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CHAPTER 1. Introduction

Applications of matrix completion problems occur in situations where some information is

known but other information not available, but it is known that the complete matrix must have

certain properties. Examples include computer engineering problems including data transmis-

sion, coding, decompression, and image enhancement. Matrix completion problems also arise

in optimization and in the study of Euclidean distance matrices.

All matrices discussed here are real n× n matrices, and α is a subset of N = {1, 2, . . . , n}.

We will denote the matrix



d1 0 0 · · · 0

0 d2 0 · · · 0

0 0 d3
. . . 0

0 0 0 · · · dn


by diag(d1, d2, . . . , dn). The two entries

aij and aji of a matrix are symmetrically placed entries.

An element aij of a matrix A is the element in row i and column j of the matrix A. A

principal submatrix A(α) of a matrix A is a square array lying in the rows and columns of A

indexed by α. A principal minor is the determinant of a principal submatrix. A permutation

matrix is a matrix in which each entry is either 0 or 1 and there is exactly one 1 in each row

and each column of the matrix. A permutation similarity of A is a product PAP−1 where P is

a permutation matrix. A diagonal similarity of A is a product DAD−1 where D is a diagonal

matrix.

A partial matrix is a rectangular array in which some entries are specified and some are

left unspecified. We usually label the specified entries as aij and the unspecified entries as

xij where the entry is in the ith row and jth column of the partial matrix. A fully specified

principal submatrix is a principal submatrix of a partial matrix which contains only specified

entries. A completion of a partial matrix is a specific choice of values for the unspecified
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entries. A pattern for n× n matrices is a list of positions of an n× n matrix, that is, a subset

of N × N where N = {1, . . . , n}. A pattern is assumed to contain all diagonal positions. A

partial matrix specifies a pattern if its specified entries lie exactly in those positions listed in

the pattern. Many of the definitions in this chapter are taken from [2], [12], and [5].

A P -matrix is a matrix in which every principal minor of the matrix is positive. A P0-

matrix is a matrix in which every principal minor of the matrix is nonnegative. A P0,1-matrix

is a matrix in which every principal minor of the matrix is nonnegative, and the diagonal of the

matrix is positive. A weakly sign symmetric matrix is a matrix in which aijaji ≥ 0, 1 ≤ i, j ≤ n.

A sign symmetric matrix is a matrix in which either aij = aji = 0 or aijaji > 0, 1 ≤ i, j ≤ n. We

will consider the classes of sign symmetric P0,1-matrices, weakly sign symmetric P0,1-matrices,

and P0,1-matrices.

If a partial matrix that specifies a pattern contains a fully specified principal submatrix, the

determinant of that submatrix is called an original minor. A partial P0,1-matrix is a partial

matrix where every original minor is nonnegative and the diagonal entries are all strictly

positive. A partial sign symmetric P0,1-matrix is a partial P0,1-matrix with the additional

condition that the symmetrically placed specified entries aij and aji fulfill the property that

either aij = aji = 0 or aijaji > 0. Likewise, a partial weakly sign symmetric P0,1-matrix is a

partial P0,1 matrix in which aijaji ≥ 0 when both aij and aji are specified.

Let Π be in the set of classes {P0,1, weakly sign symmetric P0,1, sign symmetric P0,1} of

matrices. We consider the question: Given a pattern, does every partial Π-matrix which

specifies the pattern have completion to a Π-matrix? We say a partial Π-matrix A has Π-

completion if we can choose the unspecified entries so that the new matrix Â is a Π-matrix.

We say a pattern has Π-completion if every partial Π-matrix specifying that pattern can be

completed to a Π-matrix. Since any permutation similarity of a Π-matrix is still a Π-matrix,

if we answer this question for one matrix A, we answer the question for any matrix B where

B = PAP−1 for some permutation matrix P . Since multiplying a Π-matrix by a positive

diagonal matrix produces a Π-matrix, we can multiply a Π-matrix A on the left by the diagonal

matrix D = diag(1/a11, 1/a22, . . . , 1/ann). This changes the matrix A into a new matrix A′
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in which all its diagonal entries are equal to 1. If the matrix A′ has Π-completion, then so

does the matrix A, because we can multiply the completed matrix Â′ on the left by the matrix

D−1 to obtain a completion of the matrix A. Since all the classes we consider have positive

diagonal elements, we assume that the diagonal elements of every matrix are equal to 1.

A graph G(V,E) of order n > 0 is a set V , with |V | = n, and a set E composed of a

subset of the set {{i, j}|i, j ∈ V and i 6= j}. The elements of E are called edges. A digraph

G(V,E) of order n > 0 is a set V with |V | = n, and a set E composed of a subset of the set

{(i, j)|i, j ∈ V and i 6= j}. The elements of E in a digraph are called arcs or directed edges.

An n×n partial matrix A (and the pattern describing the specified entries of A) is associated

with a digraph G(V,E) where the vertices V of G are {1, 2, 3, . . . , n}, and an arc (i, j) ∈ E

if and only if aij is specified in A. All patterns we consider have specified diagonal entries.

A digraph G is said to have Π-completion if every partial Π-matrix associated with G has

completion to a Π-matrix. Notice that a permutation similarity of the matrix is equivalent to

a renumbering of the vertices of the digraph. We will often describe the pattern by its digraph.

We consider the digraphs of order up to 4 and graphs up to order 6 as listed in [9], and we

number the digraphs (graphs) where q is the number of arcs (edges) and n is the diagram

number.

A path of length k in a digraph is a digraph P (V,E) of the form V = {x0, x1, . . . , xk}, E =

{(x0x1), (x1x2), . . . , (xk−1xk)}, where the xi are all distinct. A path of length k in a graph is a

graph P (V,E) of the form V = {x0, x1, . . . , xk}, E = {{x0x1}, {x1x2}, . . . , {xk−1xk}}, where

the xi are all distinct. A cycle can be created in a graph from a path P (V,E) = {x0, x1, . . . , xk},

with k ≥ 2, by including the edge {xk, x0} in the edge set E. A cycle can be created in a

digraph from a path P (V,E) = {x0, x1, . . . , xk}, with k ≥ 1, by including the (arc (xk, x0)) in

the arc set E.

A symmetric k-cycle is a digraph on k vertices with arc set E = {(vi, vi+1), (vi+1, vi),

(vk, v1), (v1, vk)|i = 1, 2, . . . , k − 1}. A semipath is a digraph P (V,E) of the form V =

{x0, x1, . . . , xk}, E = {ex1 , ex2 , . . . , exk
}, where exi is either the arc (xi−1, xi) or the arc

(xi, xi−1), and the xi are all distinct. A semicycle can be created from a semipath P (V,E) =
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{x0, x1, . . . , xk} by including the arc e in the arc set E where e is either (xk, x0) or (x0, xk).

The distance between two vertices u and v in a digraph is the number of arcs in the shortest

semipath between them and is denoted by dist(u, v). If there is no semipath between the

vertices u and v, then dist(u, v) is defined to be infinite.

A chord of a cycle is an edge not in the cycle whose endpoints are on the cycle. A digraph

G(V,E) is symmetric if (i, j) ∈ E if and only if (j, i) ∈ E. For a graph G, we define a digraph

D(G) with the same vertex set as G as follows: the arcs (i, j) and (j, i) are in the digraph if

and only if the edge {i, j} is in the graph. Likewise, for a symmetric digraph D, we define a

graph G(D) with the same vertex set as D where {i, j} is an edge in G if and only if (i, j) and

(j, i) are arcs in D. An asymmetric digraph G(V,E) is a digraph where for each vertex i and

j, no more than one of the arcs (i, j) and (j, i) is in E. An asymmetric cycle is an asymmetric

digraph consisting only of one cycle. An asymmetric pattern is a pattern associated with an

asymmetric digraph.

A digraph is strongly connected if for all i, j ∈ V , there is a path from i to j. A digraph

is connected if for all i, j ∈ V , there is a semipath from i to j. A cut-vertex of a connected

digraph is a vertex whose deletion from G disconnects the digraph. A connected digraph

is nonseparable if it has no cut-vertices. A block is a maximal nonseparable subdigraph. A

complete digraph or clique is a digraph which contains all possible arcs. A block-clique digraph

is a digraph whose blocks are all cliques. A connected component of a digraph (graph) is a

maximal connected subdigraph (subgraph). A strongly connected component of a digraph is

a maximal strongly connected subdigraph.

A tree is a connected digraph that contains no semicycle. A forest is a digraph whose

connected components are trees. A vertex u is a neighbor of another vertex v in the digraph

G(V,E) if either (u, v) ∈ E or (v, u) ∈ E.

We use the following theorem in order to simplify the proofs of the completion of a graph

(digraph). However, the method used in the proof of the theorem can also be used in other

contexts to change the values of certain entries of a matrix to whatever is desired through the

use of a diagonal similarity.
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Theorem 1.1 Let S ⊂ {aij |1 ≤ i, j ≤ n and i 6= j}, |S| ≤ n − 1 be a set of nonzero entries

from an n × n matrix A. Let T (V,E) be the digraph on n vertices where the arc (i, j) ∈ E if

and only if aij ∈ S. If the digraph of S contains no semicycle, then the elements of S can be

made equal to 1 through the use of a diagonal similarity.

Proof : If T is a forest, we can partition the matrix A into blocks Aij , where all of the entries

in S lie in the disjoint principal submatrices A11, A22, . . . , Att, corresponding to the connected

components of T . Then the diagonal entries which affect one of these principal submatrices

do not affect any of the other principal submatrices Aqq, for q ∈ {1, 2, . . . , t}. We can work

with each connected component separately, so that if DpAppD
−1
p has 1’s in the appropriate

positions for each p ∈ {1, 2, . . . , t}, then the matrix

B =



D1 0 0 · · · 0

0 D2 0 · · · 0
...

...
. . .

...

0 0 0 · · · Dt





A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Att





D1 0 0 · · · 0

0 D2 0 · · · 0
...

...
. . .

...

0 0 0 · · · Dt



−1

has 1’s in the appropriate positions.

Therefore, we may assume T is a tree. Then there exists exactly one semipath from any

vertex to any other vertex of T . Let D = diag(d1, d2, . . . , dn). Set d1 = 1. For any vertex

v at distance k from 1, let P = (v0 = 1, v1, . . . , vk−1, vk = v) be the semipath from 1 to v

with vertex set V = {v0, v2, . . . , vk} and arc set E = {ev1 , ev2 , . . . , evk
} where evl

= (vl−1, vl)

or (vl, vl−1). Set dv = gv1gv2 . . . gvk
where

gvl
=


avl−1vl

if evl
= (vl−1, vl),

1
avlvl−1

if evl
= (vl, vl−1),

for l = 1, 2, . . . , k. (1.1)

We know there is a vertex w on the semipath between vertex v and vertex 1 such that

dist(1, w) = k − 1. Then dw = gv1gv2 . . . gvk−1
and dv = gv1gv2 . . . gvk−1

gvk
where

gvk
= gv =


awv if ev = (w, v),

1
avw

if ev = (v, w).
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Then for B = DAD−1,


if ev = (w, v), bwv = (gv1gv2 . . . gvk−1

)(awv)
(

1
gv1gv2 . . . gvk−1

awv

)
= 1

if ev = (v, w), bvw =
(

gv1gv2 . . . gvk−1

avw

)
(avw)

(
1

gv1gv2 . . . gvk−1

)
= 1,

so the entry corresponding to ev is made equal to 1. Considering the induced subdigraph

H(V ′, E′) of T with V ′ = {u|dist(1, u) ≤ k}, we see that v is a leaf of H. Since the entry dv

changes only the entries of A corresponding to arcs incident with v, the choice of dv does not

change any other entry corresponding to an arc of H. The same is true for any other vertex u

at distance k from 1. �

Example 1.2 Here is an example of this procedure applied to a 5× 5 matrix.

Let A =



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


. Assume the entries a12, a31, a24, and a53 are

nonzero, and we want to make the entries a12 = a31 = a24 = a53 = 1 through the use of a

diagonal similarity. Then the distance tree of the arcs corresponding to these four entries with

root vertex 1 is shown in Figure 1.1.

•

•

•

•

•
1

2

3

4

5

�
�

@
@

�
��

@
@I

-

�

Figure 1.1 Tree T associated with the entries of A chosen in Example 1.2

In order to make these 4 entries equal to one, we set d1 = 1, d2 = a12, d3 = 1/a31,

d4 = a12a24, and d5 =
1

a31a53
.
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Then B = DAD−1 =

1 0 0 0 0

0 a12 0 0 0

0 0 1
a31

0 0

0 0 0 a12a24 0

0 0 0 0 1
a31a53





a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55





1 0 0 0 0

0 1
a12

0 0 0

0 0 a31 0 0

0 0 0 1
a12a24

0

0 0 0 0 a31a53



=



a11 1 a13a31
a14

a12a24
a15a31a53

a12a21 a22 a12a23a31 1 a12a25a31a53

1 a32
a12a31

a33
a34

a12a24a31
a35a53

a12a24a41 a24a42 a12a24a31a43 a44 a12a24a31a45a53

a51
a31a53

a52
a12a31a53

1 a54
a12a24a31a53

a55


This has 1’s in the appropriate 4 positions. �

It is not necessarily the case that n − 1 nonzero entries can be made equal to one when

the digraph of these entries contains a semicycle. For example, consider a 4× 4 matrix A, and

attempt to make entries a21, a23, and a13 equal to one. Then A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


and the digraph of the n− 1 entries is shown in Figure 1.2.

•

• •

•

1 2

4 3

@
@

@
@

?

�

R

Figure 1.2 Digraph corresponding to the entries of A in S

We would like to choose d1, d2, d3, and d4 so that if D = diag(d1, d2, d3, d4) and DAD−1 =

B = [bij ], then b21, b23, and b13 are equal to one. This occurs if and only if Equations (1.2),

(1.3), and (1.4) hold.

d2a21d
−1
1 = b21 = 1 (1.2)
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d2a23d
−1
3 = b23 = 1 (1.3)

d1a13d
−1
3 = b13 = 1 (1.4)

Equation 1.2 holds if and only if

d2 =
d1

a21
(1.5)

Substituting Equation 1.5 into Equation 1.3, we get

d1a23

a21d3
= 1 (1.6)

Solving Equation 1.6 for d1, we get

d1 =
a21d3

a23
(1.7)

Substituting Equation 1.7 into Equation 1.4, we get

a21d3

a23
a13

1
d3

= 1 (1.8)

But this is true if and only if
a21a13

a23
= 1 (1.9)

Therefore, we can only find such a set of elements, d1, d2, d3, and d4 if
a21a13

a23
= 1. Since this

is not necessarily the case, we cannot necessarily make these three elements equal to 1 through

the use of a diagonal similarity.

Since the entry aij becomes diaij
1
dj

through the diagonal similarity DAD−1, the cycle

product aijaji becomes diaij
1
dj

djaji
1
di

= aijaji, which is the same cycle product as before.

Similarly, a diagonal similarity does not change the cycle products of a matrix A of any size.

Therefore, if the product of two symmetrically placed entries of a matrix are equal 1, making

the entry aij = 1 through a diagonal similarity automatically makes the entry aji = 1.

We will use the term Π to refer to any one of the classes P0,1, sign symmetric P0,1, and

weakly sign symmetric P0,1. The following theorem and lemma will be used extensively in the

subsequent chapters.

Theorem 1.3 [10] If the pattern Q has Π-completion, then any principal subpattern R has Π-

completion. Equivalently, if a digraph has Π-completion, then so does any induced subdigraph.
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Lemma 1.4 Let G be a digraph that has Π-completion. Let H be a digraph obtained from G

by deleting one arc (u, v) such that u and v are not both contained in any clique of order 3.

Then H has Π-completion.

Proof: Let G and H satisfy the hypothesis, and let A be a partial Π-matrix specifying

H. We choose a value for the unspecified (u, v)-entry of A to obtain a partial Π-matrix B

specifying G as follows. If 〈u, v〉 is a clique in G, choose a value c for the u, v-entry that

completes A({u, v}) to a Π-matrix. Such a c is guaranteed to exist because the order 2 digraph

with one arc has Π-completion by [10]. Otherwise, set the (u, v)-entry equal to zero. Then

since G has Π-completion, we can complete B to a Π-matrix C, which also completes A. �

The Appendix consists of the computations that were used to check the results in a propo-

sition, theorem and a number of lemmas in the chapters that follow. These computations were

done in the software package Mathematica, and will aid the reader in working through the

proofs of the following: the classification of the digraph q = 7, n = 2 regarding weakly sign

symmetric P0,1-completion in Proposition 2.5; the classification of the digraphs q = 5, n = 7

in Lemma 4.7; q = 5, n = 8 in Lemma 4.8; q = 5, n = 9 in Lemma 4.9; q = 6, n = 4 in

Lemma 4.10; q = 6, n = 5 in Lemma 4.11; q = 6, n = 6 in Lemma 4.12; and q = 6, n = 7

in Lemma 4.13; regarding sign symmetric P0,1-completion, and the classification of the graph

q = 5 in Theorem 5.10 (the double triangle) regarding P0,1-completion.

Matrix completion problems have been studied for many classes of matrices, but the most

important class is the class of positive definite matrices. A positive definite matrix is a sym-

metric P -matrix. The positive definite matrix completion problem was first studied by Burg

in his PhD thesis [1], and was then applied to geophysical problems. The question for positive

definite tridiagonal matrices was considered by Dym and Gohberg [6]. Since positive definite

matrices are symmetric, only graphs, not digraphs, need to be considered. The entire question

was answered by Grone, et al in 1984: A graph has positive definite completion if and only if

it is chordal [8].

This led to interest in completion problems for additional classes of matrices which gener-

alize the positive definite matrix class. The matrix completion problem regarding the classes



10

of P - and P0-matrices were first studied by Johnson and Kroshel [13]. They showed that any

graph and any order 3 digraph has P -completion, and that there exists a digraph of order

4 which does not have P -completion. Specifically, they showed that the digraph which is

complete except for one missing arc does not have P -completion. Because any graph has P -

completion, the double triangle (q = 10, n = 1) and the symmetric 4-cycle (q = 8, n = 2) have

P -completion. Johnson and Kroshel also showed that the double triangle does not have P0

completion. The double triangle is of importance because for many classes Π, it does not have

Π-completion. Choi et al classified the order 4 digraphs as to P0-completion and showed that

every asymmetric digraph has P0-completion and the symmetric n-cycle has P0-completion

for n ≥ 5 [2]. DeAlba and Hogben [3] made further progress in classifying the digraphs as to

P -completion. Not all order 4 digraphs have been classified as to P -completion.

Fallet, et al considered the completion problem of graphs regarding P -, P0-, (weakly)

sign-symmetric P -, and (weakly) sign symmetric P0,1-matrices [7]; Π is used to represent any

one of the classes they studied. In this paper, it is proved that any block-clique graph has

Π-completion. It is also shown that the double triangle (q = 10, n = 1) does not have X-

completion for X any of the classes weakly sign symmetric P0-, weakly sign symmetric P0,1-,

sign symmetric P0-, sign symmetric P0,1-matrices. The symmetric 4-cycle does not have sign

symmetric P - or weakly sign symmetric P -completion.

Hogben considered a number of classes of matrices in her paper on graph theoretic meth-

ods [10]. This paper surveys what had been done so far on matrix completions, and also

provides further results. In the paper, Hogben shows that for Π any of the classes P0-, P0,1-,

P -, weakly sign symmetric P0-, weakly sign symmetric P0,1-, weakly sign symmetric P -, and

sign symmetric P -matrices, any digraph for which every strongly connected induced subdi-

graph has Π-completion has completion to a Π-matrix. She also shows that a number of

specific digraphs do not have Π-completion for certain Π.

DeAlba et al proved the symmetric 6-cycle has (weakly) sign symmetric P -completion, as

does the symmetric n-cycle for n > 6 [4]. They also proved that the asymmetric n-cycle has

(weakly) sign symmetric P -completion for all n ≥ 4 and classified all order 4 digraphs as to
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completion for these classes. Approximately 30 papers on matrix completion problems have

been published primarily in the last 10 years.
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CHAPTER 2. Classification of digraphs of order less than or equal to 4

regarding weakly sign symmetric P0,1-completion

Theorem 2.1 [11] Any pattern that has weakly sign symmetric P0-completion also has weakly

sign symmetric P0,1-completion.

Theorem 2.2 [11] Any pattern that has weakly sign symmetric P0,1-completion also has

weakly sign symmetric P-completion.

Corollary 2.3 Any pattern that does not have weakly sign symmetric P -completion does not

have weakly sign symmetric P0,1-completion.

Lemma 2.4 All patterns for 2 × 2 matrices have weakly sign symmetric P0,1-completion. A

pattern for 3× 3 matrices has weakly sign symmetric P0,1-completion if and only if its digraph

does not contain a 3-cycle or is complete.

Proof: Any partial weakly sign symmetric P0-matrix specifying any one of the order two

digraphs or any of the order three digraphs except q = 3, n = 2; q = 4, n = 2; q = 5 may be

completed to a weakly sign symmetric P0-matrix by Lemma 4.1 of [4]. Therefore, any partial

weakly sign symmetric P0,1-matrix specifying any one of the order two digraphs or any of the

order three digraphs except q = 3, n = 2; q = 4, n = 2; q = 5 may be completed to a weakly

sign symmetric P0,1-matrix by Theorem 2.1. These are exactly those digraphs which do not

contain a 3-cycle or are complete.

A pattern whose digraph is one of q = 3, n = 2; q = 4, n = 2; q = 5 does not have weakly

sign symmetric P-completion by Lemma 4.1 of [4]. Therefore, it also does not have weakly

sign symmetric P0,1-completion by Corollary 2.3. �
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Figure 2.1 The digraphs q = 6, n = 4-8 and q = 7, n = 2

Proposition 2.5 A 4 × 4 matrix satisfying the pattern with digraph q = 7, n = 2; q = 4,

n = 16; q = 5, n = 7; q = 6, n = 4, 7 has weakly sign symmetric P0,1-completion.

Proof: We may complete these matrices in the same manner as in Lemma 4.2 in [4].

Consider the digraph q = 7, n = 2 shown in Figure 2.1. Let A =



1 a12 x13 a14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 a43 1


be a partial weakly sign symmetric P0,1-matrix specifying the digraph q = 7, n = 2. Clearly,

the original 2× 2 principal minors, 1− a12a21, 1− a34a43, and 1− a41a14 are nonnegative. We

consider two cases: (1) a12a23a34a41 ≤ 0 and (2) a12a23a34a41 > 0.

Case 1: a12a23a34a41 ≤ 0. Set x13 = a14a43, x24 = a21a14, x31 = 0, x32 = 0, x42 = 0. The

determinant of A and the 3×3 principal minors of A are shown in Table 2.1. The determinant of

A can also be written as a12a21a14a41a43a34−a12a23a34a41+(1− a12a21) (1− a14a41) (1− a34a43),

the A(1, 2, 4) minor of A can also be written as (1− a12a21) (1− a14a41), and the A(1, 3, 4) mi-

nor of A also be written as (1− a14a41) (1− a34a43). Therefore, the determinant of A can

be written as a product of original minors of A plus some nonnegative terms, and all of the

3 × 3 principal minors of A are either an original minor, or can be written as a product of
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original minors. Therefore, the determinant of A and all the 3 × 3 principal minors of A are

nonnegative. Each of the 2 × 2 principal minors of A is either equal to 1, or is an original

minor of A.

Case 2: a12a23a34a41 > 0. Set x13 = a14a43, x24 = a21a14 + a23a34, x31 = 0, x32 = 0, and

x42 = 0. The determinant of A and the 3×3 principal minors of A are shown in Table 2.1. The

determinant of A can also be written as a12a21a14a41a43a34+(1− a12a21) (1− a14a41) (1− a34a43),

the A(1, 2, 4) minor can also be written as a12a23a34a41 + (1− a12a21) (1− a14a41), and the

A(1, 3, 4) minors can also be written as (1− a14a41) (1− a34a43), so all of the 3 × 3 principal

minors of A and the determinant of A can be written as a product of the original minors plus

(possibly) some nonnegative terms.

Therefore, the digraph q = 7, n = 2 has weakly sign symmetric P0,1-matrix completion.

Table 2.1 DetA and 3× 3 principal minors of A in Case 1

A(α) DetA(α) for Case 1 DetA(α) for Case 2

A(1, 2, 3, 4) 1− a12a21 − a14a41 + a12a14a21a41 −
a12a23a34a41−a34a43+a12a21a34a43+
a14a34a41a43

1− a12a21 − a14a41 + a12a14a21a41 −
a34a43 + a12a21a34a43 + a14a34a41a43

A(1, 2, 3) 1− a12a21 1− a12a21

A(1, 2, 4) 1− a12a21 − a14a41 + a12a14a21a41 1− a12a21 − a14a41 + a12a14a21a41 +
a12a23a34a41

A(1, 3, 4) 1− a14a41 − a34a43 + a14a34a41a43 1− a14a41 − a34a43 + a14a34a41a43

A(2, 3, 4) 1− a34a43 1− a34a43

Consider the digraphs q = 4, n = 16; q = 6, n = 4,7; and q = 5, n = 7 shown in Figure 2.1.

Let A1 be a partial weakly sign symmetric matrix specifying the digraph q = 4, n = 16. Set

x21 = 0, x43 = 0, and x14 = 0. Call this new partial matrix B1. Let A2 be a partial weakly

sign symmetric matrix specifying the digraph q = 5, n = 7. Set x21 = 0, and x14 = 0. Call

this new partial matrix B2. Let A3 be a partial weakly sign symmetric matrix specifying the

digraph q = 6, n = 4. Set x14 = 0. Call this new partial matrix B3. Let A4 be a partial weakly

sign symmetric matrix specifying the digraph q = 6, n = 7. Set x21 = 0. Call this new partial
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matrix B4.

Each of the partial matrices B1, B2, B3, and B4 are weakly sign symmetric P0,1-matrices

specifying the digraph q = 7, n = 2. Then each of the matrices B1, B2, B3, and B4 can

be completed to a weakly sign symmetric P0,1-matrix, B̂1, B̂2, B̂3, and B̂4. Therefore, the

digraphs q = 4, n = 16; q = 6, n = 4,7 and q = 5, n = 7 have weakly sign symmetric

P0,1-matrix completion. �

Theorem 2.6 (Classification of Patterns of 4 × 4 matrices regarding weakly sign symmetric

P0,1-matrix completion). Let Q be a pattern for 4 × 4 matrices that includes all diagonal

positions. The pattern Q has weakly sign symmetric P0,1-completion if and only if its digraph

is one of the following (numbered as in [9], q is the number of arcs, n is the diagram number).

q =0

q =1;

q =2; n =1-5;

q =3; n =1-11, 13;

q =4; n =1-12, 14-19, 21-23, 25-27;

q =5; n =1-5, 7-10, 14-17, 21-24, 26-29, 31, 33-34, 36-37;

q =6; n =1-8, 13, 15, 17, 19, 23, 26-27, 32, 35, 38-40, 43, 46;

q =7; n =2,4-5, 9, 14, 24, 29, 34, 36;

q =8; n =1, 10, 12, 18;

q =9; n =8, 11;

q =12.

Proof:

Part 1. Digraphs that have weakly sign symmetric P0,1-completion.

The following digraphs have weakly sign symmetric P0-completion by Theorem 4.4 of [4],

and therefore also have weakly sign symmetric P0,1-completion by Theorem 2.1:
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q =0

q =1;

q =2; n =1-5;

q =3; n =1-11, 13;

q =4; n =1-12, 14-15, 17-19, 21-23, 25-27;

q =5; n =1-5, 8-10, 14-17, 21-24, 26-29, 31, 33-34, 36-37;

q =6; n =1-3, 5-6, 8, 13, 15, 17, 19, 23, 26-27, 32, 35, 38-40, 43, 46;

q =7; n =4-5, 9, 14, 24, 29, 34, 36;

q =8; n =1, 10, 12, 18;

q =9; n =8, 11;

q =12.
Equivalently, the previous list of digraphs are those digraphs listed in the theorem, exclud-

ing the following: q = 4, n = 16; q = 5, n = 7; q = 6, n = 4, 7; q = 7, n = 2. These excluded

digraphs have weakly sign symmetric P0,1-completion by Proposition 2.5.

Part 2. Digraphs that do not have weakly sign symmetric P0,1-completion.

The remaining digraphs do not have weakly sign symmetric P -completion. Therefore, by

Corollary 2.3, they also do not have weakly sign symmetric P0,1-completion.

This finishes the classification of the 4 × 4 patterns regarding completion of the class of

weakly sign symmetric P0,1-matrices.�



17

CHAPTER 3. Classification of graphs of orders 5 and 6 and regarding

weakly sign symmetric P0,1-completion

Graphs of all orders have been classified regarding sign symmetric P0,1-completion ([7],

Theorem 4.1). A graph has sign symmetric P0,1-completion if and only if it is block clique.

This theorem states the same is true regarding weakly sign symmetric P0,1-completion, but

this is false, as shown in ([4], Example 3.1). Any graph of order ≤ 4 has been classified already

regarding weakly sign symmetric P01-completion in Chapter 2. In this chapter, we classify

graphs of order 5 and 6 as to weakly sign symmetric P0,1-completion.

Theorem 3.1 ([7], Theorem 2.4) Any block clique graph has weakly sign symmetric P0,1-

completion.

Theorem 3.2 ([4], Theorem 3.10) A pattern whose graph is an n-cycle has weakly sign

symmetric P0-completion if and only if n 6= 4 and n 6= 5.

Theorem 3.3 ([4], Theorem 3.9) A pattern whose graph is an n-cycle has weakly sign sym-

metric P -completion if and only if n 6= 4 and n 6= 5.

Lemma 3.4 (Classification of Patterns of 5 × 5 matrices regarding weakly sign symmetric

P0,1-completion). Let Q be a pattern for 5 × 5 matrices that includes all diagonal positions.

The pattern Q has weakly sign symmetric P -completion if and only if each component of its

graph is block clique.

Proof:

Part 1: Graphs which have weakly sign symmetric P0,1-completion. Every component of

each of the following graphs is block-clique, so the graph has weakly sign symmetric P0,1-

completion by Theorem 3.1.
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q =0

q =1;

q =2; n =1-2;

q =3; n =1-4;

q =4; n =2-6;

q =5; n =2,4-5;

q =6; n =1,3;

q =7; n =3;

q =10.
Part 2: Graphs which do not have (weakly) sign symmetric P0,1-completion.

The graphs q = 4, n = 1; q = 5, n = 1, 3; q = 6, n = 2, 4-6; q = 7, n = 1-2, 4; q = 8,

n = 1-2; and q = 9 do not have weakly sign symmetric P0,1-completion because they contain

at least one of the order 4 digraphs q = 8, n = 2 or q = 10, n = 1 as an induced subdigraph.

The graph q = 5, n = 6 does not have weakly sign symmetric P -completion by Theorem 3.3.

Therefore, it does not have weakly sign symmetric P0,1-completion by Corollary 2.3.

Lemma 3.5 (Classification of Patterns of 6 × 6 matrices regarding weakly sign symmetric

P0,1-completion). Let Q be a pattern for 6 × 6 matrices that includes all diagonal positions.

The pattern Q has weakly sign symmetric P -completion if and only if each component of its

graph is block-clique or the 6-cycle.

Proof:

Part 1: Graphs which have weakly sign symmetric P0,1-completion.

The following graphs have weakly sign symmetric P0,1-completion because each component

is block-clique.
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q =0

q =1;

q =2; n =1-2;

q =3; n =1-5;

q =4; n =1, 3-9;

q =5; n =1, 3, 6-13, 15;

q =6; n =1, 3, 10, 13-15, 17-18, 20-21;

q =7; n =3, 10, 15, 19, 23;

q =8; n =4, 17, 22;

q =9; n =6;

q =10 n =13;

q =11 n =4;

q =15.
The graph q = 6, n = 7 (the 6-cycle) has weakly sign symmetric P0-completion by The-

orem 3.2. Therefore, the graph q = 6, n = 7 has weakly sign symmetric P0,1-completion by

Theorem 2.1.

Part 2: Graphs which do not have weakly sign symmetric P0,1-completion.

The graphs q = 4, n = 2; q = 5, n = 2, 4-5, 14, q = 6, n = 2, 4-6, 8-9, 11-12, 16, 19; q = 7,

n = 1-2, 4-9, 11-14, 16-18, 20-22, 24; q = 8, n = 1-3, 5-16, 18-21, 23-24; q = 9, n = 1-5, 7-21;

q = 10, n = 1-12, 14-15; q = 11, n = 1-3, 5-9; q = 12, n = 1-5; q = 13, n = 1-2; and q = 14

do not have weakly P0,1-completion because each contains at least one of the order 4 digraphs

q = 8, n = 2 or q = 10, n = 1 or the order five graph q = 5, n = 6 as an induced sub(di)graph.
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CHAPTER 4. Classification of digraphs of order less than or equal to 4

regarding sign symmetric P0,1-completion

In this chapter we give the complete classification of digraphs of order ≤ 4. We begin with

the known results we will need to use.

Theorem 4.1 [11] Any asymmetric pattern that has sign symmetric P -completion also has

sign symmetric P0,1-completion.

Theorem 4.2 [11] Any pattern that has sign symmetric P0,1-completion also has sign sym-

metric P -completion.

Corollary 4.3 Any pattern that does not have sign symmetric P -completion does not have

P0,1-completion.

Theorem 4.4 ([7], Theorem 2.4) Let G be an undirected block-clique graph. Then any partial

sign symmetric P0,1-matrix, the graph of whose specified entries is G, has a sign symmetric

P0,1-matrix completion.

Theorem 4.5 ([10], Corollary 5.6) A digraph D has sign symmetric P0,1-completion if and

only if each block of D has sign symmetric P0,1-completion.

We now classify the order 2 and order 3 digraphs. Note the unusual situation that a

triangular pattern with each block complete may lack completion.

Lemma 4.6 All patterns for 2 × 2 matrices have sign symmetric P0,1-matrix completion. A

pattern for 3× 3 matrices has sign symmetric P0,1-completion if and only if its digraph is not

one of the following: q = 3, n = 2; q = 4, n = 2, 3, 4; q = 5.
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Figure 4.1 Digraphs that do not have sign symmetric P0,1-completion

Proof: Any partial sign symmetric P -matrix specifying either of the order two digraphs

q = 0; q = 1 or any of the order three digraphs q = 0; q = 1; q = 2, n = 2, 3, 4; q = 3, n = 3

may be completed to a sign symmetric P -matrix [4]. Since these digraphs are also asymmetric,

they have sign symmetric P0,1-completion by Theorem 4.1. Any partial sign symmetric P0,1-

matrix specifying the order two digraph q = 2 or one of the order three digraphs q = 2, n = 1

or q = 6 is either complete or may be completed to a sign symmetric P0,1-matrix by Corollary

5.3 of [10] because its connected components are complete. Any partial sign symmetric P0,1-

matrix specifying the order three digraphs q = 3, n = 1, 4 and q = 4, n = 1 may be completed

to a sign symmetric P0,1-matrix by Theorem 4.5.

The patterns whose digraphs are one of q = 3, n = 2; q = 4, n = 2; q = 5 do not have

sign symmetric P -completion by Lemma 4.1 of [4]. Therefore, they also do not have sign sym-

metric P0,1-completion by Corollary 4.3. Consider the example matrices in Figure 4.1. The

determinant of the first matrix is −2x21 − 2x23, and the determinant of the second matrix

is −2x12 − 2x32. In each case the unspecified entries must be positive, since the symmetri-

cally placed entry is positive. However, then the determinants of the matrices are negative.

Therefore, the digraphs q = 4, n = 3-4 do not have sign symmetric P0,1-completion. �

We now begin the classification of the order 4 digraphs. In order to do the classification, we

will need to establish four digraphs that have completion (Lemmas 4.7- 4.9) and six digraphs

that do not (Lemmas 3.10-3.13). In Lemmas 4.8- 4.9, we introduce a new completion technique,
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where an entry xij is initially set to 0 (violating sign symmetry), but all principal minors are

made positive by the choice of the other entries and then xij is perturbed.

Lemma 4.7 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 5, n = 7 has sign symmetric P0,1-completion.
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Figure 4.2 q = 5, n = 7

Proof: Let A =



1 a12 x13 x14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 x43 1


be a partial sign symmetric P0,1-matrix specifying

the digraph q = 5, n = 7 in Figure 4.2. Clearly, the original 2 × 2 minor, 1 − a12a21 is

nonnegative. We consider three cases: (1) a12a23a34a41 > 0, (2) a12a23a34a41 < 0, and (3)

a12a23a34a41 = 0.

Case 1: a12a23a34a41 > 0. We can assume a12 = a23 = a34 = 1 by Theorem 1.1. Then

a41 is positive. We set x32 = x43 = x14 = e and choose e small and positive. Finally, set

x13 = x24 = 1, x31 = ea21, and x42 = e2. Then the determinant of A, shown in Table 4.1, is

positive if e is small enough because 1 − a21 ≥ 0 and a41 > 0. Likewise, the 3 × 3 principal

minors of A, also shown in Table 4.1, are nonnegative. The 2× 2 principal minors are clearly

all positive if e is small enough.

Case 2: a12a23a34a41 < 0. We can assume a12 = a23 = a34 = 1 by Theorem 1.1. Then

a41 is negative. We replace the symbol a41 with −b, with b positive. Set x32 = x43 = e and

x14 = −e, and assign x13 = x31 = f > 0 and x24 = x42 = −g, g > 0. We first let e equal

zero and choose f and g small enough to make each minor of size three or four positive. Then

perturb so that e is positive, and yet small enough to keep all principal minors nonnegative.
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Table 4.1 DetA and 3× 3 principal minors of A in Case 1

A(α) DetA(α)

A(1, 2, 3, 4) 1− a21 + a41 − 2e + 2a21e− 2a41e + e2 − 2a21e
2 + a41e

2 + 2a21e
3 − a21e

4

A(1, 2, 3) (1− a21) (1− e)
A(1, 2, 4) 1− a21 + a41 − a41e− e2 + a21e

3

A(1, 3, 4) 1 + a41 − e− a21e− a41e + a21e
3

A(2, 3, 4) 1− 2e + e2

The determinant of A and the 3 × 3 principal minors of A are shown in Table 4.2. The

determinant of A is positive if the sum of all the terms which contain an f or g is less in

magnitude than b. Each of these minors, as well as all the newly created 2 × 2 principal

minors are obviously positive if f and g are small enough. Because the determinant of A is a

continuous function, as long as each of these principal minors and DetA are positive, we can

perturb e slightly and yet keep all of the principal minors nonnegative.

Table 4.2 DetA and 3× 3 principal minors of A in Case 2 with e = 0

A(α) DetA(α)
A(1, 2, 3, 4) 1− a21 + b + f − bf − f2 − g + bg + a21fg − g2 + f2g2

A(1, 2, 3) 1− a21 + f − f2

A(1, 2, 4) 1− a21 + bg − g2

A(1, 3, 4) 1− bf − f2

A(2, 3, 4) 1− g − g2

Case 3: a12a23a34a41 = 0. We consider this case in 4 parts. In each part we consider one

of the four entries a12, a23, a34, or a41 equal to zero.

Subcase 3A: Assume a12 = 0. Then a21 = 0 by sign symmetry. Let x14 = e, x32 = f ,

and x43 = g and of the same sign as a41, a23, and a34 respectively. Set all other unspecified

entries equal to zero. The determinant of A and the 3× 3 principal minors of A are shown in

Table 4.3. Each of these and each of the 2× 2 principal minors of A are clearly nonnegative if

e, f , and g are small enough.

Subcase 3B: Assume a34 = 0. Then x43 = 0 by sign symmetry.
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Table 4.3 DetA and 3× 3 principal minors of A in Case 3A

A(α) DetA(α)
A(1, 2, 3, 4) 1− a41e− a23f + a23a41ef − a34g

A(1, 2, 3) 1− a23f

A(1, 2, 4) 1− a41e

A(1, 3, 4) 1− a41e− a34g

A(2, 3, 4) 1− a23f − a34g

(i) If a12a21 6= 1, let x14 = e and x32 = f be small enough and of the same sign as a41 and

a23 respectively. Set all other unspecified entries equal to zero. The determinant of A and the

3× 3 principal minors of A are shown in the second column of Table 4.4. These and all of the

2× 2 principal minors are clearly nonnegative if f and e are small enough.

Table 4.4 DetA and 3× 3 principal minors of A in Case 3B

A(α) DetA(α) for part (i) DetA(α) for part (ii)

A(1, 2, 3, 4) 1− a12a21 − a41e− a23f + a23a41ef a41g − g2 − a41s + gs

A(1, 2, 3) 1− a12a21 − a23f 0
A(1, 2, 4) 1− a12a21 − a41e a41g − g2 − a41s + gs

A(1, 3, 4) 1− a41e 1− a41s− a34t

A(2, 3, 4) 1− a23f 1− g2 − a34t

(ii) If a12a21 = 1, without loss of generality, we can make both a12 and a21 equal to 1. Set

x13 = x31 = 0 and set x24 = x42 = g with g = sgn(a41)
min{|a41|, 1}

2
, so a41g − g2 > 0 or

a41 = g = 0. Set x14 = s and x43 = t very small, matching signs of a41 and a34 respectively.

Then DetA and the 3× 3 principal minors of A are displayed in the third column of Table 4.4,

and they and the 2× 2 principal minors of A are clearly nonnegative with the given choice of

g if s and t are made small enough.

Subcase 3C: Assume a23 = 0. Then x32 must be zero also by sign symmetry. Set x14 = e

and x43 = f small enough and of the same sign as a41 and a34 respectively. Set x42 = a12a41,

and x24 = s small enough and of the same sign as a12a41. Set all other unspecified entries equal

to zero. The determinant of A and the 3 × 3 principal minors of A are shown in Table 4.5.



25

Notice that DetA can also be written as (1− a12a21) (1− a41e− a34f), and that each factor

is nonnegative if e and f are small enough. The minor A(1, 2, 3) is equal to the original 2× 2

minor, so it is nonnegative. The minor A(1, 2, 4) can also be written as (1− a12a21) (1− a41e)

and is therefore nonnegative if e is small enough. The rest of the 3 × 3 principal minors and

all of the 2× 2 are nonnegative as long as e, f , and s are small enough.

Table 4.5 DetA and 3× 3 principal minors of A in Case 3C

A(α) DetA(α)
A(1, 2, 3, 4) 1− a12a21 − a41e + a12a21a41e− a34f + a12a21a34f

A(1, 2, 3) 1− a12a21

A(1, 2, 4) 1− a12a21 − a41e + a12a21a41e

A(1, 3, 4) 1− a41e− a34f

A(2, 3, 4) 1 - a34f − a12a41s

Subcase 3D: Assume a41 = 0. Then x14 = 0 also by sign symmetry. Set x32 = e small

enough and of the same sign as a23. Let x43 = f be small and of the same sign as a34. Set

x13 = a12a23, x31 = s small and of the same sign as a12a23. Set all other unspecified entries

equal to zero.

Now DetA, shown in Table 4.6, can also be written as (1− a12a21) (1 − a23e − a34f),

which is nonnegative if e and f are small enough. Similarly, the 3 × 3 principal minors, also

shown in Table 4.6 can be shown to be nonnegative. The minor A(1, 2, 3) can be written

as (1− a12a21) (1 − a23e), which is also nonnegative is e is made small enough. The minor

A(1, 2, 4) is equal to the 2× 2 original minor of A, and is therefore nonnegative. The final two

principal minors, A(1, 3, 4) and A(2, 3, 4), are nonnegative if f ,s, and e are small enough. The

2× 2 principal minors of A are small enough if f , e, and s are made small enough.

Lemma 4.8 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 5, n = 8 or q = 5, n = 10 has sign symmetric P0,1-completion.
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Table 4.6 DetA and 3× 3 principal minors of A in Case 3D

A(α) DetA(α)
A(1, 2, 3, 4) 1− a12a21 − a23e + a12a21a23e− a34f + a12a21a34f

A(1, 2, 3) 1− a12a21 − a23e + a12a21a23e

A(1, 2, 4) 1− a12a21

A(1, 3, 4) 1− a34f − a12a23s

A(2, 3, 4) 1− a23e− a34f

•
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q = 5, n = 8 q = 5, n = 10

Figure 4.3 The digraphs q = 5, n = 8 and q = 5, n = 10

Proof: Let A =



1 a12 x13 a14

a21 1 a23 x24

x31 x32 1 x34

x41 x42 a43 1


be a partial sign symmetric P0,1-matrix specifying

the digraph q = 5, n = 8 in Figure 4.3. Clearly, the original minor, 1− a12a21 is nonnegative.

We consider three cases: (1) a21a23a43a14 > 0, (2) a21a23a43a14 < 0, and (3) a21a23a43a14 = 0.

Case 1: a21a23a43a14 > 0. We can assume a12 = a23 = a43 = 1 by Theorem 1.1. Then a14

is positive. We set x32 = x34 = e, x13 = 1, x31 = a21e, x24 = e, x42 = e, and x41 = a21e.

Let e > 0 be small enough to make the principal minors nonnegative. Then the determinant

of A, shown in Table 4.7, can also be written as (1− a21) (1− e)2, which is nonnegative if

e is small enough. Likewise, the 3 × 3 principal minors of A, also shown in Table 4.7 can

be made nonnegative: The minor A(1, 2, 3) can be written as (1− a21) (1− e), the minor

A(1, 2, 4) can be written as (1− a21)
(
1− e2

)
, and the minor A(1, 3, 4) can also be written as

(1− e) (1− a21e). Each of the 3 × 3 principal minors are nonnegative if e is small enough.

Also, each of the 2× 2 principal minors is nonnegative if e is small enough.



27

Table 4.7 DetA and 3× 3 principal minors of A in Case 1

A(α) DetA(α)
A(1, 2, 3, 4) 1− a21 − 2e + 2a21e + e2 − a21e

2

A(1, 2, 3) 1− a21 − e + a21e

A(1, 2, 4) 1− a21 − e2 + a21e
2

A(1, 3, 4) 1− e− a21e + a21e
2

A(2, 3, 4) 1− 2e + e2

Case 2: a21a23a43a14 < 0. We can assume a12 = a23 = a43 = 1 by Theorem 1.1. Then

a14 < 0 and therefore x41 < 0. We replace the symbol a14 with −b with b positive.

Case 2a: a21 6= 1. We set x34 = x24 = x42 = x32 = e > 0, x41 = −e, x13 = x31 = 0. The

determinant of A and the 3× 3 principal minors of A corresponding to Case 2a are shown the

second column of Table 4.8.

Notice that DetA(1, 2) = 1 − a21 > 0. Therefore, we can make e small enough so that

the sum of the remaining terms in each minor is smaller than 1 − a12. Then all the 3 × 3

principal minors are positive. Likewise, each of the 2× 2 principal minors can be made to be

nonnegative if e is made small enough. Since there are only finitely many principal minors of

A, it is possible to make e small enough to make each of them nonnegative.

Table 4.8 DetA and 3× 3 principal minors of A in Case 2

A(α) DetA(α) for part 2(a) DetA(α) for part 2(b) with e = 0
A(1, 2, 3, 4) 1− a21 − 2e + a21e− be + e2 + be2 bg − bfg − g2 + f2g2

A(1, 2, 3) 1− a21 − e 0
A(1, 2, 4) 1− a21 − be− a21be− 2e2 bg − g2

A(1, 3, 4) 1− e− be 1− bf − f2

A(2, 3, 4) 1− 2e + e2 1− f − fg − g2

Case 2b: a21 = 1. We set x34 = e, x24 = x42 = −g, x41 = −e, x32 = x13 = x31 = f , with

e, f , and g positive. We begin by setting e = 0. The determinant of A and the 3× 3 principal

minors of A corresponding to Case 2 are shown in the third column of Table 4.8. We will

choose f and g so that each of the nonzero principal minors is positive (see below). Once this
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is done, we perturb e slightly, so that it is positive, but the positive principal minors remain

positive.

The determinant of A can also be written as g
(
b (1− f)−

(
1− f2

)
g
)
. We first choose

f < 1 and such that 1 − bf − f2 > 0 and then choose g < 1 so that
(
1− f2

)
g < b (1− f).

Then DetA is nonnegative. Then the 3 × 3 principal minors of A are nonnegative if g is

small enough. In fact, they can all be made positive except A(1, 2, 3), which is zero. However,

A(1, 2, 3) has no elements set equal to e, so perturbing e will not make its determinant negative.

Also, each new 2× 2 minor is positive.

Case 3: a21a23a43a14 = 0.

Case 3a: a12 = a21 = 0. We set x41 = e, x32 = f , x34 = g, and x24 = x42 = x13 = x31 = 0.

The principal minors of A are shown in Table 4.9. The determinant of A and each of the 3× 3

principal minors of A are clearly nonnegative if e, f , and g are small enough. Similarly, the

2× 2 principal minors of A are nonnegative if e, f , and g are small enough. Therefore, all of

the principal minors of A can be made nonnegative.

Table 4.9 DetA and 3× 3 principal minors of A in Case 3a

A(α) DetA(α)
A(1, 2, 3, 4) 1− a14e− a23f − a43g + a14a23ef

A(1, 2, 3) 1− a23f

A(1, 2, 4) 1− a14e

A(1, 3, 4) 1− a14e− a43g

A(2, 3, 4) 1− a23f − a43g

Case 3b: a23 = 0. This implies x32 = 0

Part (i): Let a12a21 6= 1, let x31 = x13 = x24 = x42 = x32 = 0 and x41 = e, x34 = f . The

3×3 principal minors and the determinant of A are shown in the second column of Table 4.10.

Each of these principal minors is obviously nonnegative as long as e and f are small enough,

since a12a21 6= 1, and therefore 1− a12a21 > 0.

Part(ii): If a12a21 = 1, then a12 and a21 can be made equal to 1 through the use of a

diagonal similarity. Now, let x31 = x13 = 0, x24 = x42 = g, x32 = 0, x41 = e, and x34 = f .
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Begin with e = 0 and perturb it later if a14 6= 0. With e = 0, the determinant and the new

3× 3 principal minors are shown in the third column of Table 4.10. Choose f the same sign as

a43 and small enough in absolute value so that 1−a43f > 0. If a14 = 0, then e will remain 0 by

sign symmetry. In this case, set g = 0. Then all of the principal minors of A are nonnegative.

If a14 6= 0, let g have the same sign as a14 and be small enough so that |g| < min{|a14|, 1} and

1− g2 − a43f ≥ 0. Then every submatrix which contains e has a positive minor. This may be

checked by referring to the principal minors of A. Now we can perturb e slightly so it is the

same sign as a14, but not so large as to make any of the principal minors negative. In this way,

we make x41 and x34 the same sign as its respective symmetric pair, so the resulting matrix is

a sign symmetric P0,1-matrix.

Also, in the case of both Part (i) and Part (ii), the 2 × 2 principal minors can easily be

seen to be nonnegative if e, f , and g are small enough, so all of the principal minors in each

of these cases can be made to be nonnegative.

Table 4.10 DetA and 3× 3 principal minors of A in Case 3b

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e = 0
A(1, 2, 3, 4) 1− a12a21 − a14e− a43f + a12a21a43f a14g − g2

A(1, 2, 3) 1− a12a21 0
A(1, 2, 4) 1− a12a21 − a14e a14g − g2

A(1, 3, 4) 1− a14e− a43f 1− a43f

A(2, 3, 4) 1− a43f 1− g2 − a43f

Case 3c: a43 = 0. Then x34 = 0.

Part (i): If a12a21 6= 1, let x31 = x13 = x24 = x42 = x34 = 0, x32 = f , and x41 = e. The

principal minors of A are shown in the second column of Table 4.11. Each of these minors is

obviously nonnegative as long as e and f are small enough, since a12a21 6= 1, and therefore

1− a12a21 > 0.

Part (ii): If a12a21 = 1, then a12 and a21 can be made equal to 1 through the use of a

diagonal similarity. We let x31 = x13 = g2, x34 = 0, x24 = x42 = g1, x32 = e2, x41 = e1. Begin
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with e1 = e2 = 0. The principal minors of A with e1 = e2 = 0 are listed in the third column

of Table 4.11.

If a14 = 0, set g1 = 0. Since e1 and a14 are symmetrically placed entries, e1 remains

zero. If a14 is nonzero, choose g1 to have the same sign as a41 and small enough so that

|g1| < min{|a14|, 1}. If a23 = 0, set g2 = 0. Since e2 and a23 are symmetrically placed entries,

e2 remains zero. If a23 6= 0, then choose g2 the same sign as a23 and small enough so that

|g2| < min{|a23|, 1} and also small enough so that DetA remains positive, given the choice

already made for g1. Now for i = 1, 2, each of the 3 × 3 principal minors of A that depend

on ei is positive if ei must be nonzero, and so we can perturb ei slightly so it is nonzero,

but the principal minors remain positive. The values for g1, g2, e1, and e2 have been chosen

to that the determinant of A is positive if at least one of a14 and a32 is nonzero, so in that

case, a perturbation can be done leaving DetA positive. Then the principal minors of A are

nonnegative.

Table 4.11 DetA and 3× 3 principal minors of A in Case 3c

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e1 = e2 = 0
A(1, 2, 3, 4) 1− a12a21 − a14e− a23f + a14a23ef a14g1 − g2

1 + a23g2 − a14a23g1g2 − g2
2 +

g2
1g

2
2

A(1, 2, 3) 1− a12a21 − a23f a23g2 − g2
2

A(1, 2, 4) 1− a12a21 − a14e a14g1 − g2
1

A(1, 3, 4) 1− a14e 1− g2
2

A(2, 3, 4) 1− a23f 1− g2
1

Case 3d: a14 = 0. Then x41 = 0.

Part (i): If a12a21 6= 1, let x31 = x13 = x24 = x42 = x41 = 0, x32 = e and x34 = f . Let e be

the same sign as a23 and let f be the same sign as a43. Then it can be verified by inspection

of the principal minors of A shown in Table 4.12, that if e and f are made small enough in

absolute value, the 3× 3 principal minors of A and the determinant of A will be nonnegative.

The 2× 2 principal minors of A are nonnegative if e and f are chosen small enough.
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Part (ii): If a12a21 = 1, then a12 and a21 can be made equal to 1 through the use of a

diagonal similarity. Let x31 = x13 = g, x24 = x42 = x41 = 0, x32 = e, and x34 = f . We

begin by setting e = 0. Let f have the same sign as a43. The 3× 3 principal minors of A and

the determinant of A with e = 0 are shown in the third column of Table 4.12. This case is

analogous to Case 3b Part (ii).

Table 4.12 DetA and 3× 3 principal minors of A in Case 3d

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e = 0
A(1, 2, 3, 4) 1− a12a21 − a23e− a43f + a12a21a43f a23g − g2

A(1, 2, 3) 1− a12a21 − a23e a23g − g2

A(1, 2, 4) 1− a12a21 0
A(1, 3, 4) 1− a43f 1− a43f − g2

A(2, 3, 4) 1− a23e− a43f 1− a43f

This concludes the proof of q = 5, n = 8. Let A be a partial P0,1-matrix with digraph

q = 5, n = 10, labeled as in Figure 4.3. AT is a partial sign symmetric P0,1-matrix specifying

the digraph q = 5, n = 8 in Figure 4.3. We can complete this matrix to a P0,1-matrix, as in

the proof, and then transpose the matrix again. The resulting matrix is a completion of the

matrix A. �

Lemma 4.9 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 5, n = 9 has sign symmetric P0,1-completion.

•

• •

•
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Figure 4.4 q = 5, n = 9
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Consider the digraph in Figure 4.4. Let A =



1 a12 x13 a14

a21 1 x23 x24

x31 a32 1 a34

x41 x42 x43 1


be a partial sign

symmetric P0,1-matrix specifying the digraph q = 5, n = 9. Clearly, the original minor,

1−a12a21 is nonnegative. We consider three cases: (1) a21a32a34a14 > 0, (2) a21a32a34a14 < 0,

and (3) a21a32a34a14 = 0.

Case 1: a21a32a34a14 > 0. We can assume a12 = a32 = a34 = 1 by Theorem 1.1. Then a14

is positive. Set x13 = x23 = x24 = x42 = x43 = e. Set x31 = a21 and x41 = a21e. Let e > 0.

The determinant of A and the 3 × 3 principal minors of A are listed in Table 4.13. The

determinant of A can also be written as (1− a21) (1− e)2, which is nonnegative if e is small

enough. The minor A(1, 2, 3) can be written as (1− a21) (1− e), the minor A(1, 2, 4) can be

written as (1− a21)
(
1− e2

)
, the minor A(1, 3, 4) can also be written as (1− e) (1− a21e), and

the minor A(2, 3, 4) can be written as (1− e)2 each of which are nonnegative if e is small

enough. Each of the 2× 2 principal minors are also nonnegative if e is small enough.

Table 4.13 DetA and 3× 3 principal minors of A in Case 1

A(α) DetA(α)
A(1, 2, 3, 4) 1− a21 − 2e + 2a21e + e2 − a21e

2

A(1, 2, 3) 1− a21 − e + a21e

A(1, 2, 4) 1− a21 − e2 + a21e
2

A(1, 3, 4) 1− e− a21e + a21e
2

A(2, 3, 4) 1− 2e + e2

Case 2: a21a32a34a14 < 0. We can assume a12 = a32 = a34 = 1 by Theorem 1.1. Then a14

is negative. We set a14 = −b with b positive.

Let x23 = e, x43 = e, let x41 = −e. Then each of these entries has the same sign as their

symmetric pair. Let x31 = x13 = f , and x24 = x42 = −g. Begin with e = 0 and choose f

positive and small enough so that f < min{1, a21}. The determinant of A and the principal

minors of A with e = 0 are shown in Table 4.14. The determinant of A can also be written as
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1 − a21 + (a21 − f) f + a21bg + a21fg − g2 + f2g2, which can be made positive if g is chosen

small enough.

The minor A(1, 2, 3) can be written as 1 − a21 + (a21 − f) f , which is positive because

f < a21, the minor A(1, 2, 4) can also be written as 1− a21 + (a21b− g) g, which can be made

positive if g is chosen positive and small enough, the minor A(1, 3, 4) is positive because f is

less than 1, and the minor A(2, 3, 4) can be made positive if g is chosen to be less than 1. The

2× 2 principal minors are obviously nonnegative if g and f are chosen small enough, and each

of them contain only one of g, f , and e, so we need only choose g and f to be small enough to

make each of these minors nonnegative. Once we have chosen f and g to be small enough to

make the determinant of A and all of the 3× 3 principal minors of A positive, we can perturb

e slightly so it is positive, but not so large as to make any of the principal minors negative. In

this way, each of the principal minors of A can be made to be nonnegative. The 2×2 principal

minors of A are nonnegative provided that e, f , and g are small enough.

Table 4.14 DetA and 3× 3 principal minors of A in Case 2 with e = 0

A(α) DetA(α)
A(1, 2, 3, 4) 1− a21 + a21f − f2 + a21bg + a21fg − g2 + f2g2

A(1, 2, 3) 1− a21 + a21f − f2

A(1, 2, 4) 1− a21 + a21bg − g2

A(1, 3, 4) 1− f2

A(2, 3, 4) 1− g2

Case 3(a): a21a32a34a14 = 0 and a12 = a21 = 0. Set x13 = x31 = x24 = x42 = 0, and set

x41 = e, x23 = f , and x43 = g. The determinant of A and the 3× 3 principal minors of A are

shown in Table 4.15. Each of the 3× 3 principal minors, and the determinant of A can clearly

be made nonnegative is e, f , and g are chosen small enough. Likewise, the 2 × 2 principal

minors of A are nonnegative if e, f , and g are chosen small enough.

Case 3(b): a21a32a34a14 = 0 and a32 = x23 = 0. We may assume a21 and a12 are nonzero

(otherwise, we use Case 3(a)), and a34 6= 0 (otherwise use case 3(c) below) so a12 and a34 may

be made equal to 1 by Theorem 1.1. We consider two cases in Case 3(b): (i) 1− a21 > 0 and
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Table 4.15 DetA and 3× 3 principal minors of A in Case 3a

A(α) DetA(α) for part (i)
A(1, 2, 3, 4) 1− a14e− a32f + a14a32ef − a34g

A(1, 2, 3) 1− a32f

A(1, 2, 4) 1− a14e

A(1, 3, 4) 1− a34g − a14e

A(2, 3, 4) 1− a34g − a32e

(ii) 1− a21 = 0. Note that 1− a21 is not less than zero because it is an original minor.

Part(i): 1 − a21 > 0. Let x13 = x31 = x24 = x42 = 0, x43 = f , and x41 = e. The

determinant of A and the 3 × 3 principal minors of A are shown in the second column of

Table 4.16. Clearly, the minors shown in the table are nonnegative if e and f are made small

enough. In this way, the completed matrix is a sign symmetric P0,1-matrix.

Part(ii): 1 − a21 = 0. Then a21 = 1. Set x13 = x31 = 0, x24 = x42 = g, and x23 = 0,

x43 = 0.1, and x41 = e. Let e be the same sign as a14. Begin with e = 0, and let g be as small

as needed to make all order 3 and order 4 principal minors which involve x43 or x41 positive

while e is set equal to zero. The determinant of A and the 3 × 3 principal minors of A with

e set equal to zero are shown in the third column of Table 4.16. The principal minors that

involve e can clearly be made positive if g is made small enough. Likewise, the 2× 2 principal

minors of A can clearly be made to be nonnegative. Finally, perturb e so that the principal

minors remain nonnegative. Then each element has the same sign as its symmetric pair, and

all of the principal minors of A are nonnegative.

Table 4.16 DetA and 3× 3 principal minors of A in Case 3b

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e = 0
A(1, 2, 3, 4) 1− a21 − f − a14e + a21f a14g − g2

A(1, 2, 3) 1− a21 0
A(1, 2, 4) 1− a21 − a14e a14g − g2

A(1, 3, 4) 1− f − a14e 0.9
A(2, 3, 4) 1− f 0.9− g2
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Case 3(c): a21a32a34a14 = 0 and a34 = x43 = 0. We may assume a21 and a12 are nonzero

(otherwise, we use Case 3(a)) so a12 may be made equal to 1 by Theorem 1.1. We consider

two parts in Case 3(c): (i) 1− a21 > 0 and (ii) 1− a21 = 0. Note that 1− a21 is not negative

because it is an original minor.

Part(i): 1 − a21 > 0. Let x13 = x31 = x24 = x42 = 0 and set x23 = e, x41 = f . Let e and

f be the same sign as a32 and a14 respectively. The determinant of A and the 3× 3 principal

minors of A are shown in the second column of Table 4.17. Clearly, the minors shown in the

table are nonnegative if e and f are made small enough. Therefore, the completed matrix is a

sign symmetric P0,1-matrix.

Part(ii): 1 − a21 = 0. Then a21 = 1. Set x13 = x31 = g1, x24 = x42 = g2, x23 = e1, and

x41 = e2. Begin with e1 = e2 = 0 and later perturb e1 to be the same sign as a32 and e2 to be

the same sign as a14. The determinant of A and the 3×3 principal minors of A with e1 and e2

set equal to zero are shown in column 3 of Table 4.17. If a32 = 0, set g1 = 0. Then e1 remains

zero by sign symmetry. If a32 6= 0, let g1 be the same sign as a32 such that |g1| < min{1, a32}.

If a14 = 0, let g2 = 0. Then e2 remains zero by sign symmetry. If a14 6= 0, let g2 be the same

sign as a14 such that |g2| < min{1, a14}.

The determinant of A can also be written as (a14 − g2) g2 + (a32 − g1) g1 + g2
1g

2
2, the minor

A(1, 2, 3) can be written as (a32 − g1) g1, and the minor A(1, 2, 4) can be written as g2(a14−g2).

Then clearly all of the minors listed in the table (as well as the 2× 2 principal minors, which

are not listed) are positive if g1 and g2 are chosen as specified. Then, finally, perturb e1 and

e2 if necessary so that they are not large enough to cause any of the principal minors of A to

become negative. Then each element has the same sign as its symmetric pair, and all of the

principal minors of A are nonnegative.

Case 3(d): a21a32a34a14 = 0 and a14 = x41 = 0. Again, we may assume a21 = a34 = 1

be Theorem 1.1, since otherwise we use Case 3(a) or Case 3(c) respectively. We consider two

parts in Case 3(d): (i) 1− a21 > 0 and (ii) 1− a21 = 0. Note that 1− a21 is an original minor

and is therefore nonnegative.
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Table 4.17 DetA and 3× 3 principal minors of A in Case 3c

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e1 = 0 and
e2 = 0

A(1, 2, 3, 4) 1− a21 − a14f − a32e + a14a32ef a14g2 − g2
2 + a32g1 − g2

1 + g2
1g

2
2

A(1, 2, 3) 1− a21 − a32e a32g1 − g2
1

A(1, 2, 4) 1− a21 − a14f a14g2 − g2
2

A(1, 3, 4) 1− a14e 1− g2
1

A(2, 3, 4) 1− a32e 1− g2
2

Part(i): 1 − a21 > 0. Let x13 = x31 = x24 = x42 = 0 and set x23 = e, x43 = f . Let e

be the same sign as a32 and let f > 0. The determinant of A and the 3 × 3 principal minors

of A are shown in the second column of Table 4.18. Clearly, the minors shown in the table

are nonnegative if e and f are made small enough. Therefore, the completed matrix is a sign

symmetric P0,1-matrix.

Part(ii): 1−a21 = 0. Then a21 = 1. Set x13 = x31 = f , x23 = e, and x43 = 0.1. Begin with

e = 0, and later perturb e to be the same sign as a32. Let f be the same sign as a32 and small

enough so that |f | < min{1, |a32|}. The determinant of A and the 3× 3 principal minors of A

with e set equal to zero are shown in column 3 of Table 4.18. The determinant of A and the

minor A(1, 2, 3) can be written as (a32 − f) f , so clearly all of the minors listed in the table

with the exception of A(1, 2, 4) are positive. The 2× 2 principal minors of A are also positive

if f is chosen as specified. The minor A(1, 2, 4) is nonnegative, and is not dependent on e.

Therefore, we may perturb e so that none of the principal minors become negative. Then all

of the principal minors of A are nonnegative.

This concludes all three cases of the proof. Therefore, a 4× 4 partial sign symmetric P0,1-

matrix specifying the pattern with digraph q = 5, n = 9 has sign symmetric P0,1-completion.

�

Lemma 4.10 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 6, n = 4 does not have sign symmetric P0,1-completion.
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Table 4.18 DetA and 3× 3 principal minors of A in Case 3d

A(α) DetA(α) for part (i) DetA(α) for part (ii) with e = 0
A(1, 2, 3, 4) 1− a21 − f + a21f − a32e a32f − f2

A(1, 2, 3) 1− a21 − a32e a32f − f2

A(1, 2, 4) 1− a21 0
A(1, 3, 4) 1− f 0.9− f2

A(2, 3, 4) 1− f − a32e 0.9

q = 6, n = 4 q = 6, n = 5 q = 6, n = 6
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Figure 4.5 The digraphs q = 6, n = 4-8 and q = 7, n = 2

Proof: The digraph q = 6, n = 4 is shown in Figure 4.5. The example matrix A in Figure

4.6 cannot be completed to a sign symmetric P0,1-matrix. Consider the submatrix A(1, 2, 3).

Since x32 is positive by sign symmetry, the term −x32 is negative. The term −x13x31 is

nonpositive by sign symmetry. Then x31 and/or x13x32 must be positive in order to make

the minor nonnegative. Then x31 and x13 must be positive by sign symmetry. Next, we

consider the principal submatrix A(1, 3, 4). Since x14 is negative by sign symmetry and the

term −x13x31 is nonpositive by sign symmetry, −x31 and/or x13x14 must be positive to make

the minor nonnegative. Then x31 and x13 must be negative by sign symmetry. However, this

is a contradiction. Therefore, this example matrix cannot be completed to a sign symmetric
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P0,1-matrix, and so the digraph q = 6, n = 4 does not have sign symmetric P0,1-completion.

The matrix A The submatrix A(1, 2, 3) The submatrix A(1, 3, 4)
1 1 x13 x14

1 1 1 x24

x31 x32 1 1
−1 x42 1 1


 1 1 x13

1 1 1
x31 x32 1

  1 x13 x14

x31 1 1
−1 1 1


x31 − x13x31 − x32 + x13x32 −x13 + x14 − x13x31 + x14x31

Figure 4.6 q = 6, n = 4 has no sign symmetric P0,1-completion

Lemma 4.11 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 6, n = 5 does not have sign symmetric P0,1-completion.

Proof: The digraph q = 6, n = 5 is shown in Figure 4.5. The example matrix A in Figure

4.7 cannot be completed to a sign symmetric P0,1-matrix. Consider the submatrix A(1, 2, 3).

Since x23 is positive by sign symmetry, the term −x23 is negative. The term −x13x31 is

nonpositive by sign symmetry. Then x13 and/or x23x31 must be positive in order to make

the minor nonnegative. Then x31 and x13 must be positive by sign symmetry. Next, we

consider the principal submatrix A(1, 3, 4). Since x14 is negative by sign symmetry and the

term −x13x31 is nonpositive by sign symmetry, −x13 and/or x14x31 must be positive to make

the minor nonnegative. Then x31 and x13 must be negative by sign symmetry. However, this

is a contradiction. Therefore, this example matrix cannot be completed to a sign symmetric

P0,1-matrix, and so the digraph q = 6, n = 5 does not have sign symmetric P0,1-completion.

Lemma 4.12 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 6, n = 6 or q = 6, n = 8 does not have sign symmetric P0,1-completion.

Proof: The digraph q = 6, n = 6 is shown in Figure 4.5. The example matrix A in

Figure 4.8 cannot be completed to a sign symmetric P0,1-matrix. Consider the submatrix

A(1, 2, 3). Since x12 is positive by sign symmetry, −x12 is negative. Also, the term −x13x31

is nonpositive by sign symmetry. Then x13 and/or x12x31 must be positive in order to make
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The matrix A The submatrix A(1, 2, 3) The submatrix A(1, 3, 4)
1 1 x13 x14

1 1 x23 x24

x31 1 1 1
−1 x42 1 1


 1 1 x13

1 1 x23

x31 1 1

  1 x13 x14

x31 1 1
−1 1 1


x13 − x23 − x13x31 + x23x31 −x13 + x14 − x13x31 + x14x31

Figure 4.7 q = 6, n = 5 has no sign symmetric P0,1-completion

the minor nonnegative. Then x31 and x13 must be positive by sign symmetry. Next, we

consider the principal submatrix A(1, 3, 4). Since x14 is negative by sign symmetry and the

term −x13x31 is nonpositive by sign symmetry, −x13 and/or x14x31 must be positive to make

the minor nonnegative. Then x31 and x13 must be negative by sign symmetry. However, this

is a contradiction. Therefore, this example matrix cannot be completed to a sign symmetric

P0,1-matrix, and so the digraph q = 6, n = 6 does not have sign symmetric P0,1-completion.

The matrix A The submatrix A(1, 2, 3) The submatrix A(1, 3, 4)
1 x12 x13 x14

1 1 1 x24

x31 1 1 1
−1 x42 1 1


 1 x12 x13

1 1 1
x31 1 1

  1 x13 x14

x31 1 1
−1 1 1


−x21 + x13x21 + x31 − x13x31 −x13 + x14 − x13x31 + x14x31

Figure 4.8 q = 6, n = 6 has no sign symmetric P0,1-completion

The digraph q = 6, n = 8 is the digraph of the transpose of a matrix specifying the digraph

q = 6, n = 6, so the digraph q = 6, n = 8 does not have sign symmetric P0,1-completion.

Lemma 4.13 A 4 × 4 partial sign symmetric P0,1-matrix specifying the pattern with digraph

q = 6, n = 7 or q = 7, n = 2 does not have sign symmetric P0,1-completion.

Proof: The digraph q = 6, n = 7 is shown in Figure 4.5. The example matrix A in Figure

4.9 cannot be completed to a sign symmetric P0,1-matrix. Consider the submatrix A(1, 2, 3).
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Since x21 is positive by sign symmetry, −x21 is negative. Also, the term −x13x31 is nonpos-

itive by sign symmetry. Then x31 and/or x12x13 must be positive in order to make the minor

nonnegative. Then x31 and x13 must be positive by sign symmetry. Next, we consider the

principal submatrix A(1, 3, 4). Since x14 is negative by sign symmetry and the term −x13x31

is nonpositive by sign symmetry, −x13 and/or x14x31 must be positive to make the minor

nonnegative. Then x31 and x13 must be negative by sign symmetry. However, this is a contra-

diction. Therefore, this example matrix cannot be completed to a sign symmetric P0,1-matrix,

and so the digraph q = 6, n = 7 does not have sign symmetric P0,1-completion.

The matrix A The submatrix A(1, 2, 3) The submatrix A(1, 3, 4)
1 1 x13 x14

x21 1 1 x24

x31 1 1 1
−1 x42 1 1


 1 1 x13

x21 1 1
x31 1 1

  1 x13 x14

x31 1 1
−1 1 1


−x21 + x13x21 + x31 − x13x31 −x13 + x14 − x13x31 + x14x31

Figure 4.9 q = 6, n = 7 has no sign symmetric P0,1-completion

If the digraph q = 7, n = 2 had sign symmetric P0,1-completion, the q = 6, n = 7 would

by Lemma 1.4. Therefore, q = 7, n = 2 does not have sign symmetric P0,1-completion.

Theorem 4.14 (Classification of Patterns of 4 × 4 matrices regarding sign symmetric P0,1-

completion). Let Q be a pattern for 4 × 4 matrices that includes all diagonal positions. The

pattern Q has sign symmetric P -completion if and only if its digraph is one of the following.
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q =0

q =1;

q =2; n =1-5;

q =3; n =1-11, 13;

q =4; n =1-12, 16-19, 21-23, 25-27;

q =5; n =1-5, 7-10, 26-29, 31, 33-34, 36-37;

q =6; n =1-3, 46;

q =7; n =4-5;

q =8; n =1;

q =12.

Proof:

Part 1. Digraphs that have sign symmetric P0,1-completion.

The following digraphs have sign symmetric P0,1-completion by Theorem 4.5 because each

block has sign symmetric P0,1-matrix completion by Lemma 4.6: q = 0; q = 1; q = 2, n = 1-5;

q = 3, n = 1-11, 13; q = 4, n =1-12, 21-23, 25-27; q = 5, n =1-5, 26-28; q = 6, n =1-3; q = 7,

n = 4-5; q = 8, n = 1; q = 12.

Each of the digraphs q = 4, n = 16-19; q = 5, n = 29, 31, 33-34, 36-37; q = 6, n =

46 are asymmetric and have sign symmetric P -completion [4]. Therefore, any partial sign

symmetric P0,1-matrix specifying one of these digraphs has sign symmetric P0,1-completion by

Theorem 4.1.

Any partial sign symmetric sign symmetric P0,1-matrix specifying any of the digraphs

q = 5, n = 7-10 have sign symmetric P0,1-matrix completion by Lemma 4.7, Lemma 4.8, and

Lemma 4.9.

Part 2. Digraphs that do not have sign symmetric P0,1-completion.

The order three digraphs q = 3, n = 2; q = 4, n = 2, 3, 4; q = 5 do not have sign symmetric

P0,1-completion by Lemma 4.6. Any digraph which has one of these order 3 digraphs as

an induced subdigraph does not have sign symmetric P0,1-completion, because a partial sign

symmetric P0,1-matrix specifying such a digraph then has a partial sign symmetric subdigraph
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(and therefore a sign symmetric P0,1-principal submatrix) which does not have sign symmetric

P0,1-completion. The following digraphs have at least one of these order 3 digraphs as an

induced subdigraph: q = 3, n = 12; q = 4, n = 13-15, 20, 24; q = 5, n = 6, 11-25, 30, 32, 35,

38; q = 6, n = 9-45, 47-48; q = 7, q = 1,3, 6-38; q = 8, n =3-27; q = 9, n = 1-13; n = 10,

q = 2-5; q = 11.

The digraphs q = 6, n = 4-8 and q = 7, n = 2 do not have sign symmetric P0,1-completion

by Lemma 4.10, Lemma 4.11, Lemma 4.12, and Lemma 4.13. The digraphs q = 8, n = 2;

q = 10, n = 1 do not have sign symmetric P0,1-completion by [7].
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CHAPTER 5. Classification of order 4 graphs and some order 4 digraphs

regarding P0,1-completion

In this chapter, we classify the order 4 graphs and some order 4 digraphs regarding P0,1-

completion. We begin with the known results we will use.

Theorem 5.1 [7] Every block-clique graph has P0,1-completion.

Theorem 5.2 [10] If each nonseparable strongly connected induced subdigraph of G has P0,1-

completion, so does G.

Lemma 5.3 [10] All patterns for 3× 3 matrices have P0,1-completion.

Corollary 5.4 If every strongly connected induced subdigraph of digraph G has blocks only of

order 3 or less, then G has P0,1-completion.

Corollary 5.5 Let G be a digraph that has P0,1-completion. Let H be a digraph obtained from

G by deleting one arc (u, v) such that u and v are contained in at most one clique of order 3

in G. Then H has P0,1-completion.

Equivalently, if G is a digraph obtained from a digraph H by adding one arc (u, v) such

that u and v are contained in at most one clique of order 3 in G, and H does not have P0,1-

completion, then G does not have P0,1-completion.

Proof: We establish the first statement. Let A be a partial P0,1-matrix specifying H. Choose

a value for the unspecified u, v-entry of A to obtain a partial P0,1-matrix B specifying G as

follows: If u and v are not in any clique of order 3, set the u, v-entry of B to 0. If the

subdigraph induced by {u, v, w} is a clique in G, choose a value c for the u, v-entry that

completes A({u, v, w}) to a P0,1-matrix (such a c is guaranteed to exist by Lemma 5.3). Then,
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since G has P0,1-completion, we can complete B to a P0,1-matrix C, which also completes A.

Thus H has P0,1-completion. �

Theorem 5.6 [11] Any pattern that has P0-completion also has P0,1-completion.

Theorem 5.7 [11] Any pattern that has P0,1-completion also has P -completion.

Corollary 5.8 Any pattern that does not have P -completion does not have P0,1-completion.

Theorem 5.9 [10] The 4-cycle (the graph q = 4, n = 2 or digraph q = 8, n = 2) has

P0,1-completion.

We begin with the classification of the graph q = 5 (digraph q = 10, n = 1), which is often

referred to as the double triangle (See Figure 5.1).

•

• •

•

1 2

3 4
�

�
�

�

Figure 5.1 The graph q = 5

For many classes, the double triangle does not have completion. For instance, the double

triangle does not have nonnegative P -completion [7]. It also does not have P0-completion, as

evidenced by the example in [13]: B =



1 2 1 x14

−1 0 0 −2

−1 0 0 −1

x41 1 1 1


, which is a partial P0-matrix, but

cannot be completed to a P0-matrix because DetB = −1.

However, all graphs, including the double triangle, have P -completion [13]. The following

theorem proves the double triangle also has P0,1-completion.

Theorem 5.10 A 4 × 4 partial P0,1-matrix specifying the pattern with graph q = 5 (equiva-

lently, digraph q = 10, n = 1) has P0,1-completion.
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Let A be a partial P0,1-matrix specifying graph q = 5, which is shown in Figure 5.1. We

can assume the diagonal entries of A are equal to 1.

The completion is proven in several cases:

Case 1: a23a32 6= 1.

Case 2: a23a32 = 1.

- Case 2a: a31 = a21.

- Case 2b: a42 = a43.

- Case 2c: a31 6= a21 and a42 6= a43.

The original minors are DetA(1, 2, 3), DetA(2, 3, 4), DetA(1, 2), DetA(2, 4), DetA(3, 4),

DetA(1, 3), and DetA(2, 3). Therefore, it is only necessary to show that DetA(1, 3, 4), DetA(1, 2, 4),

DetA(1, 4), and the determinant of A are nonnegative.

Case 1: a23a32 6= 1. Set x14 = x and x41 = −x for x large enough in absolute value to

make the principal minors nonnegative. The principal minors of A that must be checked for

Case 1 are shown in the Table 5.1.

Table 5.1 DetA and 3× 3 principal minors of A for Case 1

A(α) DetA(α)

A(1, 2, 3, 4) 1−a12a21−a13a31 +a12a23a31 +a13a21a32−a23a32−a24a42 +a13a24a31a42−
a13a21a34a42 +a23a34a42−a12a24a31a43 +a24a32a43−a34a43 +a12a21a34a43−
a12a24x+a13a24a32x−a13a34x+a12a23a34x+a21a42x−a23a31a42x+a31a43x−
a21a32a43x + (1− a23a32) x2

A(1, 2, 4) 1− a12a21 − a24a42 − a12a24x + a21a42x + x2

A(1, 3, 4) 1− a13a31 − a34a43 − a13a34x + a31a43x + x2

A(1, 4) 1 + x2

Since a32a23 6= 1, the last summand of the determinant of A is positive. Therefore, we can

choose x large enough so DetA ≥ 0. Similarly, we can choose x large enough so DetA(1, 2, 4),

DetA(1, 3, 4), and DetA(1, 4) are nonnegative.

Case 2: a23a32 = 1. Since a23a32 = 1, we can assume a23 = 1. This is possible by

Theorem 1.1. Then a32 = 1 also.
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Case 2a: a31 = a21. Set x14 = x and x41 = −x for x large enough in absolute value to

make the principal minors nonnegative. Let x be the same sign as (a12− a13)(a34− a24) if this

quantity is nonzero. If it is zero, x can be chosen freely. The principal minors of A which must

be checked are listed in Table 5.2. The original minors needed in order to show that they are

nonnegative are listed in the same table under the double line.

Table 5.2 DetA and 3× 3 principal minors of A in Case 2a

A(α) DetA(α)

A(1, 2, 3, 4) (a12 − a13)a21(−a24 + a34)a42 + (1 − a12a21)(−a24a42 + a34a42 + a24a43 −
a34a43) + (a12 − a13)(−a24 + a34)x

A(1, 2, 4) 1− a12a21 − a24a42 − a12a24x + a21a42x + x2

A(1, 3, 4) 1− a13a21 − a34a43 − a13a34x + a21a43x + x2

A(1, 4) 1 + x2

A(2, 3, 4) −a24a42 + a34a42 + a24a43 − a34a43

A(1, 4) 1− a12a21

Let us examine DetA. If (a12 − a13)(a34 − a24) 6= 0, let x be large enough in absolute value

to make DetA ≥ 0. If (a12 − a13)(a34 − a24) = 0, then DetA = (1− a12a21)(−a24a42 + a34a42 +

a24a43 − a34a43) = DetA(1, 2)DetA(2, 3, 4), which is a product of original minors. Therefore,

DetA is nonnegative.

The remaining 3 × 3 principal minors and the 2 × 2 minor are clearly nonnegative if x is

large enough.

Case 2b: a42 = a43. Set x14 = x and x41 = −x for x large enough in absolute value to

make the principal minors nonnegative. Let x be the same sign as (a12− a13)(a34− a24) if this

quantity is nonzero. It it is zero, x can be chosen freely. The principal minors of A which must

be checked are listed in Table 5.3. The original minors needed in order to show that they are

nonnegative are listed in the same table under the double line.

Let us examine DetA. If (a12 − a13)(a34 − a24) 6= 0, let x be large enough in absolute value

to make DetA ≥ 0. If (a12 − a13)(a34 − a24) = 0, then DetA = DetA(1, 2, 3)Det(3, 4) ≥ 0. The

minors DetA(1, 2, 4), DetA(1, 3, 4), and DetA(1, 4) are clearly nonnegative if x is chosen large

enough.
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Table 5.3 DetA and 3× 3 principal minors of A in Case 2b

A(α) DetA(α)

A(1, 2, 3, 4) (a12 − a13)a31(−a24 + a34)a43 + (−a12a21 + a13a21 + a12a31 − a13a31)(1 −
a34a43) + (a12 − a13)(−a24 + a34)x

A(1, 2, 4) 1− a12a21 − a24a43 − a12a24x + a21a43x + x2

A(1, 3, 4) 1− a13a31 − a34a43 − a13a34x + a31a43x + x2

A(1, 4) 1 + x2

A(3, 4) 1− a34a43

A(1, 2, 3) −a12a21 + a13a21 + a12a31 − a13a31

Case 2c: a31 6= a21 and a42 6= a43. Set x14 = x and x41 = −mx. The determinant of A and

the 3× 3 principal minors of A which need to be checked are shown in Table 5.4.

Choose m to be a positive constant such that the coefficient (a21 − a31) (a42 − a43) +

(−a12a24+a13a24+a12a34−a13a34)m of x is nonzero. This is possible because (a21−a31)(a42−

a43) is nonzero. So, if −a12a24 + a13a24 + a12a34 − a13a34 6= 0, there is a specific value of m

such that the coefficient of x is equal to zero; if −a12a24 + a13a24 + a12a34 − a13a34 = 0, then

m is irrelevant. Once m is chosen so that the coefficient of x is nonzero, we can choose x of

the same sign as its coefficient and large enough in absolute value to make the determinant

of A nonnegative. The 3 × 3 principal minors and the 2 × 2 principal minor of A are clearly

nonnegative if x is chosen large enough (since m > 0).

Table 5.4 DetA and 3× 3 principal minors of A in Case 2c

A(α) DetA(α)

A(1, 2, 3, 4) −a12a21 + a13a21 + a12a31 − a13a31 − a24a42 + a13a24a31a42 + a34a42 −
a13a21a34a42 + a24a43 − a12a24a31a43 − a34a43 + a12a21a34a43 +
((a21 − a31) (a42 − a43) + (−a12a24 + a13a24 + a12a34 − a13a34) m) x

A(1, 2, 4) 1− a12a21 − a24a42 + a21a42x− a12a24mx + mx2

A(1, 3, 4) 1− a13a31 − a34a43 + a31a43x− a13a34mx + mx2

A(1, 4) 1 + mx2

This concludes both cases. Therefore, the double triangle as P0,1-completion. �
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Theorem 5.11 All order 4 graphs have P0,1-completion.

Proof: The double triangle (q = 5) has P0,1-completion by Theorem 5.10. The 4 cycle

(q = 4, n = 2) has P0,1-completion by Theorem 5.9. Each of the remaining graphs has the

property that every component is block-clique, and thus has completion by Theorem 5.1.

Theorem 5.12 All patterns for the digraphs with

q = 0, q = 1, q = 2, q = 3, q = 4, q = 5, q = 6, and q = 12, and

q = 7 n = 1-29, 31, 34, 36-37;

q = 8 n = 1-15, 18, 21, 27;

q = 9 n = 1-2, 11;

q = 10 n = 1 ;

q = 12.
have P0,1-completion, and there exists at least one matrix satisfying the pattern for the

digraphs q = 9, n = 3; q = 10, n = 5; and q = 11 which cannot be completed to a P0,1-matrix.

Proof:

Part 1: All digraphs listed in Theorem 5.12 and not listed below have P0,1-completion

by Corollary 5.4.

The digraph q = 8, n = 2 has P0,1-completion by Theorem 5.9.

The following digraphs have P0,1-completion by Theorem 5.10 and Corollary 5.5: q = 4,

n = 16; q = 5, n =7, 32, 35; q = 6, n =4, 7, 22, 28, 30, 31, 33, 34, 37, 42; q = 7, n =2, 7, 8,

10, 12, 13, 15, 17, 18, 20, 21, 23, 25, 27; q = 8, n = 3-9, 11, 13-15; q = 9, n = 1, 2.

The digraph q = 6, n = 45 has P0-completion [2]. Therefore, it also has P0,1-completion The-

orem 5.6.

Part 2. Digraphs that do not have P0,1-completion.

The digraphs q = 9, n = 3; q = 10, n = 5; and q = 11 do not have P -completion [13], [3],

and therefore do not have P0,1-completion by Corollary 5.8.
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APPENDIX Mathematica Files

The following cell must be run in Mathematica before any of the other Mathematica files in the Ap-

pendix can be run.

In[1]:= truth [a ] = If [a, 1, 0];

Clear [M, n, ki , i , kj , j , B, BB, PM, submtx ];

M[B , n , ki , kj ] =

Table [B[[i + truth [ki <= i ], j + truth [kj <= j ]]],

{i , 1, n - 1}, {j , 1, n - 1}];

cut [A , set , PM] :=

Block [{k , n, Lset },

PM= A;

n = Dimensions [A][[1]];

Lset = Length [set ];

Do[PM= M[PM, n + 1 - k , set [[k]], set [[k]]], {k , 1, Lset }];

Print [MatrixForm [PM]];Print [Det [PM]]];

The rest of the files in the Appendix contain the data used to complete the proofs for the classification

of the graph of the Double Triangle regardingP0,1-completion, the classification of the digraphsq = 5,

n = 7; q = 5, n = 8; q = 5, n = 9; q = 6, n = 4; q = 6, n = 5; q = 6, n = 6; q = 6, n = 7 regarding sign

symmetricP0,1-completion, and the classification ofq = 7, n = 2 regarding weakly sign symmetric

P0,1-completion.
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Mathematica Files for q = 7, n = 2 regarding weakly sign symmetric completion

p=4 q=7 n=2 has wssP0,1-completion

Here is how the pattern matrix for q7n2 looks after the diagonal entries have been made equal to 1

by multiplying by a positive diagonal matrix. Label Harary’s graph as 4321 beginning in the upper

left-hand corner of the graph, and going clockwise around the graph.

In[2]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , a43];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[2]=
æ
ççççç

è

1 a12 x13 a14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 a43 1

ö
÷÷÷÷÷

ø

Case 1: a12*a23*a34*a41£0

In[3]:= x13 = a14 * a43; x24 = a21 * a14; x31 = 0; x32 = 0; x42 = 0;

MatrixForm [A]

Out[3]=
æ
ççççç

è

1 a12 a14 a43 a14

a21 1 a23 a14 a21

0 0 1 a34

a41 0 a43 1

ö
÷÷÷÷÷

ø

In[4]:= Det [A]

Out[4]= 1 - a12 a21 - a14 a41 + a12 a14 a21 a41 -

a12 a23 a34 a41 - a34 a43 + a12 a21 a34 a43 + a14 a34 a41 a43

In[5]:= Expand [Det [A] - ((1 - a12 * a21)(1 - a14 * a41)(1 - a34 * a43)+

a12 * a21 * a14 * a41 * a34 * a43 - a12 * a23 * a34 * a41)]

Out[5]= 0
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3 x 3 minors:

In[6]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 a14 a43

a21 1 a23

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

æ
ççççç

è

1 a12 a14

a21 1 a14 a21

a41 0 1

ö
÷÷÷÷÷

ø

1- a12 a21- a14 a41+a12 a14 a21 a41

æ
ççççç

è

1 a14 a43 a14

0 1 a34

a41 a43 1

ö
÷÷÷÷÷

ø

1- a14 a41- a34 a43+a14 a34 a41 a43

æ
ççççç

è

1 a23 a14 a21

0 1 a34

0 a43 1

ö
÷÷÷÷÷

ø

1- a34 a43

2 x 2 minors:

In[7]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

a43 1
M

1- a34 a43

I

1 a14 a21

0 1
M

1

I

1 a14

a41 1
M

1- a14 a41

I

1 a23

0 1
M

1

I

1 a14 a43

0 1
M



52

1

I

1 a12

a21 1
M

1- a12 a21

Case 2: a12*a23*a34*a41>0

In[8]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , a43];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , a43 , 1}}; x13 = a14 * a43;

x24 = a21 * a14 + a23 * a34; x31 = 0; x32 = 0; x42 = 0;

MatrixForm [A]

Out[8]=
æ
ççççç

è

1 a12 a14 a43 a14

a21 1 a23 a14 a21 + a23 a34

0 0 1 a34

a41 0 a43 1

ö
÷÷÷÷÷

ø

In[9]:= Det [A]

Out[9]= 1 - a12 a21 - a14 a41 + a12 a14 a21 a41 -

a34 a43 + a12 a21 a34 a43 + a14 a34 a41 a43

In[10]:= Expand [Det [A] - ((1 - a12 * a21)(1 - a14 * a41)(1 - a34 * a43)+

a12 * a21 * a14 * a41 * a34 * a43)]

Out[10]= 0

3 x 3 minors

In[11]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 a12 a14 a43

a21 1 a23

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

In[12]:= Clear [PA]; cut [A, {3}, PA];

Expand [Det [PA] - ((1 - a21 * a12)(1 - a14 * a41) + a12 * a23 * a34 * a41)]
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æ
ççççç

è

1 a12 a14

a21 1 a14 a21 + a23 a34

a41 0 1

ö
÷÷÷÷÷

ø

1- a12 a21- a14 a41+a12 a14 a21 a41+a12 a23 a34 a41

Out[12]= 0

In[13]:= Clear [PA]; cut [A, {2}, PA];Expand [Det [PA] - (1 - a14 * a41)(1 - a34 * a43)]

æ
ççççç

è

1 a14 a43 a14

0 1 a34

a41 a43 1

ö
÷÷÷÷÷

ø

1- a14 a41- a34 a43+a14 a34 a41 a43

Out[13]= 0

In[14]:= Clear [PA]; cut [A, {1}, PA]

æ
ççççç

è

1 a23 a14 a21 + a23 a34

0 1 a34

0 a43 1

ö
÷÷÷÷÷

ø

1- a34 a43

2 x 2 minors

In[15]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

a43 1
M

1- a34 a43

I

1 a14 a21 + a23 a34

0 1
M

1

I

1 a14

a41 1
M

1- a14 a41

I

1 a23

0 1
M

1

I

1 a14 a43

0 1
M
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1

I

1 a12

a21 1
M

1- a12 a21

Mathematica Files for q = 5, n = 7 regarding sign symmetricP0,1-completion

p=4 q=5 n=7 has ssP0,1-completion

Label the digraph as 3412 starting in the upper left hand corner and goingclockwise. Here is how the

pattern matrix looks after the diagonalentries have been made equal to 1 by multiplying by a positive

diagonalmatrix.

In[16]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g]

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};

MatrixForm [

A]

Out[16]=
æ
ççççç

è

1 a12 x13 x14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 x43 1

ö
÷÷÷÷÷

ø

Case I: a12a23a34a41>0

WLOG (by diagonal similarity) can assume a12, a23, a34= 1, and thus a41> 0 also.

We choose x32 small and+ so that 1-a23e>0 (strictly), call it e.

We choose x43 small and+ so that 1-a34x43>0 (strictly), call it e.

We choose x14 small and+ so that 1-a34x14>0 (strictly), call it e.

Note e> 0 and can be chosen as small as desired.
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We choose x13=a12a23= 1, x24=a23a34= 1, x31=x32a21= e a21, and x42=x43x32=eˆ2.

In[17]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g]

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}}; x13 = 1;

x31 = a21 * x32 ; x14 = e; x24 = 1; x42 = x32 * x43 ; x32 = e;

x43 = e;a12 = 1;a23 = 1;a34 = 1;

MatrixForm [A]

Out[17]=
æ
ççççç

è

1 1 1 e

a21 1 1 1

a21 e e 1 1

a41 e 2 e 1

ö
÷÷÷÷÷

ø

In[18]:= Det [A]

Out[18]= 1 - a21 + a41 - 2 e + 2 a21 e - 2 a41 e + e2
- 2 a21 e 2

+ a41 e 2
+ 2 a21 e 3

- a21 e 4

OK if e is small enough because 1-a12a21³0 and a41= a12a23a34a41>0. The rest of the terms have

e’s in them, so these terms need only be less than a12a23a34a41 for Det[A]>0

3 x 3 minors:

In[19]:= Clear [PA]; cut [A, {4}, PA]

æ
ççççç

è

1 1 1

a21 1 1

a21 e e 1

ö
÷÷÷÷÷

ø

1-a21-e +a21 e

In[20]:= Expand [Det [PA] - (1 - a21)(1 - e)]

Out[20]= 0

OK if e small

In[21]:= Clear [PA]; cut [A, {3}, PA];
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æ
ççççç

è

1 1 e

a21 1 1

a41 e 2 1

ö
÷÷÷÷÷

ø

1-a21 +a41- a41 e- e2
+a21 e3

OK if e is small enough because 1-a12a21³0 and a41> 0.

In[22]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 1 e

a21 e 1 1

a41 e 1

ö
÷÷÷÷÷

ø

1+a41-e- a21 e- a41 e+a21 e3

OK if e is small enough.

In[23]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 1 1

e 1 1

e2 e 1

ö
÷÷÷÷÷

ø

1- 2 e+e2

OK if e is small enough.

2 x 2 minors:

The following are all OK if e is small enough.

In[24]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

e 1
M

1-e

K

1 1

e2 1
O

1- e2

I

1 e

a41 1
M

1- a41 e



57

I

1 1

e 1
M

1-e

I

1 1

a21 e 1
M

1- a21 e

I

1 1

a21 1
M

1-a21

Case II: a12a23a34a41< 0.

Use a diagonal similarity to make the superdiagonal entries all 1. Then a41< 0, replace a41 by by -b

so the symbol b is positive

set x32=x43=e, x14=-e, assign other values in pairs, f, g small positive

In[25]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a12 = 1;

a23 = 1;a41 = -b;a34 = 1; x24 = -g; x42 = -g; x32 = e;

x43 = e; x14 = -e; x13 = f ; x31 = f ;

MatrixForm [A]

Out[25]=
æ
ççççç

è

1 1 f -e

a21 1 1 -g

f e 1 1

-b -g e 1

ö
÷÷÷÷÷

ø

First let e equal zero and then choose f and g positive & small enough to make each new minor positive.

Then perturb so that e is positive and yet small enough to keep all new minors nonnegative.
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In[26]:= e = 0;

MatrixForm [A]

Out[26]=
æ
ççççç

è

1 1 f 0

a21 1 1 -g

f 0 1 1

-b -g 0 1

ö
÷÷÷÷÷

ø

In[27]:= Det [A]

Out[27]= 1 - a21 + b + f - b f - f 2
- g + b g + a21 f g - g2

+ f 2 g2

OK, this minor is positive if the sum of all of the terms which contain an f or a g is less in magnitude

than a41.

3 x 3 minors:

In[28]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 f

a21 1 1

f 0 1

ö
÷÷÷÷÷

ø

1-a21 +f- f 2

Since 1-a21 is nonnegative, as long as f is less than 1, this minor is positive.

In[29]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 0

a21 1 -g

-b -g 1

ö
÷÷÷÷÷

ø

1-a21 +b g - g2

Since 1-a21is nonnegative, this minor is positive as long as g is less than a41.

In[30]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 f 0

f 1 1

-b 0 1

ö
÷÷÷÷÷

ø

1- b f - f 2
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OK if f is small enough.

In[31]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 1 -g

0 1 1

-g 0 1

ö
÷÷÷÷÷

ø

1-g- g2

OK if g is small enough

2 x 2 minors:

In[32]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

0 1
M

1

I

1 -g

-g 1
M

1- g2

I

1 0

-b 1
M

1

I

1 1

0 1
M

1

I

1 f

f 1
M

1- f 2

I

1 1

a21 1
M

1-a21

All of these 2 x 2s are positive for small f, g except the original minor

Since all new minors are positive, we can perturb the zero entries opposite nonzero entries (by perturb-

ing e to be positive) and yet keep all the minors nonnegative.
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Case III: a12a23a34a41= 0

Then at least one of the off-diagonal entries are zero.

SubCase III A: a12=0

Then a21 is also zero by sign symmetry. Let x14= e, x 32= f, x 43= g be small enough and of same

sign as a41, a23, a34 respectively, all others 0.

In[33]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g]

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a12 = 0;a21 = 0;

x13 = 0; x14 = e; x32 = f ; x43 = g; x31 = 0; x42 = 0; x24 = 0;

MatrixForm [A]

Out[33]=
æ
ççççç

è

1 0 0 e

0 1 a23 0

0 f 1 a34

a41 0 g 1

ö
÷÷÷÷÷

ø

Then all new minors are OK if e, f, g small enough:

In[34]:= Det [A]

Out[34]= 1 - a41 e - a23 f + a23 a41 e f - a34 g

3 x 3 minors:

In[35]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 0 0

0 1 a23

0 f 1

ö
÷÷÷÷÷

ø

1- a23 f

æ
ççççç

è

1 0 e

0 1 0

a41 0 1

ö
÷÷÷÷÷

ø

1- a41 e
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æ
ççççç

è

1 0 e

0 1 a34

a41 g 1

ö
÷÷÷÷÷

ø

1- a41 e- a34 g

æ
ççççç

è

1 a23 0

f 1 a34

0 g 1

ö
÷÷÷÷÷

ø

1- a23 f - a34 g

2 x 2 minors:

In[36]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

g 1
M

1- a34 g

I

1 0

0 1
M

1

I

1 e

a41 1
M

1- a41 e

I

1 a23

f 1
M

1- a23 f

I

1 0

0 1
M

1

I

1 0

0 1
M

1

SucCase III B: a34=0;

Then x43 must also be zero by sign symmetry.

Sub-subCase IIIB i: a12*a21<> 1
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Let x14= e, x32= f be small enough and of same sign as a41, a23, set all others to 0.

In[37]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a34 = 0;

x13 = 0; x14 = e; x32 = f ; x43 = 0; x31 = 0; x42 = 0; x24 = 0;

MatrixForm [A]

Out[37]=
æ
ççççç

è

1 a12 0 e

a21 1 a23 0

0 f 1 0

a41 0 0 1

ö
÷÷÷÷÷

ø

Then all new minors are OK if e, f small enough:

In[38]:= Det [A]

Out[38]= 1 - a12 a21 - a41 e - a23 f + a23 a41 e f

3 x 3 minors:

In[39]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 0

a21 1 a23

0 f 1

ö
÷÷÷÷÷

ø

1- a12 a21- a23 f

æ
ççççç

è

1 a12 e

a21 1 0

a41 0 1

ö
÷÷÷÷÷

ø

1- a12 a21- a41 e

æ
ççççç

è

1 0 e

0 1 0

a41 0 1

ö
÷÷÷÷÷

ø

1- a41 e

æ
ççççç

è

1 a23 0

f 1 0

0 0 1

ö
÷÷÷÷÷

ø
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1- a23 f

2 x 2 minors:

In[40]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 e

a41 1
M

1- a41 e

I

1 a23

f 1
M

1- a23 f

I

1 0

0 1
M

1

I

1 a12

a21 1
M

1- a12 a21

Sub-subCase IIIB ii: a12*a21=1

Since a12*a21=1, without loss of generality, we can set them both equal to 1.

Set x13=x31=0.

Set x24=x42=g with g=sign a41*min(|a41|,1)/2, so a41g-gˆ2>0 or a41=g=0.

set x14=s and x43= t very small, matching signs of a41, a34.
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In[41]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g, s , t ]

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a12 = 1;

a21 = 1;a23 = 0; x32 = 0; x24 = g; x42 = g;

x14 = s; x43 = t ; x13 = 0; x31 = 0;

MatrixForm [A]

Out[41]=
æ
ççççç

è

1 1 0 s

1 1 0 g

0 0 1 a34

a41 g t 1

ö
÷÷÷÷÷

ø

Then usinga41 g - g2> 0 and|g| < 1, if s and t are small enough, all minors are nonnegative:

In[42]:= Det [A]

Out[42]= a41 g - g2
- a41 s + g s

3 x 3 minors:

In[43]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 1 0

1 1 0

0 0 1

ö
÷÷÷÷÷

ø

0

æ
ççççç

è

1 1 s

1 1 g

a41 g 1

ö
÷÷÷÷÷

ø

a41 g- g2- a41 s+g s

æ
ççççç

è

1 0 s

0 1 a34

a41 t 1

ö
÷÷÷÷÷

ø

1- a41 s - a34 t

æ
ççççç

è

1 0 g

0 1 a34

g t 1

ö
÷÷÷÷÷

ø



65

1- g2- a34 t

2 x 2 minors:

In[44]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

t 1
M

1- a34 t

I

1 g

g 1
M

1- g2

I

1 s

a41 1
M

1- a41 s

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 1

1 1
M

0

SubCase IIIC: a23=0

Then x32 is also zero by sign symmetry. Set x14=e small enough and of same sign as a41, x34=f small

and same sign a34. Set x42=a12*a41, x24=s small same sign a12*a41, all others 0
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In[45]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g, s];

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a23 = 0;

x42 = a41 * a12; x14 = e; x32 = 0; x43 = f ; x24 = s; x13 = 0; x31 = 0;

MatrixForm [A]

Out[45]=
æ
ççççç

è

1 a12 0 e

a21 1 0 s

0 0 1 a34

a41 a12 a41 f 1

ö
÷÷÷÷÷

ø

In[46]:= Det [A]

Out[46]= 1 - a12 a21 - a41 e + a12 a21 a41 e - a34 f + a12 a21 a34 f

In[47]:= Expand [Det [A] - (1 - a12 * a21)(1 - a41 * e - a34 * f )]

Out[47]= 0

OK if e, f small enough.

3 x 3 minors:

The following are all OK if e, f, s small enough.

In[48]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

æ
ççççç

è

1 a12 e

a21 1 s

a41 a12 a41 1

ö
÷÷÷÷÷

ø

1- a12 a21- a41 e+a12 a21 a41 e

æ
ççççç

è

1 0 e

0 1 a34

a41 f 1

ö
÷÷÷÷÷

ø
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1- a41 e- a34 f

æ
ççççç

è

1 0 s

0 1 a34

a12 a41 f 1

ö
÷÷÷÷÷

ø

1- a34 f - a12 a41 s

2 x 2 minors:

The following are all OK if e, f, s small enough.

In[49]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

f 1
M

1- a34 f

I

1 s

a12 a41 1
M

1- a12 a41 s

I

1 e

a41 1
M

1- a41 e

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a12

a21 1
M

1- a12 a21

SubCase IIID: a41=0 (similar to IIIC a23=0)

Then x14 is also zero by sign symmetry. Set x32=e small enough and of same sign as a23, x43=f small

and same sign a34. Set x13=a12*a23, x31=s small same sign a12*a23, all others 0
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In[50]:= Clear [a12 , x13 , x14 , a21 , a23 , x24 , x31 , x32 , a34 , a41 , x42 , x43 ];

Clear [e, f , g, s];

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , x43 , 1}};a41 = 0;

x13 = a12 * a23; x14 = 0; x32 = e; x43 = f ; x31 = s; x42 = 0; x24 = 0;

MatrixForm [A]

Out[50]=
æ
ççççç

è

1 a12 a12 a23 0

a21 1 a23 0

s e 1 a34

0 0 f 1

ö
÷÷÷÷÷

ø

All are OK if e, f small enough.

In[51]:= Det [A]

Out[51]= 1 - a12 a21 - a23 e + a12 a21 a23 e - a34 f + a12 a21 a34 f

In[52]:= Expand [Det [A] - (1 - a12 * a21)(1 - a23 * e - a34 * f )]

Out[52]= 0

3 x 3 minors:

In[53]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 a12 a23

a21 1 a23

s e 1

ö
÷÷÷÷÷

ø

1- a12 a21- a23 e+a12 a21 a23 e

æ
ççççç

è

1 a12 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

æ
ççççç

è

1 a12 a23 0

s 1 a34

0 f 1

ö
÷÷÷÷÷

ø

1- a34 f - a12 a23 s
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æ
ççççç

è

1 a23 0

e 1 a34

0 f 1

ö
÷÷÷÷÷

ø

1- a23 e- a34 f

2 x 2 minors:

In[54]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

f 1
M

1- a34 f

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a23

e 1
M

1- a23 e

I

1 a12 a23

s 1
M

1- a12 a23 s

I

1 a12

a21 1
M

1- a12 a21

Mathematica Files for q = 5, n = 8 regarding sign symmetricP0,1-completion

p=4 q=5 n=8 has ssP0,1-completion

Label the digraph as 4321 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal

entries have been made equal to 1 by multiplying by a positive diagonal matrix.
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In[55]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[55]=
æ
ççççç

è

1 a12 x13 a14

a21 1 a23 x24

x31 x32 1 x34

x41 x42 a43 1

ö
÷÷÷÷÷

ø

Case 1: a21*a23*a43*a14>0

WLOG (by diagonal similarity), we can assume a12, a23, a43= 1, and thus a41>0 also.

Let x34= e>0 and small enough so that 1-a43e³ 0.

Let x32= e> 0 and small enough so that both 1-a23e³0 and 1-a14*a21*a43*e³0.

Let x13=a12*a23, x31=a21*e, x24=a23*e, x42=e*a43, and x41=a21*e*a43.

In[56]:= Clear [e, f , g];

a12 = 1;a23 = 1;a43 = 1; x13 = a12 * a23; x31 = a21 * x32 ;

x24 = a23 * x34 ; x42 = x32 * a43; x41 = a21 * x32 * a43; x32 = e; x34 = e;

MatrixForm [A]

Out[56]=
æ
ççççç

è

1 1 1 a14

a21 1 1 e

a21 e e 1 e

a21 e e 1 1

ö
÷÷÷÷÷

ø

In[57]:= Det [A]

Out[57]= 1 - a21 - 2 e + 2 a21 e + e2
- a21 e 2

In[58]:= Expand [Det [A] - ((1 - a21 * a12)(1 - e)ˆ2 )]

Out[58]= 0



71

3 x 3 minors

In[59]:= Clear [PA]; cut [A, {4}, PA];Expand [Det [PA] - (1 - a12 * a21)(1 - e)]

æ
ççççç

è

1 1 1

a21 1 1

a21 e e 1

ö
÷÷÷÷÷

ø

1-a21-e +a21 e

Out[59]= 0

In[60]:= Clear [PA]; cut [A, {3}, PA];Expand [Det [PA] - (1 - a12 * a21)(1 - eˆ2 )]

æ
ççççç

è

1 1 a14

a21 1 e

a21 e e 1

ö
÷÷÷÷÷

ø

1-a21- e2
+a21 e2

Out[60]= 0

In[61]:= Clear [PA]; cut [A, {2}, PA];Expand [Det [PA] - (1 - a43 * x34 )(1 - a21 * e)]

æ
ççççç

è

1 1 a14

a21 e 1 e

a21 e 1 1

ö
÷÷÷÷÷

ø

1-e- a21 e+a21 e2

Out[61]= 0

In[62]:= Clear [PA]; cut [A, {1}, PA];Expand [Det [PA] - (1 - e)ˆ2 ]

æ
ççççç

è

1 1 e

e 1 e

e 1 1

ö
÷÷÷÷÷

ø

1- 2 e+e2

Out[62]= 0

2 x 2 minors

all OK or original for e small

In[63]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 e

1 1
M
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1-e

I

1 e

e 1
M

1- e2

I

1 a14

a21 e 1
M

1- a14 a21 e

I

1 1

e 1
M

1-e

I

1 1

a21 e 1
M

1- a21 e

I

1 1

a21 1
M

1-a21

Case 2: a21*a23*a43*a14< 0

Note this means that a21, a23, a43, a14, x32, x34, x41 are all nonzero.

Do a similarity operation that makes a12=1, a23=1, and a43=1.

Then a41< 0. We replace the symbol a41 with the symbol -b so that all the symbols in the matrix are

positive.

Case 2a: a21<> 1 (and a21*a23*a43*a14< 0)

Let x34=e, x32=e, x24=e, x42=e, x41=-e, x13=0, x31=0.

Note 1 - a21> 0.

Choose e positive and as small as needed. Since there are finitely many continuous minors to satisfy,

the following minors can be made nonnegative.
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In[64]:= Clear [b, e, f , g];

a12 = 1;a23 = 1;a43 = 1; x34 = e; x32 = e; x24 = e;

x42 = e; x41 = -e; x13 = 0; x31 = 0;a14 = -b;

MatrixForm [A]

Out[64]=
æ
ççççç

è

1 1 0 -b

a21 1 1 e

0 e 1 e

-e e 1 1

ö
÷÷÷÷÷

ø

Since 1-a21> 0, all OK if e is small enough.

In[65]:= Det [A]

Out[65]= 1 - a21 - 2 e + a21 e - b e + e2
+ b e2

3 x 3 minors:

In[66]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 1 0

a21 1 1

0 e 1

ö
÷÷÷÷÷

ø

1-a21-e

æ
ççççç

è

1 1 -b

a21 1 e

-e e 1

ö
÷÷÷÷÷

ø

1-a21- b e- a21 b e- 2 e2

æ
ççççç

è

1 0 -b

0 1 e

-e 1 1

ö
÷÷÷÷÷

ø

1-e- b e

æ
ççççç

è

1 1 e

e 1 e

e 1 1

ö
÷÷÷÷÷

ø

1- 2 e+e2

2 x 2 minors:
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In[67]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 e

1 1
M

1-e

I

1 e

e 1
M

1- e2

I

1 -b

-e 1
M

1- b e

I

1 1

e 1
M

1-e

I

1 0

0 1
M

1

I

1 1

a21 1
M

1-a21

Case 2b: a21=1 (and a12=a23=a43=1 and a14= -b, b>0)

Let x31=f, x13=f, x24=-g, x42=-g, x32=f, x41=-e, and x34=e, with e,f,g> 0.

Note this means that a21, a23, a43, a14, x32, x34, x41 are all nonzero. The matrix below has been set

up so that all variables are positive.

In[68]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g, b, c];

a12 = 1;a21 = 1;a23 = 1; x31 = f ; x13 = f ;a43 = 1;

x24 = -g; x42 = -g; x32 = f ; x41 = -e; x34 = e;a14 = -b;

MatrixForm [A]
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Out[68]=
æ
ççççç

è

1 1 f -b

1 1 1 -g

f f 1 e

-e -g 1 1

ö
÷÷÷÷÷

ø

Choose f and g first so that the minors are positive when e=0. That is, choose f first and then g so that

each are the smallest of that necessary to make each of the minors positive. Then perturb e to make e

positive, but not so large that the minors become nonnegative.

In[69]:= e = 0;

MatrixForm [A]

Out[69]=
æ
ççççç

è

1 1 f -b

1 1 1 -g

f f 1 0

0 -g 1 1

ö
÷÷÷÷÷

ø

In[70]:= Det [A]

Out[70]= b g - b f g - g2
+ f 2 g2

In[71]:= Expand [Det [A] - (g(b(1 - f ) - g(1 - fˆ2 )))]

Out[71]= 0

Fix f<1. Then choose g so that g(1-fˆ2) is less than b(1-f). Then Det[A]>0.

3 x 3 minors:

In[72]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 f

1 1 1

f f 1

ö
÷÷÷÷÷

ø

0

In[73]:= Clear [PA]; cut [A, {3}, PA];Expand [Det [PA] - g(b - g)]

æ
ççççç

è

1 1 -b

1 1 -g

0 -g 1

ö
÷÷÷÷÷

ø

b g - g2



76

Out[73]= 0

OK if g < b

In[74]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 f -b

f 1 0

0 1 1

ö
÷÷÷÷÷

ø

1- b f - f 2

OK if f is small enough.

In[75]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 1 -g

f 1 0

-g 1 1

ö
÷÷÷÷÷

ø

1-f- f g - g2

OK if f and g are small enough.

2 x 2 minors:

The following are all OK if f, g are small enough.

In[76]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 0

1 1
M

1

I

1 -g

-g 1
M

1- g2

I

1 -b

0 1
M

1

I

1 1

f 1
M

1-f



77

I

1 f

f 1
M

1- f 2

I

1 1

1 1
M

0

Case 3: a21*a23*a43*a14=0

This implies at least one of the off-diagonal entries are zero.

Case 3a: a12=a21=0

Set x41=e;x32=f;x34=g; and all others 0

In[77]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a12 = 0;a21 = 0;

x31 = 0; x13 = 0; x24 = 0; x42 = 0; x41 = e; x32 = f ; x34 = g;

MatrixForm [A]

Out[77]=
æ
ççççç

è

1 0 0 a14

0 1 a23 0

0 f 1 g

e 0 a43 1

ö
÷÷÷÷÷

ø

All minors OK if e, f, g small enough:

In[78]:= Det [A]

Out[78]= 1 - a14 e - a23 f + a14 a23 e f - a43 g

3 x 3 minors:

In[79]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]
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æ
ççççç

è

1 0 0

0 1 a23

0 f 1

ö
÷÷÷÷÷

ø

1- a23 f

æ
ççççç

è

1 0 a14

0 1 0

e 0 1

ö
÷÷÷÷÷

ø

1- a14 e

æ
ççççç

è

1 0 a14

0 1 g

e a43 1

ö
÷÷÷÷÷

ø

1- a14 e- a43 g

æ
ççççç

è

1 a23 0

f 1 g

0 a43 1

ö
÷÷÷÷÷

ø

1- a23 f - a43 g

2 x 2 minors:

In[80]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 g

a43 1
M

1- a43 g

I

1 0

0 1
M

1

I

1 a14

e 1
M

1- a14 e

I

1 a23

f 1
M

1- a23 f

I

1 0

0 1
M

1

I

1 0

0 1
M
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1

Case 3b: a23=0 => x32= 0

Case3bi: a12*a21<> 1

So 1-a21*a21> 0.

Set x41= e, x34= f, all others 0

In[81]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a23 = 0;

x31 = 0; x13 = 0; x24 = 0; x42 = 0; x32 = 0; x41 = e; x34 = f ;

MatrixForm [A]

Out[81]=
æ
ççççç

è

1 a12 0 a14

a21 1 0 0

0 0 1 f

e 0 a43 1

ö
÷÷÷÷÷

ø

Since 1-a12 a21> 0, all minors OK if e, f is small enough.

In[82]:= Det [A]

Out[82]= 1 - a12 a21 - a14 e - a43 f + a12 a21 a43 f

3 x 3 minors:

In[83]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

æ
ççççç

è

1 a12 a14

a21 1 0

e 0 1

ö
÷÷÷÷÷

ø
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1- a12 a21- a14 e

æ
ççççç

è

1 0 a14

0 1 f

e a43 1

ö
÷÷÷÷÷

ø

1- a14 e- a43 f

æ
ççççç

è

1 0 0

0 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a43 f

2 x 2 minors:

In[84]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 f

a43 1
M

1- a43 f

I

1 0

0 1
M

1

I

1 a14

e 1
M

1- a14 e

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a12

a21 1
M

1- a12 a21

Case3bii: a12*a21=1 (and a23=0 => x32= 0)

Without loss of generality, we can make a12=a21=1;

set x31=0; x13=0; x24=g; x42=g; x32=0; x41=e; x34=f;
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In[85]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a12 = 1;a21 = 1;

a23 = 0; x31 = 0; x13 = 0; x24 = g; x42 = g; x32 = 0; x41 = e; x34 = f ;

MatrixForm [A]

Out[85]=
æ
ççççç

è

1 1 0 a14

1 1 0 g

0 0 1 f

e g a43 1

ö
÷÷÷÷÷

ø

Temporarily set e=0.

Choose f small enough so that 1-a43 f> 0.

If a14= 0, set g=0, all are minors nonnegative

If a14 not 0, make all minors that contain e positive so we can perturb e.

In[86]:= e = 0;MatrixForm [A]

Out[86]=
æ
ççççç

è

1 1 0 a14

1 1 0 g

0 0 1 f

0 g a43 1

ö
÷÷÷÷÷

ø

In[87]:= Det [A]

Out[87]= a14 g - g2

Positive if g< a14, else g=0 and this is 0

3 x 3 minors:

In[88]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 0

1 1 0

0 0 1

ö
÷÷÷÷÷

ø

0
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None of these entries contain an entry set to e, so it is OK that it is not positive.

In[89]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 a14

1 1 g

0 g 1

ö
÷÷÷÷÷

ø

a14 g- g2

Positive if g< a14, else g=0 and this is 0

In[90]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 0 a14

0 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a43 f

In[91]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 0 g

0 1 f

g a43 1

ö
÷÷÷÷÷

ø

1- a43 f - g2

Positive if g small or 0.

2 x 2 minors:

In[92]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 f

a43 1
M

1- a43 f

I

1 g

g 1
M

1- g2

I

1 a14

0 1
M

1
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I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 1

1 1
M

0

Case 3c: a43=0 => x34= 0

Case3ci: a12*a21<> 1 so 1-a12a21> 0

Set x31=0;x13=0;x24=0;x42=0;x32=f;x41=e;

In[93]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a43 = 0;

x31 = 0; x13 = 0; x24 = 0; x42 = 0; x32 = f ; x41 = e; x34 = 0;

MatrixForm [A]

Out[93]=
æ
ççççç

è

1 a12 0 a14

a21 1 a23 0

0 f 1 0

e 0 0 1

ö
÷÷÷÷÷

ø

Since1-a12 a21> 0, all minors OK if e is small enough.

In[94]:= Det [A]

Out[94]= 1 - a12 a21 - a14 e - a23 f + a14 a23 e f

3 x 3 minors:

In[95]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]
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æ
ççççç

è

1 a12 0

a21 1 a23

0 f 1

ö
÷÷÷÷÷

ø

1- a12 a21- a23 f

æ
ççççç

è

1 a12 a14

a21 1 0

e 0 1

ö
÷÷÷÷÷

ø

1- a12 a21- a14 e

æ
ççççç

è

1 0 a14

0 1 0

e 0 1

ö
÷÷÷÷÷

ø

1- a14 e

æ
ççççç

è

1 a23 0

f 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a23 f

2 x 2 minors:

In[96]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a14

e 1
M

1- a14 e

I

1 a23

f 1
M

1- a23 f

I

1 0

0 1
M

1

I

1 a12

a21 1
M
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1- a12 a21

Case3cii: a12*a21=1

Without loss of generality, we can make a12=a21=1;

Set x31=g2;x13=g2;x24=g1;x42=g1;x32=e2;x41=e1;

In[97]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g, e1 , e2 , g1 , g2];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a12 = 1;

a21 = 1;a43 = 0; x31 = g2; x13 = g2; x24 = g1; x42 = g1;

x32 = e2; x41 = e1; x34 = 0;

MatrixForm [A]

Out[97]=
æ
ççççç

è

1 1 g2 a14

1 1 a23 g1

g2 e2 1 0

e1 g1 0 1

ö
÷÷÷÷÷

ø

Temporarily set e1= e2= 0

In[98]:= e1 = 0;e2 = 0;MatrixForm [A]

Out[98]=
æ
ççççç

è

1 1 g2 a14

1 1 a23 g1

g2 0 1 0

0 g1 0 1

ö
÷÷÷÷÷

ø

If a14= 0, set g1=0 (and e1 stays 0)

If a14 not 0, choose g1 small to make all minors that contain e1 positive so we can perturb e1.

If a23= 0 set g2=0 (and e2 stays 0)

If a23 not 0, choose g2 small to make all minors that contain e2 positive so we can perturb e2.

In[99]:= Det [A]
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Out[99]= a14 g1 - g12
+ a23 g2 - a14 a23 g1 g2 - g22

+ g12 g22

Positive if a14 or a23 nonzero and g1, g2 small enough.

3 x 3 minors:

In[100]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 g2

1 1 a23

g2 0 1

ö
÷÷÷÷÷

ø

a23 g2- g22

Can be made positive with small g2 if a23 not 0.

In[101]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 a14

1 1 g1

0 g1 1

ö
÷÷÷÷÷

ø

a14 g1- g12

Can be made positive if with small g1 if a14 not 0.

In[102]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 g2 a14

g2 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- g22

In[103]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 a23 g1

0 1 0

g1 0 1

ö
÷÷÷÷÷

ø

1- g12

2 x 2 minors:

In[104]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]
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I

1 0

0 1
M

1

I

1 g1

g1 1
M

1- g12

I

1 a14

0 1
M

1

I

1 a23

0 1
M

1

I

1 g2

g2 1
M

1- g22

I

1 1

1 1
M

0

Case 3d: a14=0 so x41=0

Case3di: a12*a21 not 1

So 1-a21*a21> 0.

Set x32=e, x34=f, all others 0

In[105]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a14 = 0;

x31 = 0; x13 = 0; x24 = 0; x42 = 0; x32 = e; x41 = 0; x34 = f ;

MatrixForm [A]
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Out[105]=
æ
ççççç

è

1 a12 0 0

a21 1 a23 0

0 e 1 f

0 0 a43 1

ö
÷÷÷÷÷

ø

Since 1-a12 a21> 0, all minors OK if e, f small enough.

In[106]:= Det [A]

Out[106]= 1 - a12 a21 - a23 e - a43 f + a12 a21 a43 f

3 x 3 minors:

In[107]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 a12 0

a21 1 a23

0 e 1

ö
÷÷÷÷÷

ø

1- a12 a21- a23 e

æ
ççççç

è

1 a12 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a12 a21

æ
ççççç

è

1 0 0

0 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a43 f

æ
ççççç

è

1 a23 0

e 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a23 e- a43 f

2 x 2 minors:

In[108]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 f

a43 1
M

1- a43 f

I

1 0

0 1
M
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1

I

1 0

0 1
M

1

I

1 a23

e 1
M

1- a23 e

I

1 0

0 1
M

1

I

1 a12

a21 1
M

1- a12 a21

Case3dii: a12*a21=1 (and a14=0 so x41=0)

Without loss of generality, we can make a12=a21=1;

Set x31=g; x13=g; x24=0; x42=0; x32=e; x34=f;

In[109]:= Clear [a12 , x13 , a14 , a21 , a23 , x24 , x31 , x32 , x34 , x41 , x42 , a43];

Clear [e, f , g, e1 , e2];

A = {{1, a12 , x13 , a14}, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, x34 }, {x41 , x42 , a43 , 1}};a12 = 1;a21 = 1;

a14 = 0; x31 = g; x13 = g; x24 = 0; x42 = 0; x32 = e; x41 = 0; x34 = f ;

MatrixForm [A]

Out[109]=
æ
ççççç

è

1 1 g 0

1 1 a23 0

g e 1 f

0 0 a43 1

ö
÷÷÷÷÷

ø

Temporarily set e=0.

Choose f small enough so that 1-a43 f> 0.

If a23= 0, set g=0, all are minors nonnegative
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If a23 not 0, choose g to make all minors that contain e positive so we can perturb e.

In[110]:= e = 0;MatrixForm [A]

Out[110]=
æ
ççççç

è

1 1 g 0

1 1 a23 0

g 0 1 f

0 0 a43 1

ö
÷÷÷÷÷

ø

In[111]:= Det [A]

Out[111]= a23 g - g2

Positive if g< a23.

3 x 3 minors:

In[112]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 g

1 1 a23

g 0 1

ö
÷÷÷÷÷

ø

a23 g- g2

Positive if g< a23.

In[113]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 0

1 1 0

0 0 1

ö
÷÷÷÷÷

ø

0

The zero entries in this matrix will remain zero when e is perturbed. Therefore, this minor is OK.

In[114]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 g 0

g 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a43 f - g2

OK if a43f < 1 and g small
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In[115]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 a23 0

0 1 f

0 a43 1

ö
÷÷÷÷÷

ø

1- a43 f

2 x 2 minors:

In[116]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 f

a43 1
M

1- a43 f

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a23

0 1
M

1

I

1 g

g 1
M

1- g2

I

1 1

1 1
M

0

Mathematica Files for q = 5, n = 9 regarding sign symmetric completion

p=4 q=5 n=9 has ssP0,1-completion

Label the digraph as 4321 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.
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In[117]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 , e];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};

MatrixForm [

A]

Out[117]=
æ
ççççç

è

1 a12 x13 a14

a21 1 x23 x24

x31 a32 1 a34

x41 x42 x43 1

ö
÷÷÷÷÷

ø

Case 1: a12a32a34a14> 0

This implies that the factors and also their pairs are nonzero.

WLOG (by diagonal similarity), we can assume a12=a32=a34=1, and thus a14>0 also. Note that

a21>0 by sign symmetry.

Let x43= e>0 and small enough so that both 1-a34x43³0 and 1-a14*a21*a32*x43³0.

Let x23=e>0 and small enough so that both 1-a32x23³0 (If a32=0,then let x23=0).

Let x13=a12*e, x31=a21, x24=e, x42=e, x41=a21*e.

In[118]:= a12 = 1;a32 = 1;a34 = 1; x43 = e; x23 = e; x13 = e;

x31 = a21 * a32; x24 = e; x42 = e; x41 = a21 * x43 ;

MatrixForm [A]

Out[118]=
æ
ççççç

è

1 1 e a14

a21 1 e e

a21 1 1 1

a21 e e e 1

ö
÷÷÷÷÷

ø

In[119]:= Det [A]

Out[119]= 1 - a21 - 2 e + 2 a21 e + e2
- a21 e 2

In[120]:= Expand [Det [A] - ((1 - a21 * a12)(1 - e)ˆ2 )]
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Out[120]= 0

3 x 3 minors:

In[121]:= Clear [PA]; cut [A, {4}, PA];Expand [Det [PA] - (1 - a21)(1 - e)]

æ
ççççç

è

1 1 e

a21 1 e

a21 1 1

ö
÷÷÷÷÷

ø

1-a21-e +a21 e

Out[121]= 0

In[122]:= Clear [PA]; cut [A, {3}, PA];Expand [Det [PA] - (1 - a21)(1 - eˆ2 )]

æ
ççççç

è

1 1 a14

a21 1 e

a21 e e 1

ö
÷÷÷÷÷

ø

1-a21- e2
+a21 e2

Out[122]= 0

In[123]:= Clear [PA]; cut [A, {2}, PA];Expand [Det [PA] - (1 - e)(1 - a21 * e)]

æ
ççççç

è

1 e a14

a21 1 1

a21 e e 1

ö
÷÷÷÷÷

ø

1-e- a21 e+a21 e2

Out[123]= 0

In[124]:= Clear [PA]; cut [A, {1}, PA];Expand [Det [PA] - (1 - e)(1 - x43 )]

æ
ççççç

è

1 e e

1 1 1

e e 1

ö
÷÷÷÷÷

ø

1- 2 e+e2

Out[124]= 0

2 x 2 minors:

In[125]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

e 1
M
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1-e

I

1 e

e 1
M

1- e2

I

1 a14

a21 e 1
M

1- a14 a21 e

I

1 e

1 1
M

1-e

I

1 e

a21 1
M

1- a21 e

I

1 1

a21 1
M

1-a21

In[126]:= Clear [PA]; cut [A, {4, 3}, PA]

I

1 1

a21 1
M

1-a21

Case 2: a12a32a34a14< 0

Note this means that a12, x23, a34, x41, a21, a32, x43, and a14 are all nonzero.

Do a diagonal similarity operation that makes a12=a32=a34=1. Then a14<0.

We replace a14 with -b so that all the symbols in the matrix below are positive.

Set x23=e, x43=e, and x41=-e. Set x31=x13=f and x24=x42=-g.

First set e= 0.

Choose f positive so that f is less than a21 and 1. Then choose g positive and small enough to make

each 3 by 3 and 4 by 4 minor containing x23, x43 or x41 positive. Then we can perturb e to be positive,

and yet small enough to keep each minor nonnegative.
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In[127]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a12 = 1;

a32 = 1;a34 = 1; x13 = f ; x31 = f ; x24 = -g; x42 = -g;

x23 = e; x43 = e; x41 = -e;a14 = -b;

MatrixForm [A]

Out[127]=
æ
ççççç

è

1 1 f -b

a21 1 e -g

f 1 1 1

-e -g e 1

ö
÷÷÷÷÷

ø

In[128]:= e = 0;

MatrixForm [A]

Out[128]=
æ
ççççç

è

1 1 f -b

a21 1 0 -g

f 1 1 1

0 -g 0 1

ö
÷÷÷÷÷

ø

In[129]:= Det [A]

Out[129]= 1 - a21 + a21 f - f 2
+ a21 b g + a21 f g - g2

+ f 2 g2

In[130]:= Expand [Det [A] - (1 - a21 + (a21 - f ) f + a21 * b * g + a21 * f * g - g2
+ f 2

* g2
)]

Out[130]= 0

We have chosen f to be less than a21. Then we choose g so that the sum of the last terms are less than

f (a21-f). Then the determinant is positive, and we can perturb e as stated at the beginning of this case.

3 x 3 minors:

In[131]:= Clear [PA]; cut [A, {4}, PA];Expand [Det [PA] - (1 - a21 + f (a21 - f ))]

æ
ççççç

è

1 1 f

a21 1 0

f 1 1

ö
÷÷÷÷÷

ø
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1-a21 +a21 f - f 2

Out[131]= 0

Positive if f is less than a21.

In[132]:= Clear [PA]; cut [A, {3}, PA];Expand [Det [PA] - (1 - a21 + (a21 * b - g) g)]

æ
ççççç

è

1 1 -b

a21 1 -g

0 -g 1

ö
÷÷÷÷÷

ø

1-a21 +a21 b g - g2

Out[132]= 0

Positive if g is less than b*a21.

In[133]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 f -b

f 1 1

0 0 1

ö
÷÷÷÷÷

ø

1- f 2

Positive if f is less than 1.

In[134]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 0 -g

1 1 1

-g 0 1

ö
÷÷÷÷÷

ø

1- g2

Positive if g is less than 1.

2 x 2 minors:

In[135]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

0 1
M

1

I

1 -g

-g 1
M
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1- g2

I

1 -b

0 1
M

1

I

1 0

1 1
M

1

I

1 f

f 1
M

1- f 2

I

1 1

a21 1
M

1-a21

Case 3a: a12=a21=0

Set x41=e;x23=f;x43=g; and all others 0

In[136]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a12 = 0;a21 = 0;

x13 = 0; x31 = 0; x24 = 0; x42 = 0; x41 = e; x23 = f ; x43 = g;

MatrixForm [A]

Out[136]=
æ
ççççç

è

1 0 0 a14

0 1 f 0

0 a32 1 a34

e 0 g 1

ö
÷÷÷÷÷

ø

Let e , f, and g be the same sign as a14,a32, and a34 respectively. All minors are OK if e, f, and g are

small enough.

In[137]:= Det [A]

Out[137]= 1 - a14 e - a32 f + a14 a32 e f - a34 g
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3 x 3 minors:

In[138]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 0 0

0 1 f

0 a32 1

ö
÷÷÷÷÷

ø

1- a32 f

æ
ççççç

è

1 0 a14

0 1 0

e 0 1

ö
÷÷÷÷÷

ø

1- a14 e

æ
ççççç

è

1 0 a14

0 1 a34

e g 1

ö
÷÷÷÷÷

ø

1- a14 e- a34 g

æ
ççççç

è

1 f 0

a32 1 a34

0 g 1

ö
÷÷÷÷÷

ø

1- a32 f - a34 g

2 x 2 minors:

In[139]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 a34

g 1
M

1- a34 g

I

1 0

0 1
M

1

I

1 a14

e 1
M

1- a14 e

I

1 f

a32 1
M

1- a32 f

I

1 0

0 1
M
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1

I

1 0

0 1
M

1

Case 3b: a32=0 (and a12= 1 and a34=1 (not case a, not case c)). Then x23=0.

Case 3b(i): 1-a12a21<> 0.

Set x41=e, a43=f, and set all others equal to zero.

Let e and f be the same sign as a14 and a34 respectively. All minors are OK if e and f are small enough.

In[140]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a12 = 1;a32 = 0;

x13 = 0;a34 = 1; x31 = 0; x24 = 0; x42 = 0; x23 = 0; x41 = e; x43 = f ;

MatrixForm [A]

Out[140]=
æ
ççççç

è

1 1 0 a14

a21 1 0 0

0 0 1 1

e 0 f 1

ö
÷÷÷÷÷

ø

In[141]:= Det [A]

Out[141]= 1 - a21 - a14 e - f + a21 f

3 x 3 minors:

In[142]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 1 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1-a21
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æ
ççççç

è

1 1 a14

a21 1 0

e 0 1

ö
÷÷÷÷÷

ø

1-a21- a14 e

æ
ççççç

è

1 0 a14

0 1 1

e f 1

ö
÷÷÷÷÷

ø

1- a14 e-f

æ
ççççç

è

1 0 0

0 1 1

0 f 1

ö
÷÷÷÷÷

ø

1-f

2 x 2 minors:

In[143]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

f 1
M

1-f

I

1 0

0 1
M

1

I

1 a14

e 1
M

1- a14 e

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 1

a21 1
M

1-a21

Case 3b(ii): 1-a12a21=0 (and a23=0 => x32=0 and a34=1)



101

Since a12=1, a21=1 also. Set x13=x31=0 equal to zero, x24= x42= g, x43=0.1, and x41=e. Let e be

the same sign as a14.

In[144]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g, s];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a21 = 1;

a12 = 1;a32 = 0; x13 = 0; x31 = 0; x24 = g; x42 = g;

x23 = 0; x43 = 0. 1; x41 = e;a34 = 1;

MatrixForm [A]

Out[144]=
æ
ççççç

è

1 1 0 a14

1 1 0 g

0 0 1 1

e g 0 . 1 1

ö
÷÷÷÷÷

ø

Fix f less than

Temporarily set e=0.

Let g be as small as needed so all minors that involve e are positive if a14 not 0 while e is set equal to

zero. Then perturb e slightly so that the minors remain nonnegative.

In[145]:= e = 0;

MatrixForm [A]

Out[145]=
æ
ççççç

è

1 1 0 a14

1 1 0 g

0 0 1 1

0 g 0 . 1 1

ö
÷÷÷÷÷

ø

In[146]:= Det [A]

Out[146]= a14 g - g2

Positive if a14 not 0 and g is less than a14.

In[147]:= Clear [PA]; cut [A, {4}, PA];
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æ
ççççç

è

1 1 0

1 1 0

0 0 1

ö
÷÷÷÷÷

ø

0

This minor does not involve e, so it is OK that it is zero.

In[148]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 a14

1 1 g

0 g 1

ö
÷÷÷÷÷

ø

a14 g- g2

Positive if g is less than a14 and a14 not 0.

In[149]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 0 a14

0 1 1

0 0 . 1 1

ö
÷÷÷÷÷

ø

0.9‘

Positive if f small

In[150]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 0 g

0 1 1

g 0 . 1 1

ö
÷÷÷÷÷

ø

0. 9- g2

Positive if g is small

2 x 2 minors:

In[151]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

0. 1 1
M
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0.9‘

I

1 g

g 1
M

1- g2

I

1 a14

0 1
M

1

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 1

1 1
M

0

Case 3c: a34=0 => x43=0 (can assume a12= 1 )

Case 3c(i): a12a21<> 1, so 1-a12a21>0.

Set x13=x31=x24=x42=0, x23=e, and x41=f. Let e and f be the same sign as a32 and a14 respectively.

Let e and f be as small as needed.

In[152]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a12 = 1;a34 = 0;

x13 = 0; x31 = 0; x24 = 0; x42 = 0; x23 = e; x43 = 0; x41 = f ;

MatrixForm [A]

Out[152]=
æ
ççççç

è

1 1 0 a14

a21 1 e 0

0 a32 1 0

f 0 0 1

ö
÷÷÷÷÷

ø
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All minors are OK if e and f are small enough in absolute value.

In[153]:= Det [A]

Out[153]= 1 - a21 - a32 e - a14 f + a14 a32 e f

3 x 3 minors:

In[154]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 1 0

a21 1 e

0 a32 1

ö
÷÷÷÷÷

ø

1-a21- a32 e

æ
ççççç

è

1 1 a14

a21 1 0

f 0 1

ö
÷÷÷÷÷

ø

1-a21- a14 f

æ
ççççç

è

1 0 a14

0 1 0

f 0 1

ö
÷÷÷÷÷

ø

1- a14 f

æ
ççççç

è

1 e 0

a32 1 0

0 0 1

ö
÷÷÷÷÷

ø

1- a32 e

2 x 2 minors:

In[155]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 a14

f 1
M

1- a14 f
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I

1 e

a32 1
M

1- a32 e

I

1 0

0 1
M

1

I

1 1

a21 1
M

1-a21

Case 3c(ii): 1-a12a21=0

Without loss of generality, a21=a12=1. Set x13=x31=g1, x24=x42=g2, x23=e1, and x41=e2.

In[156]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a21 = 1;

a12 = 1;a34 = 0; x13 = g1; x31 = g1; x24 = g2; x42 = g2;

x23 = e1; x43 = 0; x41 = e2;

MatrixForm [A]

Out[156]=
æ
ççççç

è

1 1 g1 a14

1 1 e1 g2

g1 a32 1 0

e2 g2 0 1

ö
÷÷÷÷÷

ø

Let e1 be the same sign as a32 and e2 the same sign as a14.Temporarily set e1=e2=0.

In[157]:= e1 = 0;e2 = 0;MatrixForm [A]

Out[157]=
æ
ççççç

è

1 1 g1 a14

1 1 0 g2

g1 a32 1 0

0 g2 0 1

ö
÷÷÷÷÷

ø

If a32=0, set g1=0 (and e1 stays zero)
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If a32 not 0, let g1 be the same sign as a14 and as small as needed to make all order 3 and 4 minors

which involve it positive while e1 and e2 are set equal to zero.

If a14=0, let g2=0 (and e2 stays zero)

If a14 not 0, let g2 be the same sign as a14 and as small as needed to make all order 3 and 4 minors

which involve it positive while e1 and e2 are set equal to zero.

Then perturb e1 and e2 so they are positive but the minors remain nonnegative.

In[158]:= Det [A]

Out[158]= a32 g1 - g12
+ a14 g2 - g22

+ g12 g22

Positive if a14 or a23 nonzero and g1 and g2 are small enough.

In[159]:= Expand [Det [A] - (g2(a14 - g2) + g1(a32 - g1) + g1ˆ2g2ˆ2 )]

Out[159]= 0

In[160]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 g1

1 1 0

g1 a32 1

ö
÷÷÷÷÷

ø

a32 g1- g12

Can be made positive with small g1 if a32 not 0.

In[161]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 1 a14

1 1 g2

0 g2 1

ö
÷÷÷÷÷

ø

a14 g2- g22

Can be made positive with small g2 if a14 not 0.

In[162]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 g1 a14

g1 1 0

0 0 1

ö
÷÷÷÷÷

ø
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1- g12

Postive if g1 is less than 1.

In[163]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 0 g2

a32 1 0

g2 0 1

ö
÷÷÷÷÷

ø

1- g22

Positive if g2 is less than 1.

2 x 2 minors:

In[164]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 0

0 1
M

1

I

1 g2

g2 1
M

1- g22

I

1 a14

0 1
M

1

I

1 0

a32 1
M

1

I

1 g1

g1 1
M

1- g12

I

1 1

1 1
M

0

Case d: a14=x41=0 and and a12= a34=1 (not case a, not case c)).

Case d(i): a12a21 not 1
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So 1-a21a12>0

Set x23=e, x43=f, all others 0.

In[165]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a12 = 1;a14 = 0;

a34 = 1; x13 = 0; x31 = 0; x24 = 0; x42 = 0; x23 = e; x43 = f ; x41 = 0;

MatrixForm [A]

Out[165]=
æ
ççççç

è

1 1 0 0

a21 1 e 0

0 a32 1 1

0 0 f 1

ö
÷÷÷÷÷

ø

Since 1-a12a21>0, all minors OK of e,f small enough.

In[166]:= Det [A]

Out[166]= 1 - a21 - a32 e - f + a21 f

3 x 3 minors:

In[167]:= Do[{Clear [P], cut [A, {i }, P]}, {i , 4, 1, -1}]

æ
ççççç

è

1 1 0

a21 1 e

0 a32 1

ö
÷÷÷÷÷

ø

1-a21- a32 e

æ
ççççç

è

1 1 0

a21 1 0

0 0 1

ö
÷÷÷÷÷

ø

1-a21

æ
ççççç

è

1 0 0

0 1 1

0 f 1

ö
÷÷÷÷÷

ø

1-f
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æ
ççççç

è

1 e 0

a32 1 1

0 f 1

ö
÷÷÷÷÷

ø

1- a32 e-f

2 x 2 minors:

In[168]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

f 1
M

1-f

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 e

a32 1
M

1- a32 e

I

1 0

0 1
M

1

I

1 1

a21 1
M

1-a21

Case d(ii): a12a21=1 (and a14=0 so x41=0) and not case c, so a34=1

Without loss of generality, we can make a21=a12=1;

We can assume a34 not zero. Otherwise we use Case 3c. WLOG a34=1.

Set x23=e, x43=0.1, x31=x13=f, small and of same sign as a32, and all others equal to 0.

If a32=0, set e1, e2, and f to 0 and all minors are nonnegative.

If a32 not 0, let f be the same sign as a32, and small enough in absolute value so that|f|<min{|a32|,1}.
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In[169]:= Clear [a12 , x13 , a14 , a21 , x23 , x24 , x31 , a32 , a34 , x41 , x42 , x43 ];

Clear [e, f , g, e1 , e2];

A = {{1, a12 , x13 , a14}, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {x41 , x42 , x43 , 1}};a21 = 1;

a12 = 1;a34 = 1;a14 = 0; x13 = f ; x31 = f ; x24 = 0;

x42 = 0; x23 = e; x43 = 0. 1; x41 = 0;

MatrixForm [A]

Out[169]=
æ
ççççç

è

1 1 f 0

1 1 e 0

f a32 1 1

0 0 0 . 1 1

ö
÷÷÷÷÷

ø

Temporarily set e to zero.

If a32 is nonzero, we will perturb e to make it positive, but the principal minors remain nonnegative.

In[170]:= e = 0;MatrixForm [A]

Out[170]=
æ
ççççç

è

1 1 f 0

1 1 0 0

f a32 1 1

0 0 0 . 1 1

ö
÷÷÷÷÷

ø

In[171]:= Det [A]

Out[171]= a32 f - f 2

Positive if f is less than a32 in absolute value. If a32=0, then set f equal to zero.

In[172]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 f

1 1 0

f a32 1

ö
÷÷÷÷÷

ø

a32 f - f 2

Positive if f is less than a32 in absolute value. If a32=0, then set f equal to zero.

In[173]:= Clear [PA]; cut [A, {3}, PA];
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æ
ççççç

è

1 1 0

1 1 0

0 0 1

ö
÷÷÷÷÷

ø

0

In[174]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 f 0

f 1 1

0 0 . 1 1

ö
÷÷÷÷÷

ø

0. 9- f 2

Positive if f is less than 0.9.

In[175]:= Clear [PA]; cut [A, {1}, PA];

æ
ççççç

è

1 0 0

a32 1 1

0 0 . 1 1

ö
÷÷÷÷÷

ø

0.9‘

2 x 2 minors:

In[176]:= Do[Do[{Clear [P], cut [A, {i , j }, P]}, {j , 1, i - 1}], {i , 1, 4}]

I

1 1

0. 1 1
M

0.9‘

I

1 0

0 1
M

1

I

1 0

0 1
M

1

I

1 0

a32 1
M

1

I

1 f

f 1
M
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1- f 2

I

1 1

1 1
M

0

Mathematica Files for q = 6, n = 4 regarding sign symmetricP0,1-completion

SS P01 Noncompletion of q=6 n=4

Label the digraph as 1234 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.

In[177]:= Clear [a12 , x13 , x14 , a21 , x23 ,

x24 , x31 , a32 , a34 , a41 , x42 , a43 , x32 ];

A = {{1, a12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , x32 , 1, a34}, {a41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[177]=
æ
ççççç

è

1 a12 x13 x14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 a43 1

ö
÷÷÷÷÷

ø

Example showing noncompletion:

In[178]:= a21 = 1;a12 = 1;a23 = 1;a34 = 1;a43 = 1;a41 = -1;a43 = 1;

MatrixForm [A]

Out[178]=
æ
ççççç

è

1 1 x13 x14

1 1 1 x24

x31 x32 1 1

-1 x42 1 1

ö
÷÷÷÷÷

ø
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Contradictory principal minors.

In[179]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 x13

1 1 1

x31 x32 1

ö
÷÷÷÷÷

ø

x31- x13 x31-x32 +x13 x32

x23>0 implies -x23 negative. Also, -x13x31 is nonpositive by sign symmetry. Therefore, in order to

make this minor positive, x31 and/or x13x32 must be positive. This implies x13 and x31 must both be

positive (by sign symmetry).

In[180]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 x13 x14

x31 1 1

-1 1 1

ö
÷÷÷÷÷

ø

-x13+x14- x13 x31+x14 x31

x14<0 and -x13x31<0 implies that -x13 and/or x14x31 must be positive. Then x13 and x31 must be

negative by sign symmetry.

This is a contradiction. Therefore, this example cannot be completed to a sign symmetric P01 matrix.

Mathematica Files for q = 6, n = 5 regarding sign symmetricP0,1-completion

SS P01 Noncompletion of q=6 n=5

Label the digraph as 1234 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.
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In[181]:= Clear [a12 , x13 , x14 , a21 , x23 , x24 , x31 , a32 , a34 , a41 , x42 , a43];

A = {{1, a12 , x13 , x14 }, {a21 , 1, x23 , x24 },

{x31 , a32 , 1, a34}, {a41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[181]=
æ
ççççç

è

1 a12 x13 x14

a21 1 x23 x24

x31 a32 1 a34

a41 x42 a43 1

ö
÷÷÷÷÷

ø

Example showing noncompletion:

In[182]:= a21 = 1;a12 = 1;a32 = 1;a34 = 1;a43 = 1;a41 = -1;a43 = 1;

MatrixForm [A]

Out[182]=
æ
ççççç

è

1 1 x13 x14

1 1 x23 x24

x31 1 1 1

-1 x42 1 1

ö
÷÷÷÷÷

ø

Contradictory principal minors.

In[183]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 x13

1 1 x23

x31 1 1

ö
÷÷÷÷÷

ø

x13-x23- x13 x31+x23 x31

x23>0 implies -x23 negative. Also, -x13x31 is nonpositive by sign symmetry. Therefore, in order to

make this minor positive, x13 and/or x23x31 must be positive. This implies x13 and x31 must both be

positive (by sign symmetry).

In[184]:= Clear [PA]; cut [A, {2}, PA];
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æ
ççççç

è

1 x13 x14

x31 1 1

-1 1 1

ö
÷÷÷÷÷

ø

-x13+x14- x13 x31+x14 x31

x14<0 and -x13x31<0 implies that -x13 and/or x14x31 must be positive. Then x13 and x31 must be

negative by sign symmetry.

This is a contradiction. Therefore, this example cannot be completed to a sign symmetric P01 matrix.

Mathematica Files for q = 6, n = 6 regarding sign symmetricP0,1-completion

SS P01 Noncompletion of q=6 n=6

Label the digraph as 1234 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.

In[185]:= Clear [x12 , x13 , x14 , a21 , a23 , x24 , x31 , a32 , a34 , a41 , x42 , a43];

A = {{1, x12 , x13 , x14 }, {a21 , 1, a23 , x24 },

{x31 , a32 , 1, a34}, {a41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[185]=
æ
ççççç

è

1 x12 x13 x14

a21 1 a23 x24

x31 a32 1 a34

a41 x42 a43 1

ö
÷÷÷÷÷

ø

Example showing noncompletion:

In[186]:= a21 = 1;a32 = 1;a23 = 1;a34 = 1;a43 = 1;a41 = -1;

MatrixForm [A]
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Out[186]=
æ
ççççç

è

1 x12 x13 x14

1 1 1 x24

x31 1 1 1

-1 x42 1 1

ö
÷÷÷÷÷

ø

Contradictory principal minors.

In[187]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 x12 x13

1 1 1

x31 1 1

ö
÷÷÷÷÷

ø

-x12+x13 +x12 x31- x13 x31

The term -x12 is negative by sign symmetry. Also,-x13x31 is nonpositive by sign symmetry. Therefore,

in order to make this minor positive, x13 and/or x12x31 must be positive. This implies x13 and x31

must both be positive by sign symmetry.

In[188]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 x13 x14

x31 1 1

-1 1 1

ö
÷÷÷÷÷

ø

-x13+x14- x13 x31+x14 x31

The term x14 is negative by sign symmetry. Also,-x13x31 is nonpositive by sign symmetry. Therefore,

in order to make this minor positive,- x13 and/or x14x31 must be positive. This implies x13 and x31

must both be negative by sign symmetry.

This is a contradiction.Therefore,this example cannot be completed to a sign symmetric P01 matrix,

and so q6, n6 does not have sign symmetric P01 completion.

Mathematica Files for q = 6, n = 7 regarding sign symmetricP0,1-completion

SS P01 Noncompletion of q=6 n=7
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Label the digraph as 1234 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.

In[189]:= Clear [a12 , x13 , x14 , x21 , a23 , x24 , x31 , a32 , a34 , a41 , x42 , a43];

A = {{1, a12 , x13 , x14 }, {x21 , 1, a23 , x24 },

{x31 , a32 , 1, a34}, {a41 , x42 , a43 , 1}};

MatrixForm [

A]

Out[189]=
æ
ççççç

è

1 a12 x13 x14

x21 1 a23 x24

x31 a32 1 a34

a41 x42 a43 1

ö
÷÷÷÷÷

ø

Example showing noncompletion:

In[190]:= a12 = 1;a32 = 1;a23 = 1;a34 = 1;a43 = 1;a41 = -1;

MatrixForm [A]

Out[190]=
æ
ççççç

è

1 1 x13 x14

x21 1 1 x24

x31 1 1 1

-1 x42 1 1

ö
÷÷÷÷÷

ø

Contradictory principal minors:

In[191]:= Clear [PA]; cut [A, {4}, PA];

æ
ççççç

è

1 1 x13

x21 1 1

x31 1 1

ö
÷÷÷÷÷

ø

-x21+x13 x21+x31- x13 x31

Since x21>0 by sign symmetry, -x21 must be negative. Also by sign symmetry, -x13x31 is nonpositive.

Now in order for the minor to be positive, x13x21 and/or x31 must be positive. Therefore, both x13
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and x31 must be positive by sign symmetry.

In[192]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 x13 x14

x31 1 1

-1 1 1

ö
÷÷÷÷÷

ø

-x13+x14- x13 x31+x14 x31

Since x14<0 by sign symmetry, x14 must be negative. Also by sign symmetry, -x13x31 is nonpositive.

Now in order for the minor to be positive, x14x31 and/or -x13 must be positive. Therefore, both x13

and x31 must be negative by sign symmetry.

Therefore, this matrix does not have sign symmetric P01 completion, and so it follows that the digraph

q6, n7 does not have sign symmetric P0,1 completion.

Mathematica Files for the Double Triangle regardingP0,1-completion

DOUBLE TRIANGLE p=4 q=10 n=1 has P0,1-completion

Label the digraph as 1243 starting in the upper left hand corner and going clockwise. Here is how the

pattern matrix looks after the diagonal entries have been made equal to 1 by multiplying by a positive

diagonal matrix.

Case 1: a23*a32<> 1 .

In[193]:= Clear [a12 , a13 , a14 , a21 , a23 , a24 , a31 , a32 ,

a34 , a41 , a42 , a43 , x12 , x13 , x14 , x21 , x23 , x24 ,

x31 , x32 , x34 , x41 , x42 , x43 ];Clear [e, f , g, x]

A = {{1, a12 , a13 , x14 }, {a21 , 1, a23 , a24},

{a31 , a32 , 1, a34}, {x41 , a42 , a43 , 1}};

MatrixForm [

A]
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Out[193]=
æ
ççççç

è

1 a12 a13 x14

a21 1 a23 a24

a31 a32 1 a34

x41 a42 a43 1

ö
÷÷÷÷÷

ø

In[194]:= x14 = x; x41 = -x;MatrixForm [A]

Out[194]=
æ
ççççç

è

1 a12 a13 x

a21 1 a23 a24

a31 a32 1 a34

-x a42 a43 1

ö
÷÷÷÷÷

ø

In[195]:= Det [A]

Out[195]= 1 - a12 a21 - a13 a31 + a12 a23 a31 + a13 a21 a32 - a23 a32 - a24 a42 +

a13 a24 a31 a42 - a13 a21 a34 a42 + a23 a34 a42 - a12 a24 a31 a43 + a24 a32 a43 -

a34 a43 + a12 a21 a34 a43 - a12 a24 x + a13 a24 a32 x - a13 a34 x + a12 a23 a34 x +

a21 a42 x - a23 a31 a42 x + a31 a43 x - a21 a32 a43 x + x2
- a23 a32 x 2

3 x 3 minors:

In[196]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 a12 x

a21 1 a24

-x a42 1

ö
÷÷÷÷÷

ø

1- a12 a21- a24 a42- a12 a24 x+a21 a42 x+x 2

In[197]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 a13 x

a31 1 a34

-x a43 1

ö
÷÷÷÷÷

ø

1- a13 a31- a34 a43- a13 a34 x+a31 a43 x+x 2

2 x 2 minors:

In[198]:= Clear [PA]; cut [A, {3, 2}, PA];

I

1 x

-x 1
M

1+x 2
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Case 2: a23a32=1

Case 2a: a31=a21

In[199]:= a23 = 1;a32 = 1; x14 = x; x41 = -x;a31 = a21;MatrixForm [A]

Out[199]=
æ
ççççç

è

1 a12 a13 x

a21 1 1 a24

a21 1 1 a34

-x a42 a43 1

ö
÷÷÷÷÷

ø

This is an original minor:

In[200]:= Clear [A234]; cut [A, {1}, A234];

æ
ççççç

è

1 1 a24

1 1 a34

a42 a43 1

ö
÷÷÷÷÷

ø

-a24 a42+a34 a42+a24 a43- a34 a43

In[201]:= Det [A]

Out[201]= -a24 a42 + a13 a21 a24 a42 + a34 a42 -

a13 a21 a34 a42 + a24 a43 - a12 a21 a24 a43 - a34 a43 +

a12 a21 a34 a43 - a12 a24 x + a13 a24 x + a12 a34 x - a13 a34 x

In[202]:= Expand [Det [A] - ((1 - a12 * a21)Det [A234]+

a21 * a42(a34 - a24)(a12 - a13) + x(a34 - a24)(a12 - a13))]

Out[202]= 0

If (a13-a12)(a34-a24) not 0 make x large of correct sign.

If a13=a12, then DetA=DetA234DetA12³0.

3 x 3 minors:

In[203]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 a12 x

a21 1 a24

-x a42 1

ö
÷÷÷÷÷

ø

1- a12 a21- a24 a42- a12 a24 x+a21 a42 x+x 2

Positive if x is large enough in absolute value.
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In[204]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 a13 x

a21 1 a34

-x a43 1

ö
÷÷÷÷÷

ø

1- a13 a21- a34 a43- a13 a34 x+a21 a43 x+x 2

Positive if x is large enough in absolute value.

2 x 2 minors:

In[205]:= Clear [PA]; cut [A, {3, 2}, PA];

I

1 x

-x 1
M

1+x 2

Case 2b: a42=a43

In[206]:= a32 = 1;a23 = 1; x14 = x; x41 = -x;a42 = a43;

MatrixForm [A]

Out[206]=
æ
ççççç

è

1 a12 a13 x

a21 1 1 a24

a31 1 1 a34

-x a43 a43 1

ö
÷÷÷÷÷

ø

This is an original minor:

In[207]:= Clear [A123]; cut [A, {4}, A123];

æ
ççççç

è

1 a12 a13

a21 1 1

a31 1 1

ö
÷÷÷÷÷

ø

-a12 a21+a13 a21+a12 a31- a13 a31

In[208]:= Det [A]

Out[208]= -a12 a21 + a13 a21 + a12 a31 - a13 a31 - a12 a24 a31 a43 + a13 a24 a31 a43 +

a12 a21 a34 a43 - a13 a21 a34 a43 - a12 a24 x + a13 a24 x + a12 a34 x - a13 a34 x
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In[209]:= Expand [Det [A] - (x(a12 - a13)(a34 - a24)+

(a12 - a13)(a34 - a24)a31 * a43 + (1 - a43 * a34)Det [A123])]

Out[209]= 0

3 x 3 minors:

In[210]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 a12 x

a21 1 a24

-x a43 1

ö
÷÷÷÷÷

ø

1- a12 a21- a24 a43- a12 a24 x+a21 a43 x+x 2

Positive if x is large enough in absolute value.

In[211]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 a13 x

a31 1 a34

-x a43 1

ö
÷÷÷÷÷

ø

1- a13 a31- a34 a43- a13 a34 x+a31 a43 x+x 2

Positive if x is large enough in absolute value.

2 x 2 minors:

In[212]:= Clear [PA]; cut [A, {3, 2}, PA];

I

1 x

-x 1
M

1+x 2

Case IIc: a31<> a21 and a42<> a43

In[213]:= a23 = 1;a32 = 1; x14 = x; x41 = -m* x;

MatrixForm [A]
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Out[213]=
æ
ççççç

è

1 a12 a13 x

a21 1 1 a24

a31 1 1 a34

-m x a42 a43 1

ö
÷÷÷÷÷

ø

In[214]:= Det [A]

Out[214]= -a12 a21 + a13 a21 + a12 a31 - a13 a31 - a24 a42 + a13 a24 a31 a42 +

a34 a42 - a13 a21 a34 a42 + a24 a43 - a12 a24 a31 a43 -

a34 a43 + a12 a21 a34 a43 + a21 a42 x - a31 a42 x - a21 a43 x +

a31 a43 x - a12 a24 m x + a13 a24 m x + a12 a34 m x - a13 a34 m x

In[215]:= Expand [Det [A]-

(x((a21 - a31)(a42 - a43) +m(-a12 a24 + a13 a24 + a12 a34 - a13 a34 )))]

Out[215]= -a12 a21 + a13 a21 + a12 a31 - a13 a31 - a24 a42 + a13 a24 a31 a42 + a34 a42 -

a13 a21 a34 a42 + a24 a43 - a12 a24 a31 a43 - a34 a43 + a12 a21 a34 a43

OK if (a21-a31)(a42-a43)<> 0 by good choice of m (positive and so coefficient of x is nonzero).

3 x 3 minors:

In[216]:= Clear [PA]; cut [A, {3}, PA];

æ
ççççç

è

1 a12 x

a21 1 a24

-m x a42 1

ö
÷÷÷÷÷

ø

1- a12 a21- a24 a42+a21 a42 x - a12 a24 m x+m x2

This is positive if x is large enough in absolute value and m positive.

In[217]:= Clear [PA]; cut [A, {2}, PA];

æ
ççççç

è

1 a13 x

a31 1 a34

-m x a43 1

ö
÷÷÷÷÷

ø

1- a13 a31- a34 a43+a31 a43 x - a13 a34 m x+m x2

This is positive if x is large enough in absolute value and m positive.

2 x 2 minors:
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In[218]:= Clear [PA]; cut [A, {3, 2}, PA];

I

1 x

-m x 1
M

1+m x2
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