)

q ) = q =
|V (L

(3)
q )|

4

for all L
(3)
q ∈ L . Any minimum power dominating set for a member of L , S0, contains a vertex

with at most two S0-private neighbors.

Proof. First we show γPI
(L

(3)
q ) ≥ q. Suppose for contradiction that γPI

(L
(3)
q ) < q. Then there

exists j so that S0 ∩ {xj , yj , zj , wj} = ∅. However, there is no way for yj to become infected as its

only neighbors, xj and wj , are also in an edge with the uninfected vertex zj . This is a contradiction

and so γP (L
(3)
q ) ≥ q. This also implies that for all 1 ≤ i ≤ q, at least one of {xi, yi, zi, wi} must be

in any infectious power dominating set or any power dominating set.

For equality, observe that {xi : 1 ≤ i ≤ q} is a dominating set of L
(3)
q of size q. Therefore,

q ≤ γPI
(L

(3)
q ) ≤ γP (L

(3)
q ) ≤ γ(L

(3)
q ) ≤ q.
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Now consider a minimum infectious power dominating set of L
(3)
q , S0. We will show that S0

contains a vertex with at most two private neighbors.

If for some j, yj ∈ S0, then as yj has only two neighbors, S0 contains a vertex with at most two

S0-private neighbors. The same argument applies to zj . Thus, we need only consider minimum

power dominating sets consisting only of w and x type vertices and for all 1 ≤ i ≤ q, either wi or

xi must be in S0.

Let xi ∈ S0. Without loss of generality, N(xi) = {yi, zi, wi, wi−1}. Either wi+1 or xi+1 must

be in S0 and wi is adjacent to both of these. Thus, wi 6∈ pn(xi, S0). Similarly, either xi−1 or wi−1

must be in S0, so wi−1 6∈ pn(xi, S0). Hence pn(xi, S0) = {yi, zi}. Finally, if S0 = {wi : 1 ≤ i ≤ p},

then pn(wi, S0) = {yi, zi} for all i, as xi is a common neighbor with wi−1 and xi+1 is a common

neighbor with wi+1.

Therefore, L
(3)
q has at least one vertex in every minimum power dominating set which has at

most two private neighbors.

2.5 Infectious power domination number for particular hypergraphs

We have the following easy consequence of Observation 2.3.3.

Observation 2.5.1. For any hypergraph H, if I(H) = 1, then γPI
(H) = 1.

Thus we obtain the several results directly from [3], after some definitions. A hypergraph is

an interval hypergraph if there is a linear ordering of the vertices so that each edge consists of

consecutive vertices. A hypercycle is a connected hypergraph with edge set e1, . . . , e` with ` ≥ 4 so

that ei ∩ ej 6= ∅ if and only if i− j ≡ ±1 mod `, [3].

Observation 2.5.2.

1. [3, Prop. 2.1] If E(H) = {V (H)}, then γPI
(H) = 1.

2. [3, Prop 3.2] Let H(k) be a k-uniform hypergraph with k ≥ 3. Then there exists a k-uniform

hypergraph H′(k) such that V (H(k)) ⊆ V (H′(k)) and E(H(k)) ⊆ E(H′(k)) with γPI
(H(k)) = 1.
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3. [3, Lem. 4.3] If H is a connected interval hypergraph then γPI
(H) = 1.

4. [3, Prop. 4.5] If H is a hypercycle with a vertex of degree 1, then γPI
(H) = 1.

In fact, Observation 2.5.2.4 is true without the restriction on vertex degrees, which follows from

the next proposition.

A circular arc interval hypergraph is a hypergraph H with n vertices with a circular order of

the vertices so that every edge is composed of consecutive vertices. Using this circular ordering of

the vertices, the first end point of each edge is unique. If H has m edges, let the first end points

be denoted by v1, v2, . . . , vm with corresponding edges e1, . . . , em, in a similar way to [10]. When

H is connected, we may choose an ordering so that v1, e1, v2, e2, . . . , em−1, vm forms a path.

Proposition 2.5.3. For any connected circular arc interval hypergraph H,

γPI
(H) = γP (H) = 1.

Proof. Let S0 = {v1}, the left endpoint of e1. After the domination step, each vertex of e1 is

observed. As H is connected, this means that v2 is observed. Since H is a circular arc hypergraph,

any edge containing v2 but not containing v1 must have a left endpoint that is after v1. The first left

endpoint after v1 is v2. As v2 is the left endpoint of e2, the only edge containing v2 and unobserved

vertices is e2, because any other edge containing v2 would also have to contain v1 and so would

have become observed in the domination step. Thus v2 observes e2. In a similar way, v3 is in e2

and so v3 observes e3. We continue this process until all edges are observed.

A Berge cycle in a hypergraph H is a sequence

Cm = (v1, e1, v2, e2, . . . , vm, em, v1)

in which the vi are distinct vertices, the ei are distinct edges, vi, vi+1 ∈ ei for 1 ≤ i ≤ m − 1, and

v1, vm ∈ em. A hypertree is a connected hypergraph which contains no Berge cycle. A hypergraph

is linear if distinct edges intersect in at most one vertex. Note that any hypertree is linear. To see

this, consider if two edges e1 and e2 share vertices v1 and v2. Then v1e1v2e2v1 is a Berge cycle. A
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major vertex is a vertex of degree at least 3 [7]. A spider is a nonempty hypertree with at most

one major vertex. A spider cover of a hypertree T is a partition of V (T ), V1, . . . , V`, such that

each subset induces a spider. The spider number of a hypertree T is the minimum size of a spider

cover of T , denoted by sp(T ).

Theorem 2.5.4. [7, Theorem 7] For any hypertree T , γP (T ) = sp(T ).

As a direct result of Theorem 2.5.4 and Proposition 2.3.4, we have the following proposition.

Corollary 2.5.5. For any hypertree T , γPI
(T ) ≤ sp(T ).

For the infectious power domination number, this bound is not an equality as shown in Example

2.5.6.

1 2 3 4 5 6 7

8

9

10

11

16

17

18

19

12

13

14

15

Figure 2.4 A hypertree T (3) with γPI
(T (3)) < γP (T (3)).

Example 2.5.6. For the hypertree T (3) in Figure 2.4, γPI
(T (3)) = 2 < 3 = γP (T (3)).

We first show that there is no spider cover of T (3) of size 2. The major vertices of T (3) are

1, 3, 5, 7. Suppose for contradiction that we have a spider cover V1, V2, and without loss of generality,

let 1 ∈ V1.

First suppose that 1, 3, 5, 7 ∈ V1. However, this means that at least two of

{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}
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are in V2 and so we have a contradiction as V2 must induce a connected hypergraph.

Next consider if 1, 3, 5 ∈ V1 and 7 ∈ V2. However, then at least one of

{8, 9}, {10, 11}, {12, 13}, {14, 15}

is not in V1. However, this means that V2 is disconnected as 7 ∈ V2. Hence we cannot have any

three major vertices in either V1 and similarly for V2.

Thus we have at most two elements of {1, 3, 5, 7} in V1. Note that 1, 7 ∈ V1 or 1, 5 ∈ V1 would

imply that 3 ∈ V1 as well because V1 induces a connected hypergraph. Thus, we must have 1, 3 ∈ V1

and 5, 7 ∈ V2. If 4 ∈ V1, then 12 or one of 8, 10 must be in V2, but this is a contradiction to the

connectedness of the subhypergraph induced by V2. Similarly, 4 6∈ V2. Therefore, sp(T 3) > 2.

Observe that

{{1, 2, 8, 9, 10, 11}, {3, 4, 5, 12, 13, 14, 15}, {6, 7, 16, 17, 18, 19}}

is a spider cover of T (3). Thus, sp(T (3)) = 3. By Theorem 2.5.4, sp(T (3)) = γP (T (3)) = 3.

We now consider possible infectious power dominating sets. By symmetry, for sets of size 1 we

need only check 1, 2, 3, 4, 8 and 12.

• S0 = {1}: 1 infects 2, 3, 8, 9, 10, 11. Then vertex 3 is the only infected vertex which has

uninfected neighbors, however these neighbors occur in both edge {3, 12, 13} and edge {3, 4, 5},

so no infection step can occur.

• S0 = {2}: 2 infects 1, 3. Then vertex 1 is adjacent to uninfected vertices in both {1, 8, 9} and

{1, 10, 11}. Vertex 3 is adjacent to uninfected vertices in both {3, 4, 5} and {3, 12, 13}. No

other subset of infected vertices is contained in an edge also containing uninfected vertices

and so no infection step can occur.

• S0 = {3}: 3 infects 1, 2, 4, 5, 12, 13. However, 1 is in both {1, 8, 9} and {1, 10, 11}. Vertex 5 is

in both {5, 14, 15} and {5, 6, 7}.

• S0 = {4} or S0 = {12}: Since {3} is not an infectious power dominating set, neither is {4} or

{12} as N(4), N(12) ⊂ N(3).
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• S0 = {8}: Since {1} is not an infectious power dominating set, neither is {8} as N(8) ⊂ N(1).

Thus there is no infectious power dominating set of size 1. Next consider S0 = {1, 7}. After

the domination step, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, and 19 are infected. Then {3, 5} infects 4.

Finally, {3} infects {12, 13} and {5} infects {14, 15}. Thus γPI
(T (3)) = 2.

Therefore, we have γPI
(T (3)) = 2 < sp(T (3)) = 3.

2.6 Hypergraph operations

2.6.1 Edge/vertex removal

Let H be a hypergraph with e ∈ E(H). The hypergraph H − e has vertex set V (H) and edge

set E(H) \ {e}.

Theorem 2.6.1. Let H be a hypergraph with an edge e. Then γPI
(H) − 1 ≤ γPI

(H − e) ≤

γPI
(H) + |e| − 1. These bounds are tight.

Proof. For the lower bound, if we have an infectious power dominating set Ŝ for H− e then adding

an edge may ruin uniqueness for infection. By adding one vertex of e to Ŝ, this new edge is infected

in the domination step. Then Ŝ will infect the remainder of the graph as it did in H− e. Thus we

have γPI
(H) ≤ γPI

(H− e) + 1 and so γPI
(H)− 1 ≤ γPI

(H− e).

For the upper bound, consider an infectious power dominating set S for H. At some point in

the infectious power domination process on H, at least one vertex of e must become infected in

order for the rest of e to become infected. Call this vertex v and let e′ = e \ {v}. When we remove

edge e, then the vertices in e′ may no longer be infected. Consequently, S∪e′ is an infectious power

dominating set of H− e and has at most γPI
(H) + |e| − 1 vertices.

For tightness of the lower bound, consider K(k)
n1,...,nk with n1 = 3 and ni ≥ 3 for all i 6= 1. By

Proposition 2.3.9, γPI

(
K(k)
n1,...,nk

)
= 2. Remove edge e = {v1, . . . , vk} with vi ∈ Vi and let v1 have

non-neighbors a and b. Let S0 = {a}. In the domination step, every vertex except for v1 and b

have been infected. Let A = {v2, . . . , vk} and e = A ∪ {b}. As A ∪ {v1} is not an edge, A infects
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b. Then v1 is the one remaining infected vertex and so becomes infected by any vertex adjacent to

v1. Therefore γPI
(K(k)

n1,...,nk − e) = 1.

To see the tightness of the upper bound, consider any connected linear interval hypergraph H

with first edge e. By Observation 2.5.2 Part 3, γPI
(H) = 1. The hypergraphH−e has |e|−1 isolated

vertices and the remaining vertices form a connected interval hypergraph. Thus any infectious power

dominating set must contain the |e| − 1 isolated vertices and the vertex that forms an infectious

power dominating set for the remainder of the graph. Thus γPI
(H−e) = 1+|e|−1 = γPI

(H)+|e|−1.

For the power domination number, we see that the proofs of the upper and lower bounds in

Theorem 2.6.1 also apply. Thus we have the following.

Corollary 2.6.2. Let H be a hypergraph with an edge e. Then γP (H)− 1 ≤ γP (H− e) ≤ γP (H) +

|e| − 1.

We note that removing a vertex and its corresponding edges may drastically change the power

domination number. Adding a dominating vertex (i.e., a vertex that is adjacent to every vertex

in the graph) will lower the infectious power domination number to 1 regardless of the remaining

graph structure. Similarly, removing such a vertex may drastically increase the infectious power

domination number.

2.6.2 Linear sums

We will use the term linear sum of hypergraphs H1,H2 to describe the hypergraph defined by

H1 ?H2 = (V (H1) ∪ V (H2), {e1 ∪ e2 : e1 ∈ E(H1), e2 ∈ E(H2)}). Note that the linear sum of two

2-uniform hypergraphs (i.e. two graphs) will yield a 4-uniform hypergraph. As the vertex set is

the union of the vertex sets of the input hypergraphs, we call this operation a linear sum and use

the notation H1 ?H2 instead of the term direct product and notation H1 ×H2 as used in [3].

Theorem 2.6.3. For any connected hypergraphs H1 and H2, γPI
(H1 ?H2) ≤ γP (H1 ? H2) ≤

γ(H1 ?H2) ≤ 2. Furthermore, if γPI
(H1) = 1 or γPI

(H2) = 1 then γPI
(H1 ?H2) = 1.
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Proof. Take v1 ∈ V (H1) and v2 ∈ V (H2) and let S0 = {v1, v2}. As each hypergraph is connected,

v1 ∈ e1 ∈ E(H1) and for any vertex w2 ∈ V (H2), there exists f2 ∈ E(H2) such that w2 ∈ f2.

Then v1, w2 ∈ e1 ∪ f2 ∈ E(H1 ?H2) and so w2 is adjacent to v1. Similarly, we see that any vertex

w1 ∈ V (H1) is adjacent to v2. Therefore every vertex in H1 ? H2 is observed in the domination

step and so γPI
(H1 ?H2) ≤ γP (H1 ?H2) ≤ γ(H1 ?H2) ≤ 2.

Let γPI
(H1) = 1 with {v1} being an infectious power dominating set. We will show that {v1}

is also an infectious power dominating set in H1 ?H2. In the domination step, all vertices of H2

are infected as are the original neighbors of v1 from H1. Suppose that A ⊆ V (H1) infected edge

e1 ∈ E(H1) during the infectious power domination process for H1. This means that for any

uninfected vertex w1 ∈ V (H1), A ∪ {w1} ⊆ e′1 ∈ E(H1) implies that w1 ∈ e1. Let e2 be any edge

of H2. Consider B = A ∪ e2. Then for any uninfected w1 in H1 ?H2, if B ∪ {w1} ⊆ e′ ∪ e2 then

A ∪ {w1} ⊆ e′ and so w1 ∈ e1. Thus w1 ∈ e1 ∪ e2 and so B infects e1 ∪ e2. Continuing in this way,

using the infection steps as in H1 but with the addition of the vertices in e2, every vertex of H1

becomes infected. Therefore, γPI
(H1 ?H2) = 1.

Corollary 2.6.4. For any hypergraph H1 with γPI
(H1) = 1 and any hypergraphs H2, . . . ,H`, we

have γPI
(H1 ?H2 · · · ?H`) = 1.

Theorem 2.6.3 shows that the infectious power domination number cannot increase for linear

sums of hypergraphs. In particular, if H1 or H2 has infection power domination number 1, the

linear sum must also have infection power domination number 1. This is a stark contrast with the

following result for the infection number.

Proposition 2.6.5. [3, Proposition 6.5] If H1 and H2 are both hypergraphs with more than one

edge and I(H1) = I(H2) = 1 then I(H1 ?H2) = 2.

2.6.3 Cartesian products

For an edge e = {w1, . . . , wk} and a vertex v define

e× v = {(w1, v), . . . , (wk, v)} and v × e = {(v, w1), . . . , (v, wk)}
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as in [3]. The Cartesian product of two hypergraphs H1 and H2 is denoted H1�H2, has vertex set

V (H1)× V (H2), and has edge set

{e1 × v2 : e1 ∈ E(H1), v2 ∈ V (H2)} ∪ {v1 × e2 : v1 ∈ V (H1), e2 ∈ E(H2)}.

The infectious power domination number of the Cartesian product of two graphs may be greater

than the infectious power domination number of either graph. In Proposition 2.6.6 we see that the

infectious power domination number of a k-complete hypergraph with a `-complete hypergraph is

one such example. Recall from Proposition 2.3.7 that γPI

(
K

(k)
n

)
= 1.

Proposition 2.6.6. Let n ≤ m with 3 ≤ k ≤ n− 1 and 3 ≤ ` ≤ m− 1. Then γPI

(
K(k)
n �K(`)

m

)
=

n− 1.

Proof. Denote the vertices of K(k)
n by v1, . . . , vn and the vertices of K(`)

m by w1, . . . , wm. Then all

vertices of K(k)
n �K(`)

m are of the form (vi, wj). For each wr ∈ V (K(`)
m ), define K

(k)
n ×wr = {(vi, wr) :

1 ≤ i ≤ n}. Similarly, for each vs ∈ V (K(k)
n ) we define vs ×K(`)

m = {(vs, wj) : 1 ≤ j ≤ m}. Note

that every edge of K(k)
n �K(`)

m is a subset of exactly one set of one of these forms.

Consider the set S0 = {(v1, w1), (v2, w2), . . . , (vn−1, wn−1)}. In the domination step, as any

vertex (vi, wj) is adjacent to each vertex in both K(k)
n × wj and vi × K(`)

m , the only uninfected

vertices are {(vn, wn), (vn, wn+1), . . . , (vn, wm)}. However, this means that for each n ≤ x ≤ m, the

set

Ax = {(vn−k−1, wx), (vn−k, wx), . . . , (vn−1, wx)}

consists of infected vertices and is contained in the edge e = Ax ∪ {(vn, wx)}, an edge made of

vertices from K(k)
n ×wx. Moreover, Ax is not contained in any other edge containing an uninfected

vertex as every other vertex in K(k)
n ×wx is infected. Hence Ax infects (vn, wx) for n ≤ x ≤ m and

so all vertices become infected. Therefore, γPI

(
K(k)
n �K(`)

m

)
≤ n− 1.

Assume for eventual contradiction that there exists some infectious power dominating set S0

with |S0| ≤ n − 2. By the Pigeonhole Principle, since m ≥ n ≥ 4, there are at least two i so that

vi × K(`)
m contains no vertex of S0. Without loss of generality, let these be i and i′. In the same
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way, there exists j and j′ so that K(k)
n × wj and K(k)

n × wj′ contain no vertex of S0. Now consider

the vertices (vi, wj), (vi, wj′), (vi′ , wj), and (vi′ , wj′).

We show that there is no set that can infect these vertices. Any set which could infect (vi, wj)

must be of the form A ⊆ K(k)
n × wj \ {(vi, wj), (vi′ , wj)} with |A| ≤ k − 1. We see that by

construction of the k-complete hypergraph, there is an edge e of K(k)
n ×wj containing A∪{(vi, wj)}.

There is also an edge e′ so that A ∪ {(vi′ , wj)} ⊆ (e \ {(vi, wj)}) ∪ {(vi′ , wj)} = e′. Thus any

such set A of infected vertices that are in an edge with (vi, wj) are also in a different edge with

(vi′ , wj) and so no such A can infect (vi, wj) or (vi′ , wj). In a similar way, we can consider A′ ⊆

K(k)
n ×wj′\{(vi, wj′), (vi′ , wj′)} with |A′| ≤ k−1, A′′ ⊆ vi×K(`)

m \{(vi, wj), (vi, wj′)} with |A′′| ≤ `−1,

and A′′′ ⊆ vi′ ×K
(`)
m \ {(vi′ , wj), (vi′ , wj′)} with |A′′′| ≤ `− 1 to see that no such subsets can infect

any of (vi, wj), (vi, wj′), (vi′ , wj), or (vi′ , wj′). Therefore, there is no possible set of infected vertices

that can infect these four vertices when |S0| ≤ n− 2. Hence γPI

(
K(k)
n �K(`)

m

)
≥ n− 1.

Bergen et al. [3] established a general upper bound on the infection number of Cartesian

products which is greater than the infection number of either hypergraph.

Proposition 2.6.7. [3, Corollary 6.11]. Let H1 and H2 be hypergraphs, then I(H1�H2) ≤

I(H1) (I(H2) + |E(H2)|).

2.6.4 Weak coronas

The weak corona of a k-uniform hypergraph G(k) with a (k− 1)-uniform hypergraph H(k−1), as

defined in [3], is the k-uniform hypergraph denoted by G(k) ◦w H(k−1), with vertex set

V
(
G(k) ◦w H(k−1)

)
= V (G(k)) ∪

 ⋃
v∈V (G(k))

V
(
H(k−1)
v

)
where H(k−1)

v is a copy of H(k−1) corresponding to vertex v ∈ V
(
G(k)

)
, and edge set

E
(
G(k) ◦w H(k−1)

)
= E

(
G(k)

)
∪
{
ev ∪ {v} : v ∈ V

(
G(k)

)
, ev ∈ E

(
H(k−1)
v

)}
.
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That is, the weak corona is formed by taking a copy of H(k−1) for each vertex v of G(k−1) and then

adding v to each edge of its copy of H(k−1).

In [3], it was shown that I
(
G(k) ◦w H(k−1)) ≤ |V (G(k))|I

(
H(k−1)). We obtain a better result,

reflecting the strength of the domination step.

Proposition 2.6.8. For any hypergraphs G(k) and H(k−1),

γPI

(
G(k) ◦w H(k−1)

)
≤ γP

(
G(k) ◦w H(k−1)

)
≤ γ

(
G(k) ◦w H(k−1)

)
≤
∣∣∣V (G(k))∣∣∣ .

This bound is tight whenever H(k−1) has at least two edges.

Proof. Observe that V (G(k)) is a dominating set.

For tightness, let G(k) be any hypergraph and let H(k−1) be any (k − 1)-uniform hypergraph

with at least two edges. Suppose for contradiction that γPI

(
G(k) ◦w H(k−1)) < |V (G(k))| and let

S0 be a minimum infectious power dominating set. Then there exists some v ∈ V (G(k)) so that

V (H(k−1)
v )∪ {v} contains no vertex of S0. By the construction of the weak corona, the only vertex

of V (H(k−1)
v ) ∪ {v} adjacent to a vertex outside of V (H(k−1)

v ) ∪ {v} is v. Thus the first vertex of

V (H(k−1)
v )∪{v} to become infected is v. AsH(k−1) has at least two edges, we have e, e′ ∈ E(H(k−1)

v ).

Then v is adjacent to uninfected vertices in the edges e ∪ {v} and e′ ∪ {v}. However, this implies

that V (H(k−1)
v ) cannot become infected, a contradiction. Thus γPI

(
G(k) ◦w H(k−1)) ≥ |V (G(k))|.

Let P
(2)
3 denote the path graph on 3 vertices.

Corollary 2.6.9. Let G(3) be any 3-uniform hypergraph. Then

γPI

(
G(3) ◦w P (2)

3

)
= γP

(
G(3) ◦w P (2)

3

)
=
∣∣∣V (G(3))∣∣∣ .

Corollary 2.6.9 demonstrates an infinite family of 3-uniform hypergraphs that achieves the

bound in Conjecture 2.4.6 for both the power domination number and the infectious power dom-

ination number. Furthermore, V (G) is an infectious power dominating set for which each vertex

has exactly 3 private neighbors.
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2.7 Concluding remarks

Several interesting questions remain for both infectious power domination and power domination

for hypergraphs.

We have not yet found a generalized improvement of the bound in Corollary 2.4.5 or a coun-

terexample to the bound in Conjecture 2.4.6 and so this remains an open question for further study.

We have seen two examples of infinite families that achieve the conjectured bound, in Proposition

2.4.7 and Corollary 2.6.9. Each of these families achieves the bound with a dominating set. How-

ever, the family L indicates that a counting argument similar to that used in [11] will not work

for hypergraphs.

While we know that the spider cover number is only an upper bound for the infectious power

domination number for hypertrees as seen in Example 2.5.6, we do not know if there is a useful

lower bound.

Cartesian products also present a large number of open questions. We showed in Proposition

2.6.6 that the infectious power domination number of the Cartesian product of two hypergraphs

can be greater than either hypergraph but we do not have a general upper or lower bound.
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CHAPTER 3. PMU-DEFECT-ROBUST POWER DOMINATION

Modified from a manuscript in preparation for submission

Beth Bjorkman

Department of Mathematics, Iowa State University

Abstract

The power domination problem finds the placement of the minimum number of sensors called

phasor measurement units (PMUs) needed to monitor an electric power network. We consider

the minimum number of sensors and appropriate placement to ensure monitoring when k sensors

are allowed to fail. That is, what is the minimum multiset of the vertices, S, such that for every

F ⊆ S with |F | = k, S \ F is a power domination set. Such a set is called a k-robust power

domination set. This generalizes the work done by Pai, Chang, and Wang in 2010 on vertex-

fault-tolerant power domination, which did not allow for multiple sensors to be placed at the

same vertex. We provide general bounds and determine the k-robust power domination number

of some graph families.

3.1 Introduction

The power domination problem seeks to find the placement of the mimimum number of sensors

called phasor measurement units (PMUs) needed to monitor an electric power network. In [7],

Haynes et al. defined the power domination problem in graph theoretic terms by placing PMUs at

a set of initial vertices and then applying observation rules to the vertices and edges of the graph.

This process was simplified by Brueni and Heath in [3].

Pai, Chang, and Wang [10] generalized power domination to create fault-tolerant power domi-

nation in 2010. They ask for the minimum number of PMUs needed to monitor a power network

given that k of the PMUs will fail. Pai, Chang, and Wang allow the placement of only one PMU per

vertex, which they define as vertex-fault-tolerant power domination. We consider the related prob-
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lem of the minimum number of PMUs needed to monitor a power network given that k PMUs will

fail but also allow for multiple PMUs to be placed at a given vertex. We call this PMU-defect-robust

power domination, as it is not the vertices (PMU locations) that cause a problem with monitoring

the network, but the individual PMUs themselves.

In Section 3.2, we review definitions from past work and formally define PMU-defect-robust

power domination. We also include some basic results in that section. Section 3.3 gives general

bounds for k-robust power domination. Section 3.4 contains results for complete bipartite graphs

and Section 3.5 has results for some square grid graphs. We examine trees in Section 3.6. Finally,

in Section 3.7, we make suggestions for future work.

3.2 Preliminaries

In this section, we begin by giving relevant graph theory definitions. Then we will define power

domination, vertex-fault-tolerant power domination, and PMU-defect-robust power domination.

Finally, we include useful properties of the floor and ceiling functions.

3.2.1 Graph theory

A graph G is a set of vertices, V (G), and a set of edges, E(G). Each (unordered) edge consists

of a set of two distinct vertices; the edge {u, v} is often written as uv. When G is clear, we

write V = V (G) and E = E(G). A path from v1 to v`+1 is a sequence of vertices and edges

v1, e1, v2, e2, . . . , v`, e`, v`+1 so that the vi are distinct vertices and vi ∈ ei for all i and vi ∈ ei−1 for

all i ≥ 2. Such a path has length `. The distance between vertices u and v is the minimum length

of a path between u and v. A graph G is connected if there is a path from any vertex to any other

vertex. Throughout what follows, we consider only graphs that are connected.

We say that vertices u and v are neighbors if uv ∈ E. The neighborhood of u ∈ V is the set

containing all neighbors of u and is denoted by N(u). The closed neighborhood of u is N [u] = N(u)∪

{u}. The degree of a vertex u ∈ V is the number of edges that contain u, that is, degG (u) = |N(u)|.

When G is clear, we omit the subscript. The maximum degree of a graph G is ∆ (G) = max
v∈V

deg (v).
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A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced

subgraph H of a graph G, denoted H = G[V (H)], is a graph with vertex set V (H) ⊆ V (G) and

edge set E(H) = {uv : u, v ∈ V (H) and uv ∈ E(G)}.

Graph Theory by Diestel [4] serves as a reference for graph definitions not given here.

3.2.2 Power domination, vertex-fault-tolerant power domination, and PMU-defect-

robust power domination

What follows is an equivalent statement of the power domination process as defined in [7], as

established by [3].

The power domination process on a graph G with initial set S ⊆ V proceeds recursively by:

1. B =
⋃
v∈S

N [v]

2. While there exists v ∈ B such that exactly one neighbor, say u, of v is not in B, add u to B.

Step 1 is referred to as the domination step and each repetition of step 2 is called a zero forcing

step. During the process, we say that a vertex in B is observed and a vertex not in B is unobserved.

If v causes u to join B, we say that v forces u and will sometimes write this as v → u. A power

dominating set of a graph G is an initial set S such that B = V (G) at the termination of the power

domination process. The power domination number of a graph G is the minimum cardinality of a

power dominating set of G and is denoted by γP (G). A minimum power dominating set gives an

optimal placement of PMUs in the graph.

In [10], Pai, Chang, and Wang define the following variant of power domination. For a graph

G and an integer k with 0 ≤ k ≤ |V |, a set S ⊆ V is called a k-fault-tolerant power dominating

set of G if S \ F is still a power dominating set of G for any subset F ⊆ V with |F | ≤ k. The

k-fault-tolerant power domination number, denoted by γkP (G), is the minimum cardinality of a

k-fault-tolerant power dominating set of G.

While k-fault-tolerant power domination allows us to examine what occurs when a previously

chosen PMU location is no longer usable (yet the vertex remains in the graph), it is also interesting
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to study when an individual PMU fails. That is, allow for multiple PMUs to be placed at the same

location and consider if a subset of the PMUs fail. This also avoids issues with poorly connected

graphs, such as in Figure 3.1, where γ1P (G) may be close to the number of vertices of G. Thus we

define PMU-defect-robust power domination as follows.

Definition 3.2.1. For a given graph G and integer k ≥ 0, we say that a multiset S, each of whose

elements is in V , is a k-robust power dominating set of G if S \F is a power dominating set of G for

any submultiset F of S with |F | = k. We shorten k-robust power dominating set of G to k-rPDS

of G. The size of a minimum k-rPDS is denoted by γ̈kP (G) and such a multiset is also referred to

as a γ̈kP -set of G. The number of PMUs at a vertex v ∈ S is its multiplicity in S, which we denote

by #PMU (v).

To demonstrate the difference between vertex-fault-tolerant power domination and PMU-defect-

robust power domination, and the effect of low connectivity on vertex-fault-tolerant power dom-

ination, consider a star on 16 vertices with k = 1. This is shown in Figure 3.1. Notice that in

vertex-fault-tolerant power domination, if one PMU was placed in the center of the star and F is

taken to be the center, then all but one of the leaves must be in S in order to still form a power

dominating set. On the other hand, for PMU-defect-robust power domination, we may simply

place 2 PMUs on the center vertex. When one of these PMUs fails, the other will complete the

power domination process on its own. Futhermore, S16 does not have a vertex-fault-tolerant power

dominating set for k ≥ 3, as removing PMUs from the center vertex and 2 leaves prevents the

observation of the two leaves.

There are several observations that one can quickly make.

Observation 3.2.2. For any graph G, γ̈0P (G) = γ0P (G) = γP (G).

Observation 3.2.3. For any graph G, γ̈kP (G) ≤ γkP (G).

Observation 3.2.4. For any graph G, γP (G) = 1 if and only if γ̈kP (G) = k + 1 for all k ≥ 0.

For any minimum k-rPDS, having more than k + 1 PMUs at a single vertex is redundant.
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Figure 3.1 The difference between vertex-fault-tolerant power domination and PMU-de-
fect-robust power domination shown for S16 when k = 1.

Observation 3.2.5. Let G be a graph and k ≥ 0. If S is a γ̈kP -set of G, then for all v ∈ S we have

#PMU (v) ≤ k + 1.

3.2.3 Floor and ceiling functions

Throughout what follows, recall the following rules for the floor and ceiling functions. Most can

be found in Chapter 3 in [9] and we provide proofs for the rest.

Proposition 3.2.6. [9, Equation 3.11] If m is an integer, n is a positive integer, and x is any real

number, then ⌈
dxe+m

n

⌉
=

⌈
x+m

n

⌉
.

Proposition 3.2.7. [9, Ch. 3 Problem 12] If n is a positive integer and m is a real number, then

⌈m
n

⌉
=

⌊
m− 1

n

⌋
+ 1.

Proposition 3.2.8. [9, Equation 3.4] For any real number x, d−xe = −bxc.

Proposition 3.2.9. If x and y are real numbers then

dxe+ dye − 1 ≤ dx+ ye.
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Proof. Observe that

dxe − 1 + dye − 1 < x+ y

and so

dxe − 1 + dye − 1 < dx+ ye

dxe+ dye − 2 < dx+ ye ,

which is a strict inequality of integers, so

dxe+ dye − 1 ≤ dx+ ye.

We can repeatedly apply the inequality in Proposition 3.2.9 to obtain

Corollary 3.2.10. If x is a real number and a is a positive integer then

adxe ≤ daxe+ a− 1.

3.3 General bounds

First we will show that γ̈kP (G) is strictly increasing in k.

Proposition 3.3.1. Let k ≥ 0. For any graph G, γ̈kP (G) + 1 ≤ γ̈k+1
P (G).

Proof. Consider a γ̈k+1
P -set of G, S. Let v ∈ S. Create S′ = S \ {v}, that is, S′ is S with

one fewer PMU at v. Observe that for any F ′ ⊆ S′ with |F ′| = k, we have F ′ ∪ {v} ⊆ S and

|F ′ ∪ {v}| = k + 1. Hence S \ (F ′ ∪ {v}) is a power dominating set of G. Thus, for any such F ′,

we have (S \ {v}) \ F ′ = S′ \ F ′ is a power dominating set of G. Therefore, S′ is a k-robust power

dominating set of G of size |S| − 1.

Proposition 3.3.1 can be applied repeatedly to obtain the next result.

Corollary 3.3.2. Let k ≥ 0 and j ≥ 1. For any graph G,

γ̈kP (G) + j ≤ γ̈k+jP (G) .



37

Corollary 3.3.2 implies the lower bound in the next proposition. The upper bound follows from

taking k + 1 copies of any minimum power dominating set for G to form a k-rPDS.

Proposition 3.3.3. Let k ≥ 0. For any graph G,

γP (G) + k ≤ γ̈kP (G) ≤ (k + 1)γP (G) .

Notice that for any graph G with γP (G) = 1, Proposition 3.3.3 is an equality with k + 1 =

γ̈kP (G) = k + 1, in agreement with Observation 3.2.4.

The next explanation is analogous to the argument for [7, Observation 4]. That is, consider a

graph G with ∆ (G) ≥ 3 and a γ̈kP -set S containing a vertex v with deg (v) ≤ 2. Let u be the vertex

of G of degree 3 at minimum distance from v. Move all PMUs from v to u to create S′. Then any

vertex that would have been observed by a result of a force performed by v will instead be observed

via u. If #PMU (v) < k + 1 and this movement results in less than k + 1 PMUs at u, then if u is

removed from S′ the power domination process will continue as if v had been removed from S and

so S′ is a k-rPDS.

Observation 3.3.4. Let k ≥ 0. If G is a graph with ∆(G) ≥ 3, then G contains a γ̈kP -set in which

every vertex has degree at least 3.

A terminal path from a vertex v in G is a path from v to a vertex u such that deg (u) = 1 and

every internal vertex on the path has degree 2. A terminal cycle from a vertex v in G is a cycle

v, u1, u2, . . . , u`, v in which degG (ui) = 2 for i = 1, . . . , `.

If we consider a connected graph G with ∆ (G) ≥ 3, then any vertex v that has two terminal

paths or a terminal cycle has degree at least 3. For any γ̈kP -set in which every vertex has degree at

least 3, there are at least two neighbors of v which can only be observed via v. As v can only observe

both of these neighbors via the domination step, it must be the case that #PMU (v) = k+ 1. This

is formalized in Proposition 3.3.5.

Proposition 3.3.5. Let k ≥ 0 and let G be a graph with ∆(G) ≥ 3. Let S be a γ̈kP -set in which

every vertex has degree at least 3. Any vertex v ∈ S that has at least two terminal paths from v
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must have #PMU (v) = k + 1. Any vertex v ∈ S that has at least one terminal cycle must have

#PMU (v) = k + 1.

Zhao, Kang, and Chang [11] defined the family of graphs T to be those graphs obtained by

taking a connected graph H and for each vertex v ∈ V (H) adding two vertices, v′ and v′′; and two

edges vv′ and vv′′, with the edge v′v′′ optional. The complete bipartite graph K3,3 is the graph

with vertex set X ∪ Y with |X| = |Y | = 3 and edge set E = {xy : x ∈ X, y ∈ y}.

Theorem 3.3.6. [11, Theorem 3.] If G is a connected graph on n ≥ 3 vertices then γP (G) ≤ n
3

with equality if and only if G ∈ T ∪ {K3,3}.

This gives an upper bound for γ̈kP (G) in terms of the size of the vertex set and equality condi-

tions, as demonstrated in the next corollary.

Corollary 3.3.7. If G is a graph with n ≥ 3 vertices, then γ̈kP (G) ≤ (k + 1)n3 for k ≥ 0. When

k = 0, this is an equality if and only if G ∈ T ∪{K3,3}. When k ≥ 1, this is an equality if and only

if G ∈ T .

Proof. The upper bound is given by Proposition 3.3.3 and Theorem 3.3.6. From these results,

we need only consider T ∪ {K3,3} for equality. The k = 0 case follows directly from the power

domination result. Let k ≥ 1.

First consider G ∈ T , constructed from H. Note that ∆ (G) ≥ 3, so there exists a γ̈kP -set, say

S, in which every vertex has degree at least 3, so every vertex in S is a vertex of H. For each

v ∈ V (H), degG (v) ≥ 3 and there are either two terminal paths (if v′v′′ 6∈ E(H)) or a terminal

cycle (if v′v′′ ∈ E(H)). By Proposition 3.3.5, each v ∈ V (H) must have at least k + 1 PMUs.

Finally, consider K3,3. Note that γP (K3,3) = 2. We will see in Theorem 3.4.1 that γ̈kP (K3,3) =

k +
⌊
k
5

⌋
+ 2 < 2(k + 1) for k ≥ 1.

For any graph G, define s (G) to be the size of the largest set A ⊆ V such that for any B ⊆ A

with |B| = γP (G), B is a power dominating set of G. Observe that γP (G) ≤ s (G). For example,

the star graph S16 shown in Figure 3.1 has γP (S16) = s (S16) = 1. The complete bipartite graph



39

K3,3 has γP (K3,3) = 2 and s (K3,3) = 6 as any two vertices of K3,3 form a power dominating set.

In Section 3.5, we will determine s (G) for small square grid graphs. From the definition of s (G)

and Proposition 3.3.3, we have the following proposition.

Proposition 3.3.8. For any graph G and k ≥ 0, if s (G) ≥ k + γP (G) then γ̈kP (G) = k + γP (G).

Proof. If s (G) ≥ k+γP (G), then there exists a set S of size at least k+γP (G) so that any γP (G)

elements of S form a power dominating set of G. Thus, any γP (G) + k elements of S form a

k-rPDS of G of size γP (G) + k and so γ̈kP (G) ≤ γP (G) + k. By the lower bound in Proposition

3.3.3, γ̈kP (G) ≥ γP (G) + k.

When s (G) > γP (G) ≥ 2, the following upper bound sometimes improves the upper bound

from Proposition 3.3.3.

Theorem 3.3.9. If s (G) > γP (G) ≥ 2, then γ̈kP (G) ≤
⌈
s(G)(k+γP (G)−1)
s(G)−γP (G)+1

⌉
for k ≥ 1.

Proof. Let A =
{
v1, v2, . . . , vs(G)

}
⊆ V be a maximum set such that any subset of size γP (G)

is a power dominating set of G. For what follows, let p =
⌈
s(G)(k+γP (G)−1)
s(G)−γP (G)+1

⌉
. Construct S ={

vm1
1 , vm2

2 , . . . , v
ms(G)

s(G)

}
where

m1 =

⌈
p

s (G)

⌉

mi = min


⌈

p

s (G)

⌉
, p−

i−1∑
j=1

mj

 , i ≥ 2.

In order to show that S is a k-rPDS of G, we will show that p − k ≥ (γP (G) − 1)
⌈

p
s(G)

⌉
+ 1.

Assume this is true. Then whenever we have p PMUs and k fail, there are at least (γP (G) −

1)
⌈

p
s(G)

⌉
+ 1 working PMUs. As each vertex has at most

⌈
p

s(G)

⌉
PMUs, there are at least γP (G)

vertices of A that must have at least one PMU remaining and so form a power dominating set. We

prove the equivalent statement

p− k − (γP (G)− 1)

⌈
p

s (G)

⌉
≥ 1.
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Observe that by Proposition 3.2.6,

p− k − (γP (G)− 1)

⌈
p

s (G)

⌉
= p− k − (γP (G)− 1)

⌈
k + γP (G)− 1

s (G)− γP (G) + 1

⌉
.

Then by Corollary 3.2.10 and simplifying, we see that

p− k − (γP (G)− 1)

⌈
p

s (G)

⌉
≥ p− k −

(⌈
(k + γP (G)− 1)(γP (G)− 1)

s (G)− γP (G) + 1

⌉
+ γP (G)− 2

)

= p−
(⌈

(k + γP (G)− 1)(γP (G)− 1)

s (G)− γP (G) + 1

⌉
+ γP (G)− 2 + k

)

= p−
⌈

(k + γP (G)− 1)(γP (G)− 1) + (s (G)− γP (G) + 1)(γP (G)− 2 + k)

s (G)− γP (G) + 1

⌉

= p−
⌈
s (G) (k + γP (G)− 1)− s (G) + γP (G)− 1

s (G)− γP (G) + 1

⌉

= p−
⌈
s (G) (k + γP (G)− 1)

s (G)− γP (G) + 1

⌉
+ 1

= 1.

To see the difference between the upper bound in Theorem 3.3.9 and Proposition 3.3.3, let

s (G) = γP (G) + r. Then Theorem 3.3.9 becomes

γ̈kP (G) ≤
⌈

(γP (G) + r)(k + γP (G)− 1)

r + 1

⌉

=

⌈
γP (G) (k + 1) + γP (G) (γP (G)− 2) + r(k + γP (G)− 1)

r + 1

⌉

= γP (G) (k + 1) +

⌈
−rγP (G) (k + 1) + γP (G) (γP (G)− 2) + r(k + γP (G)− 1)

r + 1

⌉

= γP (G) (k + 1) +

⌈
−kr(γP (G)− 1) + γP (G) (γP (G)− 2)− r

r + 1

⌉
.
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This means that the bound from Theorem 3.3.9 improves the upper bound in Proposition 3.3.3

when the second term above is negative. Since r ≥ 1 and γP (G) ≥ 2, the second term is negative

as k approaches infinity. Thus for s (G) > γP (G) ≥ 2, we see that there exists some k′ such that for

every k ≥ k′ ≥ 1, the bound from Theorem 3.3.9 is better than the upper bound from Proposition

3.3.3. For Section 3.4, it will be useful to look specifically at Theorem 3.3.9 when γP (G) = 2.

Corollary 3.3.10. If s (G) > γP (G) = 2, then γ̈kP (G) ≤
⌈
s(G)(k+1)
s(G)−1

⌉
for k ≥ 1.

3.4 Complete bipartite graphs

The complete bipartite graph, Ka,b is the graph with vertex set V = X ∪ Y such that |X| = a,

|Y | = b, and edge set is E = {xy : x ∈ X, y ∈ Y }.

Theorem 3.4.1. Let k ≥ 0. Let K3,3 be the complete bipartite graph with parts X = {x1, x2, x3}

and Y = {x4, x5, x6}. Then

γ̈kP (K3,3) = k +

⌊
k

5

⌋
+ 2.

Proof. We begin by observing that any two vertices of K3,3 form a power dominating set, that is,

s (K3,3) = 6. First we prove the lower bound k +
⌊
k
5

⌋
+ 2 ≤ γ̈kP (K3,3) where k = 5m. Assume for

contradiction that there exists a γ̈5mP -set S of size 5m +
⌊
5m
5

⌋
+ 1 = 6m + 1. By the pigeonhole

principle, some xi contains at least
⌈
6m+1

6

⌉
= m+ 1 of the PMUs. Observe that |S| − 5m = m+ 1.

Thus, we can remove 5m PMUs so that some vertex xi contains all remaining PMUs. This is a

contradiction, as γP (K3,3) = 2. Thus, γ̈
5(m+1)
P (K3,3) ≥ 6m+ 2 = 5m+

⌊
5m
5

⌋
+ 2, as desired. The

lower bounds when k is not a multiple of 5 then follow by Corollary 3.3.2.

For the upper bound, observe that by Corollary 3.3.10,

γ̈kP (K3,3) ≤
⌈

6(k + 1)

5

⌉
= k + 1 +

⌈
k + 1

5

⌉
.
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Then by Proposition 3.2.7, we see that

γ̈kP (K3,3) ≤ k + 1 +

⌊
k + 1− 1

5

⌋
+ 1

= k +

⌊
k

5

⌋
+ 2.

Theorem 3.4.1 gives an example of a graph for which Theorem 3.3.9 is tight and the structure

of the γ̈kP -set suggested by the proof of Theorem 3.3.9 is shown in Figure 3.2. A larger family of

complete bipartite graphs follows the same pattern, as shown in Theorem 3.4.2.
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0

k = 4 k = 5 k = 6 k = 7

Figure 3.2 Minimum k-rPDS for K3,3 for k = 0, 1, . . . , 7.

Theorem 3.4.2. Let k ≥ 0. Let K3,b be the complete bipartite graph with parts X = {x1, x2, x3}

and Y = {y1, y2, . . . , yb}. For b ≥
⌊
k
3

⌋
+ 3,

γ̈kP (K3,b) = k +

⌊
k

3

⌋
+ 2.

Proof. First we prove the lower bound when k = 3m. Assume for eventual contradiction that there

exists a γ̈3mP -set, S, of size 3m+
⌊
3m
3

⌋
+ 1 = 4m+ 1. Let y =

∑b
i=1 #PMU (yi). Then

#PMU (x1) + #PMU (x2) + #PMU (x3) + y = 4m+ 1.
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By the pigeonhole principle, we see that one of x1, x2, x3 or y must represent at least⌈
4m+ 1

4

⌉
= m+ 1

of the PMUs. Observe that |S| − 3m = m+ 1. Thus, we can remove 3m PMUs such that either:

1. All m + 1 remaining PMUs are on a single xi, which is a contradiction as this is only one

vertex and γP (K3,b) = 2; or

2. All m+ 1 remaining PMUs are on the yi vertices. In order for the PMUs on the yi’s to form

a power dominating set of K3,b, b − 1 of the yi’s must have a PMU. However, we also have

that

b− 1 ≥
⌊

3m

3

⌋
+ 3− 1

= m+ 2.

This means that at least m+2 PMUs are needed but after 3m PMUs are removed only m+1

PMUs remain, a contradiction.

Therefore, γ̈3mP (K3,b) > 4m+ 1. Hence, γ̈3mP (K3,b) ≥ 4m+ 2 = 3m+
⌊
3m
3

⌋
+ 2, as desired. The

lower bounds for the remaining cases then follow by Corollary 3.3.2.

For the upper bound, the case of k = 0 is given by the power domination number. If b = 3 we

need only consider when k = 0, 1, 2; this is covered by Theorem 3.4.1. If b ≥ 4 and k ≥ 1, we have

s (K3,b) = 4. Then by Corollary 3.3.10,

γ̈kP (K3,b) ≤
⌈

4(k + 1)

3

⌉
= k + 1 +

⌈
k + 1

3

⌉
and by Proposition 3.2.7,

γ̈kP (K3,b) ≤ k + 1 +

⌊
k + 1− 1

3

⌋
+ 1

= k +

⌊
k

3

⌋
+ 2.
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3.5 Square grid graphs

The Cartesian product of graphs G and H, denoted G�H, has vertex set V (G�H) = V (G)×

V (H), and edge set E(G�H) = {(x, y)(x′, y′) : x = x′ and yy′ ∈ E(H) or y = y′ and xx′ ∈ E(G)}.

The n by m grid graph for n ≤ m is Gn,m = Pn�Pm. In [5], Dorfling and Henning found the power

domination number of grid graphs.

Theorem 3.5.1. [5, Theorem 1] If Gn,m is an n×m grid graph where m ≥ n ≥ 1, then

γP (Gn,m) =


⌈
n+1
4

⌉
if n ≡ 4 mod 8⌈

n
4

⌉
otherwise

.

For what follows, we will consider only the case n = m, i.e., square grid graphs, and let the

vertices of Pn = {1, 2, . . . , n}. As an example, Figure 3.3 shows G4,4.

(1,1)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(4,1)

(4,2)

(4,3)

(4,4)

Figure 3.3 G4,4

Using Sage (see [1]) and modifying the power domination code from [8], we were able to use

brute force in order to find the k-robust power domination number for k = 1, . . . , 7 for G4,4 and

for k = 1, 2, 3 for G5,5 and G6,6. This data is displayed in the following tables, which demonstrate

example minimum γ̈kP -sets for each case.
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Table 3.1 Computational results for G4,4.

k γ̈kP (G4,4) Example γ̈kP -set

0 2 {(1, 2)1, (2, 3)1}
1 3 {(1, 2)1, (2, 3)1, (4, 2)1}
2 4 {(1, 2)1, (2, 3)1, (4, 2)1, (3, 3)1}
3 6 {(1, 2)2, (2, 3)2, (4, 2)2}
4 7 {(1, 2)2, (2, 3)2, (4, 2)2, (3, 3)1}
5 8 {(1, 2)2, (2, 3)2, (4, 2)2, (3, 3)2}
6 10 {(1, 2)3, (2, 3)3, (4, 2)3, (3, 3)1}
7 11 {(1, 2)3, (2, 3)3, (4, 2)3, (3, 3)2}
...

...
...

Table 3.2 Computational results for G5,5.

k γ̈kP (G5,5) Example γ̈kP -set

0 2 {(2, 4)1, (3, 2)1}
1 3 {(2, 4)1, (3, 2)1, (2, 1)1}
2 5 {(2, 4)2, (3, 2)2, (2, 1)1}
3 6 {(2, 4)2, (3, 2)2, (2, 1)2}
...

...
...

Table 3.3 Computational results for G6,6.

k γ̈kP (G6,6) Example γ̈kP -set

0 2 {(2, 4)1, (3, 2)1}
1 4 {(2, 4)2, (3, 2)2}
2 5 {(2, 4)1, (3, 2)1, (6, 5)1, (4, 4)1, (2, 6)1}
3 7 {(2, 4)2, (3, 2)2, (6, 5)1, (4, 4)1, (2, 6)1}
...

...
...
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We can use this data to determine s (G) for these graphs. For example, Table 3.1 shows that

there is no set of 5 vertices for which any subset of 2 = γP (G4,4) vertices forms a power dominating

set of G4,4, as this would be a γ̈3P -set of size 5. Thus, s (G4,4) ≤ 4. The exhibited γ̈2P -set for G4,4

shows s (G4,4) ≥ 4. Similarly, we can derive from Table 3.2 that s (G5,5) = 3 and from Table 3.3

that s (G6,6) = γP (G6,6) = 2.

As γP (G4,4) = 2, the upper bound from Corollary 3.3.10 is γ̈kP (G4,4) ≤
⌈
4(k+1)

3

⌉
. For the given

k values, we see that γ̈kP (G4,4) achieves this upper bound. Moreover, notice that the structure of

the found γ̈kP -sets for G4,4 follows the structure given by the proof of Theorem 3.3.9. Whether this

pattern will continue for larger values of k is an open question.

We see that γP (G5,5) = 2 and the upper bound from Corollary 3.3.10 is γ̈kP (G5,5) ≤
⌈
3(k+1)

2

⌉
.

Here as well, for the computed k values, we see that γ̈kP (G5,5) achieves this upper bound. Again

we see that the structure of the found γ̈kP -sets for G5,5 follows the structure given by the proof

of Theorem 3.3.9. This case also requires further study to determine if this pattern continues for

larger values of k.

For G6,6, s (G6,6) = γP (G6,6) = 2, so Corollary 3.3.10 does not apply to this case. The

relevant upper bound from Proposition 3.3.3 is γ̈kP (G6,6) ≤ 2(k + 1). We see that γ̈2P (G6,6) =

5 < 2(2 + 1) = 6, so the upper bound is not tight in this instance. The lower bound from

Proposition 3.3.3 is γ̈kP (G6,6) ≥ k + 2, but γ̈2P (G6,6) = 5 > 2 + 2 = 4, so the lower bound is also

not tight. Similarly, we find that neither bound is tight for k = 3 as well. It may be the case that

k + γP (G6,6) < γ̈kP (G6,6) < γP (G6,6) (k + 1) for all k ≥ 2; more investigation is needed.

3.6 Trees

A tree is a connected graph with no cycles. A spider is a tree with at most one vertex of degree

3 or more. A spider cover of a tree T is a partition of V , say {V1, . . . , V`} such that G[Vi] is a spider

for all i. The spider number of a tree T , denoted by sp (T ), is the minimum number of partitions

in a spider cover.

Theorem 3.6.1. [7, Theorem 12] For any tree T , γP (T ) = sp (T ).
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In [7], Haynes et al. present a proof of Theorem 3.6.1. We will present an issue with the

argument presented in [7] and then give an alternate proof.

First we repeat relevant notation used in [7]: “If T is a tree rooted at r and v is a vertex of T ,

then the level number of v, which we denote by `(v), is the length of the unique rv path in T . If a

vertex v of T is adjacent to u and `(u) > `(v), then u is called a child of v, and v is the parent of

u, written v = parent(u). A vertex w is a descendant of v (and v is an ancestor of w) if the level

numbers of the vertices on the vw path are monotonically increasing. We let D(v) denote the set

of descendants of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree of T rooted at v is the

subtree induced by D[v] and is denoted by Tv.” Also needed is the following observation.

Observation 3.6.2. [7, Observation 4] If G is a graph with ∆ (G) ≥ 3, then G contains a minimum

power dominating set in which every vertex has degree at least 3.

Next, we delve into the issue of the proof given in [7] of Theorem 3.6.1. Specifically, we have

found a counterexample to a subcase of Case 2 in the proof of Lemma 3.6.3.

Lemma 3.6.3. [7, Lemma 10] For any tree T , sp (T ) ≤ γP (T ).

What follows is the relevant portion of the proof of Lemma 3.6.3, reproduced directly from [7].

Proof. “We proceed by induction on m = γP (T ) . . . Let T be a tree with γP (T ) = m + 1. Let

S = {v1, v2, . . . , vm+1} be a [minimum power dominating set of T ]. By [Observation 3.6.2], we may

assume that each vertex of S has degree at least 3 in T .

Let T be rooted at the vertex vm+1. Relabeling if necessary, we may assume that v1 is the

vertex of S at maximum distance from vm+1 in T . Then v1 has at least two children, and each

descendant of v1 has degree at most 2 in T . Let u1 be the ancestor of v1 of degree at least 3 that

is at a minimum distance from v1
1. Then either u1 is the parent of v1 or every internal vertex on

the u1v1 path has degree 2 in T . We consider two possibilities, depending on whether u1 ∈ S.

. . .

Case 2. u1 6∈ S.

1γP (T ) ≥ 2 implies u1 exists.



48

Let w1, w2, . . . , wk be the children of u1, where w1 is the child on the u1v1 path (possibly

v1 = w1). For i = 1, 2, . . . , k, let Wi = D[wi]. In particular, v1 ∈ W1. Since u1 6∈ S and since S is

a power dominating set of T , all except possibly one of the sets W1,W2, . . . ,Wk contains a vertex

of S.

. . .

Suppose, on the other hand, that each of the sets W2, . . . ,Wk contains a vertex of S. Then

|Wi ∩ S| ≥ 1 for i = 1, 2, . . . , k. Let T1 be the tree induced by W1 ∪ {u1}. Then T1 is a spider with

v1 as the vertex of degree exceeding 2. For i = 2, . . . , k, let Ti be the maximal subtree rooted at wi.

Let Tk+1 = T −D[u1]. For i = 1, 2, . . . , k + 1, let Si = S ∩ V (Ti). Then . . . each Si is a [minimum

power dominating set of Ti] . . .”

v3

u1

w1

v1

w2 v2

T1

T2

T3

Figure 3.4 A counterexample to the proof technique used in [7] for Lemma 3.6.3.

In Figure 3.4, we demonstrate a tree T with minimum power dominating set S = {v1, v2, v3}

satisfying the following:

1. every vertex of S has degree at least 3,
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2. v1 is the element of S of maximum distance from v3,

3. u1 6∈ S, and

4. each D[wi] contains an element of S.

However, S2 = {v2} is not a power dominating set of T2.

We now present an alternative proof, which is a generalization to power domination of the

argument used by Ekstrand et al. in [6]. Let G be a graph and let S = {v1, v2, . . . , vγP (G)} be a

minimum power dominating set of G. Construct the chronological list of forces, F in the following

manner.

1. Add the forces vi → u one at a time for all u ∈ N(vi) ∩

V −
S ∪⋃

j<i

N(vj)

 for

1 ≤ i ≤ γP (G) to F .

2. List the forces from the zero forcing step in the order in which they occur.

Definition 3.6.4. Given a tree T , power dominating set S, chronological list of forces, F , and

vertex v ∈ S, define Sv to be the set of vertices w such that there is a sequence of vertices in F ,

v = v1 → v2 → · · · → vr = w, including the case of no forces, i.e., v = w. The forcing spider Sv is

the induced subgraph Sv = T [Sv]. The forcing spider cover is S = {Sv : v ∈ S}.

Theorem 3.6.5. If T is a tree, S is a power dominating set of T , and F is a chronological list of

forces of S then

1. T [Sv] is a spider for all v ∈ S

2. S = {Sv : v ∈ S} is a spider cover of T

3. sp (T ) ≤ γP (T )

Proof. By construction, every vertex u ∈ V is forced exactly one way in F , that is, there is a unique

force which ends in u. Moreover, the only vertices which can possibly perform multiple forces are

the vertices of S. This means that each Sv is disjoint. Moreover, each Sv contains at most one
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vertex that performed multiple forces, and so T [Sv] contains at most one vertex of degree 3. As T

is a tree, T [Sv] is a tree. Therefore, T [Sv] is a spider.

Each T [Sv] forms a spider and Sv are disjoint by construction. As S is a power dominating

set of T , every vertex is forced at some point and so every vertex is in some Sv, Thus we see that

S = {Sv : v ∈ S} is a spider cover of T .

This holds for any initial power dominating set S of T . Thus, any power dominating set S

yields a forcing spider cover. As a forcing spider cover forms a spider cover of T , we see that

sp (T ) ≤ γP (T ).

Therefore, Theorem 3.6.1 does hold.

As in Section 3.5, we have used Sage (see [2]) to find the 1-robust power domination number

for all trees on 19 or fewer vertices. In every case, γ̈1P (T ) = 2 sp (T ). We also tested all trees on

6 to 13 vertices for 2 ≤ k ≤ 10 and found γ̈kP (T ) = (k + 1) sp (T ). This supports the following

conjecture.

Conjecture 3.6.6. For any tree T , γ̈kP (T ) = (k + 1) sp (T ).

3.7 Concluding remarks

PMU-defect-robust power domination allows us to place multiple PMUs at the same location

and consider the consequences if some of these PMUs fail. There are many questions left to examine

in future work.

Is there an improvement to the lower bound given in Proposition 3.3.3 for γP (G) > 1? As

K3,3 demonstrates in Theorem 3.4.1, it seems likely that there is a better lower bound based on

the number of vertices and the power domination number that utilizes the pigeonhole principle to

show that the lower bound must increase at certain values of k.

We have begun the study of k-robust power domination for certain families of graphs but

work remains to be done. For complete bipartite graphs, we still have the case of γ̈kP (K3,b) for

4 ≤ b <
⌊
k
3

⌋
+ 3. The question of γ̈kP (Ka,b) for a, b ≥ 4 is also open. We have some computational
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results for small grid graphs, which indicate that both G4,4 and G5,5 may attain the upper bound

from Corollary 3.3.10, but this still needs to be shown. On the other hand, computational results

show that G6,6 can have a k-robust power domination number strictly between the upper and lower

bounds given by Proposition 3.3.3 and so would be interesting to study. Finally, while we have

found an alternate proof of the power domination number for trees and have computational results

supporting the generalization to k-robust power domination in Conjecture 3.6.6, this remains to be

proven.
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CHAPTER 4. GENERAL CONCLUSION

The power domination problem is interesting both as an application to the real world power

grid and also as a graph theory problem. In Chapter 1, we introduced the history of the problem

and explained how graph theory can be used to solve it.

Chapter 2 presented our first variation of the power domination problem: what happens if

we change the structure we want to monitor from a graph to a hypergraph? Infectious power

domination is a new way to generalize the power domination problem to hypergraphs. We examined

general bounds; graph families such as complete k-partite hypergraphs, circular arc hypergraphs,

and trees; and the impact of hypergraph operations including edge/vertex removal, linear sums,

Cartesian products, and weak coronas. There are a plethora of questions that remain. In particular,

the general upper bound in Conjecture 2.4.6 would be an interesting place to start, as we have found

several families of graphs that achieve this bound. There are many families of hypergraphs that

have yet to be studied; this includes finding a lower bound for hypertrees. The infectious power

domination number of a Cartesian product can be greater than that of either input hypergraph, as

shown in Theorem 2.6.6, but general upper and lower bounds are still needed.

In Chapter 3, we examined how to handle sensor failure: how do we find a power dominating set

that works if any k of the sensors fail? The PMU-defect robust power domination number is also

a novel parameter. We presented general bounds, gave explicit values for some complete bipartite

graphs, and found computational results for small square grid graphs. We also gave a new proof of

the power domination number for trees and conjectured the PMU-defect robust power domination

number for trees. There are many questions left to explore. One avenue of future study is to find

an improvement to the lower bound in Proposition 3.3.3. There are also many interesting families

to be studied, including grid graphs.
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