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[A few words about MathCounts and its web site http://mathcounts.org at some point.] 
 
Number theory is all about adding and multiplying integers: pretty simple stuff, good for 
elementary school or for PhD mathematicians.  Dr. Arnold Ross says of number theory, his 
choice for teaching the most brilliant high school students in the country as well as his own 
graduate students at Ohio State, that the purpose is “to think deeply of simple things.”  So let’s 
do that together today. 
 
What are integers made of?  Well, there’s the two important operations, adding and multiplying.  
If you have adding, and you have 1, you make all the positive integers: it’s just counting!  (Of 
course, counting is another interesting subject, as David Patrick and his Art of Problem Solving 
book will tell us!).  But things get much deeper, more interesting and more subtle, when you talk 
about multiplying, because now starting with 1 won’t really get you very far.  Think of this as 
problem #0: if you want to make all the positive integers, using only multiplication, what raw 
materials will you need? 
 
That’s right, you will need to consider all of the  
 
Primes 
as being the building blocks of the integers.  It’s an amazing and deep fact that, just like there’s 
only one way to write each positive integer as a sum of 1s, there’s also only one way to write 
each positive integer as a product of primes.  That’s so important it’s called the Fundamental 
Theorem of Arithmetic.  (By the way, another interesting counting problem is how many ways 
there are to write each integer as a sum of other positive integers.) 
 

1. How many primes are there?  [If you don’t know Euclid’s proof, learn it!  I won’t do it in 
the session, most likely, so you can visit one of my favorite web sites and see a very brief 
statement of this beautiful proof by taking a look at  
http://www.cut-the-knot.org/proofs/primes.shtml or you can visit another cool web site 
and see a different proof, along with links to ones closer to Euclid’s original, at 
http://primes.utm.edu/notes/proofs/infinite/euclids.html] 
 
I think one of the most important things about this proof is what it teaches about the 
meaning of infinity: if you have finitely many, you can be sure there’s still at least one 
more. 

 
2. List all the primes from 1 through 500.  Yes, this sounds very tedious, but using the back 

of this page, you’ll discover all kinds of interesting facts about patterns in multiples of 
numbers, and probably some other things too! 
 
For students, before giving them the Sieve handout (a good time to remind them of what 
“geometry” really means, and also to talk about how the Greeks thought of geometry and 
mathematics as essentially synonymous), the following problems are often helpful as 
warm-ups, not to mention good for teaching patience, though if that’s not your goal, feel 



free to use some smaller numbers; alternatively, if division practice and divisibility tests 
aren’t your goal, let them use calculators: 
 
(a) Is 221 prime?  If not, what are its factors? 
 
(b) What’s the largest divisor you need to check to be sure that 397 is prime?  How do 
you know it’s the largest? 
 
(c) Is 8171 prime, or not?  How do you know for sure? 
 
A student version of the handout, with slightly different directions than the teacher 
version on the back of this page, can be found on the back of this packet. 

 



Sieve of Eratosthenes (Teacher Version) 
 
To use this method, start with a long list of numbers like the one on this page.  Forget about 1, 
since it is neither prime nor composite. [The mathematical term for this kind of number is unit].  
Now you know 2 is prime, so circle it.  Then cross off all the multiples of 2 (4, 6, 8, 10, 12, …) 
since you know they cannot be prime.  Once you finish that, go to the next number after 2 that 
isn’t crossed out [namely 3], and circle it.  Cross off its multiples.  Repeat this process until you 
have circled all the primes and crossed out all the composite numbers.  There should be 
convenient patterns to help with a lot of the crossing out. 
 
Things to notice while you do this: as you’re crossing out, say, all the multiples of 11, which 
ones are already crossed out?  Where’s the first one that’s not crossed out?  What does that tell 
you about when you can stop crossing out and just circling?   
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 



Now that you have a list of primes to work with, you can start to notice some patterns.  The next 
few examples contain some exercises to give people some raw material that might serve as 
motivation or inspiration for the thought that the problems will require.  I wrote them a little 
more with the student vocabulary in mind than with yours; it probably won’t take too much work 
to convert this to a handout you can use with your students. 
 
The distribution of primes (what fraction of numbers are prime?  How big are the gaps?) 

3. You might have noticed that the gaps between primes tend to get bigger as you go along.  
Fill in the blanks to get one measure of how much bigger they are getting on average. 
 
a) Between 1 and    there are 10 primes.   
 
b) Between 100 and    there are 10 primes. 
 
c) Between 400 and    there are 10 primes. 
 
d) The longest run of consecutive composite numbers between 1 and 100 starts with  
  and ends with    and is    long. 
 
e) The longest run of consecutive composite numbers between 401 and 500 starts with  
  and ends with    and is    long. 
 
[By the way, there’s a great opportunity to teach about fencepost errors in these last two!  
If boats leave every 15 minutes, how many leave from 9am to 5pm?  37, not 36!  How 
many numbers are there from 27 through 33?  7, not 6!] 

 
4. Do the gaps between primes get longer and longer, or is there eventually a record-size 

gap that never gets beaten? 
 
Factorials give a great clue about this problem.  A factorial, like 7!, means to multiply all 
the integers from 7 down to 1.  So, 7! is 7 × 6 × 5 × 4 × 3 × 2 × 1, which is the important 
part, or 5040, which isn’t very important at all. 
 
a) The number 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 + 2 is composite – not prime.  How can 
you be sure?  Well, if you can find a factor that’s not 1 or the number itself, it must be 
prime. 
 
b) Is 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 + 3 composite? 
 
c) Based on your answers to the previous two problems, there must be at least how many 
composite numbers in a row, starting from 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 + 2?  
 
d) Name a number which you can be sure is in a string of at least 99 composite numbers 
in a row. 
 
e) Name a number which you can be sure is in a string of at least 999 composite numbers 
in a row. 
 
f) Explain how you can be sure that any record number of composites in a row eventually 
gets broken. 



 
5. Primes are a lot more dense toward the beginning of the list, as we saw in the last 

problem.  At the beginning of the list, in fact, there are three odd numbers in a row (3, 5, 
7) which are all prime! 
 
a) Does that ever happen again in your list? 
 
b) Can it ever happen later on, maybe beyond 500?  Why or why not? 
 
You can find pairs of primes in your list: two odd numbers in a row which are both 
prime.  These are called “twin primes”, like 17 and 19, or 41 and 43. 
 
c) List all the twin primes less than 500. 
 
d) In part (b) you explained why there can’t be any more triple primes besides 3, 5, 7: 
there’s only one triple prime.  You also know Euclid’s proof that there are infinitely 
many primes.  How about twin primes?  How many sets are there?1 

 
Adding primes 
Primes are made for multiplying.  As long as you’re multiplying and factoring, primes are the 
way to go.  Once you start adding, things get hard.  So hard, in fact, that the solution to some 
parts of this problem are not yet known even after hundreds of years of work by the best 
mathematicians.  But some parts, you can do in just a few minutes! 
 

6. Let’s see what numbers we can make by adding up two primes. 
 
2 + 2 = 4 2 + 3 = 5 3 + 3 = 6 2 + 5 = 7 3 + 5 = 8 2 + 7 = 9 
 
and so on.  It seems like every number is either prime, or we can make it by adding up 
two primes.  For example, 39 is 37 + 2.  17 can’t be made by adding two primes, but it is 
prime itself. 
 
a) Make all the composite numbers less than 20 by adding two primes. 
 
b) Find a number that’s not prime, and is not the sum of two primes.  Hint: there’s one in 
the 20s! 
 
c) Is there such a number in the 30s?  In the 50s? 
 
d) Find a pattern in these numbers.  Hint: look at the size of the “gaps” between primes.  
Explain, based on your answer, exactly how you can tell whether an odd composite 
number is the sum of two primes or not. 
 
e) The examples in b, c, and the discussion in part d probably all led you to odd numbers.  
Can you find an even number which is not prime, and not the sum of two primes? 

 

                                                
1 Last I heard, after a couple hundred years of work, mathematicians are still not quite sure of the 
answer to this question, though they are gradually becoming more certain that the answer is that 
there are infinitely many twin primes. 



Squares, Pythagoras, and Primes (with some hints of complex numbers!?) 
7. A perfect square, or square number, is what you get when you multiply a whole number 

by itself. 
 
a) Just for practice, write down the first 10 perfect squares. 
 
b) List all the primes up to 100.  For each one, determine whether it can be made by 
adding up two perfect squares or not.  For example, 5 = 4 + 1, but 7 cannot be written as 
the sum of two perfect squares.  For the numbers that can be written as the sum of two 
perfect squares, keep track of which squares you used. 
 
c) Find a pattern that tells you which primes can be written as the sum of two squares.  
Hint: look at where they land in the big sieve.  How do they line up? 
 
d) [Some algebra required, and probably you’ll want to do the problem on squares from 
the division section before you do this one.] Explain why all the impossible ones are 
impossible to write as the sum of two squares.  [Hint: look for where the square numbers 
fall in the big sieve as well.] 
 
e) [Warning: really hard!] Explain why all the possible ones really are possible.  That is, 
how do you know the pattern you’ve observed keeps working forever? 

 
Prime-generating formulas (Mersenne and Euler) 

8. Mathematicians have long sought formulas that generate prime numbers, only prime 
numbers, and ideally every prime number.  Here are two formulas that are a few centuries 
old, that turn out to be quite interesting prime-generating mechanisms even if they don’t 
work quite as the mathematicians originally hoped. 
 
a) One famous formula involves the numbers that are one less than the powers of 2.  To 
begin, 21 – 1 = 1, a unit, not prime.  Then 22 – 1 = 3, which is prime.  23 – 1 = 7, which is 
prime.  But 24 – 1 =   , which is   . 
 
b) That formula has a lot better chance of working if the exponent is prime.  Try 25 – 1, 27 
– 1, and so on.  Are all of those primes?  How long does the pattern work? 
 
[Notice all the great chances to review vocabulary like exponent and power, practice 
some arithmetic and even long division, and for more advanced students to get into the 
difference of squares/cubes/nth powers formulas for factoring.] 
 
c) Another famous pattern, for which my favorite mathematician Euler gets the credit, is 
to start with any number, square it, subtract your original number, and then add 41.  In 
other words, n2 – n + 41.  When n = 1, we get 1 squared is 1, minus the original 1 leaves 
0, adding 41 gives 41.  When n = 2, we get 2 squared is 4, minus the original 2 leaves 2, 
plus 41 makes 43.  How long can we use this pattern to produce new prime numbers? 

 



Sieve of Eratosthenes 
A “sieve” is like a strainer.  Eratosthenes is a Greek geometer who is famous for being the first to 
get an accurate estimate of the size of the Earth.   
 
To use this method, start with a long list of numbers like the one on this page.  Forget about 1, 
since it is neither prime nor composite. [The mathematical term for this kind of number is unit].  
Now you know 2 is prime, so circle it.  Then cross off all the multiples of 2 (4, 6, 8, 10, 12, …) 
since you know they cannot be prime.  Once you finish that, go to the next number after 2 that 
isn’t crossed out [namely 3], and circle it.  Cross off its multiples.  Now circle the next number 
that’s not crossed out, namely 5, and then cross out all of its multiples.  Repeat this process until 
you have circled all the primes and crossed out all the composite numbers.  There should be 
convenient patterns to help with a lot of the crossing out. 
 
Now you have a list of primes to use on the rest of the problems in this section!  Think about 
your warm-ups when you do this, and you’ll be able to stop worrying about crossing out, and 
only circle the rest, after you reach a certain point: what is that point, and why? 
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 
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For further reading, the Art of Problem Solving has a great Introduction To Number Theory that 
expands on a lot of the themes begun here and some other great topics as well. 
 
Looking at how a number is built using multiplication quite naturally leads to ideas of 
Divisibility 
which of course also  

1. How can 48 be built from primes?  In what sense is there only one way?  How can you 
organize your work in general to find the prime factors of moderately large numbers like 
2006? 

 
2. What are all the divisors of 48?  Of 120?  2006?  How many different ways can you find 

to organize those answers? 
 

3. How many divisors does each of those numbers have?  We’re not talking about primes 
here, but all the divisors.  [Some students are intimidated by notation.  Others think it’s 
cool and they feel smart to learn it.  So, if you want, you can tell them about the “tau 
function”, τ(n), like a greek letter t, which is commonly used to represent the number of 
divisors of n.] 

 
4. Make a list of all the numbers from 1 through 30, their divisors, and how many divisors.  

What do you notice? 
 
Some good things to look at include when the number of divisors is odd, and when it is 
even (which maybe grownups like us discovered while doing the earlier problems).   
 
This would also be a good time to investigate the sum of the divisors, instead of just 
counting how many there are. 
 
Also look at whether the number of divisors of m times the number of divisors of n is 
equal to the number of divisors of m times n, which naturally leads to… 

 
Greatest Common Divisor 

5. Compute the greatest common divisor of 36 and 84. 
 
Compute GCD(98, 120). 
 
Explain how you found your answer, and explain how you are sure that the number you 
got is the greatest of all the common divisors. 
 
I imagine most of you described a method based on one of the methods for finding all the 
divisors.  The prime factors are a good way of doing it, for small numbers like these.  But 
factoring large numbers is hard!  So there’s a better way, which we call Euclidean 
algorithm [a good opportunity to explain to your students who Euclid was and what an 



algorithm is.]  I’d explain it to students something like this. 
 
If you want to find the greatest common divisor of 84 and 66, first you divide 84 by 66 
and find the remainder of 18. 
 
Euclid understood that the GCD of the original two numbers is the same as the GCD of 
one of the original two numbers and the remainder [how can we understand this?].  Since 
smaller numbers are easier to deal with, then we can say 
 
GCD(84,66) = GCD(66,18).  
And now we can repeat the process!  66 divided by 18 leaves remainder 12. 
GCD(66,18) = GCD(18,12).  18 divided by 12 leaves remainder 6, so 
GCD(18,12) = GCD(12,6).  Now 12 divided by 6 leaves no remainder, so 6 is the GCD 
of the original two numbers (and indeed any pair of numbers from our collection). 
 
Since long division is much easier than finding prime factors of big numbers, this method 
is really useful when you have big numbers to deal with. 

 
6. a) Is it true that if GCD(a,b) = 1 and GCD(a,c) = 1, then GCD(b,c) must equal 1? 

 
b) Is it true that if GCD(a,b) = 1 and GCD(a,c) = 1, then GCD(a,b × c) must equal 1? 
 
c) Is it true that if GCD(a,b) = 2 and GCD(a,c) = 2, then GCD(a,b × c) must equal 2? 
 
d) Now look again at the question of whether the number of divisors of m times the 
number of divisors of n is equal to the number of divisors of m times n. 

 
7. A fun GCD activity: 

Imagine a pool table with pockets in the four corners.  Represent it as a rectangle drawn 
on graph paper.  Start with a ball at the bottom left corner, moving up at a 45° angle.  The 
ball bounces off each side of the rectangle, until finally it reaches one of the corners and 
falls in the pocket. 
 
For example, draw a 5 by 10 pool table (width 5, height 10).  The ball moves up and to 
the right, hits the middle of the right side of the table, moves up and to the left, and falls 
into the top left pocket. 
 
a) How many times does the ball bounce on a 6 by 10 table?  Which pocket does it land 
in? 
 
b) Draw tables of various sizes and make a chart listing the dimensions of the table, how 
many times the ball bounces in total, how many of those bounces are on the left/right 
sides, how many are on the top/bottom sides, and which pocket the ball lands in.  Make 
sure to include at least the 1 by 3, 1 by 4, 1 by 6, 3 by 5, 6 by 10, 9 by 15, 1 by 12, 2 by 
12, 3 by 12, 4 by 12, 5 by 12, and 6 by 12 in your list, and as many others as you have 
time for.  [This is one of the first activities I use for teaching special cases and 
organization.] 
 
c) Think about greatest common factor (and about writing and simplifying fractions).  
Your drawings should help you understand why some of the rows in the table give the 



same answers. 
 
d) Using the tables you have drawn, can you predict which corner the ball will end in on 
a 79 by 103 table?  79 by 102?  78 by 102?  Explain how you made your prediction.  Can 
you prove your answer? 
 
e) On each of those tables, predict how many top/bottom bounces and how many 
left/right bounces the ball will have.  Again, explain how you made your prediction, then 
work on proving your answer. 

 
8. The greatest common factor of 12 and 18 is 6.  Their least common multiple is 36.  Take 

some other pairs of numbers, maybe from one of the earlier problems here, and find the 
GCF and LCM. 
 
a) Prime factorize the LCMs.  Prime factorize the GCFs.  Prime factorize the original 
numbers.  What do you notice?  Can you explain why the patterns you observe always 
work? 
 
b) How much is 12 times 18?  How much is the GCF of 12 and 18, times the LCM of 12 
and 18?  Try it with some other numbers.  Can you explain why this always happens?  
[What if you try it with sets of three numbers instead of two?] 
 
c) If two numbers x and y have a GCF of d, find a formula for the LCM.  [You can also 
ask this question without algebra, asking them for a pattern to compute the LCM instead 
of an algebraic formula.] 

 
9. You have $52 to spend, and can buy Frisbees for $8 each and soccer balls for $12 each. 

 
a) What choices do you have for the number of Frisbees and soccer balls to buy? 
 
b) What does this have to do with GCF and LCM? 
 
c) Can you explain a general method for solving this sort of problem, with other numbers 
in place of the $52, $8, and $12?  [What if there are three items you can buy?] 

 
10. Work out a formula for the number of factors of a number in terms of its prime 

factorization. 
 

11. Work out a formula for the sum of the factors of a number [sometimes denoted with the 
greek letter s, sigma, for sum: for example, σ(4) = 1 + 2 + 4 = 7, for those kids who enjoy 
learning fancy notation]. 

 
12. If the sum of all the factors of a number, including 1 but not itself, equals the number 

itself, we call the number perfect.  [Abundant numbers have a sum that’s bigger, and 
deficient numbers have a sum that’s smaller than the original number.]  The smallest 
three perfect numbers are 6, 28, and 496. 
 
a) Write down their prime factorizations. 
 
b) Check that the numbers really are perfect. 



 
c) Find a pattern in their prime factorizations, relate it to things that you found about 
prime patterns. 
 
d) Using that pattern, see if you can guess the next perfect number, and maybe the one 
after that. 
 
e) For a much much harder challenge, prove that there are no even perfect numbers 
except the ones contained in this pattern. 
 
f) For a much harder challenge than that, see if you can find any odd perfect numbers. 

 
Just in case we have more time, review some  
Divisibility Rules 
at least for 2, 3, 4, 5, 9, and 11.  [Here’s an example that works up from hard-ish exercises 
toward problems, once you know the divisibility rules and why they work.  And if you don’t, you 
can find it in the Ask Dr Math web site frequently asked questions, in the divisibility rules 
section: http://www.mathforum.org/dr.math/faq .] 
 

13. a) Is 7391 divisible by 11?  If not, can you change one digit to make it divisible by 11?  
[A good example of multiple possible answers.] 
b) Is 349602 divisible by 3?  If not, what is the nearest number that is? 
c) What choice(s) for the last digit * will make 37493 divisible by 4? 
 
d) Knowing the divisibility tests you have learned, how would you check if a number is 
divisible by 6?2  
e) Is 73645362 divisible by 6? 
 
f) Knowing the divisibility tests you have learned, how would you check if a number is 
divisible by 8?3 
g) Prove that your test for divisibility by 8 really works: that is, that numbers divisible by 
8 pass the test, and numbers not divisible by 8 do not pass the test. 
h) What other numbers have divisibility tests of this type? 
 
i) Can you make a divisibility test for 27 based on the same idea as the tests for 3 and 9?  
Hint: 999 is divisible by 27. 
j) By looking at the factors of 999, what other number will have the same divisibility test 

                                                
2 Some students may need the hint that 6 is 2 times 3.  They might even need to do some special 
cases: make a list of multiples of 6, and observe what they have in common (they’re all even … 
and maybe they also notice they’re all multiples of 3).  And if they understand prime 
factorization, they can see that it works both ways (all even multiples of 3 are multiples of 6). 
3 Good students will check if it’s divisible by 2 and 4.  Really good students will realize that it 
doesn’t work.  Really really good students will be able explain clearly why it doesn’t work 
(because the divisibility by 4 automatically guarantees divisibility by 2, so checking it provides 
no new information).  Really really really good students will see the pattern in 2 and 4 and 
realize that since 8 is 23 that the pattern continues, so you look at the last 3 digits.  Or they’ll 
understand the reason that the divisibility tests work, perhaps because you explained them really 
successfully, so the hint that 1000 is divisible by 8 will help them (because they’ll see it as the 
same as the facts that 10 is divisible by 2 and 100 is divisible by 4). 



as 27? 
k) Think about factors of 99, 9999, and 99999.  Do they lead to any other useful 
divisibility tests? 
 
l) Combining the divisibility tests you know so far (for 2, 3, 4, 5, 9, and 11), along with 
the techniques used to establish divisibility tests for 6 and 8 and 27, what numbers less 
than 100 can you make divisibility tests for? 
 
m) Using the fact that 7× 11 × 13 = 1001, invent divisibility tests for 7 and 13 that have a 
similar spirit to the divisibility test for 11. 
n) Test 1390312 for divisibility by 7 and 13.  Is the test you invented worth the trouble? 
 
o) [From George Polya’s How To Solve It] You find a very old book which records 
purchases made at a farm.  Someone has bought 72 turkeys, for $*.** each, and the total 
cost was $*67.9*, where each * represents a digit that was too smudged to read.  How 
much did each turkey cost? 
 
p) What is the probability that 5*383*8*2*936*5*8*203*9*3*76 is divisible by 396?  
Each * stands for an unknown digit 0 through 9, and each of the ten digits is used exactly 
once, placed at random.  Hint: 396 is 4 times 9 times 11. 

 
Another fundamental idea in number theory is what happens when things aren’t necessarily 
evenly divisible, and you spend your energy focused on the remainder.  The problem about the 
primes being a sum of two squares is one such example, but in general the study of remainders is 
called 
Modular Arithmetic 
Or sometimes “modulo” instead. 
The fundamental idea is to classify numbers according to the remainder when you divide by 
some fixed number called the “modulus”.  For example, if you are interested in the last digit of a 
number only, you can look at the number “mod 10”.  If you want the last two digits, that’s “mod 
100”.  If you want to know whether it’s even or odd, that’s the same as saying it’s 0 or 1 “mod 
2”.  If you want to know what time it will be in 83 hours, that’s “mod 12” (or maybe 24 if you 
care about AM/PM). 
 

14. Let’s focus on perfect squares first to see if we can understand why at least half of the 
prime fact must be true. 
 
Look at things mod 2.  If you square an even number, the answer is even.  If you square 
an odd number, the square is odd.  The amazing thing is that to prove that, you only need 
to consider 02 = 0 and 12 = 1 and you’re done, because every even number can be written 
like (2n + 0), and squaring it, all the 2n parts are still even, so on dividing by 2 they leave 
no remainder.  Similarly the odd numbers are (2n + 1), and squaring it, again all the 2n 
parts are still even, so only the 1 matters when you divide by 2 and take the remainder.  
This is because adding multiples of 2, or multiplying multiples of 2, always gives 
multiples of 2 (and in fact that works if you replace the 2 with 37 or any other number). 
 
a) Now try mod 3: your starting number leaves remainder 0, 1, or 2 [or perhaps it’s 
cleverer to choose 0, 1, and –1 as the remainders instead.]  So what must be true when 
you square a number?  What are the possible remainders of n2 mod 3? 
 



b) Repeat with mod 4. 
 
c) Explain why any prime that is equal to 3 mod 4 (that is, leaves remainder 3 when you 
divide by 4) cannot be made by adding two squares. 
 
d) What about mod 5?  7?  8?  10?  [The fact about the last digits of squares is pretty 
cool, and explaining why only the numbers 0 through 5 need to be checked is a good 
exercise in symmetry and in multiplication: only the last digits can affect the last digits, 
which is another way of saying the 2n and 2n + 1 comments above.]  [There’s a beautiful, 
but somewhat difficult, theory of figuring out which numbers can be perfect squares mod 
other numbers, and the crowning discovery there is called “quadratic reciprocity”.  It’s a 
rather similar time-saver to the Euclidean algorithm for greatest common factor, but it’s a 
lot harder to understand why it works.] 
 

15. Now let’s try division.  But watch out!  We’re going to stick to integers.  So normally, 
you’d say to divide 6 by 2, that’s the same as 6 times 1/2, which is 3.  But 1/2 doesn’t 
exist necessarily!  To illustrate what this means, let’s think about the clock, so instead of 
saying 5 times 5 is 25, on the clock we’ll see it pointing at a time just one hour later, so 
we’ll say 5 times 5 is 1.  That is, we’ll work mod 12, only looking at the remainder 
because that’s the only thing that affects where the clock hands will be pointing. 
 
a) Normally, in division, because 2 × 3 = 6, we can also say that 6 ÷ 3 is 2, and 6 ÷ 2 is 3, 
and there’s no trouble.  There’s only one solution to each division problem.  But on the 
clock, in addition to 2 × 3 = 6, there’s another solution: 2 × ? = 6.  What is the other 
solution? 
 
b) Because there are two solutions, 6 ÷ 2 doesn’t make sense, and 1/2 doesn’t exist on the 
clock.  To be more specific, there is no solution to the equation 2 × ? = 1; that’s another 
clear way to see .  But some relationships, like multiplying by 5, do give only one 
solution, and so 1/5 does exist.  In fact, because 5 times 5 is 1, 1/5 = 5!  To check that this 
really works, take a number like 10.  What is 10 × 1/5?  It’s the same as 10 × 5.  Explain. 
 
c) Make a multiplication table for mod 5, remembering to only write the answer when 
you divide by 5.  Which numbers can be multiplied to make 1? 
 
d) Make a multiplication table for mod 6, and answer the same question. 
 
e) Look for patterns: which numbers can be multiplied to make 1 in which mods?  For 
example, is there an easy way to tell whether 87 will have an inverse mod 99?  What 
about 91, mod 137?4 

 
16. Another classic type of mod problem is called the Chinese Remainder Theorem.  This is 

where you know something about the remainder of a number in several different mods, 
and you have to combine them into one answer.  For example: 
 
A miserly old man in the desert is considering giving away all his camels.  "I could 

                                                
4 Try some special cases of other small mods like 5 and 6, and look for patterns.  If you’re still 
stuck, think about greatest common factors carefully, and it will lead you not only to the answer 
but also to a proof of the answer. 



divide them among my two sons, but there would be one left over.  If I divided them 
among all my five children, but there would be two left over.  Maybe I should divide 
them among all my seventeen children and grandchildren ... but no, then there would be 
three left over.  I suppose I might as well keep them all." 
 
a) How many camels does he have? 
 
b) Are there other possible numbers of camels? 
 
c) Generalize!  [For a student, I’d give lots of easier examples with just two mods, and 
pretty small numbers, and then ask if they can give a general rule for solving all of those 
problems.] 

 
17. To follow up on the squares from a few problems ago: 

Instead of always having the exponent 2, and different bases, it’s also very interesting to 
start with a certain base, and look at different exponents. 
 
a) What are the powers of 2, mod 5? 
 
b) What are the powers of 2, mod 10? 
 
c) What are the powers of 2, mod 6?  How many do you have to list before you get 
bored? 
 
d) Experiment and explore with the patterns you notice! 

 
18. If we have time, which I’m quite sure we won’t – in fact I suspect that nobody will even 

get this far in reading the handout – this would be a great time to start exploring the Euler 
phi function, which unifies the “greatest common factor 1” ideas with the ideas of some 
of the previous problems here. 

 
 


