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CHAPTER 1. INTRODUCTION

This thesis considers the problem of identifying two vectors from knowledge of their sum.

Obviously this is impossible in general. However, when a time series of vectors is available

and some structure is assumed on both vectors, identification becomes possible. Th structure

assumed here is that one vector is sparse, that is, most of its entries are zero, and the other

vector lies in a low-dimensional subspace, that is, if the vectors in the time series are horizontally

concatenated they will form a low-rank matrix. Suppose that at each time t a vector mt is

observed where

mt = xt + `t

with xt sparse and the `t all belonging to some low-dimensional subspace. The goal is to

recover xt and `t at each time t.

Even with the assumption that the xt are sparse, and the `t lie in a low-dimensional

subspace, there is still an identifiability problem. Sparse vectors when horizontally concatenated

could form a low rank matrix. Similarly, vectors in the low-dimensional subspace could be

sparse. So it is also assumed that the xt are not low-dimensional and the `t are not sparse.

The property of not being sparse is called denseness, and is quantified in the sequel. Rather

than directly assuming that xt are not low-rank, the results require that the supports of xt for

distinct t be sufficiently different.

As a motivation for our problem, imagine video sequence with a distinct background and

foreground. Suppose for example that a fixed surveillance camera records a scene as a person

walks through. The background images, which do not change very much, can be modeled as

belonging to a low-dimensional subspace. The foreground (person) is small compared to the

size of the image, so can be modeled as a sparse vector.
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Figure 1.1: An fMRI sequence

A similar application of background/foreground separation arises in functional magnetic

resonance imaging (fMRI). During an fMRI procedure, images of a patient’s brain are produced

that show which areas are “active” at a given time. This can be used to map out which areas

of the brain are used for different tasks. One can see from Figure 1.1 that the backgrounds

from left to right remain largely similar, and the part that is lit up only covers a small amount

of the overall image.

The above problem can be interpreted in two different ways. If the xt are of primary

interest, the problem is one of sparse recovery. Recently, much work has been done on the

problem of recovering sparse vectors. An example of early work is [1], which demonstrates the

effectiveness of the `1 norm for sparse reconstruction. In [2], the author considers the following

problem. Let y = Ax + b where x is sparse and b is small noise. That is ‖b‖2 < ε for some

ε > 0. The problem is to recover x from y. It is proved that under certain conditions on the

matrix A, the following convex program will recover x with error bounded by a small constant

times ε:

min
x̃
‖x̃‖1 subject to ‖y −Ax̃‖2 < ε. (1.1)

This procedure will be used as part of a larger algorithm to solve the original problem of

separating xt and `t. The reason (1.1) alone will not work here is that `t is not necessarily

small in magnitude.
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Another interpretation of the original problem is as a robust principal components analysis

(PCA) problem. Given a matrix of data, the goal of PCA is to compute a small number or

orthogonal directions along which most of the variability in the columns lie. Because traditional

procedures for PCA are sensitive to outliers in the data, much work has been done to develop

algorithms for PCA that are robust with respect to outliers. In seminal work, Candès et al.

[3] and Chandrasekaran et al. [4] both posed the robust PCA problem as separating a sparse

matrix X from a low-rank matrix L from knowledge of their sum M = X + L. Each proved

that the convex program,

min
X̃,L̃
‖X̃‖sum + γ‖L̃‖∗ subject to X̃ + L̃ = M (1.2)

will exactly recover X and L under certain (fairly mild) conditions. In the above, γ is a scalar

parameter, ‖ · ‖sum is the vector `1 norm of a matrix (sum of absolute values of entries), and

‖·‖∗ is the nuclear norm (sum of the singular values). The problem studied in this thesis can be

viewed as a recursive or on-line version of the robust PCA problem as posed in [3] and [4]. In

this thesis, the goal is to recover the columns of X and L as they arrive. One approach would

be to re-solve (1.2) each time a new column arrives, but this is not computationally feasible

when a real-time solution is desired.

This thesis analyzes versions of an algorithm called recursive projected compressed sensing

(ReProCS). At a high level, ReProCS works as follows: if an accurate estimate of the subspace

where the `t’s lie is available, then projecting perpendicular to this subspace estimate will

nullify most of `t. Let Φt denote this projection. Then Φtmt = Φtxt + Φt`t where ‖Φt`t‖2
is small. Finding xt is now a sparse recovery problem in small noise, so (1.1) can be used to

accurately recover xt. By subtracting the estimate of xt from mt, an estimate of `t is obtained.

Finally, the estimates of `t are used to maintain an accurate estimate of the subspace where

the `ts lie as the subspace changes slowly over time.

1.1 Thesis Organization

The format of this thesis is journal papers in a thesis. Chapter 1 introduces the problem

studied and gives some background information.
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Chapter 2 contains the paper “Online Matrix Completion and Online Robust PCA,” a

version of which has been submitted to IEEE Transactions on Information Theory and is

under review. Minor modifications have been made to the submitted version for the purposes

of this thesis. This paper proves a complete correctness for the ReProCS algorithm under four

main assumptions: 1) an accurate estimate of the initial subspace is available; 2) the vectors `t

are mutually independent over time, dense, and the subspace where they lie changes slowly; 3)

the support of xt changes ‘enough’ over time; 4) the algorithm parameters are set appropriately.

All of these assumptions are made precise and quantified in the paper itself. I was the primary

author and researcher for this paper. The overall structure of the proof follows that in [5]. The

pieces needed to obtain a complete correctness result were proved by me. Namrata Vaswani

contributed both research and writing.

Chapter 3 contains the paper “Recursive Sparse Recovery in Correlated Structured Noise,”

a paper that is being prepared for submission to IEEE Transactions on Information Theory. In

ongoing work, revisions have been made, and new results have been added to the paper. The

paper in this thesis contains two important improvements over the previous paper. First, the

assumption that the `ts are independent over time is relaxed, and a first order autoregressive

model is used for the coefficients of `t. Second, a subspace update step is added to the ReProCS

algorithm. This update step allows for old directions to be deleted from the estimate of the

subspace, which in turn allows for a relaxed denseness assumption on the low-dimensional

vectors. I was the primary author of this paper and proved the complete correctness result.

Jinchun Zhan did initial research on the correlated model, and Namrata Vaswani contributed

research and writing.

Chapter 4 gives general conclusions and directions for future research.
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CHAPTER 2. ONLINE MATRIX COMPLETION AND ONLINE

ROBUST PCA

A paper submitted to IEEE Transactions on Information Theory

Brian Lois and Namrata Vaswani

Abstract

This work studies two interrelated problems - online robust PCA (RPCA) and online low-

rank matrix completion (MC). In recent work by Candès et al., RPCA has been defined as a

problem of separating a low-rank matrix (true data), L := [`1, `2, . . . `t, . . . , `tmax ] and a sparse

matrix (outliers), S := [x1, x2, . . . xt, . . . , xtmax ] from their sum, M := L + S. Our work uses

this definition of RPCA. An important application where both these problems occur is in video

analytics in trying to separate sparse foregrounds (e.g., moving objects) and slowly changing

backgrounds.

While there has been a large amount of recent work on both developing and analyzing batch

RPCA and batch MC algorithms, the online problem is largely open. In this work, we develop

a practical modification of our recently proposed algorithm to solve both the online RPCA

and online MC problems. The main contribution of this work is that we obtain correctness

results for the proposed algorithms under mild assumptions. The assumptions that we need are:

(a) a good estimate of the initial subspace is available (easy to obtain using a short sequence

of background-only frames in video surveillance); (b) the `t’s obey a ‘slow subspace change’

assumption; (c) the basis vectors for the subspace from which `t is generated are dense (non-

sparse); (d) the support of xt changes by at least a certain amount at least every so often; and

(e) algorithm parameters are appropriately set.
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2.1 Introduction

Principal Components Analysis (PCA) is a tool that is frequently used for dimension reduc-

tion. Given a matrix of data D, PCA computes a small number of orthogonal directions, called

principal components, that contain most of the variability of the data. For relatively noise-free

data that lies close to a low-dimensional subspace, PCA is easily accomplished via singular

value decomposition (SVD). The problem of PCA in the presence of outliers is referred to as

robust PCA (RPCA). In recent work, Candès et al. [1] posed RPCA as a problem of separating

a low-rank matrix, L, and a sparse matrix, S, from their sum, M := L+S. They proposed a

convex program called principal components’ pursuit (PCP) that provided a provably correct

batch solution to this problem under mild assumptions. PCP solves

min
L̃,S̃
‖L̃‖∗ + λ‖S̃‖sum subject to L̃+ S̃ = M ,

where ‖·‖∗ is the nuclear norm (sum of singular values), ‖·‖sum is the sum of the absolute values

of the entries, and λ is an appropriately chosen scalar. The same program was analyzed in

parallel by Chandrasekharan et al. [2] and later by Hsu et al. [3]. Since these works, there has

been a large amount of work on batch approaches for RPCA and their performance guarantees.

When RPCA needs to be solved in a recursive fashion for sequentially arriving data vectors

it is referred to as online (or recursive) RPCA. Online RPCA assumes that a short sequence of

outlier-free (sparse component free) data vectors is available. An example application where this

problem occurs is the problem of separating a video sequence into foreground and background

layers (video layering) on-the-fly [1]. Video layering is a key first step for automatic video

surveillance and many other streaming video analytics tasks. In videos, the foreground usually

consists of one or more moving persons or objects and hence is a sparse image. The background

images usually change only gradually over time [1], e.g., moving lake waters or moving trees

in a forest, and hence are well modeled as lying in a low-dimensional subspace that is fixed or

slowly changing. Also, the changes are global (dense) [1]. In most video applications, it is valid

to assume that an initial short sequence of background-only frames is available and this can be

used to estimate the initial subspace via SVD.
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Often in video applications the sparse foreground xt is actually the signal of interest, and

the background `t is the noise. In this case, the problem can be interpreted as one of recursive

sparse recovery in (potentially) large but structured noise. Our result allows for `t to be large

in magnitude as long as it is structured. The structure we impose is that the `t’s lie in a low

dimensional subspace that changes slowly over time.

In some other applications, instead of there being outliers, parts of a data vector may be

missing entirely. When the (unknown) complete data vector is a column of a low-rank matrix,

the problem of recovering it is referred to as matrix completion (MC). For example, recovering

video sequences and tracking their subspace changes in the presence of easily detectable fore-

ground occlusions. If the occluding object’s intensity is known and is significantly different from

that of the background, its support can be obtained by simple thresholding. The background

video recovery problem then becomes an MC problem. A nuclear norm minimization (NNM)

based solution for MC was introduced in [4] and studied in [5]. The convex program here is to

minimize the nuclear norm of M̃ subject to M̃ and M agreeing on all observed entries. Since

then there has been a large amount of work on batch methods for MC and their correctness

results.

2.1.1 Problem Definition

Consider the online MC problem. Let Tt denote the set of missing entries at time t. We

observe a vector mt ∈ Rn that satisfies

mt = IT tIT t
′`t for t = ttrain + 1, ttrain + 2, . . . , tmax. (2.1)

with the possibility that tmax can be infinity. Here `t is such that, for t large enough (quantified

in Model 2.2.2), the matrix Lt := [`1, `2, . . . , `t] is rank deficient. Notice that by defining mt

as above, we are setting to zero the entries that are missed (see the notation section on page

11).

Consider the online RPCA problem. At time t we observe a vector mt ∈ Rn that satisfies

mt = `t + xt for t = ttrain + 1, ttrain + 2, . . . , tmax. (2.2)



9

Here `t is as defined above and xt is the sparse (outlier) vector. We use Tt to denote the

support set of xt.

For both problems above, for t = 1, 2, . . . , ttrain, we are given complete outlier-free measure-

ments mt = `t so that it is possible to estimate the initial subspace. For the video surveillance

application, this would correspond to having a short initial sequence of background only im-

ages, which can often be obtained. For t > ttrain, the goal is to estimate `t (or `t and xt in

case of RPCA) as soon as mt arrives and to periodically update the estimate of range(Lt).

In the rest of the paper, we refer to Tt as the missing/corrupted entries set.

2.1.2 Related Work

Some other work that also studies the online MC problem (defined differently from above)

includes [6, 7, 8, 9]. We discuss the connection with the idea from [6] in Section 2.4. The algo-

rithm from [7], GROUSE, is a first order stochastic gradient method; a result for its convergence

to the local minimum of the cost function it optimizes is obtained in [9]. The algorithm of [8],

PETRELS, is a second order stochastic gradient method. It is shown in [8] that PETRELS

converges to the stationary point of the cost function it optimizes. The advantage of PETRELS

and GROUSE is that they do not need initial subspace knowledge. Another somewhat related

work is [10].

Partial results have been provided for ReProCS for online RPCA in our older work [11].

In other more recent work [12] another partial result is obtained for online RPCA defined

differently from above. Neither of these is a correctness result. Both require an assumption

that depends on intermediate algorithm estimates. Another somewhat related work is [13] on

online PCA with contaminated data. This does not model the outlier as a sparse vector but

defines anything that is far from the data subspace as an outlier.

Some other works only provide an algorithm without proving any performance results, e.g.,

[14].

We discuss the most related works in detail in Sec 2.3.3.
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2.1.3 Contributions

In this work we develop and study a practical modification of the Recursive Projected

Compressive Sensing (ReProCS) algorithm introduced and studied in our earlier work [11] for

online RPCA. We also develop a special case of it that solves the online MC problem. The main

contribution of this work is that we obtain a complete correctness result for ReProCS-based

algorithms for both online MC and online RPCA (or more generally, online sparse plus low-rank

matrix recovery). Online algorithms are useful because they are causal (needed for applications

like video surveillance) and, in most cases, are faster and need less storage compared to most

batch techniques (we should mention here that there is some recent work on faster batch

techniques as well, e.g., [15]). To the best of our knowledge, this work and an earlier conference

version of this [16] may be among the first correctness results for online RPCA. The algorithm

studied in [16] is more restrictive.

Moreover, as we will see, by exploiting temporal dependencies, such as slow subspace change,

and initial subspace knowledge, our result is able to allow for a more correlated set of miss-

ing/corrupted entries than do the various results for PCP [1, 2, 3] or NNM [5] (see Sec. 2.3).

Our result uses the overall proof approach introduced in our earlier work [11] that provided

a partial result for online RPCA. The most important new insight needed to get a complete

result is described in Section 2.4.3. Also see Sec. 2.3.3. New proof techniques are needed for

this line of work because almost all existing works only analyze batch algorithms that solve a

different problem. Also, as explained in Section 2.4, the standard PCA procedure cannot be

used in the subspace update step and hence results for it are not applicable.

As shown in [17], because it exploits initial subspace knowledge and slow subspace change,

ReProCS has significantly improved recovery performance compared with batch RPCA algo-

rithms - PCP [1] and [18] - as well as with the online algorithm of [14] for foreground and

background extraction in many simulated and real video sequences; it is also faster than the

batch methods but slower than [14].



11

2.1.4 Notation

We use ′ to denote transpose. The 2-norm of a vector and the induced 2-norm of a matrix

are denoted by ‖ · ‖2. For a set T of integers, |T | denotes its cardinality and T denotes its

complement set. We use ∅ to denote the empty set. For a vector x, xT is a smaller vector

containing the entries of x indexed by T . Define IT to be an n× |T | matrix of those columns

of the identity matrix indexed by T . For a matrix A, define AT := AIT . For matrices P and

Q where the columns of Q are a subset of the columns of P , P \ Q refers to the matrix of

columns in P and not in Q.

For an n×n Hermitian matrixH,H
EVD
= UΛU ′ denotes an eigenvalue decomposition. That

is, U has orthonormal columns, and Λ is a diagonal matrix of size at least rank(H)×rank(H).

(If H is rank deficient, then Λ can have any size between rank(H) and n.) For Hermitian

matrices A and B, the notation A � B means that B −A is positive semi-definite. We order

the eigenvalues of an Hermitian matrix in decreasing order. So λ1 ≥ λ2 ≥ · · · ≥ λn.

For integers a and b, we use the interval notation [a, b] to mean all of the integers between

a and b, inclusive, and similarly for [a, b) etc.

Definition 2.1.1. For a matrix A, the restricted isometry constant (RIC) δs(A) is the smallest

real number δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

for all s-sparse vectors x [19]. A vector x is s-sparse if it has s or fewer non-zero entries.

Definition 2.1.2. We refer to a matrix with orthonormal columns as a basis matrix. Notice

that if P is a basis matrix, then P ′P = I.

Definition 2.1.3. For basis matrices P̂ and P , define dif(P̂ ,P ) := ‖(I − P̂ P̂ ′)P ‖2. This

quantifies the difference between their range spaces.

If P̂ and P have the same number of columns, then dif(P̂ ,P ) = dif(P , P̂ ), otherwise the

function is not necessarily symmetric.
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2.1.5 Organization

The remainder of the paper is organized as follows. In Section 2.2 we give the model and

main result for both online MC and online RPCA. Next we discuss our main results in Section

2.3. The algorithms for solving both problems are given and discussed in Section 2.4. The

discussion also explains why the proof of our main result should go through. Section 2.4.3

within this section describes the key insight needed by the proof and Section 2.4.4 gives the

proof outline. The most general form of our model on the missing entries set, Tt, is described

in Section 2.5. A key new lemma for proving our main results is also given in this section. The

proof of our main results can be found in Section 2.6. Proofs of three long lemmas needed for

proving the lemmas leading to the main theorem are postponed until Section 2.7. Section 2.8

shows numerical experiments backing up our claims. We discuss some extensions in Section

2.9 and give conclusions in Section 2.10

2.2 Assumptions and Main Results

Before we give our model on `t, we need the following definition.

Definition 2.2.1. Recall that mt = `t for t = 1, . . . , ttrain is the training data. Let λ̂−train be

the minimum non-zero eigenvalue of 1
ttrain

∑ttrain
t=1 mtmt

′. That is

λ̂−train := min
λi>0

λi

(
1

ttrain

ttrain∑

t=1

mtmt
′
)

Define P̂ttrain to be the matrix containing the eigenvectors of 1
ttrain

∑ttrain
t=1 mtmt

′, with eigenval-

ues larger than or equal to λ̂−train, as its columns.

We will use λ̂−train in our algorithms to set the eigenvalue threshold to both detect subspace

change and estimate the number of newly added directions. We also use λ̂−train to state the slow

subspace change assumption below. We will use P̂ttrain as the initial subspace knowledge in the

algorithms.
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1

Pt = P0

t1

Pt = [Pt1−1 Pt1,new]

t2

. . .

tj

Pt = [Ptj−1 Ptj ,new]

tj+1

. . .

tJ tmax

Pt = [PtJ−1 PtJ ,new]

Figure 2.1: A diagram of Model 2.2.2

2.2.1 Model on `t

We assume that `t is a vector from a slowly changing low-dimensional subspace that changes

in such a way that the matrix Lt := [`1, `2, . . . `t] is low-rank for t large enough. This can be

modeled in various ways. One possible model is given below. It assumes that `t’s are zero

mean, bounded and mutually independent random variables with a covariance matrix that

is low-rank at each time and that changes “slowly” in the following fashion: (a) its column

subspace remains constant for a long enough time and then changes; (b) when it changes, the

number of newly added directions is small and the eigenvalues along the newly added directions

are small for d frames after the change.

Model 2.2.2 (Model on `t). Assume that the `t are zero mean and bounded random vectors

in Rn that are mutually independent over time. Also assume that their covariance matrix Σt

has an eigenvalue decomposition

E[`t`t
′] = Σt

EVD
= PtΛtPt

′

where Pt changes as

Pt =





[Pt−1 Pt,new] if t = t1 or t2 or . . . tJ

Pt−1 otherwise.

(2.3)

and Λt changes as follows. For t ∈ [tj , tj+1), define Λt,new := Ptj ,new
′ΣtPtj ,new and assume

that

(Λt,new)i,i = (vi)
t−tjqiλ̂

−
train for i = 1, . . . , rj,new (2.4)

where qi ≥ 1 and vi > 1 but not too large 1. We assume that (a) tj+1−tj ≥ d for a d ≥ (K+2)α;

1Our result would still hold if the vi were different for each change time (i.e. vj,i). We let them be the same
to reduce notation.
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and (b) for all i, qi(vi)
d ≤ 3. Here K and α are algorithm parameters that are set in Theorem

2.2.7.

Other minor assumptions are as follows. (i) Define t0 := 1 and assume that ttrain ∈ [t0, t1).

(ii) For j = 0, 1, 2, . . . , J , define

rj := rank(Ptj ) and rj,new := rank(Ptj ,new).

and assume that rJ < min(n, tj+1 − tj). This ensures that, for all t > rJ , the matrix Lt is

low-rank. (iii) Define

λ+ := sup
t
λmax(Λt)

as the maximum eigenvalue at any time and assume that λ+ <∞.

Observe from the above that Pt is a basis matrix and Λt is diagonal. We refer to the tj’s

as the subspace change times.

A visual depiction of the above model can be found in Figure 2.1.

Define the largest and smallest eigenvalues along the new directions for the first d frames

after a subspace change as

λ+
new := max

j
max

t∈[tj ,tj+d]
λmax (Λt,new) and λ−new := min

j
min

t∈[tj ,tj+d]
λmin (Λt,new)

The slow change model on Λt,new is one way to ensure that

λ̂−train ≤ λ−new ≤ λ+
new ≤ 3λ̂−train (2.5)

i.e. the maximum variance of the projection of `t along the new directions is small enough for

the first d frames after a change. Also the minimum variance is larger than a constant greater

than zero (and hence detectable). The proof of our main result only relies on (2.5) and does

not use the actual slow increase model in any other way. The above inequality along with

tj+1 − tj ≥ d ≥ (K + 2)α quantifies “slow subspace change”.

Notice that the above model does not put any assumption on the eigenvalues along the

existing directions. In particular, they do not need to be greater than zero and hence the

model automatically allows existing directions (columns of Ptj−1 for t ∈ [tj , tj+1)) to drop out

of the current subspace. It could be the case that for some time period, (Λt)i,i = 0 (for an
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i corresponding to a column of Ptj−1), so that the ith column of Ptj−1 is not contributing

anything to `t at that time. For the same index i, (Λt)i,i could also later increase again to a

nonzero value. Therefore r0 +
∑j

i=1 ri,new is only a bound on the rank of Σt for t ∈ [tj , tj+1),

and not necessarily the rank itself. A more explicit model for deletion of directions is to let Pt

change as

Pt =





[(Pt−1 \ Pt,del) Pt,new] if t = t1 or t2 or . . . tJ

Pt−1 otherwise.

(2.6)

where Pt,del contains the columns of Pt−1 for which the variance is zero. If we add the assump-

tion that [Pt1−1 Pt1,new Pt2,new . . . PtJ ,new] be a basis matrix (i.e. deleted directions cannot

be part of a later Ptj ,new), then this is a special case of Model 2.2.2 above. We say special

case because this only allows deletions at times tj , whereas Model 2.2.2 allows deletion of old

directions at any time.

For t ∈ [tj , tj+1), let Pt,∗ := Ptj−1 and Λt,∗ := Pt,∗′ΣtPt,∗. Observe that Model 2.2.2 does

not have any constraint on Λt,∗. Thus if we assume that its entries are such that their changes

from t to t + 1 are smaller than or equal to ‖Λt,new − Λt+1,new‖2, then clearly, ‖Σt+1−Σt‖2
‖Σt‖2 ≤

(31/d − 1) for all t ∈ [tj , tj + d] and all j 2. Since d is large, the upper bound is a small

quantity, i.e. the covariance matrix changes slowly. For later time instants, we do not have

any requirement (and so in particular Σt could still change slowly). Hence the above model

includes “slow changing” and low-rank Σt as a special case.

2.2.2 Model on the set of missing entries or the outlier support set, Tt

Our result requires that the set of missing entries (or the outlier support sets), Tt, have

some changes over time. We give one simple model for it below. One example that satisfies

this model is a video application consisting of a foreground with one object of length s or less

that can remain static for at most β frames at a time. When it moves, it moves downwards

(or upwards, but always in one direction) by at least s/ρ pixels, and at most s/ρ2 pixels. Once

2This follows because ‖Σt‖2 ≥ ‖Λt,new‖2 = maxi(vi)
t−tj qiλ̂

−
train and ‖Σt+1−Σt‖2 ≤ ‖Λt+1,new−Λt,new‖2 ≤

maxi(vi)
t−tj qiλ̂

−
train(vi − 1) ≤ maxi(vi)

t−tj qiλ̂
−
train maxi(vi − 1). Thus the ratio is bounded by maxi(vi − 1) ≤

(3/qi)
1/d − 1 < (31/d − 1) since qi ≥ 1.
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T [1]

T [2]

T [3]

T [4]

T [5]

T [6]

≤ β

Figure 2.3 % = 3 and β = 5 case

T [1]

T [2]

T [3]

T [4]

T [5]

T [6]

Figure 2.4 % = 1 and β = 1 case

Figure 2.5: Examples of Model 2.2.3. (a) shows a 1D video object of length s that moves by

at least s/3 pixels once every 5 frames. (b) shows the object moving by s at every frame. (b) is

an example of the best case for our result - the case with smallest ρ, β (Tt’s mutually disjoint)

it reaches the bottom of the scene, it disappears. The maximum motion is such that, if the

object were to move at each frame, it still does not go from the top to the bottom of the scene

in a time interval of length α, i.e. s
ρ2
α ≤ n. Anytime after it has disappeared another object

could appear. We show this example in Fig. 2.5.

Model 2.2.3 (model on Tt). Let tk, with tk < tk+1, denote the times at which Tt changes and

let T [k] denote the distinct sets. For an integer α (we set its value in Theorem 2.2.7), assume

the following.

1. Assume that Tt = T [k] for all times t ∈ [tk, tk+1) with (tk+1 − tk) ≤ β and |T [k]| ≤ s.

2. Let ρ be a positive integer so that for any k,

T [k] ∩ T [k+ρ] = ∅;

assume that

ρ2β ≤ 0.01α.
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3. For any k,
k+α∑

i=k+1

∣∣∣T [i] \ T [i+1]
∣∣∣ ≤ n

and for any k < i ≤ k + α,

(T [k] \ T [k+1]) ∩ (T [i] \ T [i+1]) = ∅.

(One way to ensure
∑k+α

i=k+1 |T [i]\T [i+1]| ≤ n is to require that for all i, |T [i]\T [i+1]| ≤ s
ρ2

with s
ρ2
α ≤ n.)

In this model, k takes values 1, 2, . . . ; the largest value it can take is tmax (this will happen if

Tt changes at every time).

Clearly the video moving object example satisfies the above model as long as ρ2β ≤ 0.01α.

3 This becomes clearer from Fig. 2.5.

2.2.3 Denseness

In order to recover the `t’s from missing data or to separate them from the sparse outliers,

the basis vectors for the subspace from which they are generated cannot be sparse. We quantify

this using the incoherence condition from [1]. Let µ be the smallest real number such that

max
i
‖Pt0 ′Ii‖22 ≤

µr0

n
and max

i
‖Ptj ,new

′Ii‖22 ≤
µrj,new

n
for all j (2.7)

Recall from the notation section that Ii is the ith column of the identity matrix (or ith standard

basis vector). We bound µr0 and µrj,new in the theorem.

2.2.4 Main Result for Online Matrix Completion

Definition 2.2.4. Recall that rj,new := rank(Ptj ,new) and rj := rank(Ptj ). Define rnew :=

maxj rj,new, and r = r0 + Jrnew.

3Let Tt be the support set of the object (set of pixels containing the object). The first condition holds since
there is at most one object of size s or less and the object cannot remain static for more than β frames. Since it
moves in one direction by at least s/ρ each time it moves, this means that definitely after it moves ρ times, the
supports will be disjoint (second condition). The third condition holds because it moves in one direction and by
at most s/ρ2 with s

ρ2
α ≤ n (so even if it were to move at each t, i.e. if tk+1 = tk + 1 for all k, the third condition

will hold). Also see Fig. 2.5.
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Also define at := Pt
′`t, and for t ∈ [tj , tj+1), at,new := Ptj ,new

′`t. Let

γ := max
t
‖at‖∞ and γnew := max

j
max

t∈[tj ,tj+d]
‖at,new‖∞

Notice that rank(L) = rank(Ptmax) ≤ r. Also, ‖at‖2 ≤
√
rγ and for t ∈ [tj , tj + d], ‖at,new‖2 ≤

√
rnewγnew.

The following theorem gives a correctness result for Algorithm 1 given and explained in

Section 2.4. The algorithm has two parameters - α and K. The parameter α is the number of

consecutive time instants that are used to obtain an estimate of the new subspace, and K is the

total number of times the new subspace is estimated before we get an accurate enough estimate

of it. The algorithm uses λ̂−train and P̂ttrain defined in Definition 2.2.1 and mt as inputs.

Theorem 2.2.5. Consider Algorithm 1. Assume that mt satisfies (2.1). Pick a ζ that satisfies

ζ ≤ min

{
10−4

r2
,
0.03λ̂−train

r2λ+
,

1

r3γ2
,
λ̂−train

r3γ2

}
.

Suppose that the following hold.

1. dif(P̂ttrain ,Pttrain) ≤ r0ζ (notice from Model 2.2.2 that Pttrain = Pt0 = P1);

2. The algorithm parameters are set as:

K =
⌈

log(0.16rnewζ)
log(0.83)

⌉
; and α = C(log(6(K + 1)J) + 11 log(n)) for a constant

C ≥ Cadd := 32 · 1002 max{16, 1.2(
√
ζ +
√
rnewγnew)4}

(
rnewζλ̂

−
train

)2 ; (2.8)

3. (Subspace change) Model 2.2.2 on `t holds;

4. (Changes in the missing/corrupted sets Tt) Model 2.2.3 on Tt holds or its generalization,

Model 2.5.1 (given in Section 2.5), holds;

5. (Denseness and bound on s, r0, rnew) the bounds in (2.7) hold with 2s(r0 + Jrnew)µ ≤

0.09n and 2srnewµ ≤ 0.0004n;

Then, with probability at least 1− n−10, at all times t,

1. ‖ ˆ̀
t − `t‖2 ≤ 1.2

(√
ζ +
√
rnewγnew

)
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2. the subspace error SEt := ‖(I − P̂tP̂t′)Pt‖2 is bounded above by 10−2
√
ζ for t ∈ [tj +

d, tj+1).

Proof. The proof is given in Sections 2.6 and 2.7. As shown in Lemma 2.5.2, Model 2.2.3 is a

special case of Model 2.5.1 (Model 2.5.1 is more general) on Tt. Hence we prove the result only

using Model 2.5.1. �

Theorem 2.2.5 says that if an accurate estimate of the initial subspace is available; the two

algorithm parameters are set appropriately; the `t’s are mutually independent over time and

the low-dimensional subspace from which `t is generated changes “slowly” enough, i.e. (a) the

delay between change times is large enough (d ≥ (K + 2)α) and (b) the eigenvalues along the

newly added directions are small enough for d frames after a subspace change (so that (3b)

holds); the set of missing entries at time t, Tt, has enough changes; and the basis vectors that

span the low-dimensional subspaces are dense enough; then, with high probability (w.h.p.),

the error in estimating `t will be small at all times t. Also, the error in estimating the low-

dimensional subspace will be initially large when new directions are added, but will decay to a

small constant times
√
ζ within a finite delay.

Consider the accurate initial subspace assumption. If the training data truly satisfies mt =

`t (without any noise or modeling error) and if we have at least r0 linearly independent `t’s

(if `t’s are continuous random vectors, this corresponds to needing ttrain ≥ r0 almost surely),

then the estimate of range(Pttrain) obtained from training data will actually be exact, i.e. we

will have dif(P̂ttrain ,Pttrain) = 0. The theorem assumption that dif(P̂ttrain ,Pttrain) ≤ r0ζ allows

for the initial training data to be noisy or not exactly satisfying the model. If the training

data is noisy, we need to know r0 (in practice this is computed by thresholding to retain a

certain percentage of largest eigenvalues). In this case we can let λ̂−train be the r0-th eigenvalue

of 1
α

∑ttrain
t=1 mtmt

′ and P̂ttrain be the r0 top eigenvectors.

The following corollary is also proved when we prove the above result.

Corollary 2.2.6. The following conclusions also hold under the assumptions of Theorem 2.2.5

or 2.2.7 with probability at least 1− n−10
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1. The estimates of the subspace change times given by Algorithm 1 satisfy tj ≤ t̂j ≤ tj+2α,

for j = 1, . . . , J ;

2. The estimates of the number of new directions are correct, i.e. r̂j,new,k = rj,new for

j = 1, . . . , J and k = 1, . . . ,K;

3. The recovery error satisfies:

‖ ˆ̀
t − `t‖2 ≤





1.2
(√
ζ +
√
rnewγnew

)
t ∈

[
tj , t̂j

]

1.2
(
1.84
√
ζ + (0.83)k−1√rnewγnew

)
t ∈

[
t̂j + (k − 1)α, t̂j + kα− 1

]
,

k = 1, 2, . . . ,K

2.4
√
ζ t ∈

[
t̂j +Kα, tj+1 − 1

]
;

4. The subspace error satisfies,

SEt ≤





1 t ∈
[
tj , t̂j

]

10−2
√
ζ + 0.83k−1 t ∈

[
t̂j + (k − 1)α, t̂j + kα− 1

]
,

k = 1, 2, . . . ,K

10−2
√
ζ t ∈

[
t̂j +Kα, tj+1 − 1

]
.

2.2.5 Main Result for Online Robust PCA

Recall that in this case we assume that the observations mt satisfy mt = `t + xt with the

support of xt, denoted Tt, not known. We have the following result for Algorithm 2 given and

explained in Section 2.4. This requires two extra assumptions beyond what the previous result

needed. For the matrix completion problem, the set of missing entries is known, while in the

robust PCA setting, the support set, Tt, of the sparse outliers, xt, must be determined. We

recover this using an `1 minimization step followed by thresholding. To do this correctly, we

need a lower bound on the absolute values of the nonzero entries of xt. Moreover, Algorithm

2 has two extra parameters - ξ, which is the bound on the two norm of the noise seen by the

`1 minimization step, and ω, which is the threshold used to recover the support of xt. These

need to be set appropriately.
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Theorem 2.2.7. Consider Algorithm 2. Assume that mt satisfies (2.2) and assume everything

else in Theorem 2.2.5. Also assume

1. The two extra algorithm parameters are set as: ξ =
√
rnewγnew + (

√
r +
√
rnew)

√
ζ and

ω = 7ξ

2. We have xmin := mint mini:(xt)i 6=0 |(xt)i| > 14ξ

Then with probability at least 1− n−10,

1. all conclusions of Theorem 2.2.5 and Corollary 2.2.6 hold;

2. the support set Tt is exactly recovered, i.e. T̂t = Tt for all t;

3. ‖xt − x̂t‖2 = ‖`t − ˆ̀
t‖2 and ‖`t − ˆ̀

t‖2 satisfies the bounds given in Theorem 2.2.5 and

Corollary 2.2.6.

The second assumption above can be interpreted as either a lower bound on xmin, or as an

upper bound on
√
rnewγnew in terms of xmin. This latter interpretation is another “slow subspace

change” condition. For the xt’s, this result shows that their support is exactly recovered w.h.p.

and its nonzero entries are accurately recovered.

2.2.6 Simple Generalizations

Consider the subspace change model, Model 2.2.2. For simplicity we put a slow increase

model on the eigenvalues along the new directions for the entire period [tj , tj+1). However,

as explained below the model, the proof of our result does not actually use this slow increase

model. It only uses (3b), i.e. λ̂−train ≤ λ−new ≤ λ+
new ≤ 3λ̂−train. Recall that λ−new and λ+

new are

the minimum and maximum eigenvalues along the new directions for the first d frames after a

subspace change. Thus, in the interval [tj + d + 1, tj+1) our proof actually does not need any

constraint on Λt,new.

With a minor modification to our proof, we can prove our result with an even weaker

condition. We need (3b) to hold with λ−new being the minimum of the minimum eigenvalues of

any α-frame average covariance matrix along the new directions over the period [tj , tj + d], i.e.
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with λ−new = minj minτ∈[tj ,tj+d−α] λmin( 1
α

∑τ+α−1
t=τ Λt,new). For video analytics, this translates

to requiring that, after a subspace change, enough (but not necessarily all) background frames

have ‘detectable’ energy along the new directions, so that the minimum eigenvalue of the

average covariance is above a threshold.

Secondly, we should point out that there is a trade off between the bound on qivi
d, and

consequently on λ+
new, in Model 2.2.2 and the bound on ρ2β assumed in Model 2.2.3. Allowing

a larger value of qivi
d (faster subspace change) will require a tighter bound on ρ2β which

corresponds to requiring more changes to Tt. We chose the bounds qi(vi)
d ≤ 3 and ρ2β ≤ .01α

for simplicity of computations. There are many other pairs that would also work. The above

trade-off can be seen from the proof of Lemma 2.6.14. The proof uses Model 2.5.1 of which

Model 2.2.3 is a special case. For video analytics, this means that if the background subspace

changes are faster, then we also need the foreground objects to be moving more so we can ‘see’

enough of the background behind them.

Thirdly, in Model 2.2.2 we let PtΛtPt
′ be an EVD of Σt. This automatically implies that

Λt is diagonal. But our proof only uses the fact that Λt is block diagonal with blocks Λt,∗ and

Λt,new. If we relax this and we let PtΛtPt
′ be a decomposition of Σt where Λt is block diagonal

as above, then our model allows the variance along any direction from range(Ptj−1) to become

zero for any period of time and/or become nonzero again later. Thus, in the special case of

(2.6) we can actually allow Pt = [(Pt−1Rt \Pt,del) Pt,new], where Rt is an rj−1× rj−1 rotation

matrix and Pt,del contains the columns of Pt−1Rt for which the variance is zero. This will be

a special case of this generalization if [Pt1−1 Pt1,new Pt2,new . . . PtJ ,new] is a basis matrix.

Lastly, the first condition of the theorem requires that we have accurate initial subspace

knowledge. As explained below the theorem, this means that we can allow noisy training data.

Moreover, notice that if we let t1 = ttrain + 1, then new background directions can enter the

subspace at the same time as the first foreground object. Said another way, all we need is an

accurate enough estimate of all but rnew directions of the initial subspace, and an assumption

of small eigenvalues for sometime (d frames) along the directions for which we do not have an

accurate enough estimate (or do not have an estimate).
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Now consider the denseness assumption. Define the (un)denseness coefficient as follows.

Definition 2.2.8. For a basis matrix P , define κs(P ) := max
|T |≤s

‖IT ′P ‖2.

Notice that left hand side in (2.7) is [κ1(P )]2. Using the triangle inequality, it is easy to

show that κs(P ) ≤ √sκ1(P ) [11]. Therefore, using the fact that for a basis matrix [P1 P2],

(κs([P1 P2]))2 ≤ (κs(P1))2 + (κs(P2))2 (see proof of the first statement of Lemma 2.C.2 in

Appendix 2.C), the denseness assumptions of Theorem 2.2.7 imply that

κs,∗ := κ2s(PtJ ) ≤ 0.3 and κs,new := max
j
κ2s(Ptj ,new) ≤ 0.02. (2.9)

The proof of Theorem 2.2.7 only uses (2.9) for the denseness assumption.

The reason for defining κs as above is the following lemma from [11].

Lemma 2.2.9 ([11]). For a basis matrix P , δs(I − PP ′) = (κs(P ))2.

2.3 Discussion

2.3.1 Discussion of the assumptions used

In the previous section, we provide two related results, one for online matrix completion

(MC) and the second for online robust PCA (RPCA). The result for online RPCA can also be

interpreted as a result for online sparse matrix recovery in (potentially) large but structured

noise `t. Notice that our result does not require an upper bound on λ+ (the maximum eigenvalue

of Cov(`t) at any time) or on γ (the bound on the maximum magnitude of any entry of P ′t`t

for any time t). Both these parameters are only used to select ζ, which in turn governs the

value of K and α and hence governs the required delay between subspace change times.

Our results require accurate initial subspace knowledge. As explained earlier, for video

analytics, this corresponds to requiring an initial short sequence of background-only video

frames whose subspace can be estimated via SVD (followed by using a singular value threshold

to retain a certain number of top left singular vectors). Alternatively if an initial short sequence

of the video data satisfies the assumptions required by a batch method such as PCP (for RPCA)

and NNM (for MC), that can be used to estimate the low-rank part, followed by SVD to get
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the column subspace. For online MC, another alternative is to use the initialization techniques

of GROUSE [7] or PETRELS [8] or to use the adaptive MC idea of [10].

In Model 2.2.2, we are placing a slow increase assumption on the eigenvalues along the new

directions, Ptj ,new, for the interval [tj , tj+1). Thus after tj+1, the eigenvalues along Ptj ,new can

increase gradually or suddenly to any large value up to λ+. In fact as explained above, our

proof needs the slow increase to hold only for the first d time instants after tj , so, in fact, at

any time after tj + d, the eigenvalues along Ptj ,new could increase to a large value.

Model 2.2.3 on Tt is a practical model for moving foreground objects in video. We should

point out that this model is one special case of the general set of conditions we need (Model

2.5.1). Some other special cases of it are discussed in Section 2.9.

The model on Tt (Model 2.2.3) and the denseness condition of the theorem constrain s

and s, r0, rnew, J respectively. Model 2.2.3 requires s ≤ ρ2n/α for a constant ρ2. Using the

expression for α, it is easy to see that as long as J ∈ O(n), we have α ∈ O(log n) and so Model

2.2.3 needs s ∈ O( n
logn). With s ∈ O( n

logn), the denseness condition will hold if r0 ∈ O(log n),

J ∈ O(log n) and rnew is a constant. This is one set of sufficient conditions that we allow on

the rank-sparsity product.

2.3.2 Comparison with the results for PCP and NNM

Let L := [`1, `2, . . . , `tmax ] and S := [x1,x2, . . . ,xtmax ]. Let rmat := rank(L). Clearly

rmat ≤ r0 + Jrnew and the bound is tight. Let smat := tmaxs be a bound on the total number

of missing entries of L or on the support size of the outliers’ matrix S. In terms of rmat and

smat, what we need is rmat ∈ O(log n) and smat ∈ O(ntmax
logn ). This is stronger than what the

PCP result from [1] or the result for NNM from [5] need (e.g., the PCP result from [1] allows

rmat ∈ O
(

n
(logn)2

)
while allowing smat ∈ O(ntmax)), but is similar to what the PCP results

from [2, 3] need.

Other disadvantages of our result are as follows. (1) Our result needs accurate initial

subspace knowledge and slow subspace change of `t. As explained earlier and in [11, Fig. 6],

both of these are often practically valid for video analytics applications. Moreover, we also

need the `t’s to be zero mean and mutually independent over time. Zero mean is achieved
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by letting `t be the background image at time t with an empirical ‘mean background image’,

computed using the training data, subtracted out. The independence assumption then models

independent background variations around a common mean. As we explain in Section 2.9, this

can be easily relaxed and we can get a result very similar to the current one under a first order

autoregressive model on the `t’s. (2) Moreover, Algorithms 1 and 2 need multiple algorithm

parameters to be appropriately set. The PCP or NNM results need this for none [1, 5] or at

most one [2, 3] algorithm parameter. (3) Thirdly, our result for online RPCA also needs a lower

bound on xmin while the PCP results do not need this. (4) Moreover, even with this, we can

only guarantee accurate recovery of `t, while PCP or NNM guarantee exact recovery.

The advantages of our work are (1) that we analyze an online algorithm (ReProCS) that is

faster and needs less storage compared with PCP or NNM. It needs to store only a few n× α

or n × rmat matrices, thus the storage complexity is O(n log n) while that for PCP or NNM

is O(ntmax). In general tmax can be much larger than log n. (2) Moreover, we do not need

any assumption on the right singular vectors of L while all results for PCP or NNM do. (3)

Most importantly, our results allow highly correlated changes of the set of missing entries (or

outliers). From the assumption on Tt, it is easy to see that we allow the number of missing

entries (or outliers) per row of L to be O(tmax) as long as the sets follow Model 2.2.34. The

PCP results from [2, 3] need this number to be O( tmax
rmat

) which is stronger. The PCP result

from [1] or the NNM result [5] need an even stronger condition - they need the set (∪tmax
t=1 Tt) to

be generated uniformly at random.

2.3.3 Other results for online RPCA and online MC

Our online RPCA result improves upon the online RPCA results from our earlier work [11]

for two reasons. First, the result of [11] was a partial result because it required a denseness

assumption on (I −Ptj ,newPtj ,new
′)P̂t and (I − P̂t,∗P̂t,∗′ − P̂t,newP̂t,new

′)Ptj ,new. Here P̂t,∗ and

P̂t,new are estimates computed by Algorithm 2. Thus, the result depended on intermediate

algorithm estimates satisfying certain properties. In this work, we remove this requirement

4In a period of length α, the set Tt can occupy index i for at most ρβ time instants, and this pattern is
allowed to repeat every α time instants. So an index can be in the support for a total of ρβ tmax

α
time instants

and the model assumes ρβ ≤ 0.01α
ρ

for a constant ρ.
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and instead provide a complete correctness result. The extra assumption that we need is Model

2.2.3 on Tt (or its generalization given in Model 2.5.1 later). Secondly, we provide a correctness

result for a ReProCS-based algorithm that detects subspace change automatically and also

estimates the rank of the new subspace automatically. The algorithm studied in [11] required

knowing tj and rj,new exactly for each j. Algorithms 1 and 2 in this work only require upper

bounds on rnew, γnew and J (these are needed to set the algorithm parameters - α and K for

Algorithm 1, and also ξ and ω for Algorithm 2) and a small enough ζ (need bounds on r, λ+

and γ to set this). A third minor advantage is that we also provide an algorithm and a result

for online MC.

The proof of our results adapts the overall framework developed in [11]. The two important

additions are: (a) Model 2.5.1 and Lemma 2.5.3 for it, and the way it is used in the proof

of Lemma 2.6.23; and (b) the detection lemma (Lemma 2.6.17), the no false detection lemma

(Lemma 2.6.16) and the p-PCA lemma (Lemma 2.6.18) and the lemmas used to prove these.

(a) allows us to get a complete correctness result; (b) allows us to analyze an algorithm that

does not use knowledge of tj or rj,new.

In [20], Feng et. al. propose a method for online RPCA and prove a partial result for their

algorithm. The approach is to reformulate the PCP program and use this reformulation to

develop a recursive algorithm that converges asymptotically to the solution of PCP as long as

the basis estimate P̂t is full rank at each time t. Since this result assumes something about the

algorithm estimates, it is also only a partial result.

Another recent work that uses knowledge of the initial subspace estimate and performs

recovery in a piecewise batch fashion is modified-PCP [21]. However, like PCP, the result for

modified PCP also needs uniformly randomly generated support sets. Its advantage is that its

assumption on the rank-sparsity product is weaker than that of PCP, and hence weaker than

that needed by this work. A detailed simulation comparison between modified-PCP, ReProCS

and PCP demonstrating both these things is available in [21, Fig. 6].

Some other recent works that also study the online MC problem (defined differently from

how we define it) include [6], Grassmanian Rank-One Update Subspace Estimation (GROUSE)

[7] and Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial
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Observations (PETRELS) [8]. We discuss the connection with [6] in Section 2.4. GROUSE

is a first order stochastic gradient method. It uses rank-one updates to track the underlying

subspace on the Grassmannian manifold. A result for its convergence to the local minimum

of the cost function it optimizes is obtained in [9]. PETRELS is a second order stochastic

gradient method. As explained in [8], in PETRELS, the low-dimensional subspace is tracked

by minimizing a geometrically discounted sum of projection residuals on the observed entries

at each time index. If missing entries are required then they can be reconstructed via least

squares estimation. The subspace is updated recursively so that it is not necessary to retain

historical data indefinitely. If the underlying subspace is fixed and the data stream is fully

observed, then it is shown that the PETRELS estimate converges to the true subspace. In

general, it always converges to the stationary point of the cost function it optimizes [8]. The

advantage of PETRELS and GROUSE is that they do not need initial subspace knowledge.

For our algorithms, when the initial subspace knowledge is not available or initial complete

and outlier-free data is not available, we can also use the PETRELS or GROUSE ideas for

initialization.

2.4 Automatic ReProCS Algorithms for Online MC and Online RPCA

and Why They Work

In this section, we first introduce the automatic ReProCS based algorithm for online MC

and explain why it works (this also provides the key idea why the proof of our main result

would go through). Next, we do the same thing for the online RPCA algorithm. In the last

two subsections (Sections 2.4.3 and 2.4.4), we explain the key insight used by our proof and

give the proof outline.

2.4.1 Automatic ReProCS for Online MC (Algorithm 1)

The model on mt from (2.1) is a special case of that from (2.2) with xt = −ITtITt ′`t and

with the support of xt, Tt known [1]. Thus, we can use a simplification of the ReProCS idea

for online RPCA [11] to also solve the online MC problem.
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Algorithm 1 proceeds as follows. Let P̂t−1 denote the basis matrix for the estimate of the

subspace where `t−1 lies. If it is an accurate estimate, because of “slow subspace change”,

projecting the measurement mt = xt + `t onto its orthogonal complement will nullify most of

`t. Specifically, we compute yt := Φtmt where Φt := I− P̂t−1P̂t−1
′. Thus, yt can be rewritten

as

yt = Φtxt + bt where bt := Φt`t

and it can be argued that ‖bt‖2 is small. Since the support of xt, Tt, is known, we can simply

recover its nonzero entries by least squares (LS) estimation, i.e. we get x̂t = ITt(Φt)Tt
†yt and

then get an estimate of `t as ˆ̀
t = mt − x̂t. The above approach of recovering `t is equivalent

to that used by Brand in [6]; there they recover `t as an LS estimate of P̂ P̂ ′`t ≈ `t.

Let et := `t − ˆ̀
t. With the above, it is easy to see that

et = ITt(Φt)Tt
†bt = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φ`t.

Using the denseness assumption, it can be argued that the RIC of Φt will be small (see Lemma

2.2.9). Under the theorem’s assumptions, and conditioned on accurate recovery so far, we can

bound it by 0.14. Thus, ‖(Φt)Tt
′(Φt)

−1
Tt ‖2 ≤ 1/(1− 0.14) < 1.2 and so ‖et‖2 ≤ 1.2‖bt‖2, i.e. it

is small too (see Lemma 2.6.15).

Projection-PCA (p-PCA). The next step is to use a modification of standard PCA called

projection-PCA (p-PCA), to update the subspace estimate. The reason we need p-PCA is

this. Let
∑

t denote a sum over an α length time interval. In our problem, the error, et,

in the observation/estimate of `t, ˆ̀
t, is correlated with `t. Because of this, the dominant

terms in the perturbation seen by standard PCA, 1
α

∑
t

ˆ̀
t
ˆ̀
t
′− 1

α

∑
t `t`t

′, are 1
α

∑
t `tet

′ and its

transpose5. Thus, when the condition number of Cov(`t) is large, it becomes difficult to argue

that the perturbation will be small compared to the smallest eigenvalue of Cov(`t). With a

large perturbation, either the sin θ theorem [22] (that bounds the subspace error between the

eigenvectors of the true and estimated sample covariance matrices) cannot be applied or it gives

a useless bound.

5When `t and et are uncorrelated and one of them is zero mean, it can be argued by law of large numbers
that, whp, these two terms will be close to zero and 1

α

∑
t etet

′ will be the dominant term.
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Our proposed approach, projection-PCA (p-PCA) addresses the above issue as follows. At

t = tj , let P∗ := Ptj−1 , Pnew := Ptj ,new, and suppose that the subspace range(P∗) has been

accurately recovered, i.e. we have P̂∗ so that dif(P̂∗,P∗)� 1. Then at a time at or after tj+α if

we project the α previous ˆ̀
t’s perpendicular to P̂∗, we will considerably reduce the perturbation

seen by the PCA step. We detect subspace change by checking if the maximum singular value of

the matrix formed by these projected ˆ̀
t’s is above a threshold. Denote the time at which change

is detected by t̂j . After t̂j we use SVD on K different sets of α frames of the projected ˆ̀
t’s to get

improved estimates of the new subspace range(Pnew) in each iteration. To be precise, we get the

k-th estimate, P̂new,k, as the left singular vectors of (I − P̂∗P̂∗′)[ ˆ̀̂tj+(k−1)α+1, . . . ,
ˆ̀̂
tj+kα

] with

singular values above a threshold. After each p-PCA step, we update P̂t as P̂t = [P̂∗ P̂new,k].

Finally at time t = t̂j +Kα, we update P̂∗ as [P̂∗ P̂new,K ].

In the subspace update step, Algorithm 1 toggles between the “detect” phase and the

“ppca” phase. It starts in the “detect” phase. When a subspace change is detected, i.e. at

t = t̂j it enters the “ppca” phase. After K iterations of p-PCA, i.e. at t = t̂j + Kα + 1, the

new subspace has been accurately estimated and this time it enters the “detect” phase again.

Why p-PCA works. The reason p-PCA works is as follows. Before the first p-PCA step,

i.e. for t ∈ [tj , t̂j + α), P̂t = P̂∗ and thus the noise seen by the projected sparse recovery step,

bt = Φ`t = (I− P̂∗P̂∗′)`t, will be the largest. Hence the error et will also be the largest for the

ˆ̀
t’s used for the first p-PCA step. However because of the projection perpendicular to P̂∗ and

slow subspace change, even this error is not too large. Because of this and because et is sparse

and supported on Tt and Tt follows Model 2.2.3, we can argue that P̂new,1 is a good estimate,

i.e. dif([P̂∗ P̂new,1],Pnew) ≤ 0.2 < 1. After the first p-PCA step, P̂t = [P̂∗ P̂new,1] and this will

reduce bt and hence et for the ˆ̀
t’s in the next α frames. This and the sparseness of et, in turn,

will mean that the perturbation seen by the second p-PCA step will be smaller and so P̂new,2

will be a more accurate estimate of range(Pnew) than P̂new,1. This is done K times with K

chosen so that dif([P̂∗ P̂new,K ],Pnew) ≤ rnewζ. By the theorem assumptions, and because we

can show tj ≤ t̂j < tj + 2α (we explain this below), it is clear that tj+1 > t̂j +Kα. Thus, the

new subspace added at tj is accurately estimated before the next change time tj+1.
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Why t̂j are correctly detected. As explained above, we detect subspace changes by compar-

ing the eigenvalues of (I−P̂∗P̂∗′) 1
α

∑
t

ˆ̀
t
ˆ̀
t
′(I−P̂∗P̂∗′) to a chosen threshold at every t = uα for

u = 1, 2, . . . ,
⌊
tmax
α

⌋
when the algorithm is in the “detect” phase. In order to correctly detect t̂j ,

the algorithm first must not falsely detect new directions when none are present and it must de-

tect subspace change within a short delay after it has occurred. The former will occur because

conditioned on accurate recovery of the current subspace, (I− P̂∗P̂∗′) 1
α

∑
t

ˆ̀
t
ˆ̀
t
′(I− P̂∗P̂∗′) will

have very small eigenvalues when no new directions are present. If the recovery were exact and

no new directions present, this matrix would be zero. In our case, the recovery is only accurate

and so we show that all eigenvalues of this matrix will be below the chosen threshold (see

Lemma 2.6.16). Next consider detection of the subspace change after it has occurred. When

u = uj :=
⌈
tj
α

⌉
, i.e. when tj is in the interval

(
(u−1)α+1, uα

]
, not all of the `t’s in this interval

will contain new directions. Thus, depending on where in the interval tj lies, the algorithm

may or may not detect the subspace change. However, in the next interval, [ujα+ 1, (uj + 1)α],

all of the `t’s will contain new directions, and we can prove that the subspace change will be

detected w.h.p. (see Lemma 2.6.17). Thus, w.h.p., either t̂j = ujα, or t̂j = (uj + 1)α. Thus,

we will be able to show that tj ≤ t̂j ≤ tj + 2α w.h.p..

A visual description of Algorithm 1 is shown in Fig. 2.6. This figure uses Definition 2.6.4.
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Algorithm 1 ReProCS for Online MC

Parameters: α, K, Inputs: P̂ttrain , λ̂−train, mt for each t, Output: ˆ̀
t, P̂t, t̂̂, r̂̂,new,k

Let thresh =
λ̂−train

2 (this is the eigenvalue threshold that will be used to detect subspace change).

Set P̂t,∗ ← P̂ttrain , P̂t,new ← [.], ̂← 0, phase← detect.

For every t > ttrain, do the following:

• Compute yt ← Φtmt where Φt ← I − P̂t−1P̂t−1
′

• Estimate `t: ˆ̀
t ←mt − ITt((Φt)Tt)

†yt

• If t mod α 6= 0 then P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

• If t mod α = 0 then detection or projection PCA

If phase = detect then

1. Set u = t
α and compute Du = (I − P̂uα−1,∗P̂uα−1,∗′)[ ˆ̀(u−1)α+1, . . . ˆ̀

uα]

2. P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

3. If λmax( 1
αDuDu

′) ≥ thresh then

phase← ppca, ̂← ̂+ 1, k ← 0, t̂̂ = t

Else (phase = ppca) then

1. Set u = t
α and compute Du = (I − P̂uα−1,∗P̂uα−1,∗′)[ ˆ̀(u−1)α+1, . . . ˆ̀

uα]

2. P̂t,new ← eigenvectors
(

1
αDuDu

′, thresh
)
, P̂t,∗ ← P̂t−1,∗, P̂t ← [P̂t,∗ P̂t,new]

3. k ← k + 1, set r̂j,new,k = rank(P̂t,new)

4. If k = K, then

phase← detect, P̂t,∗ ← P̂t, P̂t,new ← [.]

eigenvectors(M, thresh) returns a basis matrix for the span of all eigenvectors whose eigenvalue

is above thresh.

2.4.2 Automatic ReProCS for online RPCA (Algorithm 2)

For online RPCA the only difference is that the support for xt, Tt, is not known. Hence we

first recover xt by `1 minimization (or any other sparse recovery method) and then estimate

its support by thresholding. The rest of the steps remain the same as above.

2.4.3 Key Insight for the Proof

The argument given while explaining why p-PCA works in Section 2.4 can be formalized

to show that, w.h.p., a subspace change is detected only after a change has occurred and
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Algorithm 2 ReProCS for Online RPCA

Parameters: α, K, ξ, ω, Inputs: P̂ttrain , λ̂−train, mt for each t, Output: ˆ̀
t, P̂t, t̂̂

Let thresh =
λ̂−train

2 . Set P̂t,∗ ← P̂ttrain , P̂t,new ← [.], ̂← 0, phase← detect.

For every t > ttrain, do the following:

• Estimate Tt (the support of the outlier vector xt) and xt.

1. compute yt ← Φtmt where Φt ← I − P̂t−1P̂t−1
′

2. solve minx ‖x‖1 s.t. ‖yt −Φtx‖2 ≤ ξ and let x̂t,cs denote its solution

3. compute T̂t = {i : |(x̂t,cs)i| > ω}
4. LS estimate of xt: compute x̂t = IT̂t((Φt)T̂t)

†yt

• Use all steps of Algorithm 1 with Tt ← T̂t.

within 2α frames of the change; and that the subspace recovery error, SEt, will decay roughly

exponentially with each p-PCA iteration and become small enough after K iterations. To

do this we will use the sin θ theorem [22] (Lemma 2.6.20) followed by the matrix Hoeffding

inequality [23] (Lemmas 2.7.5, 2.7.6)) to get high probability bounds on each of the terms in

the subspace error bound obtained by the sin θ theorem.

While applying the matrix Hoeffding inequality, we need to use the following key insight

about the structure of E[ 1
α

∑
t(I − P̂∗P̂∗′)`tet′]. This matrix is the dominant term in the

perturbation seen by the k-th p-PCA step. Here E[.] denotes expectation conditioned on

accurate subspace recovery so far and
∑

t denotes the sum over t ∈ [t̂j + (k− 1)α+ 1, t̂j + kα].

The model on Tt and the fact that et is supported on Tt can be used to show that this matrix

can be written as the product of a full matrix and a block-banded matrix: for example when

ρ = 1, the block-banded matrix will be block-diagonal, when ρ = 2, it will be block-tridiagonal,

and so on. Also, E[ 1
α

∑
t etet

′] will be a block banded matrix. The 2-norm of a block banded

matrix is bounded by the maximum norm of any block times the number of bands in it and

hence is much smaller than that of a general full matrix.

The lemma that exploits the structure of a block-banded matrix generated due to the model

on Tt is Lemma 2.5.3 given in Sec 2.5. This lemma is used to bound E[ 1
α

∑
t(I − P̂∗P̂∗′)`tet′]

and E[ 1
α

∑
t etet

′] in the proof of Lemma 2.6.23 in Section 2.7.
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2.4.4 Proof Outline

We will only prove Theorem 2.2.7. Theorem 2.2.5 follows as a corollary of Theorem 2.2.7

because of the following reasons. (1) Algorithm 1 does not compute x̂t or its support T̂t. For

the matrix completion problem, Tt is given. Thus it does not use the parameters ξ (which is the

noise bound in the `1 minimization step) and ω (which is the support estimation threshold).

(2) The bound on xmin and the values of the parameters ξ and ω are only used in the proof of

Lemma 2.6.15 to show exact support recovery, i.e T̂t = Tt. Since for matrix completion Tt is

given, Theorem 2.2.5 does not need need the lower bound on xmin.

The proof of Theorem 2.2.7 is given in Sections 2.6 and 2.7. Before this, in the next section

(Section 2.5) we give the most general model on changes in the missing/outlier entries’ set Tt,

Model 2.5.1, and we show that Model 2.2.3 is a special case of this model. Next, we give a key

lemma for sums of sparse matrices supported on rows and columns indexed by Tt satisfying

this model (Lemma 2.5.3).

Section 2.6 begins with defining various quantities needed for the proof. Next, we state the

main lemmas used to prove the theorem, followed by the theorem’s proof. There is a main

lemma associated with each of the three main tasks of the algorithm: 1) accurately recovering

xt and hence `t at each time t (Lemma 2.6.15), 2) detecting (subspace change) when and

only when the subspace has changed, i.e. new directions have been added to the subspace

(Lemmas 2.6.17 and 2.6.16), and 3) successfully estimating the dimension of the new subspace

and updating its estimate by p-PCA (Lemma 2.6.18). To maintain the flow of the argument,

we defer the proofs of these lemmas to the end of the section or to the appendix.

The proofs of Lemmas 2.6.21, 2.6.22, and 2.6.23 that are used together to prove Lemmas

2.6.17, 2.6.16 and 2.6.18 are rather long and are given in section 2.7. The proof of Lemma

2.6.23 uses Lemma 2.5.3 from Section 2.5.
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2.5 Most General Model on Changes in Tt and a Key Lemma

2.5.1 Most General Model on Changes in Tt

Here we give our most general model on how Tt (the set of missing entries or the support

set of xt) can change. What we need to prevent is Tt occupying the same indices for too many

time instants in a given interval. If Tt does not change ‘enough’ in a time interval of length α,

we will be unable to see enough entries of a given index of `t in order to be able to accurately

fill in the missing ones.

The following model quantifies ‘enough’ for our purposes. The number of time instants for

which an index is part of Tt is determined both by how often this set changes, and by how

much it moves when it changes. The latter is parameterized by ρ which controls how much the

set moves when it changes. For example ρ = 1 would require that distinct sets be disjoint, and

ρ = 2 would mean that at least half of the set is displaced whenever it changes. The parameter

h+ ∈ (0, 1) represents the maximum fraction of time for which the set remains in a given area

in a time interval of length α. The smaller h+, the more frequently the set will need to change

in order to satisfy the model. Our result requires a bound on the product ρ2h+.

Model 2.5.1. Let ρ be a positive integer. Split [1, tmax] into intervals of length α. Use Ju :=

[(u−1)α+1, uα] to denote the u-th interval. For a given interval, Ju, let T(i),u for i = 1, . . . , lu

be mutually disjoint subsets of {1, . . . , n} and let J(i),u, i = 1, 2, . . . , lu be a partition6 of the

interval Ju so that

for all t ∈ J(i),u, Tt ⊆ T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u . (2.10)

Define

hu

(
α; {T(i),u}i=1,...,lu

, {J(i),u}i=1,...,lu

)
:= max

i=1,2,...lu

∣∣J(i),u

∣∣ (2.11)

and define h∗u(α) which takes the minimum over all choices of T(i),u and over all choices of the

6i.e. the J(i),u’s are mutually disjoint intervals and their union equals Ju
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partition J(i),u.

h∗u(α) := min
all choices of mutually disjoint T(i),u, i = 1, 2, . . . lu

and all choices of mutually disjoint J(i),u, i = 1, 2, . . . lu

so that ∪lui=1J(i),u = Ju and (2.10) holds

hu

(
α; {T(i),u}i=1,...,lu

, {J(i),u}i=1,...,lu

)

(2.12)

Assume that |Tt| ≤ s and that for all u = 1, . . . ,
⌈
tmax
α

⌉
,

h∗u(α) ≤ h+α with h+ ≤ 0.01

ρ2
.

In the above model, h∗u(α) provides a bound on how long Tt remains in a given “area”,

T(i),u ∪T(i+1),u ∪ · · · ∪ T(i+ρ−1),u during the interval Ju, for the best allocation of Tt’s to a given

“area” and the best choice of the “areas.”

Notice that (2.10) can always be trivially satisfied by choosing lu = 1, T(1),u = {1, . . . , n}

and J(1),u = Ju, but this will give hu(α; .) = α and hence is not a good choice. This is why we

take a minimum over all choices.

Lemma 2.5.2. Model 2.2.3 is a special case of Model 2.5.1 above with h+ = β
α .

The proof is in Appendix 2.A.

Some other special cases of the above model are discussed in Section 2.9.

2.5.2 A Key Lemma that uses Model 2.5.1

Lemma 2.5.3. Let st = |Tt|. Consider a sequence of st × st symmetric positive-semidefinite

matrices At such that ‖At‖2 ≤ σ+ for all t. Assume that the Tt obey Model 2.5.1. Let

M =
∑

t∈Ju
ITtAtITt

′ be an n× n matrix (I is an n× n identity matrix). Then

‖M‖2 ≤ ρ2h+ασ+ ≤ 0.01σ+α

Proof. We will first prove the lemma for the special case when ρ = 2. After this, we will

show how to generalize the proof when ρ > 2. For a given u, let T(i),u, i = 1, 2, . . . lu, and

correspondingly J(i),u denote the best choices, i.e. the choices that attain the minimum values

in the definition of h∗u(α).
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In the rest of the proof, we remove the subscript u from lu and from T(i),u’s for ease of

notation. For simplicity of notation, we will let T(l+1),u = ∅.

For times t ∈ J(i),u, define At,full to be At with rows and columns of zeros appropriately

inserted so that

ITtAtITt
′ = IT(i)∪T(i+1)

At,fullIT(i)∪T(i+1)

′. (2.13)

Such an At,full exists because Tt ⊆ T(i) ∪ T(i+1) for any t ∈ J(i),u. Notice that

‖At,full‖2 = ‖At‖2, (2.14)

because At,full is permutation similar to



At 0

0 0


 .

Since T(i) and T(i+1) are disjoint, we can, after permutation similarity, correspondingly

partition At,full as 

A

(0,0)
t,full A

(0,1)
t,full

A
(1,0)
t,full A

(1,1)
t,full




for all t ∈ J(i),u.
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Notice that because At is symmetric, A
(1,0)
t,full =

(
A

(0,1)
t,full

)′
. Then,

M =
∑

t∈Ju
ITtAtITt

′

=
l∑

i=1

∑

t∈J(i),u
IT(i)∪T(i+1)

At,fullIT(i)∪T(i+1)

′ by (2.13)

=

l∑

i=1

∑

t∈J(i),u
[IT(i) IT(i+1)

]



A

(0,0)
t,full A

(0,1)
t,full

A
(1,0)
t,full A

(1,1)
t,full







IT(i)
′

IT(i+1)

′




=
l∑

i=1

∑

t∈J(i),u

[
IT(i)A

(0,0)
t,fullIT(i)

′ + IT(i)A
(0,1)
t,fullIT(i+1)

′ + IT(i+1)
A

(1,0)
t,fullIT(i)

′ + IT(i+1)
A

(1,1)
t,fullIT(i+1)

′
]

= IT(1)


 ∑

t∈J(1),u
A

(0,0)
t,full


 IT(1) ′ +

l∑

i=2


IT(i)


 ∑

t∈J(i−1),u

A
(1,1)
t,full +

∑

t∈J(i),u
A

(0,0)
t,full


 IT(i) ′




+ IT(l)


 ∑

t∈J(l),u
A

(1,1)
t,full


 IT(l) ′

+
l−1∑

i=1


IT(i)


 ∑

t∈J(i),u
A

(0,1)
t,full


 IT(i+1)

′ + IT(i+1)


 ∑

t∈J(i),u
A

(1,0)
t,full


 IT(i) ′




Because T(i) and T(k) are disjoint for i 6= k, M has a block tridiagonal structure (by a

permutation similarity if necessary):




B(1) C(1) 0 0

C(1)
′ B(2)

. . . 0

0
. . .

. . . C(l−1)

0 0 C(l−1)
′ B(l)




(2.15)

where B(1) =
∑

t∈J(1),uA
(0,0)
t,full, B(l) =

∑
t∈J(l),uA

(1,1)
t,full,

B(i) =
∑

t∈J(i−1),u

A
(1,1)
t,full +

∑

t∈J(i),u
A

(0,0)
t,full for i = 2, 3, . . . , l (2.16)

and

C(i) =
∑

t∈J(i),u
A

(0,1)
t,full for i = 1, 2, . . . , l − 1. (2.17)
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Now we proceed to bound ‖M‖2.

‖M‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥

B(1) C(1) 0 0

C(1)
′ . . .

. . . 0

0
. . .

. . . C(l−1)

0 0 C(l−1)
′ B(l)

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥

B(1) 0 0 0

0
. . . 0 0

0 0
. . . 0

0 0 0 B(l)

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 C(1) 0 0

0 0
. . . 0

0 0 0 C(l−1)

0 0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0

C(1)
′ 0 0 0

0
. . . 0 0

0 0 C(l−1)
′ 0

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

.

Call the middle matrix C, and observe that CC ′ is block diagonal with blocks C(i)C(i)
′.

So ‖C‖2 = maxi ‖C(i)‖2. Therefore,

‖M‖2 ≤ max
i
‖B(i)‖2 + 2 max

i
‖C(i)‖2

≤ max
i

∥∥∥∥
∑

t∈J(i−1),u

A
(1,1)
t,full +

∑

t∈J(i),u
A

(0,0)
t,full

∥∥∥∥
2

+ 2 max
i

∥∥∥∥
∑

t∈J(i),u
A

(0,1)
t,full

∥∥∥∥
2

by (2.16) and (2.17)

≤ max
i


 ∑

t∈J(i−1),u

∥∥At

∥∥
2

+
∑

t∈J(i),u

∥∥At

∥∥
2


+ 2 max

i

∑

t∈J(i),u

∥∥At

∥∥
2

by (2.14)

≤ (σ+h∗u(α) + σ+h∗u(α)) + 2σ+h∗u(α) ≤ 4σ+h+α

The third row used the fact that ‖A(·,·)
t,full‖2 ≤ ‖At,full‖2 = ‖At‖2 for any sub-matrix of At,full.

This finishes the proof for the ρ = 2 case. For this case, notice that there are 3 bands

in (2.15) - the diagonal band and one band on each side of the diagonal one. When ρ = 3,

everything will follow analogously to the above; instead of 3 bands, there will be 5 bands in

the definition of M and we will be able to bound its norm by
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‖M‖2 ≤max
i


 ∑

t∈J(i−2),u

∥∥At

∥∥
2

+
∑

t∈J(i−1),u

∥∥At

∥∥
2

+
∑

t∈J(i),u

∥∥At

∥∥
2




+ 2 max
i


 ∑

t∈J(i−1),u

∥∥At

∥∥
2

+
∑

t∈J(i),u

∥∥At

∥∥
2




+ 2 max
i

∑

t∈J(i),u

∥∥At

∥∥
2

≤3σ+h∗u(α) + 2(2σ+h∗u(α) + σ+h∗u(α)) ≤ 9σ+h+α

Proceeding this way, for a general ρ, there will be 1 + 2(ρ−1) = 2ρ−1 bands. Any term in the

central band will contain a summation of
∥∥At

∥∥
2

over ρ sub-intervals J(i),u; any term in the first

band away from the diagonal will contain this summation over (ρ−1) sub-intervals; any term in

the second band away from the diagonal will contain this summation over (ρ−2) sub-intervals;

and so on. Thus, we will be summing the quantity σ+h+α a total of (ρ+ 2
∑ρ−1

i=1 i) = ρ2 times

and so we will get ‖M‖2 ≤ ρ2σ+h+α. �

2.6 Proof of Theorem 2.2.7 and Theorem 2.2.5

As explained in Section 2.4.4, we will only prove Theorem 2.2.7. Theorem 2.2.5 follows as

an easy corollary.

2.6.1 Definitions

Definition 2.6.1. Define et to be the error made in estimating xt and `t. That is

et := x̂t − xt = `t − ˆ̀
t

Definition 2.6.2. Define the interval

Ju := [(u− 1)α+ 1, uα].

Also define uj to be the u such that tj ∈ Ju. That is

uj :=

⌈
tj
α

⌉
.
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For the purposes of describing events before the first subspace change, let u0 := 0. Also define

ûj :=
t̂j
α
.

Notice from the algorithm that this will be an integer, because detection only occurs when t

mod α = 0.

We will show that, under appropriate conditioning, w.h.p., ûj = uj or ûj = uj + 1.

Definition 2.6.3. Define

P(j) := Ptj for j = 0, 1, . . . , J

P(j),∗ := P(j−1) = Ptj−1 and P(j),new := Ptj ,new for j = 1, . . . , J

at,∗ := P(j),∗
′`t and at,new := P(j),new

′`t for t ∈ [tj , tj+1)

Thus, for t ∈ [tj , tj+1), `t can be written as

`t = [P(j),∗ P(j),new]




at,∗

at,new


 = P(j),∗at,∗ + P(j),newat,new

and Cov(`t) = Σt can be rewritten as

Σt =
[
P(j),∗ P(j),new

]



Λt,∗ 0

0 Λt,new







P(j),∗
′

P(j),new
′




Definition 2.6.4. For j = 1, 2, . . . , J and k = 1, 2, . . . ,K define

1. P̂(1),∗ := P̂ttrain (the initial estimate) and P̂(j),∗ := P̂t̂j−1+Kα. If all subspace changes are

correctly detected, this is the final estimate of P(j),∗ = P(j−1).

2. P̂(j),new,0 := [.] and P̂(j),new,k := P̂t̂j+kα,new. This is the kth estimate of P(j),new (again,

conditioned on correct change time detection).

Notice from the algorithm that

1. P̂t,∗ = P̂(j),∗ for all t ∈ [t̂j−1 +Kα, t̂j +Kα− 1]

2. P̂t,new = P̂(j),new,k for all t ∈ Jûj+(k+1)
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tj t̂j t̂j + α t̂j + 2α

. . .

t̂j + kα t̂j + (k + 1)α

. . .

t̂j +Kα tj + d tj+1

P̂t = P̂(j),∗
P̂t,new = [.] P̂t =

[
P̂(j),∗ P̂(j),new,1

]
P̂t =

[
P̂(j),∗ P̂(j),new,k

]

‖at,new‖∞ ≤ γnew

P̂t =
[
P̂(j),∗ P̂(j),new,K

]
= P̂(j+1),∗

Figure 2.6: A diagram to visualize Algorithm 1 and Definition 2.6.4. The k-th

projection-PCA step (at t = t̂j + kα) computes the top left singular vectors of (I −
P̂(j),∗P̂(j),∗′)[ ˆ̀̂tj+(k−1)α+1,

ˆ̀̂
tj+(k−1)α+2, . . .

ˆ̀̂
tj+kα

].

3. At all times P̂t = [P̂t,∗ P̂t,new]. Thus P̂t and P̂t,new update at every t = t̂j + kα,

k = 1, 2, . . . ,K, j = 1, 2, . . . , J while P̂t,∗ updates at every t = t̂j−1 +Kα, j = 2, . . . , J .

4. P̂t−1,∗ ⊥ P̂t,new at t = t̂j + kα and so P̂(j),∗ ⊥ P̂(j),new,k

5. Φt = (I − P̂(j),∗P̂(j),∗′ − P̂(j),new,kP̂(j),new,k
′) when t ∈ Jûj+(k+1), for k = 1, 2, . . .K − 1.

6. Φt = (I − P̂(j),∗P̂(j),∗′) when t ∈ [tj , t̂j + α] (recall that t̂j = ûjα).

7. Φt = (I − P̂(j+1),∗P̂(j+1),∗′) when t ∈ [t̂j +Kα+ 1, tj+1 − 1].

Using the notation from the above definition, Figure 2.6 summarizes Algorithm 1.

Definition 2.6.5. Recall that for basis matrices P and Q, dif(P ,Q) := ‖(I − PP ′)Q‖2.

Define

1. ζj,∗ := dif(P̂(j),∗,P(j),∗)

2. ζj,new,k := dif([P̂(j),∗ P̂(j),new,k],P(j),new)

Recall SEt = dif(P̂t,Pt). Notice that if subspace change times are correctly detected, for t ∈

Jûj+k, SEt ≤ ζj,∗ + ζj,new,k−1 for k = 1, 2, . . .K; for t ∈ [tj , t̂j + α], SEt ≤ 1; and for t ∈

[t̂j +Kα+ 1, tj+1 − 1], SEt = ζj+1,∗.

Definition 2.6.6. Define

1. ζ+
j,∗ :=

(
r0 + (j − 1)rnew

)
ζ
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2. ζ+
j,new,0 := 1, ζ+

j,new,k :=
bH,k

bA − bA,⊥ − bH,k
for k = 1, 2, . . . ,K where bA, bA,⊥, and bH,k

are defined in the remainder of this section. Their expressions are given by (2.21), (2.22),

and (2.23).

We will show that these are high probability upper bounds on ζj,∗ and ζj,new,k under appropriate

conditioning.

As we will see later, bA ≈ λ−new, bA,⊥ ≈ ζ+
j,∗

2λ+ and bH,k ≈ 2
√
ρ2h+φ+(ζ+

j,∗
2λ++ζ+

j,new,k−1λ
+
new).

Here ≈ means we are giving only the most dominant term for each expression. Thus,

ζ+
j,new,k ≈

2
√
ρ2h+φ+(ζ+

j,new,k−1λ
+
new + ζ+

j,∗
2λ+)

λ−new − ζ+
j,∗

2λ+ − 2
√
ρ2h+φ+(ζ+

j,new,k−1λ
+
new + ζ+

j,∗
2λ+)

.

By using (2.5), the bounds on ζ from the theorem, and the bound on ρ2h+, one can show that

this decays roughly exponentially with k (see Lemma 2.6.14).

Definition 2.6.7. Define the random variable

Xu := {a1, . . . ,auα}

Definition 2.6.8. Recall the definition of Du from Algorithm 1. For j = 1, . . . , J , k =

1, . . . ,K, and for a = uj or a = uj + 1, define the following events

• DETa
j := {ûj = a}

• PPCAa
j,k :=

{
ûj = a and rank(P̂(j),new,k) = rj,new and ζj,new,k ≤ ζ+

j,new,k

}

• NODETSaj :=
{
ûj = a and λmax

(
1
αDuDu

′) < thresh for all u ∈ [ûj +K + 1, uj+1 − 1]
}

• Γ0,end := {ζ1,∗ ≤ r0ζ} ∩
{
λmax

(
1
αDuDu

′) < thresh for all u ∈ [1, u1 − 1]
}

• Γaj,0 := Γj−1,end ∩DETa
j

• Γaj,k := Γaj,k−1 ∩ PPCAa
j,k

• Γj,end :=
(

Γ
uj
j,K ∩NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩NODETS

uj+1
j

)

We misuse notation as follows. Suppose that a set Γ is a subset of all possible values that a

r.v. X can take. For two r.v.s’ {X,Y }, when we need to say “X ∈ Γ and Y can be anything”
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we will sometimes misuse notation and just say “{X,Y } ∈ Γ.” For example, we sometimes say

Xuj ∈ Γj,end. This means Xuj−1 ∈ Γj,end and at for t ∈ Juj are unconstrained.

Definition 2.6.9. Define

1. Let Dj,new := (I − P̂(j),∗P̂(j),∗′)P(j),new
QR
= Ej,newRj,new denote its reduced QR decompo-

sition, i.e. let Ej,new be a basis matrix for range (Dj,new) and let Rj,new = Ej,new
′Dj,new.

2. Let Ej,new,⊥ be a basis matrix for the orthogonal complement of range(Ej,new). To be

precise, Ej,new,⊥ is an n× (n− rj) basis matrix so that [Ej,new Ej,new,⊥] is unitary.

3. For u = uj + 1 and u = ûj + k for k = 1, . . . ,K, define Au, Au,⊥, Au as

Au :=
1

α

∑

t∈Ju
Ej,new

′(I − P̂(j),∗P̂(j),∗
′)`t`t′(I − P̂(j),∗P̂(j),∗

′)Ej,new

Au,⊥ :=
1

α

∑

t∈Ju
Ej,new,⊥

′(I − P̂(j),∗P̂(j),∗
′)`t`t′(I − P̂(j),∗P̂(j),∗

′)Ej,new,⊥

and let

Au :=

[
Ej,new Ej,new,⊥

]


Au 0

0 Au,⊥







Ej,new
′

Ej,new,⊥′




4. For u = uj + 1 and u = ûj + k for k = 1, . . . ,K, define Mu and Hu as

Mu = (I − P̂(j),∗P̂(j),∗
′)

(
1

α

∑

t∈Ju

ˆ̀
t
ˆ̀
t
′
)

(I − P̂(j),∗P̂(j),∗
′)

and

Hu := Mu −Au

Remark 2.6.10. Recall the definition of Du from Algorithm 1.

Conditioned on Γj−1,end, for u = uj + 1, P̂uα−1,∗ = P̂(j),∗ (in other words all j − 1 previous

subspace changes were detected) and thus, for this value of u,

1

α
DuDu

′ = Mu.

In this case, Mu is the matrix whose maximum eigenvalue is checked to detect subspace change.

Conditioned on Γ
ûj
j,0, for u = ûj + k, k = 1, 2, . . . ,K, P̂uα−1,∗ = P̂(j),∗ and thus, for these

values of u also,

1

α
DuDu

′ = Mu.
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In this case, Mu is the matrix whose eigenvectors with eigenvalue above thresh form P̂(j),new,k

(see step 2 of Algorithm 1). In other words, Mu has eigendecomposition

Mu
EVD
=

[
P̂(j),new,k P̂(j),new,k,⊥

]



Λ̂u 0

0 Λ̂u,⊥







P̂(j),new,k
′

P̂(j),new,k,⊥′


 .

Definition 2.6.11. Define

1. κs,∗ := κs(P(J)) and κs,new := maxj κs(P(j),new).

2. κ+
s := 0.0215. As we will show later in Lemma 2.7.8, this upper bounds ‖ITt ′Dj,new‖2

under appropriate conditioning.

3. φ+ := 1.2. As we will show later in Lemma 2.6.15, this upper bounds φt := ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2
under appropriate conditioning.

Remark 2.6.12. The entire proof uses Model 2.5.1 on Tt. By Lemma 2.5.2, Model 2.2.3 is a

special case of it. In particular, this means that (a) Model 2.2.3 also implies ρ2h+ ≤ 0.01 and

(b) Model 2.2.3 also allows us to use Lemma 2.5.3. This lemma is used in the proof of Lemma

2.6.23 in Section 2.7.

2.6.2 Five Main Lemmas for Proving Theorem 2.2.7

Fact 2.6.13. Observe that Γaj,0 both for a = uj and a = uj + 1 implies that uj ≤ ûj ≤ uj + 1.

Thus, in both cases, tj ≤ t̂j ≤ tj + 2α. So with the model assumption that d ≥ (K + 2)α, we

have that Jûj+k ⊆ [tj , tj + d] for k = 1, 2, . . . ,K. This fact is needed so that we can use the

“slow subspace change” inequality, (2.5), to bound the eigenvalues along the new directions,

and so that we can bound ‖at,new‖∞ by γnew.

Lemma 2.6.14. [Exponential decay of the bound on ζj,new,k (similar to [11, Lemma 6.1])]

Under the conditions of Theorem 2.2.7,

ζ+
j,new,k ≤ 0.83k + 0.84rnewζ

This lemma follows by applying simple algebra on the definition and using the bounds

assumed on ζ, λ+
new and ρ2h+ in Theorem 2.2.7. A detailed proof of this lemma is given in

Appendix 2.B.
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Lemma 2.6.15 (Sparse Recovery Lemma (similar to [11, Lemma 6.4])). Assume that all of

the conditions of Theorem 2.2.7 hold. Recall that SEt = dif(P̂t,Pt).

1. Conditioned on Γj−1,end, for t ∈ [tj , (ûj + 1)α]

(a) φt := ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ := 1.2.

(b) the support of xt is recovered exactly i.e. T̂t = Tt and et satisfies:

et := x̂t − xt = `t − ˆ̀
t = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt`t. (2.18)

(c) Furthermore,

SEt ≤ 1 , and

‖et‖2 ≤ φ+(ζ+
j,∗
√
rγ +

√
rnewγnew) ≤ 1.2

(√
ζ +
√
rnewγnew

)

2. For k = 2, 3, . . . ,K and ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,k−1, for t ∈ Jûj+k =

[(ûj + k − 1)α+ 1, (ûj + k)α], the first two conclusions above hold. That is, φt ≤ φ+ and

et satisfies (2.18). Furthermore,

SEt ≤ ζ+
j,∗ + ζ+

j,new,k−1 , and

‖et‖2 ≤ φ+(ζ+
j,∗
√
rγ + ζ+

j,new,k−1

√
rnewγnew) ≤ 1.2

(
1.84

√
ζ + (0.83)k−1√rnewγnew

)

3. For ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,K , for t ∈ [(ûj +K)α+ 1, tj+1 − 1], the

first two conclusions above hold (φt ≤ φ+ and et satisfies (2.18)). Furthermore,

SEt ≤ ζ+
j+1,∗ , and

‖et‖2 ≤ φ+ζ+
j+1,∗
√
rγ ≤ 1.2

√
ζ

Notice that cases 1) and 3) of the above lemma occur when the algorithm is in the detection

phase, while during the intervals for case 2) the algorithm is performing projection-PCA. In

case 1) new directions have been added but not estimated, so the error is larger. In case 2),

the error is decaying exponentially with each estimation step. Finally, case 3) occurs after the

new directions have been successfully estimated and contains the tightest error bounds.

The proof is given in Appendix 2.C.
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Lemma 2.6.16 (No false detection of subspace changes).

1. The event Γ
ûj
j,K and so also the event Γj,end imply that ζj+1,∗ ≤ ζ+

j+1,∗.

2. P
(
NODETSaj | Γaj,K

)
= 1 for a = uj or a = uj + 1.

Lemma 2.6.17 (Subspace change detected within 2α frames). For j = 1, . . . , J ,

P
(
DETuj+1 | Γj−1,end,DETuj

)
≥ pdet,1 := 1− pA − pH.

The definitions of pA and pH can be found in the remainder of this section.

Lemma 2.6.18 (k-th iteration of pPCA works well).

P
(
Γaj,k | Γaj,k−1

)
= P

(
PPCAa

j,k | Γaj,k−1

)
≥ pppca := 1− pA − pA,⊥ − pH

for a = uj or a = uj + 1. The definitions of pA, pA,⊥, and pH can be found in the remainder

of this section.

The above lemma says that, conditioned on k − 1 previous successful p-PCA steps and on

accurate recovery of P(j−1),∗, the probability of correctly estimating rj,new and of a successful

kth projection PCA step is lower bounded by pppca. This is true whether the new directions

are detected at uj or at uj + 1.

2.6.3 Proof of Theorem 2.2.7

Corollary 2.6.19. The above lemmas imply that P (Γj,end | Γj−1,end) ≥ pdet,1 · (pppca)K .

Proof. Let

pdet,0 := P (DETuj | Γj−1,end) .



47

From the above lemmas, we get that

P (Γj,end | Γj−1,end) = P
((

DETuj ∩ PPCA
uj
j,1 ∩ · · · ∩ PPCA

uj
j,K ∩NODETS

uj
j

)
∪

(
DETuj ∩DETuj+1 ∩ PPCA

uj+1
j,k ∩ · · · ∩ PPCA

uj+1
j,K ∩NODETS

uj+1
j

)
| Γj−1,end

)

= P
(

DETuj ∩ PPCA
uj
j,1 ∩ · · · ∩ PPCA

uj
j,K | Γj−1,end

)

+ P
(

DETuj ∩DETuj+1 ∩ PPCA
uj+1
j,k ∩ · · · ∩ PPCA

uj+1
j,K | Γj−1,end

)

≥ pdet,0 · (pppca)K + (1− pdet,0) · pdet,1 · (pppca)K

≥ pdet,0 · pdet,1 · (pppca)K + (1− pdet,0) · pdet,1 · (pppca)K

= pdet,1 · (pppca)K .

�

Proof of Theorem 2.2.7. Theorem 2.2.7 follows from Corollary 2.6.19 and the assumed

lower bound on α. Notice that by Lemma 2.6.14, the choice of K, and Lemma 2.6.15, the

event ΓJ,end will imply all conclusions of the theorem.

By the first assumption (accurate initial subspace knowledge) and the argument used to

prove Lemma 2.6.16, we get that P(Γ0,end) = 1. By the chain rule,

P(ΓJ,end) =
J∏

j=1

P(Γj,end | Γj−1,end,Γj−2,end, . . . ,Γ1,end,Γ0,end).

Because Γj−1,end ⊆ Γj−2,end ⊆ · · · ⊆ Γ1,end ⊆ Γ0,end, we get

P(ΓJ,end) =

J∏

j=1

P(Γj,end | Γj−1,end)

≥
J∏

j=1

pdet,1 · (pppca)K = (pdet,1 · (pppca)K)J

≥ 1− n−10

The last line is by the lower bound on α assumed in the theorem and the fact that pdet,1 ≥

pppca. �
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2.6.4 Key Lemmas for Proving of Lemmas 2.6.16, 2.6.17, and 2.6.18

Before proving the lemmas from the preceding subsection, we introduce several lemmas

which will be used in the proofs.

The following lemma follows from the sin θ theorem [22] and Weyl’s theorem. It is taken

from [11].

Lemma 2.6.20 ([11], Lemma 6.9). At u = ûj+k, if rank(P̂(j),new,k) = rj,new, and if λmin(Au)−

‖Au,⊥‖2 − ‖Hu‖2 > 0, then

ζj,new,k ≤
‖Hu‖2

λmin(Au)− ‖Au,⊥‖2 − ‖Hu‖2
(2.19)

The next three lemmas each assert a high probability bound for one of the terms in (2.19).

In the following lemmas, let

ε =
rnewζλ̂

−
train

100
. (2.20)

Let pA := rnew exp

(
−αζ2(λ̂−train)2

8·1002·γnew4

)
+ rnew exp

(
−αrnew2ζ2(λ̂−train)2

8·1002·42

)
and

bA := (1− (ζ+
j,∗)

2)λ−new − 2ε. (2.21)

Lemma 2.6.21. For k = 1, . . . ,K,

P
(
λmin

(
Aûj+k

)
≥ bA

∣∣ Xûj+k−1

)
≥ 1− pA

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1.

The same bound holds for λmin(Auj+1) when we condition on Xuj ∈ Γj−1,end.

Let pA,⊥ := (n− rnew) exp

(
−αrnew2ζ2(λ̂−train)2

8·1002

)

and

bA,⊥ := (ζ+
j,∗)

2λ+ + ε. (2.22)

Lemma 2.6.22. For k = 1, . . . ,K,

P
(
λmax

(
Aûj+k,⊥

)
≤ bA,⊥

∣∣ Xûj+k−1

)
≥ 1− pA,⊥

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1.

The same bound holds for λmax(Auj+1,⊥) when we condition on Xuj ∈ Γj−1,end.
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Let

pH := n exp

(
−αrnew

2ζ2(λ̂−train)2

32 · 1002(φ+)2(
√
ζ +
√
rnewγnew)4

)

+ n exp




−αrnew
2ζ2(λ̂−train)2

8 · 1002
(
φ+(
√
ζ +
√
rnewγnew)

)4


+

n exp

(
−αrnew

2ζ2(λ̂−train)2

32 · 1002(ζ +
√
ζ
√
rnewγnew)2

)
.

and

bH,k := 2b`e,k + bee,k + 2bF (2.23)

where

b`e,k :=





φ+
(√

ρ2h+(ζ+
j,∗)

2λ+ + κ+
s λ

+
new

)
+ ε k = 1

[
(ζ+
j,∗)

2λ+ + ζ+
j,new,k−1λ

+
new

](√
ρ2h+φ+

)
+ ε k ≥ 2

bee,k :=





ρ2h+(φ+)2
(
(ζ+
j,∗)

2λ+ + (κ+
s )2λ+

new

)
+ ε k = 1

ρ2h+(φ+)2
(
(ζ+
j,∗)

2(λ+) + (ζ+
j,new,k−1)2(λ+

new)
)

+ ε k ≥ 2

and

bF := (ζ+
j,∗)

2λ+ + ε.

Lemma 2.6.23. For k = 1, . . . ,K,

P
(
‖Hûj+k‖2 ≤ bH,k

∣∣ Xûj+k−1

)
≥ 1− pH (2.24)

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1

The same bound (k = 1 case), i.e. ‖Huj+1‖2 ≤ bH,1, also holds with the same probability

when we condition on Xuj ∈ Γj−1,end.

The above lemmas are proved in the next section (Section 2.7). The proofs use Fact 2.6.13.

2.6.5 Proofs of Lemmas 2.6.16, 2.6.17, and 2.6.18

Proof of Lemma 2.6.16. Recall that Γj,end :=
(

Γ
uj
j,K ∩NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩NODETS

uj+1
j

)
.
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1. By the definition of Γ
ûj
j,K , both for ûj = uj and ûj = uj+1, ζj,∗ ≤ ζ+

j,∗ = (r0 +(j−1)rnew)ζ

and ζj,K ≤ ζ+
j,new,K . Lemma 2.6.14 and the choice of K imply that ζ+

j,new,K ≤ rnewζ. Thus,

ζj+1,∗ ≤ ζj,∗ + ζj,new,k ≤ ζ+
j+1,∗ = (r0 + jrnew)ζ.

2. P(NODETS
ûj
j | Γ

ûj
j,K) = P

(
λmax( 1

αDuDu) < thresh for all u ∈ [ûj+K+1, uj+1−1] | Γûjj,K
)

for ûj = uj or ûj = uj + 1.

As shown in 1), Γ
ûj
j,K implies that dif(P̂(j+1),∗,P(j+1),∗) ≤ ζ+

j+1,∗ = (r0 + jrnew)ζ. Recall

that P(j+1),∗ = P(j). Also, for u ∈ [ûj + K + 1, uj+1 − 1], P̂uα−1,∗ = P̂(j+1),∗. Also, for all

t ∈ Ju for these u’s, `t = P(j)at = P(j+1),∗at. Therefore,

λmax

(
1

α
DuDu

)
= λmax

(
1

α

∑

t∈Ju
(I − P̂uα−1,∗P̂uα−1,∗′) ˆ̀

t
ˆ̀
t
′(I − P̂uα−1,∗P̂uα−1,∗′)

)

= λmax

(
1

α

∑

t∈Ju
(I − P̂(j+1),∗P̂(j+1),∗

′)(P(j)at − et)

(P(j)at − et)′(I − P̂(j+1),∗P̂(j+1),∗
′)

)

≤ (ζ+
j+1,∗)

2rγ2 + 2φ+(ζ+
j+1,∗)

2rγ2 + (φ+)2(ζ+
j+1,∗)

2rγ2

≤ 4(φ+)2ζλ̂−train ≤
λ̂−train

2
.

The bound on et comes from Lemma 2.6.15. The penultimate inequality uses the bound

ζ ≤ λ−train
r3γ2

assumed in Theorem 2.2.7. �

The next two proofs follow using the following two facts and the four lemmas from the

previous subsection.

Fact 2.6.24. For an event E and random variable X, P(E|X) ≥ p for all X ∈ C implies that

P(E|X ∈ C) ≥ p.

Fact 2.6.25. Using the bounds on ζ and on ρ2h+ and using (3b), we get

bA ≥ 0.94λ−new ≥ 0.94λ̂−train

bA,⊥ ≤ 0.011λ̂−train

bH,k ≤ 0.24λ̂−train.

Thus, bA − bH,k ≥ 0.5λ̂−train = thresh and bA,⊥ + bH,k < 0.25λ̂−train < thresh.
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Proof of Lemma 2.6.17. We will prove that P
(
DETuj+1 | Xuj

)
> pdet,1 for all Xuj ∈ Γj−1,end.

In particular, this will imply that P(DETuj+1 | Xuj ) > pdet,1 for all Xuj ∈ Γj−1,end ∩ DETuj

and so we can conclude that P(DETuj+1 | Γj−1,end,DETuj ) > pdet,1.

Recall that Mu = 1
αDuDu

′, and observe that

P
(
DETuj+1 | Xuj

)
= P

(
λmax(Muj+1) > thresh | Xuj

)

By Weyl’s Theorem

λmax(Muj+1) ≥ λmax(Auj+1) + λmin(Huj+1)

≥ λmax(Auj+1)− ‖Huj+1‖2

≥ λmin(Auj+1)− ‖Huj+1‖2

When Xuj ∈ Γj−1,end, Lemmas 2.6.21 and 2.6.23 applied with ε given by (2.20) show that

λmin(Auj+1) ≥ bA and ‖Huj+1‖2 ≤ bH,1 with probability at least 1− pA − pH = pdet,1. Using

Fact 2.6.25, bA − bH,1 ≥ thresh and so the lemma follows. �

Proof of Lemma 2.6.18. To prove this Lemma we need to show two things. First, conditioned

on Γ
ûj
j,k−1, the kth estimate of the number of new directions is correct. That is: r̂j,new,k = rj,new.

Second, we must show ζj,new,k ≤ ζ+
j,new,k, again conditioned on Γ

ûj
j,k−1.

Notice that r̂j,new,k = rank(P̂(j),new,k). To show that rank(P̂(j),new,k) = rj,new, we need to

show that for u = ûj + k, k = 1, . . . ,K, λrj,new(Mu) > thresh and λrj,new+1(Mu) < thresh. To

do this we proceed similarly to above.

Observe that, Mu = Au + Hu. By Fact 2.6.25, bA > bA,⊥. Combining this with Lemmas

2.6.21 and 2.6.22 gives, λmin(Au) > λmax(Au,⊥) with probability at least 1− pA − pA,⊥ under

the appropriate conditioning (conditioned on Γ
ûj
j,k−1). Since Au is of size rj,new × rj,new, this

means that λrj,new(Au) = λmin(Au) and λrj,new+1(Au) = λmax(Au,⊥). Using this and Weyl’s

Theorem,

λrj,new(Mu) ≥ λrj,new(Au) + λmin(Hu)

≥ λrj,new(Au)− ‖Hu‖2

= λmin(Au)− ‖Hu‖2
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and

λrj,new+1(Mu) ≤ λrj,new+1(Au) + λmax(Hu)

≤ λrj,new+1(Au) + ‖Hu‖2

= λmax(Au,⊥) + ‖Hu‖2

with probability at least 1 − pA − pA,⊥ under the appropriate conditioning. Using Lemmas

2.6.21, 2.6.22, and 2.6.23 applied with ε given by (2.20) and Fact 2.6.25, we can conclude that

with probability greater than pppca, λrj,new(Mu) > bA − bH,k ≥ thresh and λrj,new+1(Mu) <

bA,⊥ + bH,k < thresh. Therefore rank(P̂(j),new,k) = rj,new with probability greater than pppca

under the appropriate conditioning.

To show that ζj,new,k ≤ ζ+
j,new,k, we also use Lemmas 2.6.21, 2.6.22, and 2.6.23 applied with ε

given by (2.20). Using rank(P̂(j),new,k) = rj,new and applying Lemma 2.6.20 with these bounds

gives the desired result. �

2.7 Proofs of Lemmas 2.6.21, 2.6.22, and 2.6.23

2.7.1 Some definitions, remarks and facts

Definition 2.7.1. Define the following for k = 0, 1, . . . ,K. Recall that P̂(j),new,0 = [.].

1. Dj,new,k := (I − P̂(j),∗P̂(j),∗′ − P̂(j),new,kP̂(j),new,k
′)P(j),new. Thus Dj,new = Dj,new,0.

2. Dj,∗,k := (I − P̂(j),∗P̂(j),∗′ − P̂(j),new,kP̂(j),new,k
′)P(j),∗ and Dj,∗ := Dj,∗,0.

3. Recall that ζj,new,0 = ‖Dj,new‖2, ζj,new,k = ‖Dj,new,k‖2, ζj,∗ = ‖Dj,∗‖2. Also, clearly,

‖Dj,∗,k‖2 ≤ ‖Dj,∗‖2 ≤ ζj,∗.

Definition 2.7.2. For ease of notation, define

˜̀
t := (I − P̂(j),∗P̂(j),∗

′)`t

Remark 2.7.3. In the rest of this section, for ease of notation, we do the following.

• We remove the subscript j from Dj,new,k, Ej,new, and ζj,new,k etc. and from everything

in Definitions 2.6.3, 2.6.4, 2.6.5, 2.6.9 and 2.7.1.
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• Similarly we also let Xk := Xûj+k and Γk := Γ
ûj
j,k for both ûj = uj and ûj = uj+1. More

precisely, whenever we say P (event|Xk−1 ∈ Γk−1) ≥ p0 we mean

P
(

event|Xuj+k−1 ∈ Γ
uj
j,k−1

)
≥ p0 and P

(
event|Xuj+1+k−1 ∈ Γ

uj+1
j,k−1

)
≥ p0.

• Finally,
∑

t refers to
∑

t∈Ju for u = ûj + k

Also, note the following.

• The proof for the bound on Au for u = uj + 1 is the same as that for u = ûj + 1 since in

both cases P̂t,∗ = P̂(j),∗ and P̂t,new = [.] for all t ∈ Ju. The same is true for the bounds

on Auj+1,⊥ and Huj+1.

Fact 2.7.4. When Xk−1 ∈ Γk−1,

1. ‖D∗,k−1‖2 ≤ ζ+
j,∗ for k = 1, . . . ,K.

2. ‖Dnew,k−1‖2 ≤ ζ+
new,k−1 for k = 1, . . . ,K + 1 (by definition of Γk−1).

3. Recall that ζ+
new,0 = 1.

4. ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ (from Lemma 2.6.15)

5. λmin(RnewRnew
′) ≥ 1−(ζ+

∗ )2 (this follows because ‖P̂∗′Pnew‖2 = ‖P̂∗(I−P∗P∗′)′Pnew‖2 ≤

ζ∗)

6. Enew
′Dnew = Enew

′EnewRnew = Rnew and Enew,⊥′Dnew = 0.

7. ˜̀
t = D∗at,∗ +Dnewat,new.

8. et satisfies (2.18) with probability one, i.e. et = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′(D∗,k−1at,∗ +

Dnew,k−1at,new).

2.7.2 Preliminaries

First observe that the matrices Dnew, Rnew, Enew, D∗,Dnew,k−1 are all functions of the

random variable Xk−1. Since Xk−1 is independent of any at for t ∈ Jûj+k, the same is true

for these matrices. All terms that we bound for Lemmas 2.6.21 and 2.6.22 are of the form



54

1
α

∑
t∈Jûj+k

Zt where Zt = f1(Xk−1)Ytf2(Xk−1), Yt is a sub-matrix of atat
′, and f1(.) and

f2(.) are functions of Xk−1. Thus, conditioned on Xk−1, the Zt’s are mutually independent.

All the terms that we bound for Lemma 2.6.23 contain et. Using Lemma 2.6.15, conditioned

on Xk−1, et satisfies (2.18) with probability one whenever Xk−1 ∈ Γk−1. Using (2.18), it is

easy to see that all the terms needed for this lemma are also of the above form whenever

Xk−1 ∈ Γk−1. Thus, conditioned on Xk−1, the Zt’s for all the above terms are mutually

independent, whenever Xk−1 ∈ Γk−1.

We will use the following corollaries of the matrix Hoeffding inequality from [23]. These are

proved in [11].

Corollary 2.7.5 (Matrix Hoeffding conditioned on another random variable for a nonzero mean

Hermitian matrix [23, 11]). Given an α-length sequence {Zt} of random Hermitian matrices

of size n × n, a r.v. X, and a set C of values that X can take. Assume that, for all X ∈ C,

(i) Zt’s are conditionally independent given X; (ii) P(b1I � Zt � b2I|X) = 1 and (iii)

b3I � 1
α

∑
t E(Zt|X) � b4I. Then for all ε > 0,

P

(
λmax

(
1

α

∑

t

Zt

)
≤ b4 + ε

∣∣∣X
)
≥ 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

P

(
λmin

(
1

α

∑

t

Zt

)
≥ b3 − ε

∣∣∣X
)
≥ 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

Corollary 2.7.6 (Matrix Hoeffding conditioned on another random variable for an arbitrary

nonzero mean matrix). Given an α-length sequence {Zt} of random matrices of size n1 × n2,

a r.v. X, and a set C of values that X can take. Assume that, for all X ∈ C, (i) Zt’s are

conditionally independent given X; (ii) P(‖Zt‖2 ≤ b1|X) = 1 and (iii) ‖ 1
α

∑
t E(Zt|X)‖2 ≤ b2.

Then, for all ε > 0,

P

(∥∥∥∥
1

α

∑

t

Zt

∥∥∥∥
2

≤ b2 + ε
∣∣∣X
)
≥ 1− (n1 + n2) exp

(−αε2
32b1

2

)
for all X ∈ C

2.7.3 Simple Lemmas Needed for the Proofs

Lemma 2.7.7. For j = 1, . . . , J and k = 1, . . . ,K, for all Xûj+k−1 ∈ Γ
ûj
j,k−1

1. 0 � E
[
at,∗at,∗′

∣∣ Xûj+k−1

]
= Λt,∗ � λ+I
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2. λ−newI � E
[
at,newat,new

′ ∣∣ Xûj+k−1

]
= Λt,new � λ+

newI and λ̂−train ≤ λ−new ≤ λ+
new ≤

3λ̂−train

3. E
[
at,∗at,new

′ ∣∣ Xûj+k−1

]
= 0

with ûj = uj or ûj = uj + 1.

The same bounds also hold for summation over t ∈ Juj+1 when we condition on Xuj ∈

Γj−1,end.

Proof. The proof follows from Model 2.2.2 and Fact 2.6.13. The only reason we need Xûj+k−1 ∈

Γ
ûj
j,k−1 is to apply Fact 2.6.13 which allows us to lower and upper bound in the eigenvalues of

Λt,new by λ−new and λ+
new and then use (3b). �

Lemma 2.7.8. Assume that the assumptions of Theorem 2.2.7 hold. Recall that Dnew =

Dnew,0. Conditioned on Xk−1 ∈ Γk−1,

‖IT ′Dnew‖2 ≤ κ+
s := .0215 (2.25)

for all T such that |T | ≤ s.

The proof is in Appendix 2.B.

2.7.4 Proofs of Lemma 2.6.21 and 2.6.22

Proof of Lemma 2.6.21. We obtain the bounds on Au for u = ûj + k for k = 1, 2, . . . ,K and

ûj = uj or uj + 1. For u = ûj + k, recall that Au := 1
α

∑
tEnew

′ ˜̀
t
˜̀′
tEnew.

Notice that Enew
′ ˜̀
t = Rnewat,new + Enew

′D∗at,∗. Let Zt = Rnewat,newat,new
′Rnew

′, and

let Yt = Rnewat,newat,∗′D∗′Enew +Enew
′D∗at,∗at,new

′Rnew
′, then

Au �
1

α

∑

t

Zt +
1

α

∑

t

Yt (2.26)

Consider 1
α

∑
tZt. (1) The Zt’s are conditionally independent given Xk−1. (2) With

probability 1, ‖Zt‖2 ≤ rnewγnew
2. (3) Using a theorem of Ostrowoski [24, Theorem 4.5.9],

conditioned on Xk−1 ∈ Γk−1, λmin

(
E[ 1

α

∑
tZt|Xk−1]

)
= λmin

(
Rnew( 1

α

∑
t Λt,new)Rnew

′) ≥

λmin (RnewRnew
′)λmin

(
1
α

∑
t Λt,new

)
≥ (1− (ζ+

∗ )2)λ−new. The last inequality uses Lemma 2.7.7

and Fact 2.7.4.
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Thus, applying Corollary 2.7.5 with ε given by (2.20), we get that, for all Xk−1 ∈ Γk−1,

P

(
λmin

(
1

α

∑

t

Zt

)
≥ (1− (ζ+

∗ )2)λ−new − ε
∣∣∣∣Xk−1

)
≥ 1− rnew exp

(
−αζ2(λ̂−train)2

8 · 1002 · γnew
4

)
. (2.27)

Consider Yt = Rnewat,newat,∗′D∗′Enew + Enew
′D∗at,∗at,new

′Rnew
′. (1) The Yt’s are con-

ditionally independent given Xk−1. (2) Using the bound on ζ from the theorem, ‖Yt‖ ≤

2
√
rnewrζ

+
∗ γγnew ≤ 2

√
rnewrζ

+
∗ γ

2 ≤ 2 holds with probability one for all Xk−1 ∈ Γk−1. Thus,

under the same conditioning, −2I � Yt � 2I with with probability one. (3) By Lemma 2.7.7,

E
(

1
α

∑
t Yt|Xk−1

)
= 0 for all Xk−1 ∈ Γk−1.

Thus, applying Corollary 2.7.5 with ε given by (2.20), we get that, for all Xk−1 ∈ Γk−1

P

(
λmin

(
1

α

∑

t

Yt

)
≥ −ε

∣∣∣Xk−1

)
≥ 1− c exp

(
−αrnew

2ζ2(λ̂−train)2

8 · 1002 · (4)2

)
(2.28)

Combining (2.26), (2.27) and (2.28) and using the union bound, we get the lemma. �

Proof of Lemma 2.6.22. Remark 2.7.3 applies.

We obtain the bounds on Au,⊥ for u = ûj + k for k = 1, 2, ...K with ûj = uj or uj + 1. For

all these u’s, recall that Au,⊥ := 1
α

∑
tEnew,⊥′ ˜̀t ˜̀t′Enew,⊥. Using Enew,⊥′Dnew = 0, we get that

Enew,⊥′ ˜̀t = Enew,⊥′D∗at,∗. Thus, Au,⊥ = 1
α

∑
tZt with Zt = Enew,⊥′D∗at,∗at,∗′D∗′Enew,⊥.

Using the same ideas as for the previous proof we can show that 0 � Zt � r(ζ+
∗ )2γ2I � ζI

and E
(

1
α

∑
tZt|Xk−1

)
� (ζ+

∗ )2λ+I. Thus by Corollary 2.7.5 the lemma follows. �

2.7.5 Proof of Lemma 2.6.23

Proof of Lemma 2.6.23. Remark 2.7.3 applies. Using the expression for Hu given in Definition

2.6.9, and noting that for a basis matrix E, EE′ +E⊥E⊥′ = I we get that

Hu =
1

α

∑

t∈Ju

(
(I− P̂∗P̂∗′)etet′(I− P̂∗P̂∗′)− ( ˜̀

tet
′(I− P̂∗P̂∗′) + (I− P̂∗P̂∗′)et ˜̀t′) + (Ft +Ft

′)
)

where

Ft = Enew,⊥Enew,⊥
′ ˜̀
t
˜̀
t
′EnewEnew

′.

Thus,

‖Hu‖2 ≤ 2

∥∥∥∥
1

α

∑

t

˜̀
tet
′
∥∥∥∥

2

+

∥∥∥∥
1

α

∑

t

etet
′
∥∥∥∥

2

+ 2

∥∥∥∥
1

α

∑

t

Ft

∥∥∥∥
2

(2.29)
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Next we obtain high probability bounds on each of the three terms on the right hand side of

(2.29).

Consider
∥∥ 1
α

∑
t

˜̀
tet
′∥∥

2
. Using Lemma 2.6.15, et satisfies (2.18) with probability one for all

Xk−1 ∈ Γk−1.

Let Zt := ˜̀
tet
′. (1) Conditioned on Xk−1, the various Zt’s used in the summation are

mutually independent, for all Xk−1 ∈ Γk−1. (2) For Xk−1 ∈ Γk−1,

‖Zt‖2 = ‖ ˜̀
tet
′‖2 ≤

(
ζ+
∗
√
rγ +

√
rnewγnew

)(
φ+(ζ+

∗
√
rγ + ζ+

new,k−1

√
rnewγnew)

)
:= b3

holds with probability one. (3) First consider the k ≥ 2 case. When Xk−1 ∈ Γk−1,

∥∥∥∥E
[

1

α

∑

t

˜̀
tet
′ ∣∣ Xk−1

]∥∥∥∥
2

=

∥∥∥∥
1

α

∑

t

[(
D∗Λt,∗D∗,k−1

′ +DnewΛt,newDnew,k−1
′
)
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′
] ∥∥∥∥

2

≤
[
λmax

(
1

α

∑

t

(
D∗Λt,∗D∗,k−1

′ +DnewΛt,newDnew,k−1
′
)

(
D∗Λt,∗D∗,k−1

′ +DnewΛt,newDnew,k−1
′
)′
)]1/2

√√√√λmax

(
1

α

∑

t

(
ITt [(Φt)Tt

′(Φt)Tt ]−1ITt
′
)(
ITt [(Φt)Tt

′(Φt)Tt ]−1ITt
′
)′
)

≤
(

(ζ+
∗ )2λ+ + ζ+

new,k−1λ
+
new

)(√
ρ2h+φ+

)
.

The first inequality is by Cauchy-Schwarz for a sum of matrices. This can be found as Lemma

2.D.2 in Appendix 2.D. The second inequality uses Fact 2.7.4 (for the first term of the product)

and Lemma 2.5.3 with σ+ = (φ+)2 (for the second term of the product).

Now consider the k = 1 case. To bound

∥∥∥∥ 1
α

∑
tD∗Λt,∗D∗,0′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′
∥∥∥∥

2

we

proceed exactly as we did for the k ≥ 2 case. We can bound this by (ζ+
∗ )2λ+

√
ρ2h+φ+.

To bound

∥∥∥∥ 1
α

∑
tDnewΛt,newDnew,0

′ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′
∥∥∥∥

2

, we apply Lemma 2.7.8 to get7

‖Dnew,0
′ITt‖2 ≤ κ+

s . Using this and Fact 2.7.4, we can bound this by κ+
s λ

+
newφ

+. Thus, when

7Notice that if we want to use the bound of Lemma 2.7.8, we cannot also apply Lemma 2.5.3 for this term.
We can get a simpler proof by not using Lemma 2.7.8 at all and proceeding exactly as we did for the k ≥ 2 case;
but doing this will require a much tighter bound on ρ2h+ than what we currently need.
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X0 ∈ Γ0,

∥∥∥∥E
[

1

α

∑

t

˜̀
tet
′ ∣∣ X0

]∥∥∥∥
2

=

∥∥∥∥
1

α

∑

t

[(
D∗Λt,∗D∗′ +DnewΛt,newDnew

′
)
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′
] ∥∥∥∥

2

≤
(√

ρ2h+(ζ+
∗ )2λ+ + κ+

s λ
+
new

)
φ+.

Thus, by Corollary 2.7.6 with ε given by (2.20), we get that, for all Xk−1 ∈ Γk−1,

P

(∥∥∥ 1

α

∑

t

˜̀
tet
′
∥∥∥

2
≤ b`e,k

∣∣∣∣∣Xk−1

)
≥ 1− n exp

(
−αrnew

2ζ2(λ̂−train)2

32 · 1002b3
2

)
. (2.30)

Consider ‖ 1
α

∑
t etet

′‖2. Let Zt = etet
′. (1) Conditioned on Xk−1, the various Zt’s in the

summation are independent, for all Xk−1 ∈ Γk−1. (2) Using Lemma 2.6.15, conditioned on

Xk−1 ∈ Γk−1,

0 � Zt �
(
φ+(ζ+

∗
√
rγ + ζ+

new,k−1

√
rnewγnew)

)2
I := b1I

with probability one. (3) By Fact 2.7.4, when Xk−1 ∈ Γk−1,

1

α

∑

t

E
[
etet

′|Xk−1

]

=
1

α

∑

t

ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′
(
D∗,k−1Λt,∗D∗,k−1

′+

Dnew,k−1Λt,newDnew,k−1
′
)
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

When k = 1 we can apply Lemma 2.7.8 to get that ‖Dnew,0
′ITt‖2 ≤ κ+

s . Then we apply

Lemma 2.5.3 with σ+ = (φ+)2
(
(ζ+
∗ )2λ+ + (κ+

s )2λ+
new

)
. This gives

0 � E

[∑

t

etet
′
∣∣∣X0

]
� ρ2h+(φ+)2

(
(ζ+
∗ )2λ+ + (κ+

s )2λ+
new

)
I for all X0 ∈ Γ0.

When k ≥ 2 we can apply Lemma 2.5.3 with σ+ = (φ+)2
(

(ζ+
∗ )2λ+ + (ζ+

new,k−1)2λ+
new

)
to get

that,

0 � E

[∑

t

etet
′
∣∣∣Xk−1

]
� ρ2h+(φ+)2

(
(ζ+
∗ )2λ+ + (ζ+

new,k−1)2λ+
new

)
I for all Xk−1 ∈ Γk−1.

Thus, applying Corollary 2.7.5 with ε given by (2.20), we get that, for all Xk−1 ∈ Γk−1,

P

(∥∥∥ 1

α

∑

t

etet
′
∥∥∥

2
≤ bee,k

∣∣∣Xk−1

)
≥ 1− n exp

(
−αr2

newζ
2(λ̂−train)2

8 · 1002b1
2

)
. (2.31)
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Finally, consider
∥∥ 1
α

∑
t Ft
∥∥

2
. Since Enew,⊥′Dnew = 0,

Ft = Enew,⊥Enew,⊥
′ ˜̀
t
˜̀
t
′EnewEnew

′

= Enew,⊥Enew,⊥
′(D∗at,∗)(D∗at,∗ +Dnewat,new)′EnewEnew

′

(1) Conditioned on Xk−1, the Ft’s are mutually independent, for all Xk−1 ∈ Γk−1. (2) For

Xk−1 ∈ Γk−1,

‖Ft‖2 ≤ (ζ+
∗ )2rγ2 + ζ+

∗
√
rrnewγγnew := b5

holds with probability 1. (3) For Xk−1 ∈ Γk−1,

∥∥∥∥E
[ 1

α

∑

t

Ft
∣∣ Xk−1

]∥∥∥∥
2

≤
∥∥∥∥

1

α

∑

t

(D∗Λt,∗D∗′)

∥∥∥∥
2

≤ (ζ+
∗ )2λ+ = bF

Applying Corollary 2.7.6 with ε given by (2.20), we get that, for all Xk−1 ∈ Γk−1,

P

(∥∥∥ 1

α

∑

t

Ft

∥∥∥
2
≤ bF

∣∣∣∣∣Xk−1

)
≥ 1− n exp

(
−αrnew

2ζ2(λ̂−train)2

32 · 1002b5
2

)
(2.32)

Combining (2.29) with (2.30), (2.31) and (2.32) and using the union bound, we get the lemma.

The expression for pH given in the lemma uses the bounds on ζ from the theorem and uses the

loose bound ζ+
j,new,k−1 ≤ 1 (to get a simpler expression for the probabilities). �

2.8 Simulation Experiments

In this section we provide some simulations that demonstrate the robust PCA result we

have proven above. More detailed simulations using real data can be found in [17].

The data for Figure 2.7 was generated as follows. We chose n = 256 and tmax = 15, 000.

Each measurement had s = 20 missing or corrupted entries, i.e. |Tt| = 20. Each non-zero entry

of xt was drawn uniformly at random between 2 and 6 independent of other entries and other

times t. In Figure 2.7 the support of xt changes as assumed in Model 2.2.3 with ρ = 2 and

β = 18. So the support of xt changes by s
2 = 10 indices every 18 time instants. When the

support of xt reaches the bottom of the vector, it starts over again at the top. This pattern

can be seen in the bottom half of the figure which shows the sparsity pattern of the matrix

S = [x1, . . . ,xtmax ].
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To form the low dimensional vectors `t, we started with an n× r matrix of i.i.d. Gaussian

entries and orthonormalized the columns. The first r0 = 10 columns of this matrix formed

P(0), the next 2 columns formed P(1),new, and the last 2 columns formed P(2),new We show

two subspace changes which occur at t1 = 600 and t2 = 8000. The entries of at,∗ were drawn

uniformly at random between -5 and 5, and the entries of at,new were drawn uniformly at random

between −
√

3v
t−tj
i λ̂−train and

√
3v

t−tj
i λ̂−train with vi = 1.00017 and λ̂−train = 1 (and qi = 1). Thus

(Λt,new)i,i = v
t−tj
i λ̂−train as assumed in Model 2.2.2. Entries of at were independent of each

other and of the other at’s.

For this simulated data we compare the performance of ReProCS and PCP. The plots show

the relative error in recovering `t, that is ‖`t− ˆ̀
t‖2/‖`t‖2. For the initial subspace estimate P̂0,

we used P0 plus some small Gaussian noise and then obtained orthonormal columns. We set

α = 800 and K = 6. For the PCP algorithm, we perform the optimization every α time instants

using all of the data up to that point. So the first time PCP is performed on [m1, . . . ,mα] and

the second time it is performed on [m1, . . . ,m2α] and so on.

Figure 2.7 illustrates the result we have proven. That is ReProCS takes advantage of the

initial subspace estimate and slow subspace change (including the bound on γnew) to handle the

case when the supports of xt are correlated in time. Notice how the ReProCS error increases

after a subspace change, but decays exponentially with each projection PCA step. For this

data, the PCP program fails to give a meaningful estimate for all but a few times. The average

time taken by the ReProCS algorithm was 52 seconds, while PCP averaged over 5 minutes.

Simulations were coded in MATLABr and run on a desktop computer with a 3.2 GHz processor.

2.9 Extensions

In this section, we first give other models on changes in Tt that are special cases of the

general model Model 2.5.1 and hence can also be used in Theorem 2.2.5 or 2.2.7. The next

three subsections discuss various other results that can also be proved using the proof techniques

developed in this work.
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Figure 2.7: Comparison of ReProCS and PCP for the RPCA problem. The top plot is the

relative error ‖`t− ˆ̀
t‖2/‖`t‖2. The bottom plot shows the sparsity pattern of S (black represents

a non-zero entry). Results are averaged over 100 simulations and plotted every 300 time

instants.

2.9.1 Other Models on Changes in Tt

We give here other models on changes in Tt that are special cases of Model 2.5.1.

Model 2.9.1. Suppose that Tt consists of consecutive indices and is of size s or less, i.e.

|Tt| ≤ s. When Tt is not empty, let õt denote its smallest (topmost) index. Let ρ1 be an integer.

We assume that õt satisfies the following Bernoulli-Gaussian model:

õt = dot mod ne where ot = ot−1 + θt

(
1.1

s

ρ
+$t

)

where $t ∼ N (0, σ2) (Gaussian) and θt ∼ Bernoulli(q). Assume that {$t}, {θt} are mutually

independent and independent of `t’s. Taking the mod with respect to n describes the process

of the set Tt starting over at 1 when its topmost index exceeds n (this models a new object

appearing after the old one has disappeared; notice that at any t Tt could be empty as well, i.e.
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T(1)

T(2)

T(3)

J(1),u J(2),u

Figure 2.8: Model 2.9.2

there may be no object).

Assume that s ≤ 1.2ρn
α , q ≥ 1 − ( n

−10

2tmax
)
1
β for a β that satisfies ρ2 β

α ≤ 0.01, and σ2 ≤
s2

4000ρ2 log(n)
.

Model 2.9.2. Suppose that Tt consists of s consecutive indices and suppose that it moves down

the vector by between 1 and m indices at every time t. When it reaches the bottom of the vector,

we assume that it starts over at 1. Assume that s ≤ 0.0025α and m ≤ n−s
α .

Model 2.9.3. In both models above we let Tt contain consecutive indices. This models a moving

1D object of length s or less that enters the scene and eventually walks out, and then another

object of length s or less may come in. However notice that nothing in our general model,

Model 2.5.1, requires the indices to be consecutive or contiguous in any way. Thus in both of

Models 2.9.1 and 2.9.2 above, instead of one moving object, we can also have multiple moving

objects as long as the union of their supports is of size at most s and satisfies one of these

models. Also, with minor changes, the object(s) instead of leaving the scene can reflect back up

and start moving in the other direction as well.

Lemma 2.9.4. If tmax ≤ n10, then Model 2.9.1 is a special case of Model 2.2.3 (and hence a

special case of Model 2.5.1) with probability at least 1− n−10.
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Proof. The proof has three steps. (a) We first use standard arguments about a Bernoulli

sequence [25] to prove that the object moves at least once every β time instants with probability

at least 1−0.5n−10. The choice of q ensures that this holds. (b) Next we use a standard Gaussian

tail bound argument to show that, with probability at least 1−0.5n−10, when it moves, it moves

by at least s/ρ indices and at most 1.2s/ρ indices. The bound on σ2 ensures this. (c) The

above two claims ensure that, w.h.p., the object remains static for at most β frames at a time

and when it moves it moves by at least s/ρ indices and at most 1.2s/ρ indices. Notice that all

the motion is in one direction. Motion by at least s/ρ in one direction ensures that after the

object moves ρ times, i.e. after ρ changes of Tt, the sets are disjoint, i.e. T [k] ∩ T [k+ρ] = ∅.

Motion by at most 1.2s/ρ in one direction and 1.2 sρα ≤ n ensures the third condition of Model

2.2.3 holds even when the object moves at every frame. �

Lemma 2.9.5. Model 2.9.2 is a special case of Model 2.5.1 with ρ = 2 and h+ = s/α.

See Figure 2.8 for a diagram of the model and the idea behind its proof.

Proof. For the sake of clarity, we will prove the case when the object moves exactly 1 index at

every time t. The only difference in the general case is the construction of the J(i),u.

Consider an interval Ju. Let tu := (u − 1)α + 1 denote the first time in Ju. Without loss

of generality (because we can re-label the indices) let the object start at the top of the vector.

That is Ttu = [1, s]. Let lu =
⌈
n
s

⌉
. Let T(i),u = [(i− 1)s+ 1, is] for i = 1, 2, . . . ,

⌊
n
s

⌋
. If n

s is not

an integer, also define T(dns e),u =
[⌊
n
s

⌋
s+ 1, n

]
. Define J(i),u := [tu + (i− 1)s, tu + is− 1] for

i = 1, 2, . . . ,
⌊
α
s

⌋
. If α

s is not an integer, also define J(dαs e),u = [tu +
⌊
α
s

⌋
s, tu + α− 1].

Clearly J(i),u as defined above are a partition of Ju. Also, by construction, for all t ∈ J(i),u,

Tt ⊆ T(i),u ∪ T(i+1),u. This follows from three facts 1) the assumption that Ttu = [1, s] (which is

just a renumbering of the indices to make the numbers clearer) 2) the object moves down by

exactly one index at each time t and 3) m ≤ n−s
α , so that once an index leaves Tt, it will not

return in the next α time instants. A simpler way of stating fact 3) is that the total motion is

such that Tt does not return to where it started i.e. Ttu ∩ Ttu+α = ∅.
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Notice that |J(i),u| ≤ s for all i. (With the possible exception of the last set, they all have

size exactly s.) So under the assumptions of Model 2.9.2 h∗u(α) ≤ s, which satisfies Model 2.5.1

with h+ = s
α ≤ 0.0025α = 0.01α

22
= 0.01α

ρ2
. �

2.9.2 Analyze the ReProCS algorithm that also removes the deleted directions

from the subspace estimate

The tools introduced in this paper – (a) Lemma 2.5.3 and the way it is applied to bound Hu

in Lemma 2.6.23; and (b) the detection lemma (Lemma 2.6.17), the no false detection lemma

(Lemma 2.6.16) and the p-PCA lemma (Lemma 2.6.18) – can also be used to get a correctness

result for a practical modification of ReProCS with cluster-PCA (ReProCS-cPCA) which is

Algorithm 2 of [11]. This algorithm was introduced to also remove the deleted directions from

the subspace estimate. It does this by re-estimating the previous subspace at a time after the

newly added subspace has been accurately estimated (i.e. at a time after t̂j +Kα). A partial

result for this algorithm was proved in [11].

This result will need one extra assumption – it will need the eigenvalues of the covariance

matrix of `t to be clustered for a period of time after the subspace change has stabilized, i.e.

for a period of d2 frames in the interval [tj + d+ 1, tj+1− 1] – but it will have a key advantage.

It will need a much weaker denseness assumption and hence a much weaker bound on r or rmat.

In particular, with this result we expect to be able to allow r = rmat ∈ O(n) with the same

assumptions on s and smat that we currently allow. This requirement is almost as weak as that

of PCP.

2.9.3 Relax the independence assumption on `t’s

The results in this work assume that the `t’s are independent over time and zero mean;

this is a valid model when background images have independent random variations about a

fixed mean. Using the tools developed in this paper, a similar result can also be obtained for

the more general case of `t’s following an autoregressive model. This will allow the `t’s to be

correlated over time. A partial result for this case was obtained in [26]. The main change in

this case will be that we will need to apply the matrix Azuma inequality from [23] instead
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of matrix Hoeffding. This is will also require algebraic manipulation of sums and some other

important modifications, as explained in [26], so that the constant term after conditioning on

past values of the matrix is small.

2.9.4 Noisy and Undersampled Online Matrix Completion or Online Robust PCA

We expect that the tools introduced in this paper can also be used to analyze the noisy

case, i.e. the case of mt = xt + `t + wt where wt is small bounded noise. In most practical

video applications, while the foreground is truly sparse, the background is only approximately

low-rank. The modeling error can be handled as wt. The proposed algorithms already apply

without modification to this case (see [17] for results on real videos). The reason that our tools

will directly extend to the noisy case is this: the sparse recovery step is already a noisy sparse

recovery one, its analysis will not change if we also add in more noise due to wt. If `t and wt

are assumed independent, then there should be few simple modifications to the analysis of the

p-PCA step as well.

Finally, we expect both the algorithm and the proof techniques to apply with simple changes

to the undersampled casemt = Atxt+Bt`t+wt as long asBt is not time-varying, i.e. Bt = B0.

A partial result for this case was obtained in [27] and experiments were shown in [17].

2.10 Conclusions

In this work, we obtained correctness results for online robust PCA and for online matrix

completion. Both results needed four key assumptions: (a) accurate initial subspace knowledge;

(b) slow subspace change and mutual independence of the `t’s according to Model 2.2.2; (c)

some changes in the set of missing entries (or in the set of outlier-corrupted entries) over time,

one way to quantify what is needed is given in Model 2.2.3; (d) a denseness assumption on the

columns of the subspace basis matrices of `t; and (e) algorithm parameters are appropriately

set.

Ongoing work includes obtaining the results mentioned in Sections 2.9.2, 2.9.3 and 2.9.4.

Besides these, we expect the proof techniques developed here to apply to various other problems

involving PCA with data and noise terms being correlated.
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2.A Appendix A:

Proof that Model 2.2.3 on Tt satisfies the general Model 2.5.1

Proof of Lemma 2.5.2. Consider an interval Ju. We will construct one set of mutually disjoints

sets {T(i),u}i=1,2,...lu that are subsets of {1, 2, . . . n} and a partition {J(i),u}i=1,2,...lu of Ju so that

for all t ∈ J(i),u, (2.10) holds and so that hu(α; {T(i),u}, {J(i),u}) ≤ β for this choice. Since

h∗u(α) takes the minimum over all such sets, this will imply h∗u(α) ≤ β. By setting h+ = β/α

and using the Model 2.2.3 assumption ρ2β ≤ 0.01α, we will be done.

Recall from Model 2.2.3 that Tt = T [k] for all t ∈ [tk, tk+1) with tk+1−tk < β and |T [k]| ≤ s.

Let tu := (u − 1)α + 1 denote the first time index of Ju. Let ku be the index k for which

tu ∈ [tk, tk+1). In other words, Ttu = T [ku]. Define lu to be the number of intervals [tk, tk+1)

that have non-empty intersection with Ju. So lu is one plus the number of times Tt changes in

the interval Ju. For i = 1, 2, . . . lu − 1, define

T(i),u := T [ku+i−1] \ T [ku+i],

and set T(lu),u = T [ku+lu−1]. Clearly lu ≤ α. Thus, by the Model 2.2.3 assumption (for any k

and i such that k < i ≤ k + α, (T [k] \ T [k+1]) ∩ (T [i] \ T [i+1]) = ∅), the T(i),u’s are mutually

disjoint.

Next, define a partition of Ju as

J(i),u := [tku+i−1, tku+i) ∩ Ju for i = 1, 2, . . . lu

By Model 2.2.3 1 ≤ tk+1 − tk < β for all k. Since J(i),u ⊆ [tku+i−1, tku+i), |J(i),u| < β for all

i = 1, 2, . . . lu.

Notice that for all t ∈ J(i),u, Tt = T [ku+i−1]. So if we can show that T [ku+i−1] ⊆ T(i),u ∪

T(i+1),u · · · ∪ T(i+ρ−1),u for all i = 1, 2, . . . lu, we will be done since this will imply h∗u(α) ≤ β.
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To show this, set k = ku + i− 1. Then,

T [k] = T(i),u ∪ [T [k] ∩ T [k+1]]

= T(i),u ∪ [T [k] ∩ T [k+1] \ T [k+2]] ∪ [T [k] ∩ T [k+1] ∩ T [k+2]]

⊆ T(i),u ∪ T(i+1),u ∪ [T [k] ∩ T [k+1] ∩ T [k+2]]

= T(i),u ∪ T(i+1),u ∪ [T [k] ∩ T [k+1] ∩ T [k+2] \ T [k+3]) ∪ [T [k] ∩ T [k+1] ∩ T [k+2] ∩ T [k+3]]

⊆ T(i),u ∪ T(i+1),u ∪ T(i+2) ∪ [T [k] ∩ T [k+1] ∩ T [k+2] ∩ T [k+3]].

Continuing in the same manner as above, we get,

T [k] ⊆ T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u ∪ [T [k] ∩ T [k+1] ∩ · · · ∩ T [k+ρ]]

= T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u (2.33)

The last line is because T [k] ∩ T [k+ρ] = ∅ by Model 2.2.3. �



68

2.B Appendix B:

Proof of Lemma 2.6.14 (bound on ζ+
j,new,k) and of Lemma 2.7.8

Proof of Lemma 2.6.14. This proof’s approach is similar to that of [11, Lemma 6.1]. The

details have some differences because our main result now uses different assumptions.

This lemma uses Model 2.5.1. As shown in Lemma 2.5.2, Model 2.2.3 is a special case of

this general model.

Recall that ζ+
j,new,k :=

bH,k

bA − bA,⊥ − bH,k
with the terms on the RHS defined in Lemmas

2.6.21, 2.6.22, 2.6.23.

Recall that ε = 0.01rnewζλ̂
−
train. Divide the numerator and denominator by λ̂−train. Define

Bk :=





[
ρ2h+(φ+)2(κ+

s )2(ζ+
j,new,k−1) + 2κ+

s φ
+
](

λ+new
λ̂−train

)
k = 1

[
ρ2h+(φ+)2ζ+

j,new,k−1 + 2
√
ρ2h+φ+

](
λ+new
λ̂−train

)
k ≥ 2

Ck :=
[
ρ2h+(φ+)2(ζ+

j,∗)r + 2
√
ρ2h+φ+(ζ+

j,∗)r + 2(ζ+
j,∗)r

]( λ+

λ̂−train

)
+ 0.05

Dk :=1− (ζ+
j,∗)

2 − (ζ+
j,∗)

2

(
λ+

λ̂−train

)
− ζ+

j,new,k−1Bk − rnewζ(Ck + .02)

Then,

ζ+
j,new,k ≤ ζ+

j,new,k−1

Bk
Dk

+ rnewζ
Ck
Dk

.

Recall that κ+
s = 0.0215 and φ+ = 1.2. It is not difficult to see that ζ+

j,new,k is an increasing

function of ρ2h+, r, ζ, ζ λ+

λ̂−train
, and λ+new

λ̂−train
and ζ+

j,new,k−1. Consider k = 1. Using ζ+
j,new,0 = 1 and

the upper bounds assumed in Theorem 2.2.7 on the above quantities, we get that ζ+
j,new,1 ≤ 0.18.

Thus, ζ+
j,new,1 ≤ ζ+

j,new,0 = 1. Using this and the fact that ζ+
j,new,k is an increasing function of

ζ+
j,new,k−1, we can show by induction that ζ+

j,new,k ≤ ζ+
j,new,k−1. Thus, ζ+

j,new,k ≤ ζ+
j,new,1 ≤ 0.18

for all k = 1, 2 . . .K.

Using ζ+
j,new,k ≤ 0.18 and the bounds assumed in Theorem 2.2.7 on the other quantities we

get that

ζ+
j,new,k ≤ 0.83ζ+

j,new,k−1 + 0.14rnewζ
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Using this, we get

ζ+
j,new,k ≤ 0.83ζ+

j,new,k−1 + 0.14rnewζ ≤ ζ+
j,new,0(0.83)k +

k−1∑

i=0

(0.83)i(0.14)rnewζ

≤ ζ+
j,new,0(0.83)k +

∞∑

i=0

(0.83)i(0.14)rnewζ

≤ 0.83k + 0.84rnewζ.

�

Proof of Lemma 2.7.8. Recall that Dj,new = (I − P̂(j),∗P̂(j),∗′)P(j),new. Then ‖IT ′Dj,new‖2 =

‖IT ′(I−P̂(j),∗P̂(j),∗′)P(j),new‖2 ≤ ‖IT ′P(j),new‖2+‖P̂(j),∗′P(j),new‖2 ≤ κs(P(j),new)+‖P̂(j),∗′(I−

P(j),∗P(j),∗
′)P(j),new‖2 ≤ κs(P(j),new) + ζj,∗. The event Xûj+k−1 ∈ Γ

ûj
j,k−1 implies that ζj,∗ ≤

ζ+
j,∗ ≤ 0.0015. Thus, the lemma follows. �
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2.C Appendix C:

Proof of the Compressed Sensing (CS) Lemma (Lemma 2.6.15)

This proof’s approach is similar to that of [11, Lemma 6.4]. The details have some differ-

ences because our main result now uses different assumptions. The proof uses the denseness

assumption and subspace error bounds ζj,∗ ≤ ζ+
j,∗ and ζj,new,k−1 ≤ ζ+

j,new,k−1, that hold when

Xûj+k−1 ∈ Γ
ûj
j,k−1 for ûj = uj or ûj = uj + 1, to obtain bounds on the restricted isometry

constant (RIC) of the sparse recovery matrix Φt and the sparse recovery error ‖bt‖2. Applying

the noisy compressed sensing (CS) result from [19] and the assumed bounds on ζ and γ, the

lemma follows.

Lemma 2.C.1. [11, Lemma 2.10] Suppose that P , P̂ and Q are three basis matrices. Also,

P and P̂ are of the same size, Q′P = 0 and ‖(I − P̂ P̂ ′)P ‖2 = ζ∗. Then,

1. ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − PP ′)P̂ P̂ ′‖2 = ‖(I − PP ′)P̂ ‖2 = ‖(I − P̂ P̂ ′)P ‖2 = ζ∗

2. ‖PP ′ − P̂ P̂ ′‖2 ≤ 2‖(I − P̂ P̂ ′)P ‖2 = 2ζ∗

3. ‖P̂ ′Q‖2 ≤ ζ∗

4.
√

1− ζ2∗ ≤ σi
(

(I − P̂ P̂ ′)Q
)
≤ 1

We begin by first bounding the RIC of the CS matrix Φt. We will use the notation κ2
s(P )

to mean (κs(P ))2.

Lemma 2.C.2 (Bounding the RIC of Φt [11, Lemma 6.6]). Recall that ζj,∗ := ‖(I−P̂(j),∗P̂(j),∗′)P(j),∗‖2.

The following hold.

1. Suppose that a basis matrix P can be split as P = [P1 P2] where P1 and P2 are also basis

matrices. Then κ2
s(P ) = maxT :|T |≤s ‖IT ′P ‖22 ≤ κ2

s(P1) + κ2
s(P2).

2. κ2
s(P̂(j),∗) ≤ (κs,∗)2 + 2ζ∗ for all j

3. κs(P̂(j),new,k) ≤ κs,new + ζj,new,k + ζj,∗ for all j and k.

4. For t ∈ [(uj−1 +K)α+ 1, (ûj + 1)α), δs(Φt) = κ2
s(P̂(j),∗) ≤ (κs,∗)2 + 2ζj,∗.
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5. For k = 1, . . . ,K−1, for t ∈ [(ûj+k)α+1, (ûj+k+1)α] δs(Φt) = κ2
s([P̂(j),∗ P̂(j),new,k]) ≤

κ2
s(P̂(j),∗) + κ2

s(P̂(j),new,k) ≤ (κs,∗)2 + 2ζj,∗ + (κs,new + ζj,new,k + ζj,∗)2.

Proof. 1. Recall that κ2
s(P ) = max|T |≤s ‖IT ′P ‖22. Also, ‖IT ′P ‖22 = ‖IT ′[P1 P2][P1 P2]′IT ‖2 =

‖IT ′(P1P1
′ + P2P2

′)IT ‖2 ≤ ‖IT ′P1P1
′IT ‖2 + ‖IT ′P2P2

′IT ‖2. Thus, the inequality fol-

lows.

2. For any set T with |T | ≤ s, ‖IT ′P̂(j),∗‖22 = ‖IT ′P̂(j),∗P̂(j),∗′IT ‖2 = ‖IT ′(P̂(j),∗P̂(j),∗′ −

P(j),∗P(j),∗
′+P(j),∗P(j),∗

′)IT ‖2 ≤ ‖IT ′(P̂(j),∗P̂(j),∗′−P(j),∗P(j),∗
′)IT ‖2+‖IT ′P(j),∗P(j),∗

′IT ‖2 ≤

2ζj,∗ + (κs,∗)2. The last inequality follows using Lemma 2.C.1 with P = P(j),∗ and

P̂ = P̂(j),∗.

3. By Lemma 2.C.1 with P = P(j),∗, P̂ = P̂(j),∗ and Q = P(j),new, ‖P(j),new
′P̂(j),∗‖2 ≤ ζj,∗.

By Lemma 2.C.1 with P = P(j),new and P̂ = P̂(j),new,k, ‖(I−P(j),newP(j),new
′)P̂(j),new,k‖2 =

‖(I − P̂(j),new,kP̂(j),new,k
′)P(j),new‖2.

For any set T with |T | ≤ s, ‖IT ′P̂(j),new,k‖2 ≤ ‖IT ′(I − P(j),newP(j),new
′)P̂(j),new,k‖2 +

‖IT ′P(j),newP(j),new
′P̂(j),new,k‖2 ≤ ‖(I − P(j),newP(j),new

′)P̂(j),new,k‖2 + ‖IT ′P(j),new‖2 =

‖(I−P̂(j),new,kP̂(j),new,k
′)P(j),new‖2+‖IT ′P(j),new‖2 ≤ ‖D(j),new,k‖2+‖P̂(j),∗P̂(j),∗′P(j),new‖2+

‖IT ′P(j),new‖2. Taking max over |T | ≤ s the claim follows.

4. This follows using Lemma 2.2.9 and the second claim of this lemma.

5. This follows using Lemma 2.2.9 and the first three claims of this lemma.

�

Corollary 2.C.3.

1. Conditioned on Γj−1,end, for t ∈ [tj , (ûj + 1)α], δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 + 2ζ+
j,∗ <

0.1 < 0.1479, and ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ 1
1−δs(Φt) < 1.2 := φ+.

2. For k = 2, . . . ,K and ûj = uj or ûj = uj+1, conditioned on Γ
ûj
j,k−1, for t ∈ [(ûj+k−1)α+

1, (ûj + k)α], δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 + 2ζ+
j,∗ + (κ2s,new + ζ+

j,new,k−1 + ζ+
j,∗)

2 < 0.1479,

and ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ 1
1−δs(Φt) < 1.2 := φ+.
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3. For ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,K , for t ∈ [(ûj + K)α + 1, tj+1 − 1],

δs(Φt) ≤ δ2s(Φt) ≤ (κ2s,∗)2 + 2ζ+
j,∗ < 0.1 < 0.1479, and ‖[(Φt)Tt

′(Φt)Tt ]
−1‖2 ≤ 1

1−δs(Φt) <

1.2 := φ+.

Proof. This follows using Lemma 2.C.2, the definitions of Γj−1,end and Γ
ûj
j,k, and the bound on

ζ+
j,new,k−1 from Lemma 2.6.14. �

The following are straightforward bounds that will be useful for the proof of Lemma 2.6.15.

Fact 2.C.4. Under the assumptions of Theorem 2.2.7:

• ζ+
j,∗γ ≤

√
ζ√

r0+(J−1)c
≤ √ζ

• ζ+
j,new,k−1 ≤ 0.83k−1 + 0.84rnewζ (from Lemma 2.6.14)

• ζ+
j,new,k−1γnew ≤ 0.83k−1γnew + 0.84rnewζγnew ≤ 0.83k−1γnew + 0.3

√
ζ

Proof of Lemma 2.6.15. We will prove claim 2). The others are done in the same way.

Recall that Γ
ûj
j,k−1 implies that ζj,∗ ≤ ζ+

j,∗ and ζj,new,k−1 ≤ ζ+
j,new,k−1.

a) For t ∈ [(ûj+k−1)α+1, (ûj+k)α], bt := (I−P̂t−1P̂t−1
′)`t = Dj,∗,k−1at,∗+Dj,new,k−1at,new.

Thus, using Fact 2.C.4

‖bt‖2 ≤ ζj,∗
√
rγ + ζj,new,k−1

√
rnewγnew

≤
√
ζ
√
r + (0.83k−1γnew + 0.84

√
ζ)
√
rnew

=
√
rnew0.83k−1γnew +

√
ζ(
√
r + 0.84

√
rnew) ≤ ξ.

b) By Corollary 2.C.3, δ2s(Φt) < 0.15 <
√

2− 1. Given |Tt| ≤ s, ‖bt‖2 ≤ ξ, by the theorem in

[19], the CS error satisfies

‖x̂t,cs − xt‖2 ≤
4
√

1 + δ2s(Φt)

1− (
√

2 + 1)δ2s(Φt)
ξ < 7ξ.

c) Using the above, ‖x̂t,cs − xt‖∞ ≤ 7ξ. Since mini∈Tt |(xt)i| ≥ xmin and (xt)T ct = 0,

mini∈Tt |(x̂t,cs)i| ≥ xmin − 7ξ and maxi∈T̄t |(x̂t,cs)i| ≤ 7ξ. If ω < xmin − 7ξ, then T̂t ⊇ Tt. On

the other hand, if ω > 7ξ, then T̂t ⊆ Tt. Since ω satisfies 7ξ ≤ ω ≤ xmin − 7ξ, the support

of xt is exactly recovered, i.e. T̂t = Tt.



73

d) Given T̂t = Tt, the least squares estimate of xt satisfies (x̂t)Tt = [(Φt)Tt ]
†yt = [(Φt)Tt ]

†(Φtxt+

Φt`t) and (x̂t)T̄t = 0. Also, (Φt)Tt
′Φt = ITt

′Φt (this follows since (Φt)Tt = ΦtITt and

Φt
′Φt = Φt). Using this, the error et := x̂t−xt satisfies (2.18). Thus, using Fact 2.C.4 and

the bounds on ‖at‖∞ and ‖at,new‖∞, for t ∈ [(ûj + k − 1)α+ 1, (ûj + k)α],

‖et‖2 ≤ φ+(ζ+
j,∗
√
rγ + ζ+

j,new,k−1

√
rnewγnew) ≤ 1.2

(
1.06

√
ζ + (0.83)k−1√rnewγnew

)

The last inequality follows from Lemma 2.6.14.

�
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2.D Appendix D: Proof of Cauchy-Schwarz inequality for matrices

Lemma 2.D.1 (Cauchy-Schwarz for a sum of vectors). For vectors xt and yt,

(
α∑

t=1

xt
′yt

)2

≤
(∑

t

‖xt‖22

)(∑

t

‖yt‖22

)

Proof.

(
α∑

t=1

xt
′yt

)2

=




[x1
′, . . . ,xα′]




y1

...

yα







2

≤

∥∥∥∥∥∥∥∥∥∥




x1

...

xα




∥∥∥∥∥∥∥∥∥∥

2

2

∥∥∥∥∥∥∥∥∥∥




y1

...

yα




∥∥∥∥∥∥∥∥∥∥

2

2

=

(
α∑

t=1

‖xt‖22

)(
α∑

t=1

‖yt‖22

)

The inequality is by Cauchy-Schwarz for a single vector. �

Lemma 2.D.2 (Cauchy-Schwarz for a sum of matrices). For matrices Xt and Yt,

∥∥∥∥∥
1

α

α∑

t=1

XtYt
′
∥∥∥∥∥

2

2

≤ λmax

(
1

α

α∑

t=1

XtXt
′
)
λmax

(
1

α

α∑

t=1

YtYt
′
)

Proof of Lemma 2.D.2.

∥∥∥∥∥
α∑

t=1

XtYt
′
∥∥∥∥∥

2

2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣x
′
(∑

t

XtYt
′
)
y

∣∣∣∣∣

2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣
α∑

t=1

(Xt
′x)′(Yt′y)

∣∣∣∣∣

2

≤ max
‖x‖=1
‖y‖=1

(
α∑

t=1

∥∥Xt
′x
∥∥2

2

)(
α∑

t=1

∥∥Yt′y
∥∥2

2

)

= max
‖x‖=1

x′
α∑

t=1

XtXt
′ x · max

‖y‖=1
y′

α∑

t=1

YtYt
′ y

= λmax

(
α∑

t=1

XtXt
′
)
λmax

(
α∑

t=1

YtYt
′
)

The inequality is by Lemma 2.D.1. The penultimate line is because ‖x‖22 = x′x. Multiplying

both sides by
(

1
α

)2
gives the desired result. �
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CHAPTER 3. RECURSIVE SPARSE RECOVERY IN CORRELATED

STRUCTURED NOISE

A paper prepared for submission to IEEE Transactions on Information Theory

Brian Lois, Namrata Vaswani, and Jinchun Zhan

Abstract

This work studies the problem of recursive robust principal components analysis (PCA).

At each time t, suppose that a vector mt = `t + xt is observed. The vectors `t lie in a slowly

changing and dense low-dimensional subspace. The vectors xt are sparse and their support

changes frequently enough. The goal is to recover xt and `t at each time t and to maintain

an estimate of range(`1, . . . , `t). This work improves on existing results by assuming a more

general autoregressive model for the low-dimensional vectors `t. It is proven that under certain

model assumptions, with high probability, the practical ReProCS algorithm exactly recovers

the support of xt, and the error made in estimating xt and `t is bounded by a small value that

depends on the accuracy of the initial subspace estimate. Also, all of the subspace changes

are detected within a certain delay, and the error made in estimating the new subspace decays

below a small value within a finite delay.

3.1 Introduction

Principal Components Analysis (PCA) is a tool that is frequently used for dimension re-

duction. Given a matrix of data D, PCA seeks to recover a small number of directions that

contain most of the information in data. This is typically accomplished by performing a sin-

gular value decomposition (SVD) of D and retaining the singular vectors corresponding to the

largest singular values. A limitation of this procedure is that it is highly sensitive to outliers
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in the data set. Recently there has been much work done to develop and analyze algorithms

for PCA that are robust with respect to outliers. A common way to model outliers is as sparse

vectors [1]. In seminal papers Candès et. al. and Chandrasekaran et. al. introduced the Prin-

cipal Components Pursuit (PCP) convex program and proved its robustness to sparse outliers

[2], [3]. Principal Components Pursuit poses the robust PCA problem as identifying a low rank

matrix and a sparse matrix from their sum. The program is to minimize a weighted sum of

the nuclear norm of the low rank matrix and the vector `1 norm of the sparse matrix subject

to their sum being equal to the observed data matrix. The results in [4] improve upon those

in [3]. Other methods such as [5] model the entire column vector as being either correct or an

outlier. Some other works on the performance guarantees for batch robust PCA include [6],

[7], and [8]. All of these methods require waiting until all of the data has been acquired before

performing the optimization.

In this work we consider an online or recursive version of the robust PCA problem where we

seek to separate vectors into low dimensional and sparse components as they arrive, using the

previous estimates, rather than re-solving the entire problem at each time t. An application

where this type of problem is useful is in video analysis [9]. Imagine a video sequence that has

a distinct background and foreground. An example might be a surveillance camera where a

person walks across the scene. If the background does not change very much, and the foreground

is sparse (both practical assumptions), then separating the background and foreground can be

viewed as a robust PCA problem. Sparse plus low rank decomposition can also be used to

detect anomalies in network traffic patterns [10]. In all such an applications an online solution

is desirable.

3.1.1 Paper Organization

This paper is organized in the following way. The signal model, assumptions, and main

result are given in Section 3.2. Here we explain special cases of support change of xt that will

satisfy our assumptions. Section 3.3 contains our most general support change model. Proofs

of the support change results can be found in Appendix 3.B. A description of the Algorithm

studied is in Section 3.4.
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The main theorem (Theorem 3.2.15) is proved in Section 3.5. Proofs of the main lemmas

used to prove the theorem are given next in Sections 3.6 and 3.7. Some preliminary and simple

results used in the proofs are deferred to the Appendix. Appendix 3.A contains lemmas for

exchanging the order of a double sum (Lemma 3.A.1), Cauchy-Schwarz for matrices (Lemma

3.A.3), and the matrix Azuma inequality from [11] and associated corollaries (Lemmas 3.A.8 -

3.A.10).

In Section 3.8 we introduce a more general subspace change model and a corresponding

algorithm. A result analogous to Theorem 3.2.15 is proven in Section 3.9. Finally, in Section

3.10 we provide some simple simulation results that demonstrate the theoretical results.

3.1.2 Problem Definition

At time t we observe a vector mt ∈ Rn that is the sum of a vector from a slowly changing

low-dimensional subspace `t and a sparse vector xt. So

mt = `t + xt for t = 1, 2, . . . , tmax,

with the possibility that tmax =∞. We model the low-dimensional `t’s as `t = Ptat for a basis

matrix Pt that is allowed to change slowly over time. Given an estimate of the initial subspace

P̂(0), the goal is to obtain estimates x̂t and ˆ̀
t at each time t and to periodically update the

estimate of Pt.

3.1.3 Contribution

The ReProCS algorithm for online sparse + low-rank matrix recovery (online robust PCA)

was first introduced and analyzed in [12]. That paper contained a result that assumed certain

properties of the algorithm estimates, and as such was only a partial correctness result. In

Chapter 2, by building on proof techniques introduced in [12], a full correctness result was

proven for the same ReProCS algorithm. Experimental evaluation of ReProCS is done in [14].

Here it is shown that with practical heuristics used to set its parameters (some of which are

different from the algorithm parameters used in our correctness result), ReProCS has signifi-
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cantly improved recovery performance compared to other recursive ([15, 16, 10]) and even batch

methods ([2, 9, 16]) for many simulated and real video datasets.

A limitation of the result of Chapter 2 was that it assumed independence of the `t’s over

time. For the video application, this means that the background images1 are independent over

time, and in most cases this is not a valid assumption. In this work, we are able to remove this

assumption and replace it by a more realistic first order autoregressive (AR) model assumption

on the `t’s. The ReProCS algorithm itself does not need knowledge of the AR model or its

parameters. Under this model and only one extra assumption compared to Chapter 2, we can

obtain a correctness result. The extra assumption needed is a bound on the ratio of the squared

maximum value to the variance of any entry of at (which will later be defined as the coefficients

of `t with respect to an orthonormal basis). We show that as long as algorithm parameters are

set appropriately, a good enough estimate of the initial subspace is available, slow subspace

change holds, the subspaces are dense enough, and there is a certain amount of support change

at least every so often, then the support can be exactly recovered with high probability, the

sparse and low-rank matrix columns can be recovered with bounded and small error, and the

subspace recovery error decays to a small value within a finite delay of a subspace change. Use

of the AR model requires new proof techniques beyond what were used in Chapter 2. We need

to use the matrix Azuma inequality from [11] instead of the matrix Hoeffding inequality from

the same paper. Before applying the matrix Azuma inequality, we must also perform algebraic

manipulation of sums so that the previous term on which we are conditioning is small. This is

done in Lemma 3.6.3 which is proved using Lemma 3.A.6. Lemma 3.6.3 is used in the proof of

Lemma 3.5.22 which is also significantly different.

A second contribution of this work is that we assume a subspace change model that allows

for both addition of new directions and removal of existing directions from the subspace, and we

also study a partly practical modification of the ReProCS with cluster-PCA (ReProCS-cPCA)

algorithm introduced in [12]. ReProCS-cPCA improves upon ReProCS in that it also includes

a subspace re-estimation step that allows removal of deleted directions from the subspace

estimate. We obtain a correctness result for this algorithm under all the earlier assumptions

1technically the background image minus a mean background image
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and a clustering assumption on the eigenvalues of the covariance matrix of `t after the subspace

change has stabilized. A key advantage of this result is that it significantly relaxes the denseness

requirements and consequently needs a much looser upper bound on the rank-sparsity product

compared with our result for ReProCS. The ReProCS result needs a bound that is tighter than

what PCP needs (PCP is a batch method while ReProCS is online) but the bound needed by

ReProCS-cPCA is comparable to that of PCP. In fact, ReProCS-cPCA does not need a bound

on the rank of L as long as the delay between subspace change times increases in proportion

to log J where J is the total number of subspace change times in the entire sequence and J is

known. The requirement that the length of time between subspace times increases with J is a

consequence of the probabilistic signal model, and not the algorithm. Another way to interpret

the result is that the probability of incorrect recovery increases only linearly with J . However

this result has a significant limitation. Unlike the practical ReProCS algorithm, the ReProCS-

cPCA algorithm is not fully automatic. It needs information about the eigenvalue clustering

which at this point we cannot set automatically. (See the discussion in Section 3.8.3.)

To the best of our knowledge, this is among the first few works that provides a correctness

result for an online (recursive) algorithm for sparse plus low-rank matrix recovery or equiv-

alently for online robust PCA. As an easy corollary, we also have a result for online matrix

completion. In this case, the support of xt is the set of missing entries, and this is known.

Online algorithms are needed for real-time applications; even for offline applications, they are

faster and need less storage compared to batch techniques. Moreover, online approaches can

provide a natural way to exploit temporal dependencies in the dataset. In our case, we show

that ReProCS uses slow subspace change to allow for significantly more correlated support sets

of the sparse vectors than do the various results for PCP [2, 3, 17]. Partial results have been

provided for online sparse plus low-rank matrix recovery in our earlier work [12], and also in

later work by Feng et. al. [18]; however, all require an assumption on intermediate algorithm

estimates. We discuss these and [19, 20] in Sec 3.2.6. There is some more recent work on online

robust PCA algorithms and their experimental evaluation, e.g. [15], [21].

The new proof techniques developed in this and earlier works [12, 13] are needed because

in our case, the error et = `t− ˆ̀
t is correlated with the true data `t. This is an artifact of how
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we obtain the estimates `t. Standard results for PCA such as those in [22] cannot be used,

because they assume that the noise is independent of or uncorrelated with the noise-free data.

3.1.4 Notation

We use lowercase bold letters for vectors and capital bold letters for matrices. We use x′

for the transpose of a vector x and similarly A′ for the transpose of a matrix A. (Everything

is real, so this is also the Hermitian adjoint). The 2-norm of a vector and the induced 2-norm

of a matrix are denoted by ‖ · ‖2. We refer to a matrix with orthonormal columns as a basis

matrix. Notice that for a basis matrix P , P ′P = I. For a set T of integers, |T | denotes its

cardinality. For a vector x, xT is a smaller vector containing the entries of x indexed by T .

Define IT to be an n× |T | matrix of those columns of the identity matrix indexed by T . Then

let AT := AIT . For matrices P and Q where the columns of Q are a subset of the columns of

P , we will use the notation P \Q to mean the matrix of columns in P and not in Q. Using our

column subscripting notation, for an n×r matrix P , if Q = PT , then P \Q := P[1,...,r]\T = PT .

For integers a and b, we write a mod b for the remainder when a is divided by b. We use

the interval notation [a, b] to mean all of the integers between a and b, inclusive, and similarly

for (a, b) etc. For a matrix A, the restricted isometry constant (RIC) δs(A) is the smallest real

number δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

for all s-sparse vectors x [23]. A vector x is s-sparse if it has s or fewer non-zero entries. For

Hermitian matrices A and B, the notation A � B means that B−A is positive semi-definite.

For an Hermitian matrix H, H
EVD
= UΛU ′ denotes its eigenvalue decomposition. Similarly

for any matrix A, A
SVD
= UΣV ′ denotes its singular value decomposition.

For basis matrices P and Q, define

dif(P ,Q) := ‖(I − PP ′)Q‖2.

It is not difficult to show that this function is symmetric when P and Q are the same size. (See

for example [12]). We will use the function dif as a measure of the error made when estimating
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range(Q) by range(P ). We use the hat to denote estimation of the column space of a matrix.

So range(P̂ ) is an estimate of range(P ), but P̂ is not necessarily an entry-wise estimate of P .

We will use P for probability and E for expectation. For a sequence of random variables

Z1, . . . ,Zt, the notation

Et−1[Zt] := E[Zt|Z1, . . . ,Zt−1]

and

Et−1[Zt|X] := E[Zt|X,Z1, . . . ,Zt−1]

For an event (set) Γ, we use Γ for the complement of Γ.

3.2 Model Assumptions, Main Result, and Discussion

3.2.1 Model on `t

Model 3.2.1.

1. Subspace Change Model for `t

Let tj for j = 1, . . . , J be the times at which the subspace changes. For the sake of

notation, let t0 = 0 and tJ+1 := tmax. We assume `t = Ptat for all t = 1, . . . , tmax, and

Pt =





[Pt−1 Pt,new] if t = t1 or t2 or . . . tJ

Pt−1 otherwise

(3.1)

where Pt is a basis matrix for all t.

Let rj = rank(Ptj ) and cj,new = rank(Ptj ,new).

2. Assumptions and notation for at. We assume the following model on at:

at = bat−1 + νt

for a scalar b < 1. Set a0 = 0. Also assume E[νt] = 0, the νt are mutually independent

over t, bounded, and the matrix Λν,t := Cov(νt) is diagonal.

At t = tj the length of the vector at increases from rj−1 to rj. From (3.1) it is clear that

for t < tj, Ptj ,new
′`t = 0. Therefore, for the autoregressive model, the last (rj − rj−1)

entries of at begin at 0.
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Define

(a) γ :=
supt ‖νt‖∞

(1− b) (Since νt is bounded, γ <∞.)

(b) λ− :=
inft λmin(Λν,t)

1− b2 and λ+ :=
supt λmax(Λν,t)

1− b2

and assume that 0 < λ− ≤ λ+ <∞.

By induction it is easy to see that

‖at‖∞ = ‖bat−1 + νt‖∞ ≤ b‖at−1‖∞ + ‖νt‖∞ ≤ bγ + (1− b)γ ≤ γ.

Definition 3.2.2. Define

P(j) := Ptj for j = 1, . . . , J

P(j),∗ := P(j−1)

P(j),new := Ptj ,new

Because Pt is a basis matrix, P(j),∗ ⊥ P(j),new. Define rJ = maxj rankP(j).

and cnew := maxj rank(P(j),new). Observe that

rJ = rank([`1, . . . , `tmax ]) and rJ ≤ r0 + Jcnew := r.

For t ∈ [tj , tj+1), `t can be written as `t = [P(j),∗ P(j),new]




at,∗

at,new


, where

at,∗ := P(j),∗
′`t and at,new := P(j),new

′`t (3.2)

Definition 3.2.3. As in (3.2), for t ∈ [tj , tj+1), define

νt,∗ := (νt)[1,rj−cj,new] and νt,new := (νt)[rj−cj,new+1,rj ]

and define Λν,t := Cov(νt). Also define Λa,t := Cov(at).

Observe that

Λa,t = b2Λa,t−1 + Λν,t (3.3)

From the above equation, it is clear that Λa,t is also diagonal and

(1− b2t)λ− ≤ λmin(Λa,t) ≤ λmax(Λa,t) ≤ (1− b2t)λ+.
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Definition 3.2.4. Define

f :=
λ+

λ−

Notice that f is a bound on the condition number of Λa,t at any time t.

Definition 3.2.5. Define Λa,t,∗ := Cov(at,∗) and Λa,t,new := Cov(at,new). Similarly define

Λν,t,∗ := Cov(νt,∗) and Λν,t,new := Cov(νt,new). Then

Λa,t =




Λa,t,∗ 0

0 Λa,t,new


 and Λν,t =




Λν,t,∗ 0

0 Λν,t,new


 .

Definition 3.2.6. For an integer d, define

1. γnew :=
maxj maxt∈[tj ,tj+d] ‖νt,new‖∞

(1− b)

2. λ−new := min
j

min
t∈[tj ,tj+d]

λmin(Λν,t,new)

1− b2 and λ+
new := max

j
max

t∈[tj ,tj+d]

λmax(Λν,t,new)

1− b2

In the theorem we assume upper bounds on γnew and λ+
new. This ensures that the projection of

`t along the new directions is “small” for some time (d frames) after a subspace change.

Definition 3.2.7. Define

η :=
γ2

λ+
and ηnew :=

γnew
2

λ+
new

Observe that if at is a scalar random variable, then η is the ratio of the maximum absolute

value (of at) squared to the variance. For a continuous random variable uniformly distributed

on the interval [−γ, γ] one can easily compute η = 3. Moreover, if the i-th entry of at is a

continuous random variables that is uniformly distributed in [−γi, γi] and if this is true for all

times t, then γ = maxi γi and we still get η = ηnew = 3.

Subspace Change Model with Deletions. The above simple model only assumes new

directions get added to the subspace but nothing gets removed. We work with this model for

notational simplicity. Our results in this section will also hold if it is replaced by the following

more general model.

Model 3.2.8. Signal Model 3.2.1 holds with Pt = [(Pt−1Rt) \ Pt,old Pt,new] at t = tj’s. Here

Rt is an arbitrary rotation matrix. (By using a rotation matrix, we allow the removal of any

direction in range(Pt−1).)
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In Section 3.8, we study a more general ReProCS algorithm called ReProCS-cPCA that

includes a deletion (by subspace re-estimation) step. Our result for that algorithm is based on

Signal Model 3.2.8. With one extra assumption, we are able to prove a stronger conclusion for

ReProCS-cPCA.

3.2.2 Denseness coefficient

Below we give the definition of the denseness coefficient κs.

Definition 3.2.9. For a basis matrix P , define κs(P ) := max
|T |≤s

‖IT ′P ‖2.

As described in [12], κs is a measurement of the denseness of the vectors in the subspace

range(P ). Notice that small κs means that the columns of P are dense vectors. The reason

for quantifying denseness using κs is the following lemma from [12].

Lemma 3.2.10. For a basis matrix P , δs(I − PP ′) = (κs(P ))2.

3.2.3 Model on xt

Let Tt := {i : (xt)i 6= 0} be the support set of xt and let

s := max
t
|Tt|

be the size of the largest support, and let

xmin := inf
t

min
i∈Tt
|(xt)i|

denote the size of the smallest non-zero entry of any xt.

In order to prove our result, we require that the supports of xt be sufficiently different.

Below we give two possible models that will imply the most general conditions required (given

in Section 3.3).

Model 3.2.11. Let % ≥ 1 be a scalar. Suppose that the support of xt is of fixed size less than

or equal to s, consists of consecutive indices, and moves down the vector at least every β time

instants. Moreover, each time it moves, it moves by at least s
% indices and at most %2s indices.

Stated differently, the support of xt remains the same for no more than β time instants, and

when it moves, it moves by no fewer than s
% indices and no more than %2s indices.
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Model 3.2.12. Suppose that the support of xt consists of s or fewer consecutive indices and

moves down the vector by between 1 and m indices at every time t.

Figure 3.5 on page 98 illustrates the above support change models.

Remark 3.2.13. For both of the above models, when the support reaches the bottom of the

vector, we assume that it starts over at 1. This models a moving 1D object of length s or less

that enters the scene and eventually walks out, and then another object of length s or less may

come in. The requirement of consecutive indices and downward (as opposed to upward) motion

are done for simplicity and ease of understanding. Our results still hold under permutations

(relabeling) of the indices. We could also make a small modification and assume that the object

is reflected back up (down) when it reaches the bottom (top). See Remark 3.3.6.

Remark 3.2.14. Nothing in our most general support change model or our algorithm requires

only one object in the support of xt. The models above are simple examples that capture the

intuition of our general model.

3.2.4 Main Result

Theorem 3.2.15. Consider Algorithm 3. Pick a ζ that satisfies

ζ ≤ min

{
10−4

r2
,
1.5× 10−4

r2f
,

1

r3γ2
,
0.01λ−

b2r3γ2

}
.

Suppose

1. ‖(I − P̂(0)P̂(0)
′)P(0)‖2 ≤ r0ζ;

2. The algorithm parameters are set as:

• thresh = λ−

2 ;

• K =
⌈

log(0.16cnewζ)
log(0.4)

⌉
;

• ξ =
√
cnewγnew + (

√
r +
√
cnew)

√
ζ;

• ω = 7ξ;
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• α = C(log(35KJ) + 11 log(n)) for a constant C ≥ Cadd with

Cadd := 202 · 8 · 482 (φ+ξ)4

(cnewζλ−)2
; (3.4)

3. Signal Model 3.2.1 on `t holds with b ≤ 0.1 and

(a) tj+1 − tj > d ≥ (K + 2)α for all j i.e. the delay between change times is “large”;

(b) at,new is “small”

i.
√
cnewγnew + (

√
r +
√
cnew)

√
ζ ≤ xmin

14 ;

ii. λ+
new ≤

√
2λ−;

iii. b2cnewηnewλ
+
new ≤ 0.5λ− (because b ≤ 0.1, this will be satisfied if cnewηnewλ

+
new ≤

50λ−);

4. The support of xt changes enough so that for the α chosen above, Signal Model 3.2.11

holds with β = h+α and

d%e2 h+ ≤ 0.0025, and %2sα ≤ n

or Signal Model 3.2.12 holds with s ≤ (6× 10−4)α and α ≤ n
m .

5. The low dimensional subspace is dense such that

κ2s(P(J)) ≤ 0.3 and max
j
κ2s(P(j),new) ≤ 0.02.

Then, with probability at least 1− n−10, at all times t

1. The support of xt is recovered exactly, i.e. T̂t = Tt;

2. The estimate of the subspace change time satisfies tj ≤ t̂j ≤ tj + 2α, for j = 1, . . . , J ;

3. The estimate of the number of new directions is correct, i.e. ĉj,new,k = cj,new for j =

1, . . . , J and k = 1, . . . ,K;
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4. The recovery error satisfies:

‖x̂t − xt‖2 ≤





1.2
(√
ζ +
√
cnewγnew

)
t ∈

[
tj , t̂j

]

1.2
(
1.84
√
ζ + (0.4)k−1√cnewγnew

)
t ∈

[
t̂j + (k − 1)α, t̂j + kα− 1

]
,

k = 1, 2, . . . ,K

2.4
√
ζ t ∈

[
t̂j +Kα, tj+1 − 1

]
;

5. The subspace error SEt := ‖(I − P̂tP̂t′)Pt‖2 satisfies:

SEt ≤





1 t ∈
[
tj , t̂j

]

10−2
√
ζ + 0.4k−1 t ∈

[
t̂j + (k − 1)α, t̂j + kα− 1

]
, k = 1, 2, . . . ,K

10−2
√
ζ t ∈

[
t̂j +Kα, tj+1 − 1

]
.

Remark 3.2.16. When b = 0 (at’s are independent), the bound ζ ≤ 0.01λ−

b2r3γ2
gets removed

because 1/b2 →∞; and the third requirement in condition 3b) gets removed. Thus, when b = 0,

the above theorem is the same as the main result in Chapter 2 even though it provides guarantees

for a practical version of the ReProCS algorithm studied in Chapter 2.

3.2.5 Random Support Change

We give here a commonly used Bernoulli-Gaussian motion model that satisfies our support

change assumptions with high probability.

Model 3.2.17 (Taken from Chapter 2). Consider one-dimensional motion of the support of

xt, and let õt be its center at time t. Suppose that the support moves according to the model

ot = ot−1 + θt

(
1.1

s

%
+ µt

)
and

õt = ot mod n

where µt is Gaussian N (0, σ2) and θt is a Bernoulli random variable that takes the value 1 with

probability q and 0 with probability 1 − q, and % ≥ 1 is a constant. Taking the modulus with

respect to n describes the process of the support starting over at 1 when it reaches n. Assume

that {µt}, {θt} are mutually independent and independent of {νt} for t = 1, . . . , tmax.
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Lemma 3.2.18 (Taken from Chapter 2). Signal Model 3.2.17 satisfies the assumptions of

Signal Model 3.2.11 with %2 = 1.2
% with probability at least 1 − n−10 if σ2 ≤ s2

4000%2 log(n)
,

q ≥ 1−
(

n−10

2(tmax + α)

) 1
β

, and tmax ≤ n10.

Proof. To prove the above lemma, we will be done if we can show

1. the support changes at least once every β instants with probability greater than 1− n−10

2 ;

2. when it changes, the support moves by at least s
% and not more than 1.2 s% indices with

probability greater than 1− n−10

2 .

Item 1) follows using simple arguments for Bernoulli random variables [24] while item 2) follows

using a Gaussian tail bound. The complete proof is in Appendix 3.B. �

Corollary 3.2.19. Consider Theorem 3.2.15 with condition 4) replaced by Signal Model 3.2.17

with

(i)
1.2sα

%
≤ n;

(ii) tmax ≤ n10

(iii) σ2 ≤ s2

4000%2 log(n)
;

(iv) q ≥ 1−
(

n−10

2(tmax + α)

) 1
β

; for a β =
(2.4×10−3)α
d%e2 .

Then all its conclusions will hold with probability greater than or equal to 1− 2n−10.

Corollary 3.2.19 follows by combining Lemma 3.2.18 with Theorem 3.2.15.

3.2.6 Discussion

The above result needs an accurate estimate of the initial subspace, a slow subspace change

assumption, a support change assumption, and a denseness assumption. If a short sequence

of background only training data is available (which is often true of surveillance video), then

the initial subspace estimate is easy to obtain by ordinary PCA. Otherwise, one could use a
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batch method for robust PCA on an initial sequence to set P̂(0) before starting the ReProCS

algorithm.

Consider the subspace change model. This model (along with the bound on γnew from the

theorem) assumes that after a subspace change, ‖at,new‖∞ and therefore also ‖Λa,t,new‖2 are

initially small. After tj+d, ‖at,new‖∞ can be as large as γ = maxt ‖at‖∞, and the eigenvalues of

Λa,t,new can increase up to λ+ either immediately or gradually. Thus a new direction added at

time tj can have magnitude as large as γ and variance as large as λ+ by tj+d. Since we assume

that tj + d ≤ tj+1, this will occur before the next subspace change time. As demonstrated in

[12], such a slow subspace change assumption is valid for backgrounds in real video sequences.

Consider the support change models. Both Models 3.2.11 and 3.2.12 are valid and commonly

used models for foreground object motion in videos. Of course these are only special cases.

Nothing prevents multiple moving objects (see Section 3.3.1). In the rest of this discussion we

use Model 3.2.11. If we assume Model 3.2.11, our result requires s ≤ n
2α . If J ≤ C1n for some

constant C1, then using the definition of α, this bound holds if s ≤ C2
n

logn , for a constant C2.

Thus, this model allows s ∈ O( n
logn) and r = r0 + Jcnew ∈ O(n). As we explain next, our

denseness assumption restricts the requirement on r to r ∈ O(log n).

Consider denseness. The way κs is defined, our denseness assumption simultaneously places

restrictions on denseness of `t, and on r and s. As done in [2], we could assume κ1(P(J)) ≤
√

µr
n

and κ1(P(j),new) ≤
√

µ̃cnew
n where µ and µ̃ take any value between 1 and n

r . It is easy to show

that κs(P ) ≤ √sκ1(P ) [12]. Thus if

2sr

n
≤ µ−1(0.3)2, and

2scnew

n
≤ µ̃−1(0.02)2,

then our assumption of κ2s(P(J)) ≤ 0.3 and κ2s(P(j),new) ≤ 0.02 will be satisfied. Since we

require s ∈ O( n
logn), this means we can allow r ∈ O(log n) to satisfy the above.

Comparison with other work.

Let L = [`1, `2, . . . , `tmax ] and X = [x1,x2, . . . ,xtmax ]. Define rmat := rank(L) and smat :=

| support(X)|. For our model, smat = stmax, and rmat = rJ ≤ r. From the above discussion,

we see that the ReProCS result allows

smat ∈ O
(
ntmax

log n

)
and rmat ∈ O(log n). (3.5)
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The above requirement on smat and rmat is stronger than that used by [2] (which studies

the batch approach PCP). The result in [2] allows

smat ∈ O (ntmax) and rmat ∈ O
(

n

(log n)2

)
.

But, up to differences in the constants, (3.5) is the same as the requirement found in [25] (which

also studies the PCP program and is an improvement over [3]), except that [25] does not need

specific bounds on smat and rmat; it only requires rmatsmat ∈ O(ntmax). The comparison is not

direct though because our result does not need denseness of the right singular vectors of L or

a bound on the vector infinity norm of UV ′, while [2, 3], and [25] do. Here L
SVD
= UΣV ′.

The reason for our stronger requirement on smatrmat is because we study an online algorithm,

ReProCS, that recovers the sparse vector xt at each time t rather than in a batch or a piecewise

batch fashion. Because of this, the sparse recovery step does not use the low dimensionality of

the new (and still unestimated) subspace.

Because we only require that the support changes after a given maximum allowed duration,

it can be constant for a certain period of time (Model 3.2.11), or it can change only a little

at each time (Model 3.2.12). This is a substantially weaker assumption than the independent

or uniformly random supports required by [2] and [20]. As we explain in Chapter 2, if we

consider the whole matrix X, then at most tmax
5000 non-zero entries per row are allowed by our

result. Thus, for rmat > 5000, this also is a significant improvement over [25] which requires

at most tmax
r non-zero entries per row. Therefore, an important advantage of our result is that

it allows for highly correlated support sets of xt, which is important for applications such as

video surveillance that involve one or more moving foreground objects or persons forming the

sparse vector xt.

Now consider works that also use initial subspace knowledge. Our result improves upon

[12]’s results by removing the denseness requirements on (I − P(j),newP(j),new
′)P̂t and (I −

P̂(j),∗P̂(j),∗′ − P̂t,newP̂t,new
′)P(j),new and thus provides a complete correctness result. It also

improves on the results of Chapter 2 as explained earlier by studying a fully automatic version

of ReProCS and assuming an autoregressive model on the `t’s. In [18], Feng et. al. propose a

method for online robust PCA and prove a partial result for their algorithm. The approach is
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to reformulate the PCP program and use this reformulation to develop a recursive algorithm

that converges asymptotically to the solution of PCP as long as the basis estimate P̂t is full

rank at each time t. Since this result assumes something about the algorithm estimates, it is

only a partial result. Another work of Feng et. al. [19] on online robust PCA does not model

the outlier as a sparse vector but defines anything that is far from the data subspace as an

outlier. Another recent work that uses knowledge of the initial subspace estimate is modified-

PCP [20]. However, like PCP, this also needs uniformly random supports. Moreover it is a

piecewise batch approach.

Limitations. One limitation of this work is that we do not prove exact recovery of xt or

`t.

In order to set the algorithm parameters as assumed in Theorem 3.2.15 one would need

knowledge of the model parameters γ, γnew, r0, cnew, λ+, λ−, and J . This is a rather impractical

assumption; however, as shown below in Corollary 3.2.20, if an initial sequence of just `t’s is

available, then this limitation can be handled with some additional assumptions.

Suppose that an initial sequence of just `t’s without any sparse corruptions is available.

In the video surveillance application, this would correspond to having a short sequence of

background only frames. Such a sequence can be used to obtain P̂(0) (as the eigenvectors

corresponding to non-zero eigenvalues of
∑ttrain

t=1 `t`t
′) and to estimate several of the required

model parameters. Let ttrain be the length of the sequence and assume that Pt is constant for

the duration. Define

λ+ := λmax

(
1

ttrain

ttrain∑

t=1

`t`t
′
)

λ− := min
λi 6=0

λi

(
1

ttrain

ttrain∑

t=1

`t`t
′
)

r0 := rank

(
ttrain∑

t=1

`t`t
′
)

γ := max
t∈[1,ttrain]

‖Pt′`t‖∞.

Assume that

1. cnew = 0.1r0 and γnew = 0.1γ
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2.
λmax (Λν,t)

1− b2 ≤ λ+ for all t

3.
λmin (Λν,t)

1− b2 ≥ λ− for all t

4. cj,new ≤ cnew = 0.1r0 for all j

5.
‖νt‖∞
1− b ≤ γ for all t

6.
‖νt,new‖∞

1− b ≤ γnew = 0.1γ for t ∈ [tj , tj + d] for all j.

Under these assumptions, the only remaining unknown parameter is J . In Theorem 3.2.15,

knowledge of J is only used to control the probability with which the result holds. Therefore,

we can state the following corollary.

Corollary 3.2.20. Suppose that the above assumptions hold. In Theorem 3.2.15, replace the J

in the expression for α with a 1, and suppose that all of the remaining assumptions of Theorem

3.2.15 are satisfied. Then all of the conclusions will also hold with probability at least 1−Jn−10.

Another limitation is that Signal Model 3.2.1 only allows for additions to the subspace.

The more realistic model (Signal Model 3.2.8) also allows removals from the prior subspace.

Nothing in our proof changes if we incorporate removals into the signal model, and we have

the following corollary.

Corollary 3.2.21. Theorem 3.2.15 also holds with Signal Model 3.2.1 on `t replaced by Signal

Model 3.2.8.

Intuitively, Signal Model 3.2.8 is a special case of Signal Model 3.2.1 because Model 3.2.8

restricts the subspace where the `t can lie. However, because of the minimum variance re-

quirement (λ−) of Model 3.2.1, we need technically need a separate proof. The proof remains

the same; the only difference is that instead of estimating span(P(j)), the algorithm will main-

tain an estimate of span([P(0),P(1),new, . . . ,P(j),new]). Notice that when there are no directions

deleted, these are equivalent. Another way of describing this is that although directions are

deleted from the subspace in Signal Model 3.2.8, Algorithm 3 does not delete anything from

its subspace estimate. In Section 3.8 we introduce another algorithm (Algorithm 4) that does
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remove old directions from its subspace estimate. A result similar to Theorem 3.2.15 is proven

for this algorithm as well.

A fundamental limitation of our analysis approach is the assumption that there is a signifi-

cant delay between times when the low-dimensional subspace changes. A more realistic model

would allow the subspace to change more frequently.

Another limitation of the ReProCS algorithm is that it does not use the fact that the ‘noise’

seen by the sparse recovery step has a low dimensional structure. The modified PCP program

from [20] uses this structure, but because of the piecewise batch approach cannot handle highly

correlated supports of the sparse component like ReProCS (see the simulations is Section 3.10).

The sparse recovery also requires a lower bound on xmin to recover the support.

3.3 Most General Support Change Model and a Key Lemma

We give here the most general support change model under which our result holds. We will

show that this includes the preceding signal models as special cases.

3.3.1 Most General Support Change Model

The model given below is a simple generalization of the support change model used in

Chapter 2.

Model 3.3.1. Let ρ be a positive integer. Split [1, tmax] into intervals of length α. Use Ju :=

[(u−1)α+1, uα] to denote the u-th interval. For a given interval, Ju, let T(i),u for i = 1, . . . , lu

be mutually disjoint subsets of {1, . . . , n} such that for every t ∈ Ju,

Tt ⊆ T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u for some i. (3.6)

For these T(i),u’s define

h

(
α; {T(i),u}u=1,...,d tmax

α
e

i=1,...,lu

)
:=

max
u=1,...,d tmax

α
e
max
i

∣∣{t ∈ Ju : Tt ⊆ T(i),u ∪ T(i+1),u ∪ · · · ∪ T(i+ρ−1),u}
∣∣ (3.7)
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Now define h∗(α) which takes the minimum over all choices of T(i),u

h∗(α) := min
All choices of

mutually disjoint
T(i),u satisfying (3.6)

h

(
α; {T(i),u}u=1,...,d tmax

α
e

i=1,...,lu

)
(3.8)

Assume that h∗(α) ≤ h+α for an h+ < 1.

In the above model, h∗(α) provides a bound on how long the support of xt remains in a

given area during an interval Ju.

Notice that (3.6) can always be trivially satisfied by choosing lu = 1 and T(1),u = {1, . . . , n},

but this will give h(α; {T(i),u}) = α and hence is not a good choice. This is why we take a

minimum over all choices.

The following corollary is the most general form of our result.

Theorem 3.3.2. Suppose that the conditions of Theorem 3.2.15 hold, but instead of 4), assume

that Signal Model 3.3.1 holds with ρ2h+ ≤ .0024. Then all its conclusions will hold.

In Sec. 3.3.3, we show that Signal Models 3.2.11 and 3.2.12 are special cases of Signal Model

3.3.1 and hence Theorem 3.2.15 is actually a corollary of Theorem 3.3.2. The rest of the paper

will prove Theorem 3.3.2.

3.3.2 Key Lemma

Under Signal Model 3.3.1, we can obtain the following lemma for a matrixM =
∑

t ITtAtITt
′

(i.e. a sum of matrices supported on rows and columns indexed by Tt). This lemma tells us

that, because of the support change model, such a matrix is actually block banded: for % = 1

it is block diagonal, for % = 2 it is block tri-diagonal, and so on. Hence its 2-norm is much

smaller than the sum of the norms of the individual matrices. As we will see later, the error,

et, in recovering xt (which is equal to the error in recovering `t) at times t, is supported on

Tt. As a result the matrix
∑

t etet
′ has this form. Moreover, certain matrices obtained when

bounding
∑

t `tet
′ also have this form.

Lemma 3.3.3 (Taken from Chapter 2). Let st = |Tt|. Consider a sequence of st×st symmetric

positive-semidefinite matrices At such that ‖At‖2 ≤ σ+ for all t. Assume that the Tt obey Signal
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Model 3.3.1 and the assumptions of Theorem 3.3.2. Let M =
∑

t∈Ju
ITtAtITt

′ be an n×n matrix

(I is an n× n identity matrix). Then

‖M‖2 ≤ ρ2h+ασ+ ≤ 0.0024σ+α

Proof. This lemma is proved in Chapter 2. �

3.3.3 Unifying the signal models

Lemma 3.3.4. Suppose that Signal Model 3.2.11 and the conditions assumed in Theorem 3.2.15

hold. Recall that this means that the support of xt is of a constant size s and moves by at least

s
% indices, and at most %2s indices, at least every β time instants, β = h+α, d%e2 h+ ≤ 0.0024

and %2sα ≤ n. Then Signal Model 3.3.1 holds with ρ = d%e and h+ = β/α.

The proof uses the same technique as in Chapter 2 and is given in Appendix 3.B, also see

Figure 3.5.

Lemma 3.3.5. Suppose that Signal Model 3.2.12 and the conditions assumed in Theorem

3.2.15 hold. Recall that this means that the support of xt moves by between 1 and m indices at

every time t, s ≤ (3× 10−4)α and α ≤ n
m . Then Signal Model 3.3.1 is satisfied with ρ = 2 and

h+ = s/α.

The proof is simple and is given in Appendix 3.B, also see Figure 3.5.

Remark 3.3.6. In Signal Models 3.2.11 and 3.2.12, if we replace the assumption that the

support restarts at 1 when it reaches n, and instead assume that it is reflected back up the

vector, then a form of Lemma 3.3.3 still holds, but the conclusion becomes ‖M‖2 ≤ 2ρ2h+σ+α.

The statement of Theorems 3.2.15 and 3.3.2 would then need the tighter bound on ρ2h+ ≤ .0012.

In Lemma 3.2.18, we have already shown that Signal Model 3.2.17 is a special case of Signal

Model 3.2.11. Above we have finished showing that both Signal Model 3.2.11 and 3.2.12 are

special cases of Signal Model 3.3.1. In the rest of the paper, we assume Signal Model 3.3.1 and

use Lemma 3.3.3 to prove Theorem 3.3.2. Theorem 3.2.15 follows as a special case of Theorem

3.3.2, which is the most general form of our result.
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Figure 3.2 Signal Model 3.3.1 with
% = 3

T(1)

T(2)

T(3)

T(4)

T(5)

T(6)

Figure 3.3 Disjoint
Supports (Signal
Model 3.3.1 with
% = 1)

T(1)

T(2)

T(3)

Figure 3.4 Signal Model 3.2.12

Figure 3.5: Support Change Models

3.4 The Automatic ReProCS Algorithm

The ReProCS algorithm was introduced in [12]. A more practical version including heuris-

tics for setting the parameters was given in [14]. The basic idea of ReProCS is as follows.

Given an accurate estimate of the subspace where the `t’s lie, projecting the measurement

mt = xt + `t onto the orthogonal complement of the estimated subspace will nullify most of

`t. The denseness of `t implies that this projection will have small RIC (Lemma 3.2.10) so

the sparse recovery step will produce an accurate estimate x̂t. Then, subtraction also gives a

good estimate ˆ̀
t = mt − x̂t. Using these ˆ̀

t, the algorithm successively updates the subspace

estimate by a modification of the standard PCA procedure, which we call projection PCA.

Algorithm 3 is the same algorithm given in Chapter 2. The detailed description is given in

Section 2.4
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Algorithm 3 Recursive Projected CS (ReProCS) [12]

Parameters: ξ, ω, α, K, thresh

Input: mt, Output: x̂t, ˆ̀
t, P̂t, t̂j , ĉj,new,k

Notes: using P̂t,∗, P̂t,new, P̂t = [P̂t,∗ P̂t,new]

Set P̂t,∗ ← P̂(0), P̂t,new ← [.], j ← 0, phase← detect

For every t > 0, do the following:

1. Estimate Tt and xt via Projected Compressed Sensing:

(a) Projection: set Φt ← I − P̂t−1P̂t−1
′, compute yt ← Φtmt

(b) Sparse Recovery: compute x̂t,cs as the solution of minx ‖x‖1 s.t. ‖yt −Φtx‖2 ≤ ξ
(c) Support Estimate: compute T̂t = {i : |(x̂t,cs)i| > ω}
(d) LS Estimate of xt: compute (x̂t)T̂t = ((Φt)T̂t)

†yt, (x̂t)T̂ ct = 0

2. Estimate `t: ˆ̀
t ←mt − x̂t.

3. If t mod α 6= 0 then P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

4. If t mod α = 0 then detection or projection PCA

If phase = detect then

(a) Set u = t
α and compute Mu = (I − P̂uα−1,∗P̂uα−1,∗′)

(
1
α

∑uα
τ=(u−1)α+1

ˆ̀
τ

ˆ̀
τ
′
)

(I −
P̂uα−1,∗P̂uα−1,∗′)

(b) Update P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ← P̂t−1

(c) If λmax(Mu) ≥ thresh then

i. phase← ppca, increment j ← j + 1, reset k ← 0

ii. ûj ← u, t̂j = t

Else (phase = ppca) then

(a) Set u = t
α and compute Mu = (I − P̂uα−1,∗P̂uα−1,∗′)

(
1
α

∑uα
τ=(u−1)α+1

ˆ̀
τ

ˆ̀
τ
′
)

(I −
P̂uα−1,∗P̂uα−1,∗′)

(b) Increment k ← k + 1

(c) Update P̂t,new ← eigenvectors(Mu, thresh), P̂t,∗ ← P̂t−1,∗ and P̂t ← [P̂t,∗ P̂t,new].

Set ĉj,new,k ← rank(P̂t,new).

(d) If k = K

i. Set phase← detect

ii. Update P̂t,∗ ← P̂t, and P̂t,new ← [.]

The function eigenvectors(M, thresh) returns a basis matrix for the span of all eigenvectors

whose eigenvalue is above thresh.
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3.5 Proof of Theorem 3.2.15

We will prove Theorem 3.3.2 which will imply Theorem 3.2.15.

3.5.1 Definitions

Definition 3.5.1. Define

Ju := [(u− 1)α+ 1, uα].

Also define uj to be the u such that tj ∈ Ju. That is uj :=
⌈
tj
α

⌉
. For the purposes of describing

events before the first subspace change, let u0 := 0.

Also define ûj :=
t̂j
α . Notice from the algorithm that this will be an integer, because detection

only occurs when t mod α = 0.

We will show that with high probability, ûj = uj or ûj = uj + 1.

Recall that

1. P(j),∗ := P(j−1) = Ptj−1

2. P(j),new := Ptj ,new.

Definition 3.5.2. For j = 1, 2, . . . , J and k = 1, 2, . . . ,K define

1. P̂(j),∗ := P̂t̂j−1+Kα. This is the final estimate of P(j),∗ = P(j−1).

2. P̂(j),new,0 := [.] and P̂(j),new,k := P̂t̂j+kα,new is the kth estimate of P(j),new.

Notice from the algorithm that

1. P̂t,∗ = P̂(j),∗ for all t ∈ [t̂j , t̂j +Kα− 1]

2. P̂t,new = P̂(j),new,k for all t ∈ Jûj+(k+1)α

3. At all times P̂t = [P̂t,∗ P̂t,new]. Thus P̂t and P̂t,new update at every t = t̂j + kα,

k = 1, 2, . . . ,K, j = 1, 2, . . . , J while P̂t,∗ updates at every t = t̂j−1 +Kα, j = 2, . . . , J .

4. P̂t−1,∗ ⊥ P̂t,new

5. Φt = (I − P̂(j),∗P̂(j),∗′ − P̂(j),new,kP̂(j),new,k
′) when t ∈ [ûj + kα+ 1, ûj + (k + 1)α]
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Definition 3.5.3. Recall that for basis matrices P and Q, dif(P ,Q) := ‖(I − PP ′)Q‖2.

Define

1. ζj,∗ := dif(P̂(j),∗,P(j),∗)

2. ζj,new,k := dif([P̂(j),∗ P̂(j),new,k],P(j),new)

Recall SEt = dif(P̂t,Pt), and notice that for t ∈ Jû+k, SEt ≤ ζj,∗ + ζj,new,k−1.

Definition 3.5.4. Define

1. ζ+
j,∗ :=

(
r0 + (j − 1)cnew

)
ζ

2. ζ+
0,new := 1, ζ+

k,new :=
bH,k

bA − bA,⊥ − bH,k
(the right hand side depends on ζ+

k−1,new)

where bA, bA,⊥, and bH,k are defined in (3.11), (3.12), and (3.13), respectively.

Definition 3.5.5. Define the random variable

Xu := {ν1, . . . ,νuα}

If assuming Signal Model 3.2.17 (random support change), then both {θt} and {µt} for t =

1, . . . , tmax are also included in the definition of Xu for all u. Thus whenever conditioning on

an Xu, they can be treated as deterministic.

Definition 3.5.6. For j = 1, . . . , J , k = 1, . . . ,K, and for a = uj or a = uj + 1, define the

following events

• DETa
j := {ûj = a}

• PPCAa
j,k :=

{
ûj = a and rank(P̂(j),new,k) = cj,new and ζj,new,k ≤ ζ+

k,new

}

• NODETSaj := {ûj = a and λmax (Mu) < thresh for all u ∈ [ûj +K + 1, uj+1 − 1]}

• Γaj,0 := Γj−1,end ∩DETa
j

• Γaj,k := Γaj,k−1 ∩ PPCAa
j,k

• Γj,end :=
(

Γ
uj
j,K ∩NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩NODETS

uj+1
j

)
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• Γ0,end := {ζ1,∗ ≤ r0ζ} ∩ {λmax (Mu) < thresh for all u ∈ [1, u1 − 1]}

We misuse notation as follows. Suppose that a set Γ is a subset of all possible values that a

r.v. X can take. For two r.v.s’ {X,Y }, when we need to say “X ∈ Γ and Y can be anything”

we will sometimes misuse notation and just say “{X,Y } ∈ Γ.” For example, we sometimes say

Xuj ∈ Γj,end. This means Xuj−1 ∈ Γj,end and νt for t ∈ Juj are unconstrained.

Definition 3.5.7. Define et to be the error made in estimating xt and `t. That is

et := x̂t − xt = `t − ˆ̀
t

3.5.2 Main Lemmas

Fact 3.5.8. Under the assumptions of Theorem 3.2.15, 1
α ≤ (cnewζ)2. To see this, observe that

the lower bound for α has (cnewζ)2 in the denominator, and everything else in the expression

is greater than or equal to 1. (Notice that γnew2

λ− ≥ 1)

Lemma 3.5.9. Under the conditions of Theorem 3.2.15,

ζ+
k,new ≤ 0.4k + 0.84cnewζ

Proof. This claim follows by applying simple algebra on the definition and using the bounds

assumed on α, ζ, and b in Theorem 3.2.15. In particular, we use the fact that 1
α ≤ (cnewζ)2

(Fact 3.5.8). Detailed proofs of similar results can be found in [12] and [13, Lemma 6.2]. Those

proofs define the quantity g := λ+new
λ−new

and assume g ≤
√

2. Although we do not explicitly define

g, our assumption that λ+
new ≤

√
2λ− implies that λ+new

λ−new
≤
√

2, because λ−new ≥ λ−.

For the purposes of review, we have included a proof of this lemma in Appendix 3.C. �

Lemma 3.5.10 (Sparse Recovery Lemma (Chapter 2, Lemma 2.6.15)). Assume that all of the

conditions of Theorem 3.2.15 hold. Recall that SEt = dif(P̂t,Pt).

1. Conditioned on Γj−1,end, for t ∈ [tj , (uj + 1)α]

(a) φt := ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ := 1.2.
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(b) the support of xt is recovered exactly i.e. T̂t = Tt and et satisfies:

et := x̂t − xt = `t − ˆ̀
t = ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt`t. (3.9)

(c) Furthermore,

SEt ≤ 1 , and

‖et‖2 ≤ φ+(ζ+
j,∗
√
rγ +

√
cnewγnew) ≤ 1.2

(√
ζ +
√
cnewγnew

)

2. For k = 1, 2, . . . ,K and ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,k−1, for t ∈

[(ûj + k − 1)α+ 1, (ûj + k)α], the first two conclusions above hold. That is, φt ≤ φ+

and et satisfies (3.9). Furthermore,

SEt ≤ ζ+
j,∗ + ζ+

j,new,k−1 , and

‖et‖2 ≤ φ+(ζ+
j,∗
√
rγ + ζ+

j,new,k−1

√
cnewγnew) ≤ 1.2

(
1.84

√
ζ + (0.4)k−1√cnewγnew

)

3. For ûj = uj or ûj = uj + 1, conditioned on Γ
ûj
j,K , for t ∈ [(ûj +K)α+ 1, tj+1 − 1], the

first two conclusions above hold (φt ≤ φ+ and et satisfies (3.9)). Furthermore,

SEt ≤ ζ+
j+1,∗ , and

‖et‖2 ≤ φ+ζ+
j+1,∗
√
rγ ≤ 1.2

√
ζ

The proof in Chapter 2 uses the facts that under the various conditionings,

rank(P̂(j),k−1,new) = cj,new, ζj,∗ ≤ ζ+
j,∗, and ζj,new,k−1 ≤ ζ+

k−1,new.

Lemma 3.5.11.

1. The event Γ
ûj
j,K and so also the event Γj,end imply that ζj+1,∗ ≤ ζ+

j+1,∗.

2. P
(
NODETSaj | Γaj,K

)
= 1 for a = uj or a = uj + 1.

Lemma 3.5.12. For j = 1, . . . , J ,

P
(
DETuj+1 | Γj−1,end,DETuj

)
≥ pdet,1 := 1− pA − pH.

The definitions of pA and pH can be found in Lemmas 3.5.20 and 3.5.22 respectively.
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Fact 3.5.13. Observe that Γaj,0 for a = uj or a = uj + 1 implies that uj ≤ ûj ≤ uj + 1.

Thus, tj ≤ t̂j ≤ tj + 2α. So with the model assumption that d ≥ (K + 2)α, we have that

Jûj+k ⊆ [tj , tj + d] for k = 1, 2, . . . ,K. This fact is needed so that the tighter bounds on at,new

hold from condition 3b in the Theorem.

Lemma 3.5.14.

P
(
Γaj,k | Γaj,k−1

)
= P

(
PPCAa

j,k | Γaj,k−1

)
≥ pppca := 1− pA − pA,⊥ − pH

for a = uj or a = uj + 1. where pppca := 1− pA− pA,⊥− pH. The definitions of pA, pA,⊥, and

pH can be found in Lemmas 3.5.20, 3.5.21, and 3.5.22 respectively.

The above lemma says that whether the new directions are detected at uj or uj + 1, con-

ditioned on k − 1 previous successful projection PCA steps, the probability of a successful kth

projection PCA step is lower bounded by pppca.

Corollary 3.5.15. Let

pdet,0 := P (DETuj | Γj−1,end)

and therefore, 1− pdet,0 = P
(
DETuj | Γj−1,end

)
.

From the above lemmas, we get that

P (Γj,end | Γj−1,end) = P
((

DETuj ∩ PPCA
uj
j,1 ∩ · · · ∩ PPCA

uj
j,K ∩NODETS

uj
j

)
∪

(
DETuj ∩DETuj+1 ∩ PPCA

uj+1
j,k ∩ · · · ∩ PPCA

uj+1
j,K ∩NODETS

uj+1
j

)
| Γj−1,end

)

= P
(

DETuj ∩ PPCA
uj
j,1 ∩ · · · ∩ PPCA

uj
j,K | Γj−1,end

)

+ P
(

DETuj ∩DETuj+1 ∩ PPCA
uj+1
j,k ∩ · · · ∩ PPCA

uj+1
j,K | Γj−1,end

)

≥ pdet,0 · (pppca)K + (1− pdet,0) · pdet,1 · (pppca)K

≥ pdet,0 · pdet,1 · (pppca)K + (1− pdet,0) · pdet,1 · (pppca)K

= pdet,1 · (pppca)K .

Proof of Theorem 3.3.2. Theorem 3.3.2 follows from Corollary 3.5.15 and the assumed

lower bound on α. Notice that by Lemma 3.5.9, the choice of K, and Lemma 3.5.10 , the

event ΓJ,end will imply all conclusions of the theorem.
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By the first assumption of Theorem 3.2.15 and the argument used to prove Lemma 3.5.11,

we get that P(Γ0,end) = 1.

Next, we have by the chain rule,

P(ΓJ,end) =

J∏

j=1

P(Γj,end | Γj−1,end,Γj−2,end, . . . ,Γ1,end,Γ0,end).

Because Γj−1,end ⊆ Γj−2,end ⊆ · · · ⊆ Γ1,end ⊆ Γ0,end, we get

P(ΓJ,end) =

J∏

j=1

P(Γj,end | Γj−1,end)

≥
J∏

j=1

pdet,1 · (pppca)K

= (pdet,1 · (pppca)K)J

≥ 1− n−10

The last line is by the lower bound on α assumed in Theorem 3.2.15. �

3.5.3 Key Lemmas for Proving of Lemmas 3.5.11, 3.5.12, and 3.5.14

Before proving the lemmas from the preceding section, we introduce several lemmas which

will be used in the proofs. Their statement requires the following definition.

Definition 3.5.16. Recall from Algorithm 3 that Mu = 1
α

∑
t∈Ju(I−P̂uα−1,∗P̂uα−1,∗′) ˆ̀

t
ˆ̀
t
′(I−

P̂uα−1,∗P̂uα−1,∗′). Using the definition of P(j),∗, for u = uj + 1 or u = ûj + k,

Mu = (I − P̂(j),∗P̂(j),∗
′)

(
1

α

∑

t∈Ju

ˆ̀
t
ˆ̀
t
′
)

(I − P̂(j),∗P̂(j),∗
′).

Define

1. Let Dj,new := (I − P̂(j),∗P̂(j),∗′)P(j),new
QR
= Ej,newRj,new denote its reduced QR decompo-

sition, i.e. let Ej,new be a basis matrix for range (Dj,new) and let Rj,new = Ej,new
′Dj,new.

2. Let Ej,new,⊥ be a basis matrix for the orthogonal complement of range(Ej,new). To be

precise, Ej,new,⊥ is an n× (n− rj) basis matrix so that [Ej,new Ej,new,⊥] is unitary.
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3. For u = uj + 1 and u = ûj + k for k = 1, . . . ,K, define Au, Au,⊥, Au and Hu as

Au :=
1

α

∑

t∈Ju
Ej,new

′(I − P̂(j),∗P̂(j),∗
′)`t`t′(I − P̂(j),∗P̂(j),∗

′)Ej,new

Au,⊥ :=
1

α

∑

t∈Ju
Ej,new,⊥

′(I − P̂(j),∗P̂(j),∗
′)`t`t′(I − P̂(j),∗P̂(j),∗

′)Ej,new,⊥

and let

Au :=

[
Ej,new Ej,new,⊥

]


Au 0

0 Au,⊥







Ej,new
′

Ej,new,⊥′




and

Hu := Mu −Au

Recall that for the above values of uj,

Mu = (I − P̂(j),∗P̂(j),∗
′)

(
1

α

∑

t∈Ju

ˆ̀
t
ˆ̀
t
′
)

(I − P̂(j),∗P̂(j),∗
′).

When u = ûj + k for a k ≤ K, Mu is the matrix whose eigenvectors with eigenvalue above

thresh form P̂(j),new,k (see step 4c of Algorithm 3). In this case, Mu has eigendecomposition

Mu
EVD
=

[
P̂(j),new,k P̂(j),k,new,⊥

]



Λ̂u 0

0 Λ̂u,⊥







P̂(j),new,k
′

P̂(j),k,new,⊥′


 .

Note: we use Au, Au,⊥, and Hu for u = uj + 1 or for u = ûj + 1, . . . , ûj + K. With

the appropriate conditioning, all these u’s lie in the interval [uj + 1, uj + d − 1] and from the

assumptions in the Theorem, in this interval at,new is “small”.

The following lemma follows from the sin θ Theorem [26] and Weyl’s theorem. It is taken

from [12].

Lemma 3.5.17 ([12]). At u = ûj +k, if rank(P̂(j),new,k) = cj,new, and if λmin(Au)−‖Au,⊥‖2−

‖Hu‖2 > 0, then

ζj,new,k ≤
‖Hu‖2

λmin(Au)− ‖Au,⊥‖2 − ‖Hu‖2
(3.10)

The next three lemmas each assert a high probability bound for one of the terms in (3.10).
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Definition 3.5.18. For ease of notation, define the function

z(α, ε, b1) := exp

( −αε2
8(b1)2

)

In the following lemmas, let

ε = 0.01cnewζλ
−.

Remark 3.5.19. In the next three lemmas we use quantities bA, bA,⊥, and bH,k. These are

not to be confused with the autoregression (AR) coefficient b used for the AR model on at (see

Signal Model 3.2.1).

Let

pA := cz(α, ε, cnewγnew
2) + 3(r+ cnew)z(α, ε, 2

√
cnewrγγnew) + (r+ cnew)z(α, ε, 4

√
cnewrγγnew)

and

bA := (1− (ζ+
j,∗)

2)(1− b2)λ−new − ε− 2ζ+
j,∗

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)
. (3.11)

Lemma 3.5.20. For k = 1, . . . ,K,

P
(
λmin

(
Aûj+k

)
≥ bA

∣∣ Xûj+k−1

)
≥ 1− pA

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1. Also,

P
(
λmin

(
Auj+1

)
≥ bA

∣∣ Xuj

)
≥ 1− pA

for all Xuj ∈ Γj−1,end.

Let pA,⊥ := rz
(
α, ε, (ζ+

j,∗)
2rγ2

)
and

bA,⊥ := (ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε). (3.12)

Lemma 3.5.21. For k = 1, . . . ,K,

P
(
λmax

(
Aûj+k,⊥

)
≤ bA,⊥

∣∣ Xûj+k−1

)
≥ 1− pA,⊥

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1.

The same bound holds for ‖Auj+1,⊥‖2 when we condition on Xuj ∈ Γj−1,end.
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Let pH := nz
(
α, ε,

[
φ+
(
ζ+
j,∗
√
rγ +

√
cnewγnew

)]2
)

+rz
(
α, ε, rγ2

)
+cnewz

(
α, ε, cnewγnew

2
)
+

3(r+ cnew)z(α, ε, 2
√
cnewrγγnew) + (r+ cnew)z(α, ε, 4

√
cnewrγγnew) + cnewz

(
α, ε, rγ2

)
+ 3(r+

cnew)z(α, ε, 2
√
cnewrγγnew) + (r + cnew)z(α, ε, 4

√
cnewrγγnew). Define κ+

s := .0215. Also let

bH,k := b2,k + 2b4,k + 2b6, (3.13)

where

b2,k :=





ρ2h+(φ+)2(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+)+

ρ2h+(φ+)2(κ+
s )2(b2cnewγnew

2 + (1− b2)λ+
new)+

2 · ρ2h+(φ+)2κ+
s ζ

+
j,∗b

2√rcnewγγnew

k = 1

ρ2h+(φ+)2(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+)+

ρ2h+(φ+)2(ζ+
j,new,k−1)2(b2cnewγnew

2 + (1− b2)λ+
new)+

2 · ρ2h+(φ+)2ζ+
j,∗ζ

+
j,new,k−1b

2√rcnewγγnew

k ≥ 2

b4,k :=





[
(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε)+

κ+
s (b2cnewγnew

2 + (1− b2)λ+
new + ε)+

ζ+
j,∗κ

+
s

(
b2

α(1−b2)

√
cnewrγnewγ + 4ε

)
+

ζ+
j,∗
(

b2

α(1−b2)

√
cnewrγnewγ + 4ε

) ]
φ+

k = 1

[
(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε)

+ζ+
j,new,k−1(b2cnewγnew

2 + (1− b2)λ+
new + ε)

ζ+
j,∗ζ

+
j,new,k−1

(
b2

α(1−b2)

√
cnewrγnewγ + 4ε

)

+ζ+
j,∗
(

b2

α(1−b2)

√
cnewrγnewγ + 4ε

) ](√
ρ2h+φ+

)

k ≥ 2

and

b6 := (ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε) + ζ+
j,∗

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)
.
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Lemma 3.5.22. For k = 1, . . . ,K,

P
(
‖Hûj+k‖2 ≤ bH,k + ε

∣∣ Xûj+k−1

)
≥ 1− pH (3.14)

for all Xûj+k−1 ∈ Γ
ûj
j,k−1 with ûj = uj or ûj = uj + 1

The same bound (with k = 1) holds for ‖Huj+1‖2 when we condition on Xuj ∈ Γj−1,end.

The above lemmas are proved in the next section (Section 3.6). The proofs use Fact 3.5.13.

3.5.4 Proofs of Lemmas 3.5.11, 3.5.12, and 3.5.14

Proof of Lemma 3.5.11. Recall that Γj,end :=
(

Γ
uj
j,K ∩NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩NODETS

uj+1
j

)
.

1. By the definition of Γ
ûj
j,K for û = uj or û = uj + 1, ζj,∗ ≤ ζ+

j,∗ = (r0 + (j − 1)cnew)ζ and

ζj,K ≤ ζ+
j,new,K . Lemma 3.5.9 and the choice of K imply that ζ+

j,new,K ≤ cnewζ. Thus,

ζj+1,∗ ≤ ζ+
j+1,∗ = (r0 + jcnew)ζ. This holds for ûj = uj or ûj = uj + 1.

2. P(NODETS
ûj
j | Γ

ûj
j,K) = P

(
λmax(Mu) < thresh for all u ∈ [uj +K + 1, uj+1 − 1] | Γ

ûj
j,K

)

for ûj = uj or ûj = uj + 1.

As shown in 1), Γ
ûj
j,K implies that dif(P̂(j+1),∗,P(j+1),∗) ≤ ζ+

j+1,∗ = (r0 + jcnew)ζ. Notice

that for u ∈ [ûj + K + 1, uj+1 − 1], P̂uα−1,∗ = P̂(j+1),∗, P(j+1),∗ = P(j), and `t = P(j)at.

Therefore,

λmax(Mu) = λmax

(
1

α

∑

t∈Ju
(I − P̂uα−1,∗P̂uα−1,∗′) ˆ̀

t
ˆ̀
t
′(I − P̂uα−1,∗P̂uα−1,∗′)

)

= λmax

(
1

α

∑

t∈Ju
(I − P̂(j+1),∗P̂(j+1),∗

′)(P(j)at − et)

(P(j)at − et)′(I − P̂(j+1),∗P̂(j+1),∗
′)

)

≤ (ζ+
j+1,∗)

2rγ2 + 2φ+(ζ+
j+1,∗)

2rγ2 + (φ+)2(ζ+
j+1,∗)

2rγ2

≤ 4(φ+)2ζλ−

≤ λ−

2
.

The bounds on et come from Lemma 3.5.10, and the penultimate line uses the bounds assumed

on ζ in Theorem 3.2.15.
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�

Fact 3.5.23. Using the bounds on ζ, b ≤ 0.1, λ+
new ≤

√
2λ−, cnewηnewλ

+
new ≤ 50λ− from the

Theorem and Fact 3.5.8 (which gives 1
α ≤ (cnewζ)2), we get:

bA ≥ 0.94λ−new ≥ 0.94λ−

bA,⊥ ≤ 0.011λ−

bH,k ≤ 0.24λ−.

Thus, bA − bH,k > 0.5λ− = thresh and bA,⊥ + bH,k < thresh.

Proof of Lemma 3.5.12. We will prove that P
(
DETuj+1 | Xuj

)
> pdet,1 for all Xuj ∈ Γj−1,end.

In particular, this will imply that P(DETuj+1 | Xuj ) > pdet,1 for all Xuj ∈ Γj−1,end ∩ DETuj

and so we can conclude that P(DETuj+1 | Γj−1,end,DETuj ) > pdet,1.

Observe that

P
(
DETuj+1 | Xuj

)
= P

(
λmax(Muj+1) > thresh | Xuj

)

By Weyl’s Theorem

λmax(Muj+1) ≥ λmax(Auj+1) + λmin(Huj+1)

≥ λmax(Auj+1)− ‖Huj+1‖2

≥ λmin(Auj+1)− ‖Huj+1‖2

≥ bA − bH,1

≥ λ−

2

When Xuj ∈ Γj−1,end, Lemmas 3.5.20 and 3.5.22 give high probability bounds on λmin(Auj+1)

and ‖Huj+1‖2 respectively. So the above inequality holds with probability greater than or

equal to 1− pA − pH = pdet,1. �

Proof of Lemma 3.5.14. To prove this Lemma we need to show two things. First, conditioned

on Γ
ûj
j,k−1, the kth estimate of the number of new directions is correct. That is: ĉj,new,k = cj,new.

Second, we must show ζj,new,k ≤ ζ+
j,new,k, again conditioned on Γ

ûj
j,k−1.
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Notice that ĉj,new,k = rank(P̂(j),new,k). To show that rank(P̂(j),new,k) = cj,new, we need to

show that for u = ûj + k, k = 1, . . . ,K, λcj,new(Mu) > thresh and λcj,new+1(Mu) < thresh. To

do this we proceed similarly to above. Observe that, Mu = Au + Hu. By Weyl’s Theorem

λcj,new(Mu) ≥ λcj,new(Au) + λmin(Hu)

≥ λcj,new(Au)− ‖Hu‖2

= λmin(Au)− ‖Hu‖2.

The equality is because Au is of size cj,new × cj,new and λmin(Au) > λmax(Au,⊥). Similarly,

λcj,new+1(Mu) ≤ λcj,new+1(Au) + λmax(Hu)

≤ λcj,new+1(Au) + ‖Hu‖2

= λmax(Au,⊥) + ‖Hu‖2.

Using Lemmas 3.5.20, 3.5.21, and 3.5.22 and Fact 3.5.23, we can conclude that with probability

greater than 1 − pppca, λcj,new(Mu) > bA − bH,k ≥ λ−/2 = thresh and λcj,new+1(Mu) <

bA,⊥+ bH,k ≤ λ−/2 = thresh. Therefore rank(P̂(j),new,k) = cj,new with probability greater than

1− pppca.

To show that ζj,new,k ≤ ζ+
k,new, we also use Lemmas 3.5.20, 3.5.21, and 3.5.22. Using

rank(P̂(j),new,k) = cj,new and applying Lemma 3.5.17 with these bounds gives the desired result.

�

3.6 Proofs of Lemmas 3.5.20, 3.5.21, and 3.5.22

3.6.1 Key Lemmas Needed for the Proofs

Recall from the notation section that for a sequence of random variables Zt, we use the

notation Et−1[Zt] to mean the expectation of Zt conditioned on all of the previous Zt’s. That

is:

Et−1[Zt] := E[Zt|Z1, . . . ,Zt−1]

and

Et−1[Zt
∣∣X] := E[Zt

∣∣X,Z1, . . . ,Zt−1].
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Lemma 3.6.1. For j = 1, . . . , J and k = 1, . . . ,K, for all Xûj+k−1 ∈ Γ
ûj
j,k−1

1. 0 � 1

α

∑

t∈Jûj+k
Et−1

[
at,∗at,∗′

∣∣ Xûj+k−1

]
= b2at−1,∗at−1,∗′ + (Λν,t)∗ �

(
b2rγ2 + (1 −

b2)λ+
)
I

2. (1−b2)λ−newI �
1

α

∑

t∈Jûj+k
Et−1

[
at,newat,new

′ ∣∣ Xûj+k−1

]
= b2at−1,newat−1,new

′+(Λν,t)new �
(
b2cnewγnew

2 + (1− b2)λ+
new

)
I

3.
1

α

∑

t∈Jûj+k
Et−1

[
at,∗at,new

′ ∣∣ Xûj+k−1

]
= b2at−1,∗at−1,new

′

with ûj = uj or ûj = uj + 1. The only reason we need the assumption Xûj+k−1 ∈ Γ
ûj
j,k−1 is to

apply Fact 3.5.13 which allows us to use the “at,new small” bounds.

The same bounds also hold for summation over t ∈ Juj+1 when we condition on Xuj ∈

Γj−1,end.

The proof is given in Section 3.7. We implicitly use Fact 3.5.13 in the proof.

Using ‖at,∗at,∗′‖2 ≤ rγ2, ‖at,newat,new
′‖2 ≤ cγnew

2 (this holds because of Fact 3.5.13) and

applying the matrix Azuma inequality (Lemma 3.A.9 in the appendix) to the first two claims

above gives the following lemma.

Lemma 3.6.2. For j = 1, . . . , J and k = 1, . . . ,K,

1. P


λmax


 1

α

∑

t∈Jûj+k
at,∗at,∗′


 ≤ b2rγ2 + (1− b2)λ+ + ε

∣∣∣ Xûj+k−1


 ≥ 1− rz(α, ε, rγ2)

2. P


λmin


 1

α

∑

t∈Jûj+k
at,newat,new

′


 ≥ (1− b2)λ−new − ε

∣∣∣ Xûj+k−1


 ≥ 1−rz(α, ε, cnewγnew

2)

3. P


λmax


 1

α

∑

t∈Jûj+k
at,newat,new

′


 ≤ b2cnewγnew

2 + (1− b2)λ+
new + ε

∣∣∣ Xûj+k−1


 ≥ 1 −

rz(α, ε, cnewγnew
2)

for all Xûj+k−1 ∈ Γ
ûj
j,0 with ûj = uj or ûj = uj + 1.

The same bounds also hold for summation over t ∈ Juj+1 when we condition on Xuj ∈

Γj−1,end.
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Lemma 3.6.3.

P



∥∥∥∥

1

α

∑

t∈Jûj+k
at,newat,∗′

∥∥∥∥
2

≤ b2

α(1− b2)

√
cnewrγnewγ + 4ε

∣∣∣ Xûj+k−1


 ≥

1− 3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew).

for all Xûj+k−1 ∈ Γ
ûj
j,0 with ûj = uj or ûj = uj + 1.

The same bounds also hold for summation over t ∈ Juj+1 when we condition on Xuj ∈

Γj−1,end.

The proof is also in Section 3.7. We use Fact 3.5.13 in the proof.

Remark 3.6.4. Whenever Lemma 3.6.2 or 3.6.3 is applied, we set ε = 0.01cnewζλ
−.

Lemma 3.6.2 follows directly from Lemma 3.6.1 and the matrix Azuma inequality. Lemma

3.6.3 needs more work to get the 1
α factor. This is needed because γ can be large, and the cross

term at,newat,∗′ will appear later without an appropriately small factor multiplying it.

Remark 3.6.5. It is possible to also bound λmax( 1
α

∑
t at,newat,new

′) and λmax( 1
α

∑
t at,∗at,∗

′)

using the same approach used in Lemma 3.6.3. This would give a 1
α multiplying the b2cnewγnew

2

terms.

Lemma 3.6.6. Assume that the assumptions of Theorem 3.2.15 hold. Conditioned on Xûj+k−1 ∈

Γ
ûj
j,k−1 for ûj = uj or ûj = uj + 1,

‖IT ′Dj,new‖2 ≤ κ+
s := .0215 (3.15)

for all T such that |T | ≤ s.

Proof. Recall that Dj,new = (I − P̂(j),∗P̂(j),∗′)P(j),new.

Then ‖IT ′Dj,new‖2 = ‖IT ′(I − P̂(j),∗P̂(j),∗′)P(j),new‖2 ≤ ‖IT ′P(j),new‖2 + ‖P̂(j),∗′P(j),new‖2 ≤

κs(P(j),new) + ‖P̂(j),∗′(I − P(j),∗P(j),∗
′)P(j),new‖2 ≤ κs(P(j),new) + ζj,∗. The event Xûj+k−1 ∈

Γ
ûj
j,k−1 implies that ζj,∗ ≤ ζ+

j,∗ ≤ 0.0015. Thus, the lemma follows. �
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3.6.2 Proofs of Lemmas 3.5.20, 3.5.21, 3.5.22

Definition 3.6.7. Define the following

1. P̂(j),new,0 = [.] (empty matrix)

2. Dj,new,k := (I−P̂(j),∗P̂(j),∗′−P̂(j),new,kP̂(j),new,k
′)P(j),new. Recall that Dj,new := Dj,new,0.

3. Dj,∗,k := (I − P̂(j),∗P̂(j),∗′ − P̂(j),new,kP̂(j),new,k
′)P(j),∗ and Dj,∗ := Dj,∗,0

4. Recall that ζj,0 = ‖Dj,new‖2, ζj,new,k = ‖Dj,new,k‖2, ζj,∗ = ‖Dj,∗‖2. Also, clearly,

‖Dj,∗,k‖2 ≤ ζj,∗.

Remark 3.6.8. In the rest of this section, for ease of notation, we do the following.

• We remove the subscript j from Dj,new,k etc., Ej,new etc. and ζj,new,k etc. (from every-

thing in Definitions 3.5.3 and 3.5.16).

• Similarly we also let Xk := Xûj+k and Γk := Γ
ûj
j,k. Thus, if we say P (event|Xk−1 ∈ Γk−1) ≥

p0 we mean that P
(

event|Xuj+k−1 ∈ Γ
uj
j,k−1

)
≥ p0 and P

(
event|Xuj+1+k−1 ∈ Γ

uj+1
j,k−1

)
≥

p0.

• Finally,
∑

t refers to
∑

t∈Ju for u = ûj + k, k = 1, 2, . . . ,K, j = 1, 2, . . . , J .

Also, note the following.

• Recall that Tt is included in the definition of Xk−1, so conditioned on Xk−1, the Tt are

deterministic.

• The proof for the bound on Au for u = uj + 1 is the same as that for u = ûj + 1 since in

both cases P̂t,∗ = P̂(j),∗ = P̂(j−1) and P̂t,new = [.] for all t ∈ Ju. The same is true for the

bounds on Auj+1,⊥ and Huj+1.

Lemma 3.6.9. When Xk−1 ∈ Γk−1,

1. ‖D∗,k−1‖2 ≤ ζ+
j,∗ for k = 1, . . . ,K.

2. ‖Dnew,k−1‖2 ≤ ζ+
k−1,new for k = 1, . . . ,K (by definition of Γk−1)
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3. ‖[(Φt)Tt
′(Φt)Tt ]

−1‖2 ≤ φ+ (from Lemma 3.5.10)

4. λmin(RnewRnew
′) ≥ 1− (ζ+

j,∗)
2

Proof of Lemma 3.5.20. We obtain the bounds on Au for u = ûj + k for k = 1, 2, . . . ,K and

ûj = uj or uj + 1. For u = ûj + k, recall that Au := 1
α

∑
t∈Ju Ej,new

′(I − P̂(j),∗P̂(j),∗′)`t`t
′(I −

P̂(j),∗P̂(j),∗′)Ej,new.

Notice that Enew
′(I − P̂(j),∗P̂(j),∗′)`t = Rnewat,new + Enew

′D∗at,∗.

Let Zt = Rnewat,newat,new
′Rnew

′, and let

Yt = Rnewat,newat,∗′D∗′Enew +Enew
′D∗at,∗at,new

′Rnew
′, then

Au �
1

α

∑

t

Zt +
1

α

∑

t

Yt (3.16)

Consider
∑

tZt =
∑

tRnewat,newat,new
′Rnew

′. With probability 1, ‖Zt‖2 ≤ cnewγnew
2. Us-

ing a theorem of Ostrowoski [27, Theorem 4.5.9], λmin (Zt) = λmin (Rnewat,newat,new
′Rnew

′) ≥

λmin (RnewRnew
′)λmin (at,newat,new

′).

Conditioned on Xk−1, the matrix Rnew is a constant. Using Lemma 3.6.2,

P

(
λmin

(
1

α

∑

t

Zt

)
≥ (1− (ζ+

j,∗)
2)
[
(1− b2)λ−new − ε

] ∣∣∣ Xk−1

)
≥ 1− cnewz(α, ε, cnewγnew

2).

(3.17)

for all Xk−1 ∈ Γk−1.

Consider Yt = Rnewat,newat,∗′D∗′Enew +Enew
′D∗at,∗at,new

′Rnew
′. By Lemma 3.6.3

P

(
λmin

( 1

α

∑

t

Yt

)
≥ −2ζ+

j,∗

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

) ∣∣∣ Xk−1

)
≥

1− 3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew) (3.18)

for all Xk−1 ∈ Γk−1. Combining (3.17) and (3.18) the lemma follows. �

Proof of Lemma 3.5.21. Remark 3.6.8 applies.

We obtain the bounds on Au,⊥ for u = ûj + k for k = 1, 2, ...K and ûj = uj or uj + 1.

For u = ûj + k, recall that Au,⊥ := 1
α

∑
tEnew,⊥′(I − P̂(j),∗P̂(j),∗′)`t`t

′(I − P̂(j),∗P̂(j),∗′)Enew,⊥.

By their definitions, Enew,⊥′(I − P̂(j),∗P̂(j),∗′)`t = Enew,⊥′D∗at,∗. Thus, Au,⊥ = 1
α

∑
tZt with
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Zt = Enew,⊥′D∗at,∗at,∗′D∗′Enew,⊥. Conditioned on Xk−1 ∈ Γk−1, ‖Zt‖2 ≤ (ζ+
j,∗)

2rγ2. Using

Lemma 3.6.2, we get that

P

(
λmax

(
1

α

∑

t

Au,⊥

)
≤ (ζ+

j,∗)
2(b2rγ2 + (1− b2)λ+ + ε)

∣∣∣∣ Xk−1

)
≥ 1− rz

(
α, ε, (ζ+

j,∗)
2rγ2

)

(3.19)

for all Xk−1 ∈ Γk−1. �

Proof of Lemma 3.5.22. Remark 3.6.8 applies.

Consider the Hu term. For ease of notation, define

˜̀
t = (I − P̂(j),∗P̂(j),∗

′)`t.

Using the expression for Hu given in Definition 3.5.16, and noting that for a basis matrix E,

EE′ +E⊥E⊥′ = I we get that

Hu =
1

α

∑

t∈Ju

(
(I − P̂(j),∗P̂(j),∗

′)etet′(I − P̂(j),∗P̂(j),∗
′)

−
(

˜̀
tet
′(I − P̂(j),∗P̂(j),∗

′) + (I − P̂(j),∗P̂(j),∗
′)et ˜̀t′

)
+
(
Ft + Ft

′))

where

Ft = Enew,⊥Enew,⊥
′ ˜̀
t
˜̀
t
′EnewEnew

′.

Thus,

‖Hu‖2 ≤
∥∥∥∥

1

α

∑

t

etet
′
∥∥∥∥

2

+ 2

∥∥∥∥
1

α

∑

t

˜̀
tet
′
∥∥∥∥

2

+ 2

∥∥∥∥
1

α

∑

t

Ft

∥∥∥∥
2

(3.20)

Next we obtain high probability bounds on each of the three terms on the right hand side

of (3.20).

Consider ‖ 1
α

∑
t etet

′‖2. Using Lemma 3.5.10, et satisfies (3.9) with probability one for all

Xk−1 ∈ Γk−1. Expanding this expression gives

etet
′ =

(
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt`t

)(
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′Φt`t

)′

From Lemma 3.5.10, conditioned onXk−1 ∈ Γk−1, ‖etet′‖2 ≤
[
φ+
(
ζ+
j,∗
√
rγ +

√
cnewγnew

)]2
.

This is a looser but simpler bound obtaining by using ζ+
j,new,k−1 ≤ 1.
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We can further decompose etet
′ as

etet
′ = term1,t + term2,t + term3,t + term3,t

′

where

term1,t = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′D∗,k−1at,∗at,∗

′D∗,k−1
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

term2,t = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Dnew,k−1at,newat,new

′Dnew,k−1
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

term3,t = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′D∗,k−1at,∗at,new

′Dnew,k−1
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

Then by Lemma 3.6.1,

Et−1[term1,t|Xk−1] = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′

D∗,k−1

(
b2at−1,∗at−1,∗′ + (Λν,t)∗

)
D∗,k−1

′ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′

Et−1[term2,t|Xk−1] = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Dnew,k−1

(
b2at−1,newat−1,new

′ + (Λν,t)new

)

Dnew,k−1
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

Et−1[term3,t|Xk−1] = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′

D∗,k−1b
2at−1,∗at−1,new

′Dnew,k−1
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

The following uses Signal Model 3.3.1, Lemma 3.3.3, and Lemma 3.6.1. When k = 1 we

use Lemma 3.6.6 which gives the bound ‖Dnew,0
′ITt‖2 ≤ κ+

s :
∥∥∥∥∥

1

α

∑

t

Et−1[term1,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+)

∥∥∥∥∥
1

α

∑

t

Et−1[term2,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2(κ+
s )2(b2cnewγnew

2 + (1− b2)λ+
new)

∥∥∥∥∥
1

α

∑

t

Et−1[term3,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2κ+
s ζ

+
j,∗b

2√rcnewγγnew.

And when k ≥ 2,
∥∥∥∥∥

1

α

∑

t

Et−1[term1,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+)

∥∥∥∥∥
1

α

∑

t

Et−1[term2,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2(ζ+
j,new,k−1)2(b2cnewγnew

2 + (1− b2)λ+
new)

∥∥∥∥∥
1

α

∑

t

Et−1[term3,t|Xk−1]

∥∥∥∥∥
2

≤ ρ2h+(φ+)2ζ+
j,∗ζ

+
j,new,k−1b

2√rcnewγγnew.
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Thus by Lemma 3.A.10 (Azuma Corollary)

P
(∥∥∥ 1

α

∑

t

etet
′
∥∥∥

2
≤ b2,k + ε

∣∣∣ Xk−1

)
≥ 1− nz

(
α, ε, 2

[
φ+
(
ζ+
j,∗
√
rγ +

√
cnewγnew

)]2
)

(3.21)

for all Xk−1 ∈ Γk−1.

Next, consider
∥∥ 1
α

∑
t

˜̀
tet
′∥∥

2
. Observe that when Xk−1 ∈ Γk−1,

˜̀
tet
′ = (I − P̂(j),∗P̂(j),∗

′)(P∗at,∗ + Pnewat,new)(P∗at,∗ + Pnewat,new)′Φt
′ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

= (D∗at,∗ +Dnewat,new)(D∗,k−1at,∗ +Dnew,k−1at,new)′ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′

Redefine

term1,t :=
(
D∗at,∗at,∗′D∗,k−1

′ +Dnewat,newat,new
′Dnew,k−1

′
)
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

term2,t :=
(
D∗at,∗at,new

′Dnew,k−1
′ +Dnewat,newat,∗′D∗,k−1

′
)
ITt [(Φt)Tt

′(Φt)Tt ]
−1ITt

′

When k = 1 we use Lemma 3.6.6 which gives the bound ‖Dnew
′ITt‖2 ≤ κ+

s . By Lemma 3.6.2,

P

(∥∥∥∥
1

α

∑

t∈Jûj+1

term1,t

∥∥∥∥
2

≤
[
(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε)

+ ζ+
j,new,k−1κ

+
s (b2cnewγnew

2 + (1− b2)λ+
new + ε)

]
φ+
∣∣∣ X0

)

≥ 1− rz
(
α, ε, rγ2

)
− cz

(
α, ε, cnewγnew

2
)
.

for all X0 ∈ Γ0. And by Lemma 3.6.3,

P

(∥∥∥∥
1

α

∑

t∈Jûj+1

term2,t

∥∥∥∥
2

≤
[
ζ+
j,∗ζ

+
j,new,k−1κ

+
s

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)

+ ζ+
j,∗

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)]
φ+
∣∣∣ X0

)

≥ 1− 3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew)

for all X0 ∈ Γ0.

When k ≥ 2 we apply Cauchy-Schwarz (Lemma 3.A.3) to term1,t.

HereXt =
(
D∗at,∗at,∗′D∗,k−1

′+Dnewat,newat,new
′Dnew,k−1

′
)

and Yt = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′.
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We can bound the norm of 1
α

∑
tXtXt

′ using Lemmas 3.6.2 and 3.6.9. By Lemma 3.3.3 we get

∥∥∥∥∥
1

α

∑

t

YtYt
′
∥∥∥∥∥

2

≤ ρ2h+(φ+)2

So when k ≥ 2,

P

(∥∥∥ 1

α

∑

t∈Jûj+k
term1,t

∥∥∥
2
≤
[
(ζ+
j,∗)

2(b2rγ2 + (1− b2)λ+ + ε)+

ζ+
j,new,k−1(b2cnewγnew

2 + (1− b2)λ+
new + ε)

](√
ρ2h+φ+

)∣∣∣ Xk−1

)

≥ 1− rz
(
α, ε, rγ2

)
− cnewz

(
α, ε, cnewγnew

2
)
.

for all Xk−1 ∈ Γk−1. Similarly, using Lemmas 3.3.3, 3.6.3, and 3.6.9,

P

(∥∥∥ 1

α

∑

t∈Jûj+k
term2,t

∥∥∥
2
≤
[
ζ+
j,∗ζ

+
j,new,k−1

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)
+

ζ+
j,∗

(
b2

α(1− b2)

√
cnewrγnewγ + 4ε

)](√
ρ2h+φ+

)∣∣∣ Xk−1

)

≥ 1− 3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew)

for all Xk−1 ∈ Γk−1.

Thus,

P

(∥∥∥ 1

α

∑

t

˜̀
tet
′
∥∥∥

2
≤ b4,k

∣∣∣ Xk−1

)
≥ 1− rz

(
α, ε, rγ2

)
− cnewz

(
α, ε, cnewγnew

2
)
−

3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew) (3.22)

for all Xk−1 ∈ Γk−1.

Finally, consider
∥∥ 1
α

∑
t Ft
∥∥

2
. Notice that

Ft = Enew,⊥Enew,⊥
′ ˜̀
t
˜̀
t
′EnewEnew

′

= Enew,⊥Enew,⊥
′(D∗at,∗ +Dnewat,new)(D∗at,∗ +Dnewat,new)′EnewEnew

′

= Enew,⊥Enew,⊥
′(D∗at,∗)(D∗at,∗ +Dnewat,new)′EnewEnew

′

= Enew,⊥Enew,⊥
′(D∗at,∗at,∗′D∗′ +D∗at,∗at,new

′Dnew
′)′EnewEnew

′
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Then by Lemmas 3.6.2 and 3.6.3,

P

(∥∥∥ 1

α

∑

t

Ft

∥∥∥
2
≤ b6

∣∣∣ Xk−1 ∈ Γk−1

)
≥ 1− cnewz

(
α, ε, rγ2|Xk−1

)
−

3(r + cnew)z(α, ε, 2
√
cnewrγγnew)− (r + cnew)z(α, ε, 4

√
cnewrγγnew) (3.23)

for all Xk−1 ∈ Γk−1.

Using (3.20), (3.21), (3.22) and (3.23) and the union bound, for any Xk−1 ∈ Γk−1, we get

the result.

�

3.7 Proof of Lemmas 3.6.1 and 3.6.3

Proof of Lemma 3.6.2. For the first claim, begin by observing that at,∗at,∗′ is positive semidef-

inite. We also have

Et−1[at,∗at,∗′|Xk−1] = Et−1[(bat−1,∗ + νt,∗)(bat−1,∗ + νt,∗)′|Xk−1]

= Et−1[b2at−1,∗at−1,∗′ + bat−1,∗νt,∗′ + bνt,∗at−1,∗′ + νt,∗νt,∗′|Xk−1]

= b2at−1,∗at−1,∗′ + Λν,t

�
(
b2rγ2 + (1− b2)λ+

)
I

The cross terms are zero because of Lemma 3.A.4. Notice that νt,∗ is zero mean and independent

of ντ,∗ for τ < t, and a1,∗, . . . ,at−1,∗ are functions of {ντ,∗} for τ = 1, . . . , t− 1.

Claim 2 is done in exact same manner, except that we also need the fact that λmin(A+B) ≥

λmin(A) + λmin(B).

Claim 3 uses the same expansion and the fact that νt has diagonal covariance, so

E[νt,∗νt,new
′|Xk−1] = 0. �

Proof of Lemma 3.6.3. By Lemma 3.A.6 with cτ = aτ+(ûj+k−1)α+1,new, µτ = ντ+(ûj+k−1)α+1,new,

c̃τ = aτ+(ûj+k−1)α+1,∗ and µ̃τ = ντ+(ûj+k−1)α+1,∗ for τ = 0, 1, ...α− 1, we get

∑

t∈Jûj+k
at,newat,∗′ =

∑

i∈Jûj+k
[Z1,i +Z2,i +Z3,i +Z4,i] +Z5

with
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Z1,i =
(1− b2(α−i))

1− b2 νi,newνi,∗′,

Z2,i =
i−1∑

i2=(ûj+k−1)α+1

(1− b2(α−i))
1− b2 bi−i2νi,newνi2,∗

′,

Z3,i =

(ûj+k)α∑

i2=(ûj+k)α+1−i

(1− b2(α−i2))

1− b2 bi+i2−α+1να−i−1,newνi2,∗
′,

Z4,i =
bi+1(1− b2(α−i))

1− b2 (νi,newa(ûj+k−1)α,∗
′ + a(ûj+k−1)α,newνi,∗

′)

Z5 =
b2(1− b2α)

1− b2 a(ûj+k−1)α,newa(ûj+k−1)α,∗
′

Using ‖νt‖∞ ≤ (1− b)γ, ‖νt,new‖∞ ≤ (1− b)γnew, and the geometric series formula, we get

the following norm bounds (recall that b < 1):

1. ‖Z1,i‖2 ≤
(1− b2α)(1− b)

1 + b

√
cnewrγnewγ ≤

√
cnewrγnewγ

2. ‖Z2,i‖2 ≤
√
cnewrγnewγ

3. ‖Z3,i‖2 ≤
√
cnewrγnewγ

4. ‖Z4,i‖2 ≤ 2
√
cnewrγnewγ

5. ‖Z5‖2 ≤
b2

1− b2
√
cnewrγnewγ

The bounds 1-4 may be somewhat loose, but they are only needed to lower bound the probability

of the good event. Bound 5) will appear in the ζ+
k,new expression, so we retain the b’s.

In all expectations, we need to condition on Xk−1 for all Xk−1 ∈ Γk−1 in order use Fact

3.5.13. This is necessary to ensure that the tighter bound γnew applies for the given time

interval. By diagonal covariance Ei−1[Z1,i|Xk−1] = 0. The proof of Ei−1[Z2,i] = Ei−1[Z3,i] = 0

is shown below. Ei−1[Z4,i] = 0 because the νt are zero-mean and a(ûj+k−1)α is constant

conditioned on Xk−1. Z5 will be the non-zero term.
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Ignoring the scalar coefficients,

Ei−1[Z2,i] = Ei−1




i−1∑

i2=(ûj+k−1)α+1

νi,newνi2,∗
′




= E

[
νi,new

i−1∑

i2=(ûj+k−1)α+1

νi2,∗
′
∣∣∣∣

i−2∑

i2=(ûj+k−1)α+1

νi−1,newνi2,∗
′,

i−3∑

i2=(ûj+k−1)α+1

νi−2,newνi2,∗
′, . . . ,ν(ûj+k−1)α+2,newν(ûj+k−1)α+1,∗

′
]

= 0

Notice that everything else in the above expression is independent of νi,new, so by Lemma 3.A.4

the expectation is zero.

Similarly (again ignore scalar coefficients for simplicity) and letting α ≡ (ûj + k)α+ 1

Ei−1[Z3,i] = Ei−1

[
α−1∑

i2=α−i
να−i−1,newνi2,∗

′
]

= E

[
να−i−1,new

α−1∑

i2=α−i
νi2,∗

′
∣∣∣∣

α−1∑

i2=α−i+1

να−i,newνi2,∗
′,

α−1∑

i2=α−i+2

να−i+1,newνi2,∗
′, . . . ,

α−1∑

i2=α−1

να−2,newνi2,∗
′
]
.

As before, all terms are independent of να−i−1 so the expectation is zero by Lemma 3.A.4.

Using the Azuma inequality,

1. P

(∥∥∥∥
1

α

α−1∑

i=0

Z1,i

∥∥∥∥
2

≤ ε
)
≥ 1− (r + cnew)z(α, ε, 2

√
cnewrγγnew)

2. P

(∥∥∥∥
1

α

α−1∑

i=0

Z2,i

∥∥∥∥
2

≤ ε
)
≥ 1− (r + cnew)z(α, ε, 2

√
cnewrγγnew)

3. P

(∥∥∥∥
1

α

α−1∑

i=0

Z3,i

∥∥∥∥
2

≤ ε
)
≥ 1− (r + cnew)z(α, ε, 2

√
cnewrγγnew)

4. P

(∥∥∥∥
1

α

α−1∑

i=0

Z4,i

∥∥∥∥
2

≤ ε
)
≥ 1− (r + cnew)z(α, ε, 4

√
cnewrγγnew)
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5. P
(∥∥∥∥

1

α
Z5

∥∥∥∥
2

≤ b2

α(1− b2)

√
cnewrγnewγ

)
= 1

Combining the above yields the claim of Lemma 3.6.3.

�

3.8 Alternative Subspace Model and Algorithm

3.8.1 Deletion Model

Recall Signal Model 3.2.8 which assumes

Pt =





[Pt−1Rt \ Pt,old Pt,new] if t = t1 or t2 or . . . tJ

Pt−1 otherwise

(3.24)

According to this model, at the change times tj , some directions in the span of Pt−1 may be

removed, and new directions may be added.

In this section we will intoduce an extension of Algorithm 3 which deletes directions from

the estimate of span(Pt) by re-estimating the previous subspace before begining to estimate

new directions by the same projection PCA procedure. We prove a result similar to Theorem

3.2.15 for this algorithm.

Definition 3.8.1. Define

• cnew := max
j
cj,new

• cdif := max
j

j∑

i=1

(cj,new − cj,old)

• rj := rank(P(j))

• rmax := max
j
rj = r0 + cdif

• r = r0 + Jcnew

In order to generate a new estimate of the subspace, we need a clustering assumption on the

eigenvalues of Λa,t after the subspace change has stabilized. The reason for the cluster-PCA

algorithm and clustering assumption is that the condition number of Λa,t may be large, and

the error in the PCA step, et, is correlated with the true data `t [12].



124

Model 3.8.2. Assume Signal Model 3.2.8 and assume:

1. During the interval [tj+1 − d2, tj+1 − 1], Λa,t is constant

2. There exists a partition Gj,1,Gj,2, . . . ,Gj,ϑ of the index set {1, 2, . . . , rj} with

mini∈Gj,k λi(Λa,tj+1−1) > maxi∈Gj,k+1
λi(Λa,tj+1−1) for k = 1, . . . , ϑ− 1 that satisfies

g̃ ≤ g̃+ and χ̃ ≤ χ̃+ and ϑ ≤ ϑ+

for a g̃+ > 1 but not too large and a χ̃+ < 1. Where

g̃ := max
j,k

max
i∈Gj,k

λi(Λa,tj+1−d2)

min
i∈Gj,k

λi(Λa,tj+1−d2)
and χ̃ := max

j,k

max
i∈Gj,k+1

λi(Λa,tj+1−d2)

min
i∈Gj,k

λi(Λa,tj+1−d2)
.

Notice that g̃ ≥ 1 and measures how close the eigenvalues within a cluster are, and χ̃ ≤ 1 and

measures how far apart the adjacent clusters are.

Definition 3.8.3. Define

1. Gj,k := (P(j))Gj,k to be the eigenvectors corresponding to the eigenvalues indexed by Gj,k,

so range(P(j)) = range([Gj,1 Gj,2 . . . Gj,ϑ]);

2. c̃j,k := |Gj,k| = rank(Gj,k), so
∑ϑ

k=1 c̃j,k = rj;

3. λ−j,k := mini∈Gj,k mint∈[tj+1−d2,tj+1−1] λi(Λa,t) and

λ+
j,k := maxi∈Gj,k maxt∈[tj+1−d2,tj+1−1] λi(Λa,t)

4. g̃j,k :=
λ+j,k
λ−j,k

and χ̃j,k :=
λ+j,k+1

λ−j,k
(notice g̃ = maxj,k g̃j,k and χ̃ = maxj,k h̃j,k)

3.8.2 Performance Guarantee for Algorithm 4

Theorem 3.8.4 (Correctness result for Algorithm 4 under Signal Model 3.8.2). Pick a ζ that

satisfies

ζ ≤ min

{
10−4

(rmax + cnew)2
,

1.5× 10−4

(rmax + cnew)2f
,

1

(rmax + cnew)3γ2
,

0.01λ−

b2(rmax + cnew)3γ2
, γ

}
.

Suppose

1. ‖(I − P̂(0)P̂(0)
′)P(0)‖2 ≤ r0ζ;
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2. The algorithm parameters are set as:

• K =
⌈

log(0.16cnewζ)
log(0.4)

⌉
;

• ξ =
√
cnewγnew + (

√
r +
√
cnew)

√
ζ;

• ω = 7ξ;

• α = C1(log(6KJ) + 11 log(n)) for a constant C1 ≥ Cadd with

Cadd :=
4800

(ζλ−)2
max{16, (1.2ξ)4}

• α̃ = C2(log(50ϑJ) + 11 log(n)) for a C2 ≥ Cdel with

Cdel :=
8 · 1002 · 42 · r2γ4

(cnewζλ−)2

3. Signal Model 3.8.2 holds with b ≤ 0.1 and

• d1 ≥ (K + 2)α and d2 ≥ ϑ+α̃+ 2α;

• tj+1 − tj ≥ d1 + d2 for all j;

• √cnewγnew + (
√
r +
√
cnew)

√
ζ ≤ xmin

14 ;

• g ≤
√

2;

• b2cnewηnewg ≤ 0.5 (as before, because b ≤ 0.1, this will be satisfied if cnewηnewg ≤ 50

)

4. The clustering assumption holds with g̃+ = 1.5, χ̃+ = 0.2, and ϑ+ = 3.

5. The support of xt changes enough so that for α and α̃ as chosen above, Signal Model

3.2.11 holds with β = h+ min{α, α̃} and

d%e2 h+ ≤ 0.0024, and %2smax{α, α̃} ≤ n

or Signal Model 3.2.12 holds with s ≤ (6× 10−4) min{α, α̃} and max{α, α̃} ≤ n
m .

6. The low dimensional subspace is dense such that

• maxj κ2s(P(j)) ≤ 0.3;

• maxj κ2s(P(j),new) ≤ 0.02.
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Then, with probability at least 1− 2n−10, at all times t

1. The support of xt is recovered exactly, i.e. T̂t = Tt

2. The estimate of the subspace change time satisfies tj ≤ t̂j ≤ tj + 2α, for j = 1, . . . , J ;

3. The estimate of the number of new directions is correct, i.e. ĉj,new,k = cj,new for j =

1, . . . , J and k = 1, . . . ,K;

4. The recovery error satisfies:

‖x̂t − xt‖2 ≤





1.2(
√
ζ +
√
cnewγnew) t ∈ [tj , t̂j ]

1.2
(
1.84
√
ζ + (0.4)k−1√cnewγnew

)
t ∈ [t̂j + (k − 1)α, t̂j + kα− 1],

k = 1, 2, . . . ,K

2.4
√
ζ t ∈ [t̂j +Kα, tj+1 − 1]

5. For j = 1, . . . , J , tj ≤ t̂j ≤ tj + 2α.

6. The subspace error SEt := ‖(I − P̂tP̂t′)Pt‖2 satisfies:

SEt ≤





1 t ∈ [tj , t̂j ]

10−2
√
ζ + 0.4k−1 t ∈ [t̂j + (k − 1)α, t̂j + kα− 1], k = 1, 2, . . . ,K

10−2
√
ζ t ∈ [t̂j +Kα, tj+1 − 1].

3.8.3 Discussion

First we point out a significant limitation of the above result. Theorem 3.8.4 and Algorithm

4 assume that the clusters Gj,k are known a priori. This is not a very realistic assumption, as

determining the clusters would require knowledge of all the eigenvalues of the true covariance

matrix Λa,t.

Let us compare the result for ReProCS (Algorithm 3) with that for ReProCS-cPCA (Algo-

rithm 4) for the more general subspace change model. The ReProCS result needs

κ2s([P0,P1,new, . . . ,PJ,new]) ≤ 0.3 while ReProCS-cPCA only needs maxj κ2s(P(j)) ≤ 0.3
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and maxj κ2s(P(j),new) ≤ 0.02. Recall that L := [`1, `2, . . . , `tmax ], X := [x1,x2, . . . ,xtmax ],

rmat := rank(L) and smat = |support(X)|. Also recall that in our model smat ≤ stmax.

Clearly rank([P0,P1,new, . . . ,PJ,new]) = rmat, and so rmat ≤ r0 + Jcnew. Thus if we assume

κ1([P0,P1,new, . . . ,PJ,new])2 ≤ µrmat/n, and κ1(Pj,new) ≤ µ̃cnew/n then ReProCS needs

2µsrmat ≤ 0.09n and 2µ̃scnew ≤ 0.0004n

where rmat ≤ r0 +Jcnew. The support change model (Signal Model 3.2.11) requires s ∈ O( n
logn)

and J ∈ O(n). Thus, if s grows as n/ log n, then rmat can only grow as log n. Thus, ReProCS

allows

smat ∈ O
(
ntmax

log n

)
and rmat ∈ O(log n)

As explained earlier this is a stronger requirement than PCP which allows

smat ∈ O(ntmax) and rmat ∈ O
(

n

(log n)2

)

On the other hand, using an argument similar to the one above, ReProCS-cPCA only needs

2µs(r0 + cdif) ≤ 0.09n and 2µ̃scnew ≤ 0.0004n.

The support change model (Signal Model 3.2.11) requires s ∈ O( n
logn) and J ∈ O(n). Thus if

s grows as n/ log n, r0 can grow at most as log n; however, cnew needs to be constant because

of the lower bound on xmin. Since rmat ≤ r0 + Jcnew, this means rmat can grow linearly with

n. Thus, ReProCS-cPCA allows

smat ∈ O
(
ntmax

log n

)
and rmat ∈ O(n)

This requirement is comparable to what PCP needs: the requirement on smat is slightly stronger

than PCP while that on rmat is slightly weaker.

3.8.4 Cluster-PCA Algorithm (from [12])

In this section we present the ReProCS algorithm with cluster-PCA as Algorithm 4. It

performs the same subspace change detection and estimation of new directions as ReProCS,

but it differs in that at each subspace change time it performs a re-estimation of the previous

subspace that effectively removes old directions from the estimate of Pt.
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One way to re-estimate the current subspace would be by standard PCA: at t = t̂j+1,

compute

P̂t ← eigenvectors




t̂j+1−2α∑

τ=t̂j+1−2α−α̃

ˆ̀
τ

ˆ̀
τ
′




Using the same proof method as used for Theorem 3.2.15, it can be shown that, as long as

f = λ+

λ− is small enough, we can show that this will give an accurate estimate of range(P(j)).

However f cannot be small because our problem definition allows large noise, `t, but assumes

slow subspace change. To resolve this problem, we recover the eigenvectors in clusters where

the ratio of the largest to smallest eigenvalue in each cluster is small. We also have to assume

that these clusters are sufficiently far apart from each other.

In a process that we call cluster-PCA, Algorithm 4 sequentially recovers eigenvectors cor-

responding to groups of eigenvalues that are close to each other and separated from the rest of

the eigenvalues. The eigenvectors corresponding to the largest eigenvalues are recovered first.

After this, the data is projected perpendicular to the estimated subspace to recover the eigen-

vectors corresponding to the next largest cluster. This process continues until all of span(P(j))

has been estimated. All of this takes place at t = t̂j+1 using the estimates ˆ̀
t from the intervals

[(t̂j+1 − ϑα̃− 2α) + (k − 1)α̃+ 1, (t̂j+1 − ϑα̃− 2α) + kα̃], k = 1, . . . , ϑ.

The motivation for the cluster-PCA step is Signal Model 3.2.8 where at the times when new

directions are added to the subspace, some may also be removed. This is a more appropriate

model when the sparse signal xt is the signal of interest. Under this model we are able to relax

the requirements needed to prove a similar performance guarantee to Theorem 3.2.15. The

difference is that instead of needing span([`1, . . . , `tmax ]) to be dense, we only require span(Pt)

to be dense for all t. Of course when no directions are removed from the subspace, these are

equivalent, because span(Pt) ⊆ span(Pt+1) for all t.

3.8.5 Proof of Theorem 3.8.4

Definition 3.8.5. Redefine P̂(j),∗ to be the estimate of P(j),∗ = P(j−1) after the cluster PCA

step. That is P̂(j),∗ := P̂t̂j . Previously we had defined P̂(j),∗ to be the estimate of P(j),∗ after

the final projection PCA (addition) step, so this new definition is a natural extension. In both
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Algorithm 4 Recursive Projected CS with cluster-PCA (ReProCS-cPCA)

Parameters: algorithm parameters: ξ, ω, α, α̃, K, model parameters: λ−, ϑ, and c̃j,k
Input: n× 1 vector, mt, and n× r0 basis matrix P̂(0).

Output: n× 1 vectors x̂t and ˆ̀
t, a basis matrix P̂t, t̂j , ĉj,new,k.

In step 4(c)ii of Algorithm 3, include the following cluster-PCA (cPCA) step.

Re-stimate range(P(j−1)) by cluster-PCA (in order to remove the deleted directions)

1. set Ĝj−1,0 ← [.]

2. For i = 1, 2, · · · , ϑ,

• let Ĝj−1,det,i := [Ĝj−1,1, Ĝj−1,2, . . . Ĝj−1,i−1] and compute

Mcpca = (I − Ĝj−1,det,iĜj−1,det,i
′)


 1

α̃

∑

t∈Ij,k

ˆ̀
τ

ˆ̀
τ
′


 (I − Ĝj−1,det,iĜj−1,det,i

′)

• Ĝj−1,i ← eigenvectors(Mcpca, , c̃j,i)

End for

3. set P̂t ← [Ĝj−1,1 · · · Ĝj−1,ϑ], P̂∗,t ← P̂t, and P̂t,new ← [.].

The function eigenvectors(M, , c) returns the matrix containing the eigenvectors corresponding

to the c largest eigenvalues.
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1

Pt = P(0)

t1

Pt = P(1) = [(P(0)R1) \ P(1),old P(1),new]

t2

. . .

tj

Pt = P(j) = [(P(j−1)Rj) \ P(j),old P(j),new]

tj+1

Figure 3.7 Signal Model 3.2.8

tj t̂j t̂j + α t̂j + 2α

. . .

t̂j + kα t̂j + (k + 1)α

. . .

t̂j +Kα tj + d tj+1 − 2α− ϑα̃ tj+1

P̂t = P̂(j),∗
P̂t,new = [.] P̂t =

[
P̂(j),∗ P̂(j),new,1

]
P̂t =

[
P̂(j),∗ P̂(j),new,k

]
P̂t =

[
P̂(j),∗ P̂(j),new,K

]

‖at,new‖∞ ≤ γnew Λa,t constant and
obeys clustering assumption

Figure 3.8 Algorithm 4

Figure 3.9: Diagrams for Signal Model 3.2.8 and Algorithm 4

cases, P̂(j),∗ is the final estimate of P(j−1).

With the new definition of P̂(j),∗, the statement of the definition of ζj,∗ remains the same:

ζj,∗ := dif(P̂(j),∗,P(j),∗)

The tilde (˜) will be used to indicate objects in the cluster PCA proof that have corre-

sponding parts in the projection PCA proof.

Definition 3.8.6. Redefine

1. ζ+
∗ := rmaxζ

2. ζ̃+
k :=

bH̃,k

bÃ,k − bÃ,k,⊥ − bH̃,k
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Here bH̃,k := b̃2 + b̃4,k + b̃6,k. Where,

b̃2 := ρ2h+(φ+)2(rmax + cnew)2ζ2
(
b2rγ2 + (1− b2)λ+

)
+ ε

b̃4,k := (rζ)

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+ + ε

)
(rmax + cnew)ζ

(√
ρ2h+φ+

)
+

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k + ε

)
(rmax + cnew)ζ

(√
ρ2h+φ+

)

b̃6,k := rζ

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

b2

α̃(1− b2)
rγ2 + 4ε+ (rζ)2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε

)
+

rζ

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

(rζ)3

√
1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

(rζ)2

√
1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε

)
.

Also, let

bÃ,k :=(1− r2ζ2)
[
(1− b2)λ−k − ε

]
−
√

1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)(
rζ +

r2ζ2

√
1− r2ζ2

)

bÃ,k,⊥ :=r2ζ2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε

)
− 2rζ

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k + ε

)
−

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε

)
.

To prove Theorem 3.8.4 we need to define a new event that says the (j, k)th cluster PCA

step was successful.

Definition 3.8.7. Define

CPCAa
j,k :=

{∥∥∥∥
(
I −

k∑

i=1

Ĝj,iĜj,i
′
)
Gj,k

∥∥∥∥
2

≤ ζ̃+
j,k

}

and redefine

Γaj,0 := Γj−1,end ∩DETa ∩ CPCAa
j−1,1 ∩ · · · ∩ CPCAa

j−1,ϑ for a = uj or a = uj + 1

The definitions,

Γaj,k := Γaj,k−1 ∩ PPCAa
j,k for a = uj or a = uj + 1

Γj,end :=
(

Γ
uj
j,K ∩NODETS

uj
j

)
∪
(

Γ
uj+1
j,K ∩NODETS

uj+1
j

)

remain the same.
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Lemma 3.8.8.

P
(
CPCAa

j,k | Γj−1,end,DETa
j ,CPCAa

j,1, . . . ,CPCAa
j,k−1

)
≥ pcpca

for a = uj+1 or a = uj+1 + 1.

Fact 3.8.9.

1. If ζj,∗ ≤ ζ+
j,∗ and ζj,new,k ≤ ζ+

k,new, for k = 1, . . . ,K then dif(P̂t̂j+Kα,P(j)) ≤ ζ+
∗ + cnewζ

2. If ζ̃j,k ≤ ζ̃+
k for k = 1, . . . , ϑ, then ζj+1,∗ := dif(P̂(j+1),∗,P(j+1),∗) = dif(P̂t̂j+1

,P(j)) ≤

rmaxζ = ζ+
∗ .

3. Thus the event Γj,end implies dif(P̂t̂j+Kα,P(j)) ≤ ζ+
∗ + cnewζ. The event Γaj,0 implies

ζj,∗ ≤ ζ+
∗ = rmaxζ for a = uj or a = uj+1. Thus the event Γaj,k−1 also implies this.

Corollary 3.8.10. Combining Lemmas 3.5.11, 3.5.12, 3.5.14, and 3.8.8 gives

P (Γj,end | Γj−1,end) = P
((

DETuj

ϑ⋂

k=1

CPCA
uj
j−1,k

K⋂

k=1

PPCA
uj
j,k

)
∪

(
DETuj ∩DETuj+1

ϑ⋂

k=1

CPCA
uj+1
j−1,k

K⋂

k=1

PPCA
uj+1
j,k

) ∣∣ Γj−1,end

)

= P

(
DETuj

ϑ⋂

k=1

CPCA
uj
j−1,k

K⋂

k=1

PPCA
uj
j,k

∣∣ Γj−1,end

)

+ P

(
DETuj ∩DETuj+1

ϑ⋂

k=1

CPCA
uj+1
j−1,k

K⋂

k=1

PPCA
uj+1
j,k

∣∣ Γj−1,end

)

≥ pdet,0 · (pcpca)ϑ · (pppca)K + (1− pdet,0) · pdet,1 · (pcpca)ϑ · (pppca)K

≥ pdet,1 · (pcpca)ϑ · (pppca)K

3.8.6 Proof of Lemma 3.8.8

Definition 3.8.11. Define

Ĩj,k :=
[
(t̂j+1 − ϑα̃− 2α) + (k − 1)α̃+ 1, (t̂j+1 − ϑα̃− 2α) + kα̃

]

Definition 3.8.12. Define

X̃j,k := [ν1, . . . ,ν(t̂j+1−ϑα̃−2α)+kα̃]
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and

Γ̃
ûj
j,k := Γj−1,end ∩DETûj ∩ CPACA

ûj
j−1,1 ∩ · · · ∩ CPCA

ûj
j−1,k

for ûj = uj or ûj = uj + 1.

Definition 3.8.13.

1. Let D̃j,k,cur
QR
= Ẽj,k,curR̃j,k,cur denote its reduced QR decomposition. So Ẽj,k,cur is a basis

matrix, and R̃j,k,cur is upper triangular. Let Ẽj,k,cur,⊥ be a basis matrix for the orthogonal

complement of range(Ẽj,k,cur).

2. Using Ẽj,k,cur and Ẽj,k,cur,⊥ , define

Ãj,k :=
1

α̃

∑

t∈Ĩj,k

Ẽj,k,cur
′
(
I − Ĝj,k,detĜj,k,det

′
)
`t`t

′
(
I − Ĝj,k,detĜj,k,det

′
)
Ẽj,k,cur

Ãj,k,⊥ :=
1

α̃

∑

t∈Ĩj,k

Ẽj,k,cur,⊥
′
(
I − Ĝj,k,detĜj,k,det

′
)
`t`t

′
(
I − Ĝj,k,detĜj,k,det

′
)
Ẽj,k,cur,⊥

and let

Ãj,k :=

[
Ẽj,k,cur Ẽj,k,cur,⊥

]


Ãj,k 0

0 Ãk,⊥







Ẽj,k,cur
′

Ẽj,k,cur,⊥′




3. Define

H̃j,k =
1

α̃

∑

t∈Ĩj,k

(
I − Ĝj,k,detĜj,k,det

′
)

ˆ̀
t
ˆ̀
t
′
(
I − Ĝj,k,detĜj,k,det

′
)
− Ãj,k

From Algorithm 4,

1

α̃

∑

t∈Ĩj,k

(
I − Ĝj,k,detĜj,k,det

′
)

ˆ̀
t
ˆ̀
t
′
(
I − Ĝj,k,detĜj,k,det

′
)

EVD
=

[
Ĝj,k Ĝj,k,⊥

]



Λ̂j,k 0

0 Λ̂j,k,⊥







Ĝj,k
′

Ĝj,k,⊥′


 .

Define ζ̃j,k := dif([Ĝj,1, . . . , Ĝj,k],Gj,k). Recall Lemma 3.5.17, which for the matrices above

says that if λmin(Ãj,k)− ‖Ãj,k,⊥‖2 − ‖H̃j,k‖2 > 0, then

ζ̃j,k ≤
‖H̃j,k‖2

λmin(Ãj,k)− ‖Ãj,k,⊥‖2 − ‖H̃j,k‖2
(3.25)
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Lemma 3.8.14.

P

(
λmin

(
Ãj,k

)
≥(1− r2ζ2)

[
(1− b2)λ−k − ε

]

−
√

1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)(
rζ +

r2ζ2

√
1− r2ζ2

) ∣∣∣ X̃k−1

)

≥ 1− rz(α̃, ε, cnewγ
2)− 2(3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃, ε, 4rγ2)).

for all X̃k−1 ∈ Γ̃k−1.

Lemma 3.8.15.

P

(
λmax

(
Ãj,k,⊥

)
≤r2ζ2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε

)
+

2rζ

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k + ε

)
+

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε

) ∣∣∣ X̃k−1

)
≥ 1− 3rz(α̃, ε, rγ2)

for all X̃k−1 ∈ Γ̃k−1.

Lemma 3.8.16.

P
(
‖H̃j,k‖2 ≤b̃2 + 2b̃4,k + 2b̃6,k

∣∣ X̃k−1

)
≥ 1− nz(α̃, ε, (φ+)4ζ2)

− rz(α̃, ε, rγ2)

− 3
(

3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃, ε, 4rγ2)
)

− 2
(
rz(α̃, ε, cnewγ

2)
)
.

for all X̃k−1 ∈ Γ̃k−1.

Combining the above three lemmas gives Lemma 3.8.8.

3.9 Proofs of Lemmas 3.8.14, 3.8.15, and 3.8.16

3.9.1 Minor Lemmas for Proving the Main Lemmas

Definition 3.9.1. Define
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1. Gj,k,det := [Gj,1,Gj,2, . . . ,Gj,k−1], Ĝj,k,det := [Ĝj,1, Ĝj,2, . . . , Ĝj,k−1],

Gj,k,undet := [Gj,k+1,Gj,k+2, . . . ,Gj,ϑ], Gj,k,cur := Gj,k;

2. at,det := Gdet,k
′`t, at,cur := Gk,cur

′`t, and at,undet := Gundet,k
′`t;

3. D̃j,k,cur := (I−Ĝj,k,detĜj,k,det
′)Gj,k, D̃j,k,det := (I−Ĝj,k,detĜj,k,det

′)Gj,k,det, D̃j,k,undet :=

(I − Ĝj,k,detĜj,k,det
′)Gj,k,undet;

Lemma 3.9.2 (Sparse Recovery for Ĩj,k). Define Φ(j),K := I−P̂(j),∗P̂(j),∗′−P̂(j),new,KP̂(j),new,K
′.

Assume that all conditions of Theorem 3.8.4 hold. If ζj,∗ ≤ ζ+
j,∗ := rmaxζ and ζj,new,K ≤ cζ,

then for all t ∈ Ĩj,k,

1. ‖Φ(j),KPt‖2 ≤ (rmax + cnew)ζ

2. ‖[(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1‖2 ≤ φ+ := 1.2.

3. T̂t = Tt,

4. et = ITt [(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1ITt
′Φ(j),KPtat and ‖et‖2 ≤ φ+

√
ζ.

We will use the following fact throughout.

Fact 3.9.3. As before,

1. Γj−1,end implies NODETSaj−1 for a = uj−1 or a = uj−1 + 1 which implies t̂j ≥ tj.

2. DET
uj
j implies that t̂j ≤ tj + α.

3. DET
uj+1
j implies that t̂j ≤ tj + 2α.

4. The above facts combined with the model assumption d2 ≥ ϑα̃+2α imply that conditioned

on Γj−1,end ∩ DET
uj+1
j , Ĩj,k ⊆ [tj+1 − d2, tj+1 − 1] for j = 1, . . . , J and k = 1, . . . , ϑ

and ûj = uj or ûj = uj + 1. Thus, during these intervals, the covariance matrix Λa,t is

assumed constant and obeys the clustering assumption.

Remark 3.9.4. As in the addition proof, we will remove the subscript j at various places.
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The following two lemmas are proved the same way as their counterparts in Section 3.6

(Lemmas 3.6.2 and 3.6.3 respectively). As before, when they are applied, we will use ε =

0.01cnewζλ
−.

Lemma 3.9.5.

1. P


λmax


 1

α̃

∑

t∈Ĩj,k

at,detat,det
′


 ≤ b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε
∣∣∣ X̃k−1


 ≥

1− rz(α̃, ε, rγ2)

2. P


λmax


 1

α̃

∑

t∈Ĩj,k

at,curat,cur
′


 ≤ b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k + ε
∣∣∣ X̃k−1


 ≥

1− rz(α̃, ε, rγ2)

3. P


λmax


 1

α̃

∑

t∈Ĩj,k

at,undetat,undet
′


 ≤ b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε
∣∣∣ X̃k−1


 ≥

1− rz(α̃, ε, rγ2)

4. P


λmin


 1

α̃

∑

t∈Ĩj,k

at,curat,cur
′


 ≥ (1− b2)λ−j,k − ε

∣∣∣ X̃k−1


 ≥

1− rz(α̃, ε, cnewγ
2).

Results 1) and 2) also hold for at,detat
′ and at,curat

′ respectively.

Lemma 3.9.6.

1.

P



∥∥∥∥

1

α̃

∑

t∈Ĩj,k

at,detat,cur
′
∥∥∥∥

2

≤ b2

α̃(1− b2)
rγ2 + 4ε

∣∣∣ X̃k−1


 ≥

1− 3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2).

2.

P



∥∥∥∥

1

α̃

∑

t∈Ĩj,k

at,detat,undet
′
∥∥∥∥

2

≤ b2

α̃(1− b2)
rγ2 + 4ε

∣∣∣ X̃k−1


 ≥

1− 3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2).
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3.

P



∥∥∥∥

1

α̃

∑

t∈Ĩj,k

at,curat,undet
′
∥∥∥∥

2

≤ b2

α̃(1− b2)
rγ2 + 4ε

∣∣∣ X̃k−1


 ≥

1− 3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2).

Lemma 3.9.7. [12] When X̃j,k−1 ∈ Γ̃j,k−1,

1. ‖D̃j,k,det‖2 ≤ rmaxζ

2.
√

1− (rmax + cnew)2ζ2 ≤ σi(R̃j,k) ≤ 1

3. ‖Ẽj,k,cur
′D̃j,k,undet‖2 ≤

(rmax + cnew)2ζ2

√
1− (rmax + cnew)2ζ2

We are now read to prove Lemmas 3.8.14, 3.8.15, and 3.8.16. Because the lemmas apply for

all j, we will often omit the subscript j for convenience. Also,
∑

t

will be used to mean
∑

t∈Ĩj,k

.

Proof of Lemma 3.8.14.

Recall Ãk := 1
˜̃α

∑
t∈Ĩj,k Ẽk

′
(
I − Ĝdet,kĜdet,k

′
)
`t`t

′
(
I − Ĝdet,kĜdet,k

′
)
Ẽk. Observe that

Ẽk
′
(
I −

k−1∑

i=1

Ĝj,iĜj,i
′
)
`t = R̃kat,cur + Ẽk

′(D̃det,kat,det + D̃undet,kat,det)

Let Zt = R̃kat,cur and Yt = Ẽk
′(D̃det,kat,det + D̃undet,kat,undet) Then

Ãk �
1

α̃

∑

t∈Ĩj,k

ZtZt
′ +ZtYt′ + YtZt′ (3.26)

Consider 1
α̃

∑
tZtZt

′. Using a theorem of Ostrowoski [27, Theorem 4.5.9], we have that

λmin

(
1

α̃

∑

t

ZtZt
′
)
≥ λmin(R̃kR̃k

′) · λmin

(
1

α̃

∑

t

at,curat,cur
′
)

By Lemmas 3.9.5 and 3.9.7, we get that

P

(
λmin

(
1

α̃

∑

t

ZtZt
′
)
≥ (1− r2ζ2)

[
(1− b2)λ−k − ε

] ∣∣∣ X̃k−1

)
≥ 1− rz(α̃, ε, cnewγ

2).

for all X̃k−1 ∈ Γ̃k−1.
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Next consider the term 1
α̃

∑
tZtYt

′.

1

α̃

∑

t

ZtYt
′ =

1

α̃

∑

t

R̃kat,cur

(
at,det

′D̃det,k
′ + at,undet

′D̃undet,k
′
)
Ẽk

=
1

α̃

∑

t

R̃kat,curat,det
′D̃det,k

′Ẽk + R̃kat,curat,undet
′D̃undet,k

′Ẽk

By Lemmas 3.9.6 and 3.9.7, we get that

P

(
λmin

(
1

α̃

∑

t

ZtYt
′
)
≥ −

√
1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)(
rζ +

r2ζ2

√
1− r2ζ2

) ∣∣∣ X̃k−1

)
≥

1− 2(3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2)).

for all X̃k−1 ∈ Γ̃k−1.

Therefore

P

(
λmin

(
Ãj,k

)
≥ (1− r2ζ2)

[
(1− b2)λ−k − ε

]

− 2
√

1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)(
rζ +

r2ζ2

√
1− r2ζ2

) ∣∣∣ X̃k−1

)

≥ 1− rz(α̃, ε, cnewγ
2)− 2(3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2)).

for all X̃k−1 ∈ Γ̃k−1.

�

Proof of Lemma 3.8.15.

Recall Ãk,⊥ := 1
α̃

∑
t∈Ĩj,k Ẽk,⊥

′
(
I −∑k−1

i=1 Ĝj,iĜj,i
′
)
`t`t

′
(
I −∑k−1

i=1 Ĝj,iĜj,i
′
)
Ẽk,⊥. No-

tice that because Ẽk,⊥′
(
I −∑k−1

i=1 Ĝj,iĜj,i
′
)
Gk = 0,

Ẽk,⊥′
(
I −∑k−1

i=1 Ĝj,iĜj,i
′
)
`t = Ẽk,⊥′(D̃det,kat,det + D̃undet,kat,undet). So Ãk,⊥ can be writ-

ten as

Ãk,⊥ =
1

α̃

∑

t

Ẽk,⊥
′(D̃det,kat,det + D̃undet,kat,undet)(D̃det,kat,det + D̃undet,kat,undet)

′Ẽk,⊥.

Expanding the above gives

Ãk,⊥ =
1

α̃

∑

t

Ẽk,⊥
′
(
D̃det,kat,detat,det

′D̃det,k
′ + D̃det,kat,detat,undet

′D̃undet,k
′+

D̃undet,kat,undetat,det
′D̃det,k

′ + D̃undet,kat,undetat,undet
′D̃undet,k

′
)
Ẽk,⊥.
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By Lemmas 3.9.5, 3.9.6 and 3.9.7,

P

(
λmax

(
Ãj,k,⊥

)
≤r2ζ2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε

)
+

2rζ

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε

) ∣∣∣ X̃k−1

)
≥ 1− 3rz(α̃, ε, rγ2)

for all X̃k−1 ∈ Γ̃k−1.

�

Proof of Lemma 3.8.16. For Ease of Notation, define Ψj,k :=
(
I − Ĝj,k,detĜj,k,det

′
)

and

F̃t = ẼkẼk
′Ψk−1`t`t

′Ψk−1Ẽk,⊥Ẽk,⊥′. Using the expression for H̃j,k given in Definition 3.8.13,

adding and subtracting F̃t + F̃t
′, and noting that ẼkẼk

′ + Ẽk,⊥Ẽk,⊥′ = I we get that

H̃k =
1

α̃

∑

t

(
Ψk−1etet

′Ψk−1 − (Ψk−1`tet
′Ψk−1 + Ψk−1et`t

′Ψk−1) + (F̃t + F̃t
′)
)

Thus

‖H̃k‖2 ≤
∥∥∥∥

1

α̃

∑

t

etet
′
∥∥∥∥

2

+ 2

∥∥∥∥
1

α̃

∑

t

Ψk−1`tet
′
∥∥∥∥

2

+ 2

∥∥∥∥
1

α̃

∑

t

F̃t

∥∥∥∥
2

(3.27)

1. First consider ‖ 1
α̃

∑
t etet

′‖2. By Lemma 3.9.2, when X̃k−1 ∈ Γ̃k−1,

et = ITt [(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1ITt
′Φ(j),KPtat

and ‖et‖2 ≤ (φ+)2ζ. By the same argument as Lemma 3.6.1,

Et−1

[
etet

′∣∣X̃k−1

]
= ITt [(Φ(j),K)Tt

′(Φ(j),K)Tt ]
−1ITt

′Φ(j),KPt
(
b2at−1at−1

′ + Λν,t

)

Pt
′Φ(j),KITt [(Φ(j),K)Tt

′(Φ(j),K)Tt ]
−1ITt

′

�
(
ρ2h+(φ+)2(rmax + cnew)2ζ2

(
b2rγ2 + (1− b2)λ+

))
I

Applying the Azuma corollary (Corollary 3.A.9) gives,

P

(∥∥∥∥
1

α̃

∑

t

etet
′
∥∥∥∥

2

≤ ρ2h+(φ+)2(rmax + cnew)2ζ2
(
b2rγ2 + (1− b2)λ+

)
+ ε

∣∣∣∣ X̃k−1

)
≥

1− nz(α̃, ε, (φ+)4ζ2)

(3.28)

for all X̃k−1 ∈ Γ̃k−1.
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2. Next consider ‖ 1
α̃

∑
t Ψk−1`tet

′‖2.

Ψk−1`tet
′ =

(
D̃kat,cur + D̃det,kat,det + D̃undet,kat,undet

)
et
′

=


D̃det,kat,det +

[
D̃k D̃undet,k

]



at,cur

at,undet





 et′

=


D̃det,kat,det +

[
D̃k D̃undet,k

]



at,cur

at,undet







(ITt [(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1ITt
′
Φ(j),KP(j)at)

′

=


D̃det,kat,detat

′ +
[
D̃k D̃undet,k

]



at,cur

at,undet


at′




(ITt [(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1ITt
′
Φ(j),KP(j))

′

Let,

Xt =


D̃det,kat,detat

′ +
[
D̃k D̃undet,k

]



at,cur

at,undet


at′


P(j)

′Φ(j),K

and

Yt = ITt [(Φ(j),K)Tt
′(Φ(j),K)Tt ]

−1ITt
′

Then by Lemma 3.A.3, which is stated and proved in the appendix,

∥∥∥∥∥
1

α̃

∑

t

Ψk−1`tet
′
∥∥∥∥∥

2

2

≤ λmax


 1

α̃

∑

t∈Ĩj,k

XtXt
′


λmax


 1

α̃

∑

t∈Ĩj,k

YtYt
′




The reason for using Lemma 3.A.3 is so that Lemma 3.3.3 can be applied to Yt. For Xt,

we use Lemmas 3.9.2, 3.9.5, and 3.9.7. This gives,

P

(∥∥∥∥
1

α̃

∑

t

Ψk−1`tet
′
∥∥∥∥

2

≤ (rζ)

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+ + ε

)

(rmax + cnew)ζ
(√

ρ2h+φ+
)

+

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k + ε

)
(rmax + cnew)ζ

(√
ρ2h+φ+

) ∣∣∣ X̃k−1

)

≥ 1− rz(α̃, ε, rγ2)

for all X̃k−1 ∈ Γ̃k−1.
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3. Finally consider ‖ 1
α̃

∑
t F̃t‖2. Recall that F̃t = ẼkẼk

′Ψk−1`t`t
′Ψk−1Ẽk,⊥Ẽk,⊥′. We will

use the fact that Ẽk,⊥′D̃k = 0 to simplify this expression.

F̃t = ẼkẼk
′Ψk−1`t`t

′Ψk−1Ẽk,⊥Ẽk,⊥
′

= ẼkẼk
′(D̃kat,cur + D̃det,kat,det + D̃undet,kat,undet)

(D̃det,kat,det + D̃undet,kat,undet)
′Ẽk,⊥Ẽk,⊥

′

Therefore,

P

(∥∥∥∥∥
1

α̃

∑

t

F̃t

∥∥∥∥∥
2

≤rζ
(

b2

α̃(1− b2)
rγ2 + 4ε

)
+

b2

α̃(1− b2)
rγ2 + 4ε+

(rζ)2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k−1 + ε

)
+

rζ

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

(rζ)3

√
1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + 4ε

)
+

(rζ)2

√
1− r2ζ2

(
b2

α̃(1− b2)
rγ2 + (1− b2)λ+

j,k+1 + ε

) ∣∣∣ X̃k−1

)
≥

1− 3
(

3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2)
)
− 2
(
rz(α̃, ε, cnewγ

2)
)

for all X̃k−1 ∈ Γ̃k−1.

Therefore,

P
(
‖H̃j,k‖2 ≤ b̃2+2b̃4,k + 2b̃6,k

∣∣∣ X̃k−1

)
≥ 1− nz(α̃, ε, (φ+)4ζ2)

− rz(α̃, ε, rγ2)

− 3
(

3(2r)z(α̃, ε, 2rγ2)− (2r)z(α̃ε, 4rγ2)
)
− 2
(
rz(α̃, ε, cnewγ

2)
)
.

for all X̃k−1 ∈ Γ̃k−1. The quantities b̃2, b̃4,k, and b̃6,k were defined in Definition 3.8.6.

�
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3.10 Simulations

In this section we show the results of simulation experiments that demonstrate the result

we have proven. The results can be seen in Figures 3.10 and 3.11. In both cases, results are

averaged over 50 simulations.

For both figures, we set n = 256 and tmax = 8200. The low-dimensional vectors `t were

generated the same way for both figures. There are 3 subspace changes, so J = 3. The subspace

changed at times t1 = 701, t2 = 3701, and t3 = 6201. The bounds on the entries of at and

at,new were γ = 600, and γnew = 5 respectively. At each subspace change, 4 new directions

were added, and 4 were removed. Therefore cj,new = cj,old = 4 for j = 1, 2, 3. The algorithm

parameters were set as follows: α = 100, K = 12, thresh = 1
27 , ξ =

√
2 and ω = 0.1.

The difference in the two figures is how the supports of the sparse vectors xt are generated.

In Figure 3.10, each index of xt was non-zero with probability 0.0586 (so the size of each

support is around 15) independently of other indices and other times t. In Figure 3.11, all of

the supports of xt were of size 10 and obeyed Signal Model 3.2.11 with % = 2, and β = 25 (so

h+ = 25
α = 0.25).

For this simulated data, we compare ReProCS, ReProCS-cPCA, PCP, and mod-PCP. In

order to compare with the batch methods PCP and mod-PCP, we ran those algorithms every

2α frames, using the observations mt from the previous 2α time instants. As one can see in

Figure 3.10, the error made by ReProCS after a subspace change is very similar to that made by

PCP. However, as ReProCS recovers the new directions, the error decays exponentially (notice

that the y axis is logarithmic) as we have proven in Theorem 3.2.15.

In Figure 3.11, the supports of xt are highly correlated. This causes a problem for the

batch methods and one can see that ReProCS has significantly better recovery compared to

PCP and even mod-PCP when the supports of xt are correlated.

The last thing to notice is the difference between ReProCS and ReProCS-cPCA. Both of

the figures demonstrate the results we have proven. That is, for both algorithms the error is

initially large, but decays exponentially thereafter. Because ReProCS only adds new directions

to its estimate of the subspace, the final error after a subspace change increases with j. The



143

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

ReProCS

ReProCS−cPCA

PCP

mod−PCP

Figure 3.10: Support of X determined by Bernoulli model. The y axis is ‖x̂t−xt‖2‖xt‖2 .

cluster PCA step in ReProCS-cPCA re-estimates the subspace, so that the error decays down

to a value that does not increase with j.
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Figure 3.11: Support of X obeys Signal Model 3.2.11. The y axis is ‖x̂t−xt‖2‖xt‖2 .

3.A Preliminaries

Lemma 3.A.1 (Exchanging the order of a double sum).

α−1∑

t=0

t∑

i=0

xtyi =

α−1∑

i=0

α−1∑

t=i

xtyi

Proof. Define [statement] to be the Boolean value of statement. Then,

α−1∑

t=0

t∑

i=0

xtyi =
∑

t,i

[0 ≤ i ≤ t][0 ≤ t ≤ α− 1]xtyi

=
∑

t,i

[0 ≤ i ≤ t ≤ α− 1]xtyi

=
∑

t,i

[0 ≤ i ≤ α− 1][i ≤ t ≤ α− 1]xtyi

=
α−1∑

i=0

α−1∑

t=i

xtyi

�
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Lemma 3.A.2 (Cauchy-Schwarz for a sum of vectors). For vectors xt and yt,

(
α∑

t=1

xt
′yt

)2

≤
(∑

t

‖xt‖22

)(∑

t

‖yt‖22

)

Proof.

(
α∑

t=1

xt
′yt

)2

=




[x1
′, . . . ,xα′]




y1

...

yα







2

≤

∥∥∥∥∥∥∥∥∥∥




x1

...

xα




∥∥∥∥∥∥∥∥∥∥

2

2

∥∥∥∥∥∥∥∥∥∥




y1

...

yα




∥∥∥∥∥∥∥∥∥∥

2

2

=

(
α∑

t=1

‖xt‖22

)(
α∑

t=1

‖yt‖22

)

The inequality is by Cauchy-Schwarz for a single vector. �

Lemma 3.A.3 (Cauchy-Schwarz for a sum of matrices). For matrices Xt and Yt,

∥∥∥∥∥
1

α

α∑

t=1

XtYt
′
∥∥∥∥∥

2

2

≤ λmax

(
1

α

α∑

t=1

XtXt
′
)
λmax

(
1

α

α∑

t=1

YtYt
′
)

Proof.

∥∥∥∥∥
α∑

t=1

XtYt
′
∥∥∥∥∥

2

2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣x
′
(∑

t

XtYt
′
)
y

∣∣∣∣∣

2

= max
‖x‖=1
‖y‖=1

∣∣∣∣∣
α∑

t=1

(Xt
′x)′(Yt′y)

∣∣∣∣∣

2

≤ max
‖x‖=1
‖y‖=1

(
α∑

t=1

∥∥Xt
′x
∥∥2

2

)(
α∑

t=1

∥∥Yt′y
∥∥2

2

)

= max
‖x‖=1

x′
α∑

t=1

XtXt
′ x · max

‖y‖=1
y′

α∑

t=1

YtYt
′ y

= λmax

(
α∑

t=1

XtXt
′
)
λmax

(
α∑

t=1

YtYt
′
)

The inequality is by Lemma 3.A.2. The penultimate line is because ‖v‖22 = v′v (used with

v = Xt
′x). Multiplying both sides by

(
1
α

)2
gives the desired result. �

Lemma 3.A.4. Let X, Y , and Z be random variables. Assume that X is independent of

{Y, Z}. Then

E[XY |Z] = E[X]E[Y |Z]
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Proof. By the chain rule, fX,Y |Z(x, y|z) = fX|Y,Z(x|y, z)fY |Z(y|z). Because X is independent

of both Y and Z, fX|Y,Z(x|y, z) = fX(x). �

Remark 3.A.5. Adopt the notation that if the lower limit of a sum exceeds the upper limit,

then the sum is empty and therefore equal to zero.

Lemma 3.A.6. Let cτ be a sequence of vectors such that

cτ = bcτ−1 + µτ

for a scalar b. Similarly, let c̃τ = bc̃τ−1 + µ̃τ . Then

α−1∑

τ=0

cτ c̃τ
′ =

α−1∑

i=0

[Z1,i +Z2,i +Z3,i +Z4,i] +Z5

where

Z1,i =
(1− b2(α−i))

1− b2 µiµ̃i
′,

Z2,i =

i−1∑

i2=0

(1− b2(α−i))
1− b2 bi−i2µiµ̃i2

′,

Z3,i =
α−1∑

i2=α−i

(1− b2(α−i2))

1− b2 bi+i2−α+1µα−i−1µ̃i2
′,

Z4,i =
bi+1(1− b2(α−i))

1− b2 (µic̃−1
′ + c−1µ̃i

′)

Z5 =
b2(1− b2α)

1− b2 c−1c̃−1
′

Proof. We start with some simple expansions.

α−1∑

τ=0

cτ c̃τ
′ =

α−1∑

τ=0

(bcτ−1 + µτ )(bc̃τ−1 + µ̃τ )′

=

α−1∑

τ=0

(
bτ+1c−1 +

τ∑

i=0

bτ−iµi

)(
bτ+1c̃−1 +

τ∑

i=0

bτ−iµ̃i

)′

=
α−1∑

τ=0

b2(τ+1)c−1c̃−1
′ +

α−1∑

τ=0

τ∑

i=0

τ∑

i2=0

b2τ−i−i2µiµ̃i2
′+

α−1∑

τ=0

τ∑

i=0

b2τ+1−ic−1µ̃i
′ + b2τ+1−iµic̃−1

′ (3.29)
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By summing over the b’s, the first term is equal to Z5. Applying Lemma 3.A.1 to the cross

terms and summing over the b’s, we get

α−1∑

τ=0

τ∑

i=0

b2τ+1−ic−1µ̃i
′ + b2τ+1−iµic̃−1

′ =
α−1∑

i=0

α−1∑

τ=i

b2τ+1−i (c−1µ̃i
′ + µic̃−1

′)

=
α−1∑

i=0

bi+1(1− b2(α−i))
1− b2 (µic̃−1

′ + c−1µ̃i
′)

=
α−1∑

i=0

Z4,i

The remaining three terms, Z1,i, Z2,i, and Z3,i will all come from the middle term in (3.29)

We apply Lemma 3.A.1 to term2, split the innermost sum into 3 parts, and use the fact that

∑α−1
i=0 xi =

∑α−1
i=0 xα−1−i

α−1∑

τ=0

τ∑

i=0

τ∑

i2=0

b2τ−i−i2µiµ̃i2
′ =

α−1∑

i=0

α−1∑

τ=i

τ∑

i2=0

b2τ−i−i2µiµ̃i2
′

(split inner sum) =
α−1∑

i=0

α−1∑

τ=i

i−1∑

i2=0

b2τ−i−i2µiµ̃i2
′ +

α−1∑

i=0

α−1∑

τ=i

b2τ−2iµiµ̃i
′+

α−1∑

i=0

α−1∑

τ=i

τ∑

i2=i+1

b2τ−i−i2µiµ̃i2
′

(switch indices) =
α−1∑

i=0

i−1∑

i2=0

α−1∑

τ=i

b2τ−i−i2µiµ̃i2
′ +

α−1∑

i=0

α−1∑

τ=i

b2τ−2iµiµ̃i
′+

α−1∑

i=0

α−1∑

i2=i+1

α−1∑

τ=i2

b2τ−i−i2µiµ̃i2
′

(apply fact) =
α−1∑

i=0

i−1∑

i2=0

α−1∑

τ=i

b2τ−i−i2µiµ̃i2
′ +

α−1∑

i=0

α−1∑

τ=i

b2τ−2iµiµ̃i
′

+
α−1∑

i=0

α−1∑

i2=α−i

α−1∑

τ=i2

b2τ−(α−1−i)−i2µα−1−iµ̃i2
′

(geometric series) =

α−1∑

i=0

[Z2,i +Z1,i +Z3,i]

�

Fact 3.A.7. For an event E and random variable X, P(E|X) ≥ p for all X ∈ C implies that

P(E|X ∈ C) ≥ p.
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Theorem 3.A.8 (Matrix Azuma). [11, Theorem 7.1] Consider a finite adapted sequence Zt of

n× n random Hermitian matrices, and a fixed sequence At of Hermitian matrices that satisfy

Et−1[Zt] = 0 and Zt
2 � At

2 with probability 1.

Define the variance parameter

σ2 :=
∥∥∥
∑

t

At
2
∥∥∥

2
.

Then, for all ε > 0,

P

(
λmax

(∑

t

Zt

)
≥ ε
)
≤ n exp

(−ε2
8σ2

)

The following corollary extends the above result to the case where Et−1[Zt] 6= 0 and also

includes conditioning on another random variable.

Corollary 3.A.9 (Matrix Azuma conditioned on another random variable for a nonzero mean

Hermitian matrix). Consider an α-length sequence {Zt}1≤t≤α of random Hermitian matrices of

size n×n given a random variable X. Assume that, for all X ∈ C, (i) P(b1I � Zt � b2I|X) = 1,

for 1 ≤ t ≤ α and (ii) b3I � 1
α

∑α
t=1 Et−1(Zt|X) � b4I. Then for all ε > 0,

P

(
λmax

(
1

α

α∑

t=1

Zt

)
≤ b4 + ε

∣∣∣X
)
≥ 1− n exp

( −αε2
8(b2 − b1)2

)

P

(
λmin

(
1

α

α∑

t=1

Zt

)
≥ b3 − ε

∣∣∣X
)
≥ 1− n exp

( −αε2
8(b2 − b1)2

)

Proof. 1. Let Yt := Zt − Et−1(Zt|X). Clearly Et−1(Yt|X) = 0. Since for all X ∈ C,

P(b1I � Zt � b2I|X) = 1 and since for an Hermitian matrix, λmax(.) is a convex

function, and λmin(.) is a concave function, b1I � Et−1(Zt|X) � b2I for all X ∈ C.

Therefore, P(Yt
2 � (b2 − b1)2I|X) = 1 for all X ∈ C. Thus, for Theorem 3.A.8, σ2 =

‖∑α
t=1(b2−b1)2I‖2 = α(b2−b1)2. For any X ∈ C, applying Theorem 3.A.8 for {Yt}t=1,...,α

conditioned on X, we get that, for any ε > 0,

P

(
λmax

(
1

α

α∑

t=1

Yt

)
≤ ε
∣∣∣X
)
> 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Zt − Et−1(Zt|X)) ≥

λmax( 1
α

∑α
t=1Zt) + λmin( 1

α

∑α
t=1−Et−1(Zt|X)).
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Since λmin( 1
α

∑α
t=1−Et−1(Zt|X)) = −λmax( 1

α

∑α
t=1 Et−1(Zt|X)) ≥ −b4,

thus λmax( 1
α

∑α
t=1 Yt) ≥ λmax( 1

α

∑α
t=1Zt)− b4. Therefore,

P

(
λmax

(
1

α

α∑

t=1

Zt

)
≤ b4 + ε

∣∣∣X
)
> 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

2. Now let Yt = Et−1(Zt|X)−Zt. As before, Et−1(Yt|X) = 0 and conditioned on any X ∈ C,

P(Y 2
t � (b2 − b1)2I|X) = 1. As before, applying Theorem 3.A.8, we get that for any

ε > 0,

P

(
λmax

(
1

α

α∑

t=1

Yt

)
≤ ε
∣∣∣X
)
> 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Et−1(Zt|X) − Zt))

≥ λmin( 1
α

∑α
t=1 Et−1(Zt|X)) + λmax( 1

α

∑α
t=1−Zt) =

λmin( 1
α

∑α
t=1 Et−1(Zt|X))− λmin( 1

α

∑α
t=1Zt) ≥ b3 − λmin( 1

α

∑α
t=1Zt) Therefore, for any

ε > 0,

P

(
λmin

(
1

α

α∑

t=1

Zt

)
≥ b3 − ε

∣∣∣X
)
≥ 1− n exp

( −αε2
8(b2 − b1)2

)
for all X ∈ C

�

We can further extend this to the case of a matrix which is not necessarily Hermitian.

Corollary 3.A.10 (Matrix Azuma conditioned on another random variable for an arbitrary

matrix). Consider an α-length adapted sequence {Zt} of random matrices of size n1 × n2

given a random variable X. Assume that, for all X ∈ C, (i) P(‖Zt‖2 ≤ b1|X) = 1 and (ii)

‖ 1
α

∑α
t=1 Et−1(Zt|X)‖2 ≤ b2. Then, for all ε > 0,

P

(∥∥∥ 1

α

α∑

t=1

Zt

∥∥∥
2
≤ b2 + ε

∣∣∣X
)
≥ 1− (n1 + n2) exp

( −αε2
8(2b1)2

)

Proof. Define the dilation of an n1 × n2 matrix M as dilation(M) :=




0 M ′

M 0


. Notice

that this is an (n1 + n2)× (n1 + n2) Hermitian matrix [11] . As shown in [11, equation 2.12],

λmax

(
dilation(M)

)
= ‖ dilation(M)‖2 = ‖M‖2 (3.30)
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Thus, the corollary assumptions imply that P(‖ dilation(Zt)‖2 ≤ b1|X) = 1 for all X ∈ C. By

(3.30) and the definition of dilation,

1

α

∑

t

Et−1[dilation(Zt)|X] = dilation

(
1

α

∑

t

Et−1[Zt|X]

)
� b2I

Thus, applying Corollary 3.A.9 to the sequence {dilation(Zt)}t=1,...,α, we get that,

P

(
λmax

(
1

α

α∑

t=1

dilation(Zt)

)
≤ b2 + ε

∣∣∣X
)
≥ 1− (n1 + n2) exp

(−αε2
32b21

)
for all X ∈ C

Using (3.30), λmax

(
1
α

∑α
t=1 dilation(Zt)

)
= λmax

(
dilation( 1

α

∑α
t=1Zt)

)
= ‖ 1

α

∑α
t=1Zt‖2 gives

the final result. �
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3.B Proofs of Support Change Lemmas

Proof of Lemma 3.2.18. We now provide the complete proof for 1) and 2) in the proof sketch.

For 1) we have by the bound in [24]

P (The object moves at least once every β instants in the interval Ju)

= P
(
The bit sequence θ(u−1)α+1 . . . θuα does not contain a sequence of β consecutive zeros

)

≥
(

1− (1− q)β
)α−β+1

≥
(

1− (1− q)β
)α

.

We need the object to move at least once every β time instants in every interval Ju. We have

P (The object moves at least once every β instants in every Ju) ≥
(

1− (1− q)β
)d tmax

α
eα

≥
(

1− (1− q)β
)( tmax

α
+1)α

≥ 1− (tmax + α)(1− q)β.

This probability will be greater than 1− n−10

2 if

q ≥ 1−
(

n−10

2(tmax + α)

) 1
β

To prove 2), consider the probability of having motion of at least s
% indices whenever the

object moves. This will happen if µt ≥ −0.1 s% for t = 1, . . . , tmax. Also, if µt ≤ .1 s% , then the
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object will move by fewer than 1.2 s% indices. Using a standard Gaussian tail bound,

P
(
|µt| ≤

0.1s

%

)tmax

≥




1−
2 exp

(
−
(

0.1s
%

)2

2σ2

)

0.1s
%σ

√
2π




tmax

=


1−

20σ% exp
(
−(0.1s)2

2%2σ2

)

s
√

2π



tmax

≥


1−

20
√

1
4000 log(n) exp (−20 log(n))

√
2π



tmax

≥ 1− tmax
20√
2π

√
1

4000 log(n)
exp (−20 log(n))

= 1− tmax
1√
20π

n−20

√
log(n)

≥ 1− 1√
20π

n10−20

√
log(n)

≥ 1− n−10

2
.

For simplicity we assume n ≥ 2, so that
√

20π log(n) ≥ 2.

Finally, by the union bound

P
(

2) and 3) hold
)

= 1− P
(

2) or 3) does not hold
)
≥ 1− 2

n−10

2
= 1− n−10

�

Proof of Lemma 3.3.4. Consider an interval of length α. The assumption that the maximum

motion each time is by at at most %2s indices with %2sα ≤ n ensures that once an index is

removed from the support, it does not return for the next α time instants. Thus without loss

of generality, we can renumber the indices so that the object starts at index 1 at the beginning

of the interval.

Notice from the model that for a given choice of T(i)’s, h(α) is an upper bound on h∗(α).

Thus, as long as we can construct one set of mutually disjoint T(i)’s for which (3.6) holds and

for which h(α; {T(i),u}) ≤ h+α we will be done.



153

Let T [j] for j = 1, . . . ,m be the distinct supports (in order) of xt for t ∈ Ju. That is

Tt = T [j] for some j. Now define T(i) = T [i] \ T [i+1] for i = 1, . . . ,m− 1, and T(m) = T [m]. We

will show that these T(i) are disjoint. For a j > i,

T(i) ∩ T(j) =
(
T [i] \ T [i+1]

)
∩
(
T [j] \ T [j+1]

)

= T [i] ∩
(
T [i+1]

)C
∩ T [j] ∩

(
T [j+1]

)C

The model assumes the support moves in a single direction, so, for a j > i, if T [j] intersects

with T [i] then it also necessarily intersects with T [i+1]. Thus, T [i] ∩
(
T [i+1]

)C ∩ T [j] = ∅.

Next we show that T [j] ⊆ T(j) ∪ · · · ∪ T(j+%−1). We use the fact that T [j] ∩ T [j+%] = ∅.

T [j] = [T [j] ∩
(
T [j+1]

)c
] ∪ [T [j] ∩ T [j+1] ∩ (T [j+2])C ] ∪ · · · ∪ [T [j] ∩ · · · ∩ (T [j+%])C ]

= [T(j)] ∪ [T [j] ∩ T(j+1)] ∪ · · · ∪ [T [j] ∩ T [j+1] ∩ · · · ∩ T(j+%−1)]

⊆ T(j) ∪ T(j+1) ∪ · · · ∪ T(j+%−1)

Notice that by construction, T [j] ∩ T(j) 6= ∅. This along with the fact that the support changes

at least once every β time instants and the fact that once an index is removed from the support,

it does not return for the next α time instants, implies that h(α) ≤ β for this choice of T(i)’s.

Since h∗(α) ≤ h(α) and since h+ = β/α we are done. �

Proof of Lemma 3.3.5. For this model, we choose T(j) = [(j − 1)s + 1, js] and let ρ = 2. The

assumption that α ≤ n
m ensures that no indices re-enter the support after being removed in

an interval Ju (which has length α). Because the support moves down by at least one index

at every time t and no indices are re-visited, h∗(α) ≤ s. Therefore h+ = s
α . The assumptions

then imply that ρ2h+ ≤ .0024, which satisfies Corollary 3.3.2. �
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3.C Bounding ζ+
k,new [For the purposes of review]

Recall that ζ+
k,new :=

bH,k

bA − bA,⊥ − bH,k
.

Let ε = 0.05cnewζλ
−. Divide the numerator and denominator by λ−new and use the bounds

f = λ+

λ− and g = λ+new
λ−new

to define

Bk :=





[
ρ2h+(φ+)2(κ+

s )2(ζ+
j,new,k−1) + 2κ+

s φ
+
] (
b2cnew

γnew2

λ−new
+ (1− b2)g

)
+

[
2ρ2h+(φ+)2ζ+

j,∗ + ζ+
j,∗

2κ+s φ
+

α(1−b2)

] (
b2
√
rcnew

γγnew
λ−new

) k = 1

[
ρ2h+(φ+)2ζ+

j,new,k−1 + 2
√
ρ2h+φ+

] (
b2cnew

γnew2

λ−new
+ (1− b2)g

)
+

[
2ρ2h+(φ+)2ζ+

j,∗ + ζ+
j,∗

2
√
ρ2h+φ+

α(1−b2)

](
b2
√
rcnew

γγnew
λ−new

) k ≥ 2

Ck :=





[
ρ2h+(φ+)2(ζ+

j,∗)r + 2φ+(ζ+
j,∗)r + 2(ζ+

j,∗)r
] (
b2r γ2

λ−new
+ (1− b2)f

)
+

[
2φ+r

α(1−b2)
+ 2r

α(1−b2)

] (
b2
√
rcnew

γγnew
λ−new

)
+ 0.25

k = 1

[
ρ2h+(φ+)2(ζ+

j,∗)r + 2
√
ρ2h+φ+(ζ+

j,∗)r + 2(ζ+
j,∗)r

] (
b2r γ2

λ−new
+ (1− b2)f

)
+

[
2
√
ρ2h+φ+r

α(1−b2)
+ 2r

α(1−b2)

](
b2
√
rcnew

γγnew
λ−new

)
+ 0.25

k ≥ 2

Dk :=1− (ζ+
j,∗)

2 − b2 −
[
2ζ+
j,∗

1

α(1− b2)

](
b2
√
rcnew

γγnew

λ−new

)
−

[
(ζ+
j,∗)

2
](

b2r
γ2

λ−new
+ (1− b2)f

)
−

ζ+
j,new,k−1Bk − cnewζCk − 0.15

Then,

ζ+
new,k ≤ ζ+

new,k−1

Bk
Dk

+ cnewζ
Ck
Dk

.

It is not difficult to see that Bk, Ck, Dk are increasing functions of ζ+
new,k−1 and of r, f , g, and

ζ. Since η ≥ 1, so ηf ≥ f . Thus b2ηf + (1− b2)f is increasing in b and so Bk, Ck, Dk are also

increasing in b.

Using the bounds assumed in Theorem 3.2.15 and since ζ+
new,0 = 1, we can get that ζ+

1 ≤

0.15. Using this and the fact that Bk, Ck, Dk are increasing functions of ζ+
new,k−1, by induction,

we can show that ζ+
new,k ≤ ζ+

new,k−1 and thus, for all k ≥ 1, ζ+
new,k ≤ 0.15.
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Using ζ+
new,k ≤ 0.15 and the bounds assumed in Theorem 3.2.15, we can show that

ζ+
k,new ≤ 0.4ζ+

j,new,k−1 + 0.5cnewζ

Thus,

ζ+
k,new ≤ 0.4ζ+

j,new,k−1 + 0.5cnewζ = ζ+
0 (0.4)k +

k−1∑

i=0

(0.4)i(0.5)cnewζ

≤ ζ+
0 (0.4)k +

∞∑

i=0

(0.4)i(0.5)cnewζ

≤ 0.4k + 0.84cnewζ

References

[1] J. Wright and Y. Ma, “Dense error correction via l1-minimization,” IEEE Trans. on Info.
Th., vol. 56, no. 7, pp. 3540–3560, 2010.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”
Journal of ACM, vol. 58, no. 3, 2011.

[3] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-sparsity inco-
herence for matrix decomposition,” SIAM Journal on Optimization, vol. 21, 2011.

[4] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, “Low-rank matrix recovery from
errors and erasures,” in Information Theory Proceedings (ISIT), 2011 IEEE International
Symposium on. IEEE, 2011, pp. 2313–2317.

[5] H. Xu, C. Caramanis, and S. Sanghavi, “Robust pca via outlier pursuit,” IEEE Tran. on
Information Theorey, vol. 58, no. 5, 2012.

[6] M. B. McCoy and J. A. Tropp, “Sharp recovery bounds for convex demixing, with appli-
cations,” arXiv:1205.1580.

[7] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex geometry of
linear inverse problems,” Foundations of Computational Mathematics, no. 6, 2012.

[8] M. Tao and X. Yuan, “Recovering low-rank and sparse components of matrices from
incomplete and noisy observations,” SIAM Journal on Optimization, vol. 21, no. 1, pp.
57–81, 2011.

[9] F. D. L. Torre and M. J. Black, “A framework for robust subspace learning,” International
Journal of Computer Vision, vol. 54, pp. 117–142, 2003.



156

[10] M. Mardani, G. Mateos, and G. B. Giannakis, “Dynamic anomalography: Tracking net-
work anomalies via sparsity and low rank,” Selected Topics in Signal Processing, IEEE
Journal of, vol. 7, no. 1, pp. 50–66, 2013.

[11] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of
Computational Mathematics, vol. 12, no. 4, 2012.

[12] C. Qiu, N. Vaswani, B. Lois, and L. Hogben, “Recursive robust pca or recursive sparse
recovery in large but structured noise,” IEEE Trans. Info. Th., Aug. 2014, shorter versions
in ICASSP 2013 and ISIT 2013.

[13] B. Lois and N. Vaswani, “A correctness result for online robust pca,” arXiv:1409.3959.

[14] H. Guo, C. Qiu, and N. Vaswani, “An online algorithm for separating sparse and low-
dimensional signal sequences from their sum,” IEEE Trans. Sig. Proc., pp. 4284–4297,
Aug. 2014.

[15] J. He, L. Balzano, and J. Lui, “Online robust subspace tracking from partial information,”
arXiv:1109.3827 [cs.IT], 2011.

[16] G. Mateos and G. B. Giannakis, “Robust pca as bilinear decomposition with outlier-
sparsity regularization,” Signal Processing, IEEE Transactions on, vol. 60, no. 10, pp.
5176–5190, 2012.

[17] D. Hsu, S. Kakade, and T. Zhang, “Robust matrix decomposition with sparse corruptions,”
IEEE Trans. Info. Th., Nov. 2011.

[18] J. Feng, H. Xu, and S. Yan, “Online robust pca via stochastic op-
timization,” in Advances in Neural Information Processing Systems 26,
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Wein-
berger, Eds. Curran Associates, Inc., 2013, pp. 404–412. [Online]. Available:
http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization.pdf

[19] J. Feng, H. Xu, S. Mannor, and S. Yan, “Online pca for contaminated data,” in
Advances in Neural Information Processing Systems 26, C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 764–772.
[Online]. Available: http://papers.nips.cc/paper/5135-online-pca-for-contaminated-data.
pdf

[20] J. Zhan and N. Vaswani, “Robust pca with partial subspace knowledge,” arXiv:1403.1591
[cs.IT], 2014.

[21] S. Li and H. Qi, “Recursive low-rank and sparse recovery of surveillance video using
compressed sensing,” in Proceedings of the International Conference on Distributed Smart
Cameras, ser. ICDSC ’14. New York, NY, USA: ACM, 2014, pp. 1:1–1:6. [Online].
Available: http://doi.acm.org/10.1145/2659021.2659029

[22] B. Nadler, “Finite sample approximation results for principal component analysis: A ma-
trix perturbation approach,” The Annals of Statistics, vol. 36, no. 6, 2008.

[23] E. Candes, “The restricted isometry property and its implications for compressed sensing,”
Compte Rendus de l’Academie des Sciences, Paris, Serie I, pp. 589–592, 2008.

http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization.pdf
http://papers.nips.cc/paper/5135-online-pca-for-contaminated-data.pdf
http://papers.nips.cc/paper/5135-online-pca-for-contaminated-data.pdf
http://doi.acm.org/10.1145/2659021.2659029


157

[24] M. Muselli, “On convergence properties of pocket algorithm,” Neural Networks, IEEE
Transactions on, vol. 8, no. 3, pp. 623–629, May 1997.

[25] D. Hsu, S. M. Kakade, and T. Zhang, “Robust matrix decomposition with sparse cor-
ruptions,” Information Theory, IEEE Transactions on, vol. 57, no. 11, pp. 7221–7234,
2011.

[26] C. Davis and W. M. Kahan, “The rotation of eigenvectors by a perturbation. iii,” SIAM
Journal on Numerical Analysis, Mar. 1970.

[27] R. Horn and C. Johnson, Matrix Analysis. Cambridge Univ. Press, 1985.



158

CHAPTER 4. GENERAL CONCLUSIONS

In this work correctness results for two versions the ReProCS algorithm were proved. In

Chapter 2, results were obtained for both the online matrix completion problem and the online

robust PCA problem. It was shown that if 1) the algorithm parameters were set appropriately,

2) the `t are independent over t and lie in a dense low-dimensional subspace that changes slowly

over time, and 3) the support of xt changes enough with t, then the ReProCS algorithm will

accurately recover xt and `t at each time t.

Chapter 3 analyzed a modification of the ReProCS algorithm that included a cluster PCA

step. This allowed for directions to be removed from the estimate of the subspace where the

`t lie. Also in this paper, the assumption that the `t be independent was relaxed, and an

autoregressive model was assumed on the coefficients at.

In ongoing work, we have been able to remove the assumption that the eigenvalue clusters

are known a priori. Using the same proof techniques (Weyl’s inequality and the Matrix Ho-

effding inequality), we can show that for each i, λi

(∑
t

ˆ̀
t
ˆ̀
t
′
)

is close to λi (
∑

t `t`t
′). Thus,

the clusters can be detected automatically.

As mentioned in Chapter 2, one direction for new work would be to study the under-

sampled case mt = Atxt +Bt`t where At and Bt are matrices with more columns than rows.

A partial result for the case where Bt does not change with t was proved in [1]. Using the

new techniques introduced in this thesis, it should be straightforward to extend this result to a

complete correctness result. Another open problem is the noisy case: mt = xt + `t +wt where

wt is small and bounded noise.
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