L-functions from an analytic perspective

David W. Farmer
AIM

May 14, 2012
$Z(t)$ in two regions
vappuntmpanthas

Facts:

- $N(T)=\frac{1}{2 \pi} T \log \left(\frac{T}{2 \pi e}\right)+O(\log t)$, where $N(T)=$ number of zeros in $[0, T]$. So the average gap $\sim 2 \pi / \log T$,
$-\frac{1}{T} \int_{0}^{T} Z(t) d t \rightarrow 0$ as $T \rightarrow 0$.

Conjectures:

- $\operatorname{Prob}\left(\gamma_{j+1}-\gamma_{j}<\frac{\varepsilon}{\log j}\right) \approx \varepsilon^{3}$, where the zeros are $\gamma_{1}<\gamma_{2}<\gamma_{3}<\cdots$.
- $Z(t)$ gets as large as $\exp \left(\sqrt{\frac{1}{2} \log T \log \log T}\right)$, and no larger.
- Local maxima of $Z(t)$ are positive, and local minima are negative.

The Hardy Z-function

The Riemann zeta function:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \sigma>1 \tag{1}
\end{equation*}
$$

Meromorphic continuation to all $s \in \mathbb{C}$.
Functional equation:

$$
\Lambda(s):=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\Lambda(1-s)
$$

Equivalently,

$$
\zeta(s)=\chi(s) \zeta(1-s)
$$

Equivalently,

$$
Z(t):=\chi\left(\frac{1}{2}+i t\right)^{-1 / 2} \zeta\left(\frac{1}{2}+i t\right)
$$

is real if t is real.

The spacing between zeros

$N(T)$: the number of zeros in $0<t<T$.

$$
\begin{gathered}
N(T)=\frac{1}{2 \pi} T \log \left(\frac{T}{2 \pi e}\right)+S(t) \\
S(T)=O(\log T)
\end{gathered}
$$

Average gap between zeros: solve $N(T+\delta)-N(T) \approx 1$.

$$
\begin{gathered}
\delta N^{\prime}(T) \approx 1 \\
\delta \approx \frac{1}{N^{\prime}(T)}=\frac{2 \pi}{\log (T / 2 \pi)}
\end{gathered}
$$

Mathematica demo about rigidity in the zero spacing.

Fourier transform of the Z-function

Unsolved problems on zero spacing

Let $\tilde{\gamma}=\frac{1}{2 \pi} \gamma \log (\gamma)$, so that
$\tilde{\gamma}_{j+1}-\tilde{\gamma}_{j}$ is 1 on average.

- Show that $\tilde{\gamma}_{j+1}-\tilde{\gamma}_{j}<0.49$ a positive proportion of the time. (Related to $L(1, \chi)$; Thursday lecture.) Current record: 0.51???.
- Show that for all $A>1$, there exists j so that

$$
\tilde{\gamma}_{j+1}-\tilde{\gamma}_{j}>A
$$

Current record: maybe 3?
Some methods involve comparing

$$
\int_{0}^{T} M(t)^{2} Z(t)^{2} d t \quad \text { to } \quad \sum_{\gamma<T} \int_{-c / \log T}^{c / \log T} M(\gamma+t)^{2} Z(\gamma+t)^{2} d t
$$

