Oakland/East Bay Teacher's Circle - Coins, M\&M's, and generating functions

August 2007

Let's imagine that we introduce a new coin system. Instead of using pennies, nickels, dimes, and quarters, let's say we agree on using only 4 -cent and 7 -cent coins. One might point out the following flaw of this new system: certain amounts cannot be exchanged, for example, 1, 2, or 5 cents. On the other hand, this deficiency makes our new coin system more interesting than the old one, because we can ask the question: "which amounts can be changed?" We will see shortly that there are only finitely many integer amounts that cannot be exchanged using our new coin system. A natural question, first tackled by Ferdinand Georg Frobenius and James Joseph Sylvester in the 19 'th century, is: "what is the largest amount that cannot be exchanged?" As mathematicians, we like to keep questions as general as possible, and so we ask: given coins of denominations a and b-positive integers without a common factor-can you give a formula $g(a, b)$ for the largest amount that cannot be exchanged using the coins a and b ? This problem and its generalization for coins $a_{1}, a_{2}, \ldots, a_{n}$ is known as the Frobenius coin-exchange problem.

To study the Frobenius number $g(a, b)$, we use the Euclidean Algorithm. For integers a and b that have no common factor, this algorithm yields integers x and y such that $a x+b y=1$.
(1) Find $g(4,7)$.
(2) Show that $g(5,11)=39$.
(3) Find x and y such that $4 x+7 y=1$.
(4) Find another x and y such that $4 x+7 y=1$.
(5) Find x and y such that $5 x+11 y=1$.
(6) Find x and y such that $5 x+11 y=39$.
(7) Show that, if t is a given integer, we can always find integers x and y such that $4 x+7 y=t$. Generalize to two coins a and b with no common factor.
(8) Show that, if t is a given integer, we can always find integers x and y such that $4 x+7 y=t$ and $0 \leq x \leq 6$. Generalize to two coins a and b with no common factor.
(9) Show that the following recipe for determining whether or not a given amount t can be changed (using the coins 4 and 7) works: Given t, find integers x and y such that $4 x+7 y=t$ and $0 \leq x \leq 6$. Then t can be changed precisely if $y \geq 0$. Generalize to two coins a and b with no common factor.
(10) Use the previous argument to re-compute $g(4,7)$. Generalize your argument to compute $g(a, b)$, for any two coins a and b with no common factor.
(11) Prove that exactly half of the amounts between 1 and $(a-1)(b-1)$ can be changed.

Now it's time for something new. Every infinite sequence ($a_{0}, a_{1}, a_{2}, \ldots$) comes with a handy analytic gadget, namely its generating function, which is defined as

$$
g(x)=\sum_{k=0}^{\infty} a_{k} x^{k} .
$$

If you know some Analysis (and you don't have to know any Analysis for these exercises), this looks like a power series, however, we don't have to worry about convergence of this series, but rather treat it as a formal power series. In the course of the exercises, you will get a feeling for what this means.
(1) Show that $1+x+x^{2}+x^{3}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$ for any number x. Conclude that the infinite sum $1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$ (if we worry about convergence, we should demand that $|x|<1$). We just computed the generating function for the sequence a_{k} consisting of all 1's:

$$
\sum_{k \geq 0} x^{k}=\frac{1}{1-x}
$$

Compute the sequence $\left(a_{k}\right)$ that gives rise to the generating function $\sum_{k \geq 0} a_{k} x^{k}=\left(\frac{1}{1-x}\right)^{2}$, by looking at the product $\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x+x^{2}+x^{3}+\cdots\right)$. If you look at the result, can you think of a different way to compute (a_{k}) ?
(2) Now we define a sequence recursively. Namely, we set $a_{0}=0$ and $a_{n+1}=2 a_{n}+1$ for $n \geq 0$.
(a) Conjecture a formula for a_{k} by experimenting.
(b) Now put the sequence $\left(a_{k}\right)$ into a generating function $g(x)$ and find a formula for $g(x)$ by utilizing the recursive definition of a_{k}.
(c) Expand your formula for $g(x)$ into partial fractions, and use the result to prove your conjectured formula for a_{k}.
(3) We define a second recursive sequence by setting $a_{0}=1$ and $a_{n+1}=2 a_{n}+n$ for $n \geq 0$. Find a formula for a_{k}.

It's time to go back to the Frobenius problem. Let us introduce the counting sequence

$$
r_{k}=\#\left\{(m, n) \in \mathbb{Z}^{2}: m, n \geq 0, m a+n b=k\right\} .
$$

In words, r_{k} counts the representations of $k \in \mathbb{Z}_{\geq 0}$ as nonnegative linear combinations of a and b. Thus, $r_{a b-a-b}=0$, and $a b-a-b$ is the largest integer k for which $r_{k}=0$.
(1) Prove that $r_{k+a b}=r_{k}+1$.
(2) Compute the generating function for the sequence

$$
a_{k}= \begin{cases}1 & \text { if } k \text { is a multiple of } 7, \\ 0 & \text { otherwise }\end{cases}
$$

(3) Prove that, for $r_{k}=\#\left\{(m, n) \in \mathbb{Z}^{2}: m, n \geq 0, m a+n b=k\right\}$,

$$
\sum_{k \geq 0} r_{k} x^{k}=\left(\frac{1}{1-x^{a}}\right)\left(\frac{1}{1-x^{b}}\right)
$$

(4) Now let $s_{k}=\left\{\begin{array}{ll}1 & \text { if } k \text { can be changed, } \\ 0 & \text { otherwise. }\end{array}\right.$ Prove that

$$
\sum_{k \geq 0} s_{k} x^{k}=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

A few remarks

The simple-looking formula for $g(a, b)$ that you have found inspired a great deal of research into formulas for the general Frobenius number $g\left(a_{1}, a_{2}, \ldots, a_{d}\right)$, with limited success: While it is safe to assume that the formula for $g(a, b)$ has been known for more than a century, no analogous formula exists for $d \geq 3$. The case $d=3$ is solved algorithmically, i.e., there are efficient algorithms to compute $g(a, b, c)$, and in form of a semi-explicit formula. The Frobenius problem for fixed $d \geq 4$ has been proved to be computationally feasible, but no efficient practical algorithm for $d=4$ is known.

A second classic theorem for the case $d=2$, which you have proved and Sylvester published as a math problem in the Educational Times more than a century ago [2], says that exactly half of the amounts between 1 and $(a-1)(b-1)$ cannot be changed using the coins a and b.

For more, we refer to a research monograph on the Frobenius problem [1]; it includes more than 400 references to articles written about the Frobenius problem.

References

[1] Jorge L. Ramírez-Alfonsín, The Diophantine Frobenius problem, Oxford University Press, Oxford, 2006.
[2] James J. Sylvester, Mathematical questions with their solutions, Educational Times 41 (1884), 171-178.

