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A. GETTING STARTED 
 

Here are some dots (nine of them, I believe): 
 

 
and here are some boxes: 

 
In the game we are about to play boxes explode dots! In fact, these boxes like to 
follow the following rule:  
 
 THE 1 2←  RULE:  

Whenever there are two dots in any one box they “explode,” disappear 

and become one dot in the next box to their left 

 

We start by placing our nine dots in the right-most box:  
 

 
 
There are certainly two dots somewhere in this box and they explode to become 
one dot one place to the left. It does not matter which two dots we circle. 
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And it can happen again:  

 
And again! 
 

 
 
And it can happen again in right-most box, but it can now also happen in the second 
box. Let’s do it here now just for fun: 

 
Okay, now we have to go back to the right-most box: 

 
And another time:  
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And one final time! 

 
 
After all this, reading from left to right we are left with one dot, followed by zero 
dots, zero dots, and one final dot. Let’s say: 
 
 

OUR CODE FOR THE NUMBER 9 IS:     1001 

 
 
 
Here’s what happens with seven dots:  
 

 
 
EXERCISE: Circle the pair of dots that “exploded” at each turn in the above 
diagram.  
 
 

OUR CODE FOR THE NUMBER 7 IS:     0111 
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Your turn! 
 

Question 1: Draw 10 dots in the right-most box and perform the explosions. What 
is our code for the number ten? 
 

 
 

 

OUR CODE FOR TEN IS: _______________ 

 

 
 
 
 

Question 2: Drawing this on paper is hard. Maybe you could use buttons or pennies 
for dots and do this by hand. What could you use for the boxes? 
 
Use your chosen objects to find the code for the number 13. 
Also find the code for the number 6. 
 

OUR CODE FOR 13 IS: _______________ 

 

OUR CODE FOR 6 IS: _______________ 

 

 
 
 
 

Question 3: CHALLENGE: What number has code 0101? 
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B. OTHER RULES 
 

Let’s play the dots and boxes game but this time with … 
 

THE 1 3←  RULE:  

Whenever there are three dots in any one box they “explode,” disappear 

and become one dot in the next box to their left 

 

Here’s what happens to fifteen dots:  
 

 
 
We have:  
 

THE 1 3←  CODE FOR FIFTEEN IS:  0120 

 

Question 4: a) Show that the 1 3←  code for twenty is 0202.  
b) Show that the 1 3←  code for four is 0011. 

 

Question 5: What is the 1 3←  code for 13? For 25? 

 

Question 6: Is it possible for a number to have 1 3←  code 2031? Explain.  

 

Question 7: HARD CHALLENGE: What number has 1 3←  code 1022? 
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Let’s keep going … 
 

Question 8: What do you think is the 1 4←  rule?  
What is the 1 4←  code for the number thirteen? 

 

Question 9: What is the 1 5←  code for the number thirteen? 

 

Question 10: What is the 1 9←  code for the number thirteen? 

 

Question 11:  What is the 1 5←  code for the number twelve? 

 

Question 12: What is the 1 9←  code for the number thirty? 

 

 

 

AHA MOMENT! 

 

Question 13: What is the 1 10←  code for the number thirteen? 
 
What is the 1 10←  code for the number thirty-seven? 
 
What is the 1 10←  code for the number 238? 
 
What is the 1 10←  code for the number 5834? 
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C. WHAT’S REALLY GOING ON 
 

Let’s go back to the 1 2←  rule for a moment.  
 

THE 1 2←  RULE:  

Whenever there are two dots in any one box they “explode,” disappear 

and become one dot in the next box to their left 

 
Two dots in the right-most box is worth one dot in the next box to the left.  

 

 
If each of the original dots is worth “one,” then the single dot on the left must be 
worth two. 
 

 
 
 
But we also have two dots in the box of value 2 is worth 1 dot in the box just to the 
left  …  
 

 
This next box must be worth two 2s. That’s four!  
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And two of these fours makes 8. 
 

 
 
 

Question 14: If there was one more box to the left, what must it be worth? 

 

 

 

We said earlier that the 1 2←  code for 9 was 1001. Let’s check: 
 

 
 

Yep! Nine 1s does equal one 8 plus one 1.  
 

    9 8 1= +  
 
 
 
We also said that 13 has code 1101. This is correct. 
 

 
     

    13 8 4 1= + +  
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What number has code 10110? Easy: 
 

 
 

16 4 2 22+ + =  

 

 

Question 15: What number has 1 2←  code 100101 ? 

 

Question 16: What is the 1 2←  code for the number two hundred? 

 

 

FANCY LANGUAGE: People call numbers written in 1 2←  code binary numbers. 
(The prefix bi means “two.”) 
 
 
  
Question 17: In the 1 3←  system we have three dots in one box is worth one dot 
one place to the left. This gives the numbers … 
 

 
 

a) What is the next number? 
 
We said that the 1 3←  code for fifteen is 120. We see that this is correct 
because …   

 
 

9 3 3 15+ + =  
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b) Actually the 1 3←  code for fifteen was 0120. Is it okay to leave off the 
first zero? Is it okay to leave off the last zero instead and write 012 ? 

 
 

c) What number has 1 3←  code 21002 ? 
 

d) What is the 1 3←  code for two hundred? 
 

 

 

 

 

 

Question 18: In the 1 4←  system four dots in one box is worth one dot one place 
to the left. What is the value of each box? 
 

 
a) What is the 1 4←  code for 29? 
b) What number has 1 4←  code 132? 
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Question 19: a)  

 
 
b) What is the code for the number 98723 in the 1 10←  system? 
 
c) When we write the number 7842 the “7” is represents what quantity?  The “4” is 
four groups of what value? The “8” is eight groups of what value? The 2 is two 
groups of what value?  
 
d) Why do human beings like the 1 10←  system for writing numbers? Why the 
number 10? What do we like to use on the human body for counting?  
 
Would Martians likely use the 1 10←  system for their mathematics? Why or why 
not?  
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D. USING THE 1 10←  SYSTEM 
 

Here is the number 273 in the 1 10←  system: 
 

 
 
And here is the number 512: 
 

 
 
If we add these, we obtain: 
 

 
 

This is the number 785. We’ve just worked out the sum: 
 

 
 
And saying out the long way we have: 
 
 Two hundreds plus five hundreds gives 7 hundreds 
 Seven ones plus one ten gives 8 tens 
 Three ones plus 2 units gives 5 units 
 
This is the answer 785. 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

18

 

Question 20:  Draw the dots and boxes 1 10←  picture for the number 3704. Add 
to this the picture for 2214. What is 3704 2214+ ?  

 

Let’s do another one. Consider 163 489+ . 
 
 

 
 

 

 
 

And this is absolutely mathematically correct: 
 
 One hundred plus four hundreds does give 5 hundreds 
 Six tens plus eight tens does give 14 tens 
 Three ones plus nine ones does give 12 ones. 
 
The answer is 5 | 14 | 12 which we might try to pronounce as “five hundred and 
fourteeny-tenty twelvety”! (Oh my!)  
 
The trouble with this answer – though correct  - is that most of the rest of the 
world wouldn’t understand what we are talking about! Since this is a 1 10←  system 
we can do some explosions.  
 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

19

 
 
The answer is “six hundred forty twelvety”! Still correct, but let’s do another 
explosion: 
 

 
 
The answer is “six hundred fifty two.” Okay, the world can understand this one!  

 
 

Question 21:  Solve the following problems thinking about the dots and boxes. 
(You don’t have to draw the pictures; just do it!) And then translate the answer into 
something the rest of the world can understand.  
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WHAT TEACHER’S TEACH … 
 

Let’s go back to the example 163 489+ . Some teachers don’t like writing:  
 

 
 
They prefer to teach their students to start with the 3 and 9 at the end and sum 
those to get 12. This is of course correct – we got 12 as well.  
 

 
 
But they don’t want students to write or think “twelvety” and so they have them 
explode ten dots:  
 

 
 
 
and they teach their students to write:  
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which seems mysterious.  But it makes sense to us now because have put that “1” in 
the tens place which is exactly what an explosion does.   
 
Now we carry on with the problem and add the tens: 
 

 
 
and students are taught to write:  

 
And now we finish the problem. 
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and we write: 
 

 
 
 

Teachers like to teach their students to do all their explosions first. This means 
that students have to start at the right of the problem and work towards the left 
“carrying” digits that come from the explosions.  
 
In the dots and boxes method one adds in any direction or order one likes and does 
the explosions at the end.  
 
 
WHY DO TEACHERS LIKE THEIR METHOD? Because it is efficient. 
 
WHY DO WE LIKE THE DOTS AND BOXES METHOD? Because it is easy to 
understand.  
 
 

Question 22: Redo the problems of question 2 the teachers’ way. You will see that 
it is quicker.  
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Question 23: HARD CHALLENGE. Here is an addition problem in a 1 5←  system. 
(THIS IS NOT 1 10← ).  
 

 

 
 

a) What is the 1 5←  answer? 
b) If this were an addition problem in a 1 10←  system, what would the answer 

be? 

 

Question 24: Jenny was asked to compute 243192 4× . She wrote:  
 

 
a) What was she thinking? Why is this a mathematically correct answer? 
b) Translate the answer into a number that the rest of the world can 

understand.  
 

c) Find the answers to these multiplication problems: 
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E. EXPLORATION AND ADVENTURE 

 
ADVENTURE 1: Jay decides to play with a system that follows a  1 1←  rule. He 
puts one dot into the right-most box. What happens? (Suppose the row of boxes is 
infinitely long to the left!) 
 

 
 

Suggi plays with a system following the rule 2 1← . She puts one dot into the right-
most box. What happens for her? 

 
 

ADVENTURE 2:  Poindexter decides to play with a system that follows  
the rule 2 3← . 
 
a) Describe what this rule does when there are three dots in a box. 
 
b) Draw diagrams or use buttons or pennies to find the 2 3←  codes for the 
following numbers: 
  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 27, 30, 33, 36, and 
39 
 
Any patterns? 
 
 
c) Repeat this exercise for your own rule. Choose two numbers a and b and figure 
out what the code is for your a b←  system for each of the numbers above. 
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MATHEMATICAL THINKING! 
Exploration 4 

 

 

DIVISION 
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A. GETTING STARTED 
 

Let’s keep playing with the 1 10←  system of dots and boxes. (After all, it 
represents the way human beings like to write their numbers!)  
 
Here is the number 3906 in the 1 10←  system: 
 

 
 
Let’s divide this number by three. This means that we are asking:  
 

How many groups of 3 fit into 3906? 
 

Now, three dots looks like  so we are really asking:  
 

 How many groups of  can we see in the picture?  
 
There is certainly one group of 3 at the 1000s level, and three at the 100s level, 
none at the tens level, and two at the 1s level. 

 
 
This shows that 3 goes into 3906 one thousand, three hundreds and two ones times. 
That is,  

3906 3 1302÷ =  
 

WEIRD LANGUAGE: The division sign ÷  has an unusual name. It is called an 
obelus. Not many people know this.  
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Question 1: Draw a dots and boxes picture of 20486. Use your picture to show 
why 20486 2÷  equals 10243. 

 
Let’s try a harder one! Consider:  
 

402 3÷  
 
Here’s the picture:  
 

 
 

 and we are looking for groups of three dots: . 
 
There is certainly one group at the 100s level.  
 

 
and now it seems we are stuck – there are no more groups of three!  
 
What can we do now? Are we really stuck? 
 
Do you want a hint? 
 
 
HINT: If our 1 10←  rule means that each group of 10 becomes one in the box to 
the left, what might happen if we move one dot to the box to the right? 
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EPIPHANY: Let’s UNEXPLODE a dot!  
 
Since each dot is worth ten dots in the box to the right we can write …  

 
and find more groups of three: 

 
There is still a troublesome extra dot. Let’s unexploded it too … 
 

 
 
giving us more groups of three: 

 
 
Finally we have the answer! 

402 3 134÷ =  
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Question 2: Compute 62124 3÷  via the dots and boxes method. 

 
 

Question 3: Compute 61230 5÷  via the dots and boxes method. 

 
Let’s go up another notch of difficulty! Consider 156 12÷ .  
 
Here we are looking for groups of 12 in the picture … 
 

 
 
What does 12 look like? It can be twelve dots in a single box: 
 

 
 
Question: Are there twelve dots in the picture for 156? Does this mean that there 
is just one group of twelve in 156?  
 
We don’t’ see any of those twelve single dots, but twelve can also be the result of 
an explosion:  

 
and we certainly see some of these in the picture. There is certainly one at the tens 
level … 

 
(REMEMBER: With an unexplosion this would be twelve dots in the tens box.)  
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And three at the ones level:  

 
We see:  

156 12 13÷ =  
 
 

Question 4:  Compute 13453 11÷  via the dots and boxes method. 

 
 

Question 5: Compute 4853 23÷  via this method. 

 
 
Here’s a bigger example:  
 
 What’s 214506 102÷  ?  
 
 
STOP AND CONSIDER: Try this before continuing on. What does the 102 dots look 
like? 
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Here goes:  

 
 
and we are looking for groups of 102 in this picture. These look like:  
 

 
We can do it! 
 

 
 

 

214506 102 2103÷ =  
 
 
 
 

Question 6: Compute the following using dots and boxes.  
 

64212 3

44793 21

6182 11

99916131 31

637824 302

2125122 1011

÷

÷

÷

÷

÷

÷
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AHA MOMENT:  

 

Question 7: Use dots and boxes to compute  
 

2130 10÷  
 

Use dots and boxes to compute 
 

41300 100÷  
 

 

 
REFLECTION QUESTIONS: Look back at the previous two problems. What 
pictures did you use for 10 and for 100? Can you describe in words what happens 
when dividing by 10 and by 100? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

33

 
B. WHAT TEACHERS TEACH 
 
We used dots and boxes to show … 
 

402 3 134÷ =  
 
 

 
 
Some teachers have their students solve this division problem by using a diagram 
like the following:  

 
At first glance this seems very mysterious, but it is really no different from the 
dots and boxes method. Here is what the table means.  
 
To compute 402 3÷  students first make a big estimation as to how many groups of 
3 there are in 402. Let’s guess that there are 100 groups of three. 
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How much is left over after taking away 100 groups of 3? 

 
 
How many groups of 3 are in 102? Let’s try 30: 

 
 
How many are left? There are 12 left and there are four groups of 3 in 12.  

 
 
The accounts for entire number 402. And where doe we find the final answer? Just 
add the total count of groups of three that we tallied:  
 

402 3 100 30 4 134÷ = + + =  
 
 

 

 

 

REFLECTION: Compare the two tables we’ve listed: 
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In what way are they the same? In what way are they different? 
 
Look at the dots and boxes method: 
 

 
 
In what way is the same or different from the two tables? 
 
 
 
WHY DO TEACHERS LIKE THEIR METHOD? Because it is quick, not too much to 
write down, and it works.   
 
WHY DO WE LIKE THE DOTS AND BOXES METHOD? Because it easy to 
understand. (And drawing dots and boxes is kind of fun!)  
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C. WHEN PROBLEMS DON”T WORK OUT NICELY 
 

We saw that 402 is evenly divisible by 3: 
 

402 3 134÷ =  
  
This means that 403, one more, shouldn’t be divisible by three. It should be one dot 
too big. Do we see the extra dot if we try the dots and boxes method? 
 

 
 

Yes we do! We have a remainder of one dot that can’t be divided. We say that we 
have a remainder of one and some people like to write: 
 

403 3 134 1R÷ =  
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Let’s try another one:  

263 12÷  
 

Here’s what we have … 
 

 
and we are looking for … 

 
 
Here goes! 
 

 
 
Unexploding won’t help any further and we are indeed left with one remaining dot in 
the tens position and a dot in the ones position we cannot divide. This means we 
have a remainder of … eleven. 
 

263 12 21 11R÷ =  

 

Question 8:  Use dots and boxes to show that 5210 4÷  is 1302 with a remainder 
of 2.  

 

Question 9: Use dots and boxes to compute 4857 23÷ . 

 

Question 10: Use dots and boxes to show that 31533 101÷  equals 312 with a 
remainder of 21. 
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Question 11: Recall that teachers teach their students to work compute 403 3÷  
as follows:  
 

 

403 3 134 1R÷ =  

 

Use the teachers’ method to compute  
 
a) 5210 4÷  
b) 4857 23÷  
c) 31533 101÷  
 
Which method do you like better: dots and boxes or the teachers’ method? Or does 
it depend on the problem you are doing?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

39

 
D. EXPLORATION AND ADVENTURE 
 

All that we have done so far is in the every-day arithmetic of a 1 10←  system. We 
could perform division in a 1 5←  system as well if we liked.  
 

ADVENTURE 1: 
a) What is value of each box in a 1 5←  system? Fill in the blanks: 
 

 
b) The number 213 in the 1 5←  system is really the number 58 in ordinary 
arithmetic. 

 
 
What is the number 424 in the 1 5←  system really in our arithmetic? 
What is he number 11 in the 1 5←  system really in our arithmetic? 
 
c) Use the dots and boxes method to show that 424 11÷  equals 34 in the 1 5←  
system.  
 
d) What is “34” in ordinary arithmetic? What is the statement  424 11 34÷ =  really 
in ordinary arithmetic? Is it indeed correct? 
 
e) TOUGH CHALLENGE: Work out 2021 12÷  in the 1 5←  system.  
[WATCH OUT: You will need to unexplode. How many dots does an unexplosion 
become?] 
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ADVENTURE 2:  Anu refuses to tell anyone if she is working in a 1 10←  system, 
or a 1 5←  system, or any other system. She makes everyone call it an 1 x←  
system but won’t tell a soul what number she has in mind for x.  
 
We know that boxes in a 1 10←  have values that are powers of ten: 1, 10, 100, 
1000, 10000, … 
 
And boxes in a 1 5←  system powers of five: 1, 5, 25, 125, 625, … 
 
So Anu’s system, whatever it is, must be powers of x:  
 

 
 
When Anu writes 2556 she must mean: 
 

 
 

3 22 5 5 6x x x+ + +  
 
and when she writes 12 she means:  

 
 

2x +  
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Anu decides to compute 2556 12÷ . She obtains:  
 
 

 
 

 

( ) ( )3 2 22 5 5 6 2 2 3x x x x x x+ + + ÷ + = + +  

Whoa!  
 
 

a) Use Anu’s method to find ( ) ( )23 7 2 2x x x+ + ÷ +  

 

b) Use Anu’s method to find ( ) ( )4 3 22 3 5 4 1 2 1x x x x x+ + + + ÷ +  

 

c) Use Anu’s method to find ( ) ( )4 3 2 23 6 5 3 1x x x x x x+ + + + ÷ + +  

 
Anu later tells use that she really was thinking of a 1 10←  system so that x does 
equal ten. Then her number 2556 really was two thousand, five hundred and fifty 
six and 12 really was twelve. Her statement: 
 

( ) ( )3 2 22 5 5 6 2 2 3x x x x x x+ + + ÷ + = + +  

  
is actually 2556 12 213÷ = .  
 
d) What division problems did you actually solve for parts a, b and c in the 1 10←  
system?  
 
 
 

 

 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

42

HARD CHALLENGE: Uh Oh! Anu has changed her mind! She now says she was 
thinking of a 1 11←  system!  
 

Now “2556” means 3 22 11 5 11 5 11 6 3328× + × + × + = , “12” means 1 11 2 13× + =  and 

“213” means 22 11 1 11 3 256× + × + = , and so her computation  
 

2556 12 213÷ =  
 
is actually the statement:  
 

3328 13 256÷ =  
 
e) Check that this is still correct.  
 
f) How do parts a, b and c translate for an 1 11←  system? 
 

 
 
 
 
 

ADEVNTURE 3: Show that ( ) ( )4 3 24 6 4 1 1x x x x x+ + + + ÷ +  equals 3 23 3 1x x x+ + + . 

 
a) What is this saying for 10x = ? 
b) What is this saying for 2x = ? 
c) What is this saying x equal to each of 3, 4, 5, 6, 7, 8, 9, and 11? 
d) What is it saying for 0x = ? 
e) What is it saying for 1x = − ? 
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MATHEMATICAL THINKING! 
Exploration 5 

 

 

PILES AND HOLES 
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A. GETTING STARTED 
 

Here is a story that isn’t true.  
 
When I was a young child I used to spend my days sitting in a sandbox at the back 
of my yard (not true). And being a very serene child I used to take my time in the 
morning leveling the sand in my box to make a perfectly flat horizontal surface 
(also not true). It very much appealed to my tranquil sensibilities, so much so that I 
decided to give this level state a name. I called it “zero.” 
 
 

 
 
I spent many an hour admiring my zero state (still not true), but then, one day, I 
had an epiphany! I realized I could reach behind where I was sitting, grab a handful 
of sand and make a pile. I called the one pile the “1” state. 
 

 
 
And then I discovered two piles – which I called “2” – and three piles, “3” and so 
forth.  
 

 
 
Hours of mathematical fun were had as I discovered the counting numbers with 
piles of sand. 
 
 

Question 1: Had I discovered the counting numbers in this untrue story? Is 
counting piles of sand really the same as counting dots?  
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BUT THEN … one day I had the most astounding epiphany of all! Instead of using a 
handful of sand to make a pile, I could, I realised, take away a handful of sand and 
make the OPPOSITE of a pile, namely, a hole! 
 

 
 
I called this “opp 1” for the opposite of one pile. And notice that “opposite,” in some 
sense, is really the right word because a hole “cancels” a pile:  
 

 
 

1 1 0opp+ =  

 

Question 2: Explain what I am doing in this picture. 

 
In the same way “opp 2” represents the opposite of two piles, namely, two holes, 
and “opp 5” the opposite of five piles, namely, five holes.   
 
 

Question 3: Draw a picture for  2 2opp+  and draw its answer. 

 

Question 4:   
a) JinSe says that  3 2opp+  equals one pile? Is she correct? Draw a picture. 

b) Harold says 5 7opp+  equals 2 holes. Is he correct? Draw a picture. 

 

Question 5: a) What is the opposite of a hole? 
 
b) What is the opposite of the opposite of the opposite of three piles? 
 
c) What is the opposite of the opposite of the opposite of the opposite of the 
opposite of the opposite of the opposite of the opposite of the opposite of the 
opposite of the opposite  of the opposite of the opposite of ten hundred holes?   
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B. WHAT THE REST OF THE WORLD WRITES AND THINKS 
 

As a young child I had, allegedly, discovered a whole host of new numbers, the 
opposites of the counting numbers. The world calls these the negative numbers. And 
instead of writing opp for opposite, people use a tiny dash “-“. 
 
So … 
 

 
 
Unfortunately, matters become a little confusing when one starts combining piles 
and holes.  For example, three piles and two holes together (giving one pile) is 
written:  

 
 
and   
 

5 7 2+ − = −  

 
is a clunky way of writing “five piles and seven holes equals two holes.”   
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Question 6: a) Ali invented the notation “4 5 3 2 2P H H P H+ + + = ”. What do you 
think he means by this? Do you like his notation? 
 

b) Cuthbert writes 3 4 5 4+ + = . What do you think he means by his notation? 

 

 

 

Question 7:  The statement: 
 

3 7 4− + =  
 
reads “3 holes and 7 piles makes 4 piles,” and the statement: 
 

17 6 4 6 20 7+ − + − + + − = −  

 
reads “17 piles and 6 holes and 4 holes and 6 piles and 20 holes makes 7 holes.” 
 

Translate each of the following, and give the answers! 
 
a) 5 9 2+ − +  
 
b) 3 10 11 5+ − + −  
 
c) 2 2 2 2 2 2+ − + + − + + −  
 
d) 6 1 2 3− + − + − + −  
 

 

 

Question 8: Pandi writes: 
 

5 2 3 8− − − − − − + − − + − − − − + − − − − − − −  
 

This actually makes sense! What does it mean and what is the answer? 
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To be honest most teachers reading the previous two pages would be quite upset! 
They will never let students write:  

5 7 2+ − = −  

for instance. They prefer to invent a new idea and call it “subtraction.”  
 
 
YOU HAVE BEEN TAUGHT … 

 

To read  

5 2−  
 
as “five take away two,” which, of course, is three.  
 
It is really  

5 2+ −  
 
“Five piles plus the ADDITION of two holes,” which, of course, is three piles. 
 

  
 

YOU HAVE BEEN TAUGHT … 

 

To read: 

6 4 1− +  
 
as “six take away four plus one,” which is three. 
 

It is really  

6 4 1+ − +  
 
“Six piles PLUS four holes PLUS one pile” which is three piles.  
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Question 9: Young children are usually taught to think “subtraction” and are often 
asked to compute problems like the following:  
 

4 1 ??

10 7 ??

8 5 ??

− =

− =

− =

 

 
This is good for practicing skills. But often children will naturally ask about 
problems of the following type: 
 

3 5 ??

1 4 ??

66 103 ??

− =

− =

− =

 

 
and sometimes they are told that these problems do not have answers.  
Is this a correct thing to say or do they indeed have answers?  
 
Do you think if young children were taught about piles and holes they could 
understand how to answer questions like these? 
 

 

 

To a mathematician … subtraction doesn’t really exist. It is just the ADDITION of 
opposites.  
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C. GROUPS OF PILES AND HOLES 
 

Here’s a vague question:  
 
 What is the opposite of three piles and two holes? 
 
Does this mean …  
 
 The opposite of three piles AND THEN the addition of two holes 
or 
 The opposite of both three piles and of two holes? 
 
 

Question 10: One of these interpretations has the answer “five holes” and the 
other interpretation the answer “one hole.” Which answer belongs to which 
interpretation?  

 
Mathematicians use parentheses to help clarify such confusion. Parentheses group 
objects together. Some examples will explain: 
 

EXAMPLE 1: ( )3 2− + −   

This means the opposite of everything in the parentheses, the opposite of BOTH 
three piles and two holes. And what is the opposite of both three piles and two 
holes? Clearly, three holes and two piles!! 
 

( )3 2 3 2− + − = − +  

   
This is one hole.  

( )3 2 3 2 1− + − = − + = −  

 
 

 

Comment: Most people write ( )3 2 3 2 1− − = − + = − . Do you see the slight 

difference? 
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EXAMPLE 2: ( )3 4 2 5− + − + +  

 
This is the opposite of all of 3 piles, 4 holes and 2 piles, AND THEN the addition of 
5 piles. So we have 3 holes, 4 piles, 2 holes, and 5 piles. This is, in all, 3 piles.  
 

( )3 4 2 5 3 4 2 5 3− + − + + = − + + − + =  

 

Comment: Most people write this as ( )3 4 2 5 3 4 2 5 3− − + + = − + − + = . Do you 

see the slight difference? 
 
 
 

EXAMPLE 3: ( )6 5 2− −  

 
This is six piles and the opposite of both 5 piles and 2 holes.  
 

( )6 5 2 6 5 2− − = + − +  

 
This equals 3 piles.  

( )6 5 2 6 5 2 3− − = + − + =  

 
 

EXAMPLE 4: ( ) ( )5 2 1 3 2− + − −  

 
This is 5 piles, 2 holes and 1 pile all grouped together PLUS the opposite of both 3 
piles and 2 holes.  
 

( ) ( )5 2 1 3 2 5 2 1 3 2− + − − = + − + + − +  

 
This equals 3 piles.  
  
 

EXAMPLE 5: ( )10 5 8+ −  

 

This is 10 piles PLUS a group of 5 piles and 8 holes.  

( )10 5 8 10 5 8 7+ − = + + − =  
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COMMENT: Teachers might call these examples  of “distributing the negative 
sign.” 
 
 

Question 11: Interpret and evaluate the following: 
 

a) ( )6 3 2− −  

 

b) ( )4 1 3+ −  

 

c) ( ) ( )3 9 1 8 2− − − +  

 

d) ( ) ( )1 2 4 3 2 4+ − − + −  

 

e) ( ) ( ) ( ) ( )2 3 5 2 3 7 9 8 1 2 3− − − − + − − + − + − −  

 

f) ( ) ( )16 16 17 17− − −    

 

Question 12:  What’s x−  if: 
 
a) x  is seven piles? 
b) x  is seven holes? 
c) x  is 50? 
d) x  is 50− ? 
 

 

 

Question 13: CHALLENGE  

Wanda is thinking of a number, which she calls W, but she refuses to tell us its 
value. But she does ask us to compute:  
 

( ) ( )4 2W W− − −  

 
Without knowing her number do we have any chance of working this out? 
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D. DOTS AND ANTI-DOTS 
 

We have seen that the opposite of a pile is a hole. They “cancel” each other out! 
 

 
 
In the previous explorations we’ve been counting dots, not piles. So what’s the 
opposite of a dot? Not sure. But whatever it is, let’s call it an “anti-dot” and note, 
that like matter and antimatter, whenever a dot and anti-dot come together they 
both explode and leave nothing behind. We’ll draw dots as solid dots and anti-dots 
as hollow circles:  
 

 
 
So like piles and holes we can conduct basic arithmetic with dots and anti-dots: 
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THE RETURN OF THE 1 10←  MACHINE  

 
Recall from exploration 2 that all numbers can be written using the powers of ten in 
a 1 10←  machine. For example:  
 
 

 
 
 
We have discovered in this exploration that subtraction is nothing but the addition 
of negative quantities. In our dots and boxes model let’s work with dots and anti-
dots.  
 
Consider, for example, the problem:  

 
 
This is an addition of dots and anti-dots problem: 
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As another example we see that 423 – 254, represented by diagram:  

 

 
has answer: 
 

 
 

That is:    

 
 
This is absolutely valid mathematically, though the rest of the world may have 
difficulty understanding what “two hundred and negative thirty negative one” 
means! To translate this into familiar terms we can “unexplode” one of the solid 
dots to add ten solid dots to the middle box.  
 

 
 
 
This gives the representation: 1 | 7 | -1. Unexploding again gives: 1|6|9. (Why?)  
 
Thus we have: 

423 – 254 = 169. 
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Question 14: How were you taught to answer this problem in school?  
 

 
 
 
What is actually happening when you “borrow” a digit from another column? 
 

 
 

Question 15: Compute each of the following two ways. First, the school way by 
starting at the right and borrowing digits. Then, do it by starting at the left and 
moving to the right, using negative numbers in the answer.  
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E. EXPLORATION AND ADVENTURE 
 

ADVENTURE 1: CARD PILE TRICK                                              
 

a) Take 10 red cards and 10 black cards from a deck of cards. Shuffle your 20 
cards and arbitrarily split them into two equal piles. Count the number of red 
cards in the left pile and the number of black cards in the right pile. What 
do you notice? Repeat this activity two more times. 

 
b) Shuffle your 20 cards and this time split them into a pile of 6 and a pile of 

14 cards. Count the number of red cards in the small pile and count the 
number of black cards in the large pile. Take the (positive) difference of 
those two counts. Did you get 4? Repeat this two more times. 

 
c) Shuffle the 20 cards again and this time split them into a pile of 9 cards and 

a pile of 11 cards. Count the number of red cards in the small pile, count the 
number of black cards in the large pile and take the (positive) difference of 
this count. What did you get? Repeat two more times. What do you notice? 

 
d) Complete the following table:  

 

 
Any patterns? 
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e) Suppose, in a game with 5 cards in the small pile and 15 cards in the large 
pile, I counted three red cards in the small pile. Complete the following 
table: 

 
What is the difference of counts of red cards in the small pile and black cards in 
the large pile? 
 
 

f) CHALLENGE: Suppose the small pile again has 5 cards and the large pile has 
15 cards. Suppose it turns out there are R red cards in the small pile. 
Complete the following table as an abstract exercise, writing formulas in 
each cell of the table:  

 

 
 
What can you say about the difference between the number of red cards in the 
small pile and the number of black cards in the large pile? 
 
Does this match what you observed in part d) of this question? 
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g) OPTIONAL ULTIMATE CHALLENGE: Call the number of cards in the small pile 
P  and the number of cards in the large pile 20 P− . (Why is this the correct 
formula for this?) Suppose there are R  red cards in the small pile. Complete the 
table again as the ultimate abstract exercise, writing formulas in each cell of the 
table: 
 

 
 

 
Can you write a formula for the difference of counts of the red cards in the small 
pile and black cards in the large pile? Does this formula match the data you 
obtained in part d) of this question? 
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TOUGH ADVENTURE 2: DIVISION IN AN 1 x←  MACHINE 

 
Recall that at the end of exploration 3 (if you chose to go that far!) we were 
completing division problems in a general 1 x←  machine. If you noticed, we only 
presented there examples with positive numbers. What about examples involving 
negative numbers? 
 

Let’s compute ( ) ( )3 3 2 2x x x− + ÷ +  using dots and anti-dots.  

 
To do this, begin by drawing the representations of each quantity.   
 

 
 

Our task is to find groups of  within the top diagram, and right away 
matters seem problematic. One might think to “unexplode” dots to introduce new 
dots (or anti-dots) into the diagram but there is a problem with this: We do not 
know the value of x and therefore do not know the number of dots to draw for each 
“unexplosion.”  
 
The way to cope with this difficulty is to employ an alternative trick: We can fill 
empty cells with dots and anti-dots. This keeps the value of the cell zero, but 
creates the dots we seek in our patterns.   

 
 
 
 
It also creates anti-versions of what we seek: 
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Add another dot/antidote pair: 

 
 

and we have:   
 

( ) ( )3 23 2 2 2 1x x x x x− + ÷ + = − + .  

 
 
 
 
Use dots-and-boxes to compute the following: 
 

a) ( )3 2( 3 3 1) 1x x x x− + − ÷ −  

 

b) ( ) ( )3 24 14 14 3 2 3x x x x− + − ÷ −  

 

c) ( ) ( )5 4 3 2 24 2 7 4 6 1 1x x x x x x x− + − + − ÷ − +  

 

d) ( ) ( )10 21 1x x− ÷ −  
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ADVENTURE 3: AN ANUSUAL MACHINE 

 

Consider the 1 | 1 2− ←  machine which operates by exploding any two dots in one 

box and replacing them with an antidot in their box along with an actual dot one 
place to the left.  

 
 
 Putting seven dots into this machine, for example, produces the code: 
 

1| 1| 1−  

 
 

 
 

 

a) What is the code for 5 in this machine? 
 

b) What is the code for 20 in this machine? 
 

c) What number has code 1 | 0 | 0 | 1− ? 
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d) Fraviana says that there is a value of x  that is “appropriate” for this 

machine:  
 
 

 
 

 

She’s right! What is the “appropriate” value of x ? 
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MATHEMATICAL THINKING! 
Exploration 8 

 

 

EXCERPTS 
 

 

 

 

 

 

 

MULTIPLICATION 
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A. GETTING STARTED 
 
We’ve been counting dots. Let’s now count squares.  
 
Here are 3 4 12× =  squares:  

 
This gives a picture of a 3-by-4 rectangle and subdivided into 12 squares units. 
(Maybe the units are inches or meters, Smoots or light-years. It doesn’t matter for 
what we want to do in this exploration.) We like to call 3 4×  the area of the 
rectangle. Thus we have a geometric interpretation of multiplication: The product 
of two numbers corresponds to the area of a rectangle. 
 
For example, this next picture is a representation of the computation 23 37× :  

 
 
We can use this area interpretation to our advantage! 
 
Comment: Mathematicians are somewhat coy about always regarding multiplication 
as area. Here we are working with positive whole numbers, and so it is easy to see 
that whole numbers of unit squares fit inside each rectangle. But what if the 

numbers aren’t as nice as this? For example, does ( )3 4× −  correspond to the area 

of a rectangle? Does 
3

32 17
4

× ? Maybe we should answer no, or maybe we should 

answer yes, or maybe we should adopt a different approach. This is what 
mathematicians do:  
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Let’s work with positive whole numbers and see how area and multiplication 
should work for them. Then, we can decide whether or not then we would like 
to believe the same ideas should hold for all types of numbers.  

 

So even though ( )3 4× −  might not correspond to the area of an actual rectangle, 

maybe we can decide that numbers should work the same way as though it did!  
Let’s see how area can help us compute23 37× . The numbers 23 and 37, you might 
agree, are awkward to work with directly.  
 
But we can simplify matters by breaking the “23” into two smaller numbers that are 
easier to work with, namely 20 + 3, and the “37” into 30 + 7. This corresponds to 
subdividing the rectangle into four pieces as shown: 
 

 
 
The area of the entire rectangle is just the sum of the area of these four pieces. 
We have:  

   23 37 600 140 90 21 851× = + + + =  
 
This is easy to compute! One can almost do it in one’s head. 
 
Comment: Why did we choose 23 20 3= + 2 and 37 30 7= + , and not 23 16 7= +  and 
37 18 15= + , say? Because, as we saw in exploration 7, multiplying multiples of ten is 
fairly straightforward! 
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Notice what we did here. We wrote: 
 

  

23 37 (20 3) (30 7)

20 30 20 7 3 30 3 7

× = + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅

 

 
This amounts to selecting one number from the first set of parentheses, one from 
the second set, multiplying, and adding, making sure that each possible combination 
of one number from each set of parentheses is covered.  
 

 
 
Some more examples:  
 
EXAMPLE: Compute 15 17×  
 
Answer: 
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15 17 (10 5) (10 7)

10 10 10 7 5 10 5 7

100 70 50 35

255

× = + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅

= + + +

=

 

 
Again, for the expression  (10 5) (10 7)+ ⋅ + ,  we ended up simply selecting one term 

from each set of parentheses and working with all possible combinations. 

Question 1:  

a) In computing 15 17×  Vera started by drawing and labeling a rectangle this way:  

 
Is this a valid approach or is she wrong to label this way?  
 
b) Dan, Cuthbert and Edna draw and label rectangles each of these ways. Are their 
approaches also valid? 
 

 
  

 

 

 

EXAMPLE: Compute 8 43×  
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( ) ( )8 43 8 40 3

8 40 8 3

320 24

344

× = × +

= × + ×

= +

=

 

 

Even here, in “expanding” ( ) ( )8 40 3× + , we ended up selecting one term from each 

set of parentheses and listing all possible combinations.  
 

Example: Compute 371 42×  
 
Answer: This corresponds to a rectangle subdivided into six pieces 
 

 
 

371 42 (300 70 1) (40 2)

300 40 70 40 1 40 300 2 70 2 1 2

12000 2800 40 600 140 2

15582

× = + + ⋅ +

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + + + + +

=

 

 
 
 
And here too, in “expanding” (300 70 1) (40 2)+ + ⋅ +  we simply ended up using each 

term of the first set of parentheses and multiplying it with each term of the 
second set of parentheses.  
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Example: Compute 23 37×  as ( ) ( )10 10 3 10 10 10 7+ + × + + + . 

 
Answer: This is a crazy approach, but the mathematics still works!  
 

 
 
 

23 37 100 100 100 100 100 100 30 30 30 70 70 21 851× = + + + + + + + + + + + =  
 
 
 

 

EXAMPLE: The computation: 
 
                         (4 5) (3 7 1)+ ⋅ + +  

 
corresponds to subdividing a rectangle into how many pieces? 

 
Answer: 

   Six pieces! 
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We have:  

(4 5) (3 7 1) 4 3 4 7 4 1 5 3 5 7 5 1

12 28 4 15 35 5

99

+ ⋅ + + = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + + + + +

=

 

        □ 
 
Comment: This was a very complicated way of computing 9 11 99× = !    
 
 
 

EXAMPLE: What does this computation mean geometrically? 
 
                   ( ) ( )a b c d e f g+ + + ⋅ + +  

 
Answer: This corresponds to subdividing a rectangle into 12 pieces.  
 

 
 
With the appropriate patience, one could write this out: 
 
( ) ( )a b c d e f g ae af ag be bf bg ce cf cg de df dg+ + + ⋅ + + = + + + + + + + + + + +      □ 

 
 

Comment:  Remember that mathematicians usually omit the multiplication sign “× ” 
or “ ⋅ ” when multiplying two quantities represented by symbols.  
 
 

 

Question 2: One can compute ( ) ( )2 3 7 4+ ⋅ +  two ways: 

 

Short way:    ( ) ( )2 3 7 4 5 11 55+ ⋅ + = ⋅ =  

Long way:      ( ) ( )2 3 7 4 2 7 2 4 3 7 3 4 14 8 21 12 55+ ⋅ + = ⋅ + ⋅ + ⋅ + ⋅ = + + + =  

 
Compute each of the following both the short way AND the long way. 
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a) ( ) ( )2 3 3 7+ ⋅ +  

b) ( ) ( )2 4 6 2 6 1 3+ + ⋅ + + +  

 

 

 

 

 

 

 

 

 

Question 3: We have, for example: 
 
      ( )( )a b x y ax bx ay by+ + = + + +  

 
i) Expand the following expressions: 
 

a) ( ) ( )w x z r+ +  

b) ( )( )a x b z y+ + +  

 
ii) If you were to expand the following expression, how many separate terms would 
it yield? 

( )( )x y z w t r a b c d e f g h+ + + + + + + + + + + +  

 

 
 
 

Question 4: Here’s how to calculate 13 26× :  
 

( ) ( )13 26 10 3 20 6 200 60 60 18 338× = + + = + + + =  

 
Without a calculator, evaluate each of the following:  
 
a) 23 14×  
b) 106 21×  
c) 213 31×  
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WHAT YOU MAY HAVE LEARNED IN SCHOOL … 
 

How were you taught to compute 83 27× , for example,  in school? Were you taught 
to write something like the following? 
 

 
 

This is really no different than the “expanding brackets” technique of this unit:  
 

( ) ( )83 27 80 3 20 7 1600 60 560 21× = + + = + + +  
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Question 5: Do you see how the two approaches agree?  

 
 
Notice that adding the numbers in the cells according to the diagonals of the 
picture conveniently groups the 100s, the 10s and the units. 
 

 
 
 
 
 

Question 6: Many students in India are taught to memorize the following diagram 
for multiplying two two-digit numbers (such as 83 27× ). 
 

 
 

What is this diagram prompting students to do? 

 
 

Question 7: Nervous Nelly memorized the word FOIL for expanding expressions of 

the form ( ) ( )x y a b+ + . She would write: 

 

( ) ( )x y a b xa xb ya yb+ + = + + +  

 
in that order. Here F stands for “first,” O for “outer,” I for “inner” and L for “last.” 
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a) What do you think the words first, outer, inner and last are referring to? 
 

b) Does one have to expand in this order? John likes to FLIO and Olivia likes to 
OLFI. Will they be incorrect? 

 
c) How useful is it to memorize FOIL? What will Nervous Nelly do with 

( ) ( )x y z a b c d e f+ + + + + + + ? 

 

 
 
We have the following “rule” for expanding brackets:  
 
 

To compute the product of two sums, select one term from each set of 
parentheses, multiply, and sum the results. Make sure to list all possible 
combinations. 

 
e.g.      ( )( ) ...a b c x y w z ax bx cx ay+ + + + + = + + + +  

  
e.g.       ( )a b c ac bc+ × = +  

 
e.g.        ( ) ( )x y p q xp yp xq yq+ ⋅ + = + + +  

 
 
 
Comment: The second example above can be thought of the product of two sums 
with parentheses. Think of it as: ( ) ( )a b c+ × . Selecting one term from each set of 

parentheses corresponds to always choosing “c” in the second set. It leads to the 
expansion: ac bc+ . 
 

One also sees that ( )a b c ab ac+ = + . 

 
People like to call this specific example of expanding brackets the distributive 
property. 
 
 
 
 

Question 8: What picture of a rectangle goes with the distributive rule 

( )a b c ab ac+ = + ?  
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Comment: Are you perturbed by the fact that we mixed and matched multiplication 
symbols in the three examples at the top of this page? Mathematicians tend not to 
be strict about which symbol to use when, and will often simply decide to use what 
looks best visually. Usually “× ” is not used in algebra – it can be confused with the 
variable x  - but we used it in “ ( )a b c ac bc+ × = + ” because there is no danger of 

confusion there!  
 
 

 

D. TAKING IT FURTHER … 
 

If (2 3)(4 5)+ +  corresponds to subdividing a rectangle (in two dimensions)  into 

four pieces … What does  
 

(2 3) (4 5) (6 7)+ ⋅ + ⋅ +  

 
correspond to geometrically? 
 
Now we are multiplying together three sums – three dimensions? 
 
Here’s a three-dimensional box. It is subdivided into eight pieces as according to 
the expression: (2 3) (4 5) (6 7)+ ⋅ + ⋅ + . (Think of a block of cheese.)  

 
.  
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Question 9: Which piece is the 3 5 6× ×  piece? Which is the 3 5 7× ×  piece?  
What are the dimensions of the top left front piece? There is one piece completely 
out of view. Where is it and what are its dimensions?    

 
Here are the eight pieces: 
 

(2 3) (4 5) (6 7) 2 4 6

2 4 7

3 4 6

3 4 7

2 5 6

2 5 7

3 5 6

3 5 7

+ ⋅ + ⋅ + = × ×

+ × ×

+ × ×

+ × ×

+ × ×

+ × ×

+ × ×

+ × ×

 

 
 
NOTICE AGAIN! This corresponds to selecting one term from each set of 
parentheses and making sure all possible combinations appear! 
 

 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

79

 
What we have actually shown in this example is that: 
 

5 9 13 48 56 72 84 60 70 90 105⋅ ⋅ = + + + + + + +  = 585 
 
which is, indeed, correct.   
 
 
 

EXAMPLE: If one were to expand: 
 
            ( )( )( )x y z a b c d r s+ + + + + +  

 
how many terms would there be? What does this correspond to geometrically?  

 
 
 
 
 
 
 
 
 
 
Answer: There would be 3 4 2 24× × =  terms. (Do you see why?)  
 
The expression corresponds to subdividing a rectangular box into 24 pieces. 
 

       □ 
 

 

Question 10: If one were to expand: 
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( )( )( )x y x a b a c p+ + + + +  

 
a) How many terms would there be? 
b) Would xac  be one of those terms? How about , ,cay xcp xax , and xyc ? 

 

Question 11: If one were to expand:  
 
             ( )( )( )( )a b c d e w x a x b t r e f+ + + + + + + + + +  

 
how many terms would there be?  
 
(Is there a geometric interpretation to this expression?)  

 
Comment: When a number represented by a symbol x is multiplied by itself we write 

2x and say “x squared.” Notice the word square here. We say this because of the 

geometry: 2x  is the area of a square of side-length x.  
 

And what do we say for 3x x x x= × × ? Answer: x cubed. This is because 3x  is the 
precisely volume of a cube of side-length x.  
  

Question 12: Why have we no word for 4x x x x x= × × × ? 

 

 
F. MULTIPLICATION OF NEGATIVE NUMBERS 
 

Recall that the computation 23 17× , for example, computes the area of a 23-by-17 
rectangle. By subdividing the rectangle into pieces we can find its area with ease 
: 
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And recall from page 8 that mathematicians are a little coy about regarding linking 
multiplication with area. It can be interesting, for the sake of play, to decide that 
all the rules of multiplication we’ve developed so far should continue to hold even if 
the “area” idea starts to break down.  
 
For example, let’s now give ourselves permission to incorporate negative quantities 
into this model and compute 13 39×  again, but a different (and strange) way.   

 
 

(Recall from exploration 4 that ( )3 1 1 1 1 3× − = − + − + − = −  and ( )10 1 10× − = − .) 

 
The answer we obtained 13 39 507× =  is correct. 
 
Although one can’t have negative lengths and negative area in geometry, the algebra 
represented by these pictures is still the same and gives us answers that we feel 
we should believe.  
Now let’s try this again to discover a surprise! 
 
Let’s compute 18 17× , for example, two different ways. First by representing 

18 17×  by ( )( )10 8 10 7+ +  and then by ( ) ( )20 2 20 3− −  : 
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We’ve left a question mark in the box for ( ) ( )2 3− × − ? What should a negative 

times negative number be?  
 
We’ve all been told that it is positive, but is there a reason why this should be the 
case?  
 
The example above indicates why: 
 

We need 400 60 40 ?? 306− − + = . We have no choice. The question mark has 
to be POSTIVE six. 

 

( ) ( )2 3 6− × − =  

 
In general:  
 
If we want multiplication to work the same way for all numbers, then we have no 
logical choice to set negative times negative to be positive.   
Question 13:  

 

a) Doubtful Drew doesn’t believe that ( ) ( )3 5− × − should be positive 15.  

 
Can you compute 17 15×  in two different ways (drawing a rectangle each time) and 
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convince Doubtful Drew that the answer really should be 15? 
 

b) How could you convince Doubtful Drew that ( ) ( )7 8− × −  is positive 56? 

 

 

Let’s work out ( )( )3 8 2 5− −  two different ways: 

 

Short Way:  ( )( ) ( )( )3 8 2 5 5 3 15− − = − − =  

Long Way:   

( )( ) ( )( )

( ) ( ) ( ) ( )

3 8 2 5 3 8 2 5

3 2 8 2 3 5 8 5

6 16 15 40

15

− − = + − + −

= ⋅ + − ⋅ + ⋅ − + − ⋅ −

= + − +− +

=

 

 

Question 14: Work out each of the following two different ways: the short way 
and the long way. 
 
a) (4 6) (10 3)− ⋅ −  

b) (4 6) (10 3)+ ⋅ −  

c) (4 6) (10 3)− ⋅ +  

d) (4 6) (10 3)+ ⋅ +  

e) ( )( )4 7 3 2 4 6 8 2 4− + + + − + −  

 

 

Question 15: Compute 25 25×  three different ways: First as ( ) ( )20 5 20 5+ +  and 

then as ( )( )30 5 30 5− −  and then as ( ) ( )20 5 30 5+ − . 

 

 

Question 16: a) If one were to expand ( )( )x y a p q b+ − + − , how many pieces 

would there be? 
 

b) What is ( )( )x y a p q b+ − + − ? 

 
Some basic practice … 
 

EXAMPLES: Simplify or evaluate: 
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a) 5 ( 3)× −  

 
b) ( 6) ( 7)− ⋅ −  

 
c) (4 6) (10 3)− ⋅ −  

 
d) ( 2) ( 3 )F− ⋅ − +  

 
e) ( 3) ( 5 )G− ⋅ − −  

 

f) ( )2 5 2 3T− −  

 

Answers:  
a) 5 ( 3)× −  = -15 

 
b) ( 6) ( 7)− ⋅ −  = 42 

 
c)Long way: 

(4 6)(10 3) 4 10 ( 6) 10 4 ( 3) ( 6) ( 3)

40 60 12 18

14

− − = ⋅ + − ⋅ + ⋅ − + − ⋅ −

= − − +

= −

 

Short way:   
(4 6) (10 3) ( 2) 7

14

− ⋅ − = − ⋅

= −
 

 

d) 
( 2) ( 3 ) ( 2) ( 3) ( 2)

6 2

F F

F

− ⋅ − + = − ⋅ − + − ⋅

= −
 

 

e) 
( 3) ( 5 ) ( 3) ( 5) ( 3) ( )

15 3

G G

G

− ⋅ − − = − ⋅ − + − ⋅ −

= +
          

 

f)       

( ) ( ) ( )( )

( )

2 5 2 3 2 5 2 3

2 10 15

15 8

T T

T

T

− − = + − + −

= + − +

= −

                                                                                               

 

E. EXPLORATION 
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ADVENTURE 1:  LINES AND INTERSECTIONS METHOD                       

 
Here’s an unusual way to perform long multiplication. To compute 22 13× , for 
example, draw two sets of vertical lines, the left set containing two lines and the 
right set two lines (for the digits in 22) and two sets of horizontal lines, the upper 
set containing one line and the lower set three (for the digits in 13).  

 
There are four sets of intersection points. Count the number of intersections in 
each and add the results diagonally as shown: 

 
The answer 286 appears. 
 
There is one caveat as illustrated by the computation 246 32× : 

 
Although the answer 6 thousands, 16 hundreds, 26 tens, and 12 ones is absolutely 
correct, one needs to carry digits and translate this as 7,872. 
 
 
a) Compute 131 122×  via this method. 
 
b) Compute 54 1332×  via this method. 
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c) How best should one compute 102 30054×  via this method? 
 
d) Why does the method work in general? 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

ADVENTURE 2: FINGER MULTIPLICATION                                   

Here is an easy way to compute multiplications for your six- through ten-times 
tables. First encode numbers this way:   
 
A closed fist represents “five” and any finger raised on that hand adds “one” to 
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that value.  
 
Thus a hand with two fingers raised, for example, represents “seven” and a hand 
with three fingers raised represents “eight.” To multiply two numbers between five 
and ten, do the following:  
 
1. Encode the two numbers, one on each hand, and count “ten” for each finger 
raised. 
 
2. Count the number of unraised fingers on each hand and multiply together the two 
counts. 
 
3. Add the results of steps one and two. This is the desired product. 
 
For example, “seven times eight” is represented as two raised fingers on the left 
hand, three on the right hand. There are five raised fingers in all, yielding the 
number “50” for step one. The left hand has three lowered fingers and the right, 
two. We compute: 623 =× . Thus the desired product is 56650 =+ . Similarly, “nine 
times seven” is computed as60 1 3 63+ × = , and “nine times nine” as 811180 =×+ . 
Notice that one is never required to multiply two numbers greater than five! 
 
CHALLENGE: Explain why this works.  
 
(HINT: Suppose a fingers are raised on the left hand, and b on right. This means we 
are looking for the product )5)(5( ba ++ . Write the algebraic expression that 

results from performing steps 1, 2, 3. Show that the two algebraic expressions are 
the same.)  
 
FINGERS AND TOES: 
One can compute higher products using the same method! For example, with fingers 
and toes, one interprets 17 18×  as “seven raised fingers” and “eight raised toes.” 
This time we count each raised digit as “twenty” (we have twenty digits fingers and 
toes in all!) yielding: 17 18 20 15 3 2 306× = × + × = ! 
 

EXERCISE: Explain why this works! 

 
 

ADVENTURE 3:  LATTICE METHOD: 

                                    

In the 1500s in England students were taught to compute long multiplication using 
following galley method (also known as the lattice method or the Elizabethan 
method  ): 
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To multiply 218 and 43, for example, draw a 32×  grid of squares. Write the digits 
of the first number along the top of the grid and the digits of the second number 
along the right side. Divide each cell of the grid diagonally and write in the product 
of the column digit and row digit of that cell, separating the tens from the units 
across the diagonal of that cell. (If the product is a one digit answer, place a 0 in 
the tens place.)  
 

   
Add the entries in each diagonal, carrying tens digits over to the next diagonal if 
necessary, to see the final answer. In our example, we have 218 43 9374× = . 
 

a) Compute 5763 345×  via the galley method. 
 

b) Explain why the galley method is really the “expanding brackets” technique 

( )( )5763 345 5000 700 60 3 300 40 5× = + + + + +  in disguise. What is the 

specific function of the diagonal lines in the grid? 
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MATHEMATICAL THINKING! 
Exploration 14 

 

 

EXCERPTS 
 

 

 

DECIMALS 
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A. GETTING STARTED 
 
Recall from exploration 3 that a 1 10←  machine consists of a row of boxes 
extending to the left, with the rightmost box representing units and each box 
thereafter representing 10 times the quantity of the box to its right. (Each cell of 
the machine thus represents a power of 10.) 
 

 
And recall from exploration 4 that we can perform division in a 1 10←  machine by 
looking for groups of the desired pattern within the machine. For example, in the 
division problem1024 3÷ , we seek groups of three dots in the diagram above. One is 
evident:  

 
 
To see more, we must “unexplode” a dot:  

 
and again:  
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This leaves one obstinate dot remaining that can’t be unexploded, or contended with 
in any clever way. We see:  
 

1024 3 341 1R÷ =  

 
 
BUT … If we had additional boxes to the right we could unexplode this one 
obstinate dot and find further groups of three. But what would boxes further to 
the right represent? (It has become the convention to separate the boxes to the 
right with a point, called a decimal point.)  
 

 
 
Suppose the first box to the right of the decimal point has value x.  
 

 
 
Then, since this is a 1 10←  machine, ten dots in this one box must be equivalent to 
one dot in the units box:  

10 1x =  
 

Ten times something equals one? We must have that x is the fraction 
1

10
. 
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Call the value of the next box to the right of the decimal point y. 
  

 
 

Since this is a 1 10←  machine we must have 
1

10
10

y = . Thus y is the fraction 
1

100
 

(because 
1 10

10
100 100

× =  which does indeed equal 
1

10
). 

 
 
If we keep doing this we see that the boxes to the right of the decimal point 
represents powers of ten as fractions.  
 

 
 
 

 

EXAMPLE: The decimal 0.3 is represented by the picture:  
 

 

It represents three groups of 
1

10
, that is:  

 
3

0.3
10

=  
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EXAMPLE: The decimal 0.007 is represented by the picture: 
 

 
 

It represents the fraction 
7

1000
 

 
 
 

Question 1:   
a) What fractions do the following decimals represent:  

 
               0.09        0.003         0.7        0.0000003 
 

b) Write the following fractions as decimals:  
 

               
1 7 9

1000 100 10
 

 

 
Of course, some decimals represent fractions that can simplify (reduce) further. 
For example: 

5 1
0.5

10 2
= =  

 
Conversely, if a fraction can be rewritten to have a denominator that is a power of 

ten, then it is easy to convert it to a decimal. For example, 
3

5
 can be written as 

6

10
 

and so we have:  
 

3
0.6

5
=  

 
Comment: Revisit explorations 10 and 11 if you need a reminder on working with 
fractions. 
 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

95

 

Question 2:  
a) What fractions (in simplest terms) do the following decimals represent:  

 
              0.05         0.2              0.8               0.004 
 
 

b) Write the following fractions as decimals: 
 

             
2 1 1 1 2

5 25 20 200 2500
 

 
 

Question 3: Some people read 0.6, for example, out loud as “point six.” Others 
read it out loud as “six tenths.” Which is more helpful for understanding what the 
number really is? Why do you think so? 

 
 
Here is a more interesting question:  
 

What fraction is represented by the decimal 0.31? 
 

 
 
There are two ways to think about this. 
 
Approach 1:   From the picture of the 1 10←  machine we see: 
 

3 1
0.31

10 100
= +  

 
We can add these fractions by find a common denominator: 
 

3 1 30 1 31

10 100 100 100 100
+ = + =  

 

Thus 0.31 is the fraction 
31

100
. 
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Approach 2: Let’s unexploded the three dots in the 
1

10
 to produce an additional 30 

dots in the 
1

100
 position. 

 
 

Thus we can see that 
31

0.31
100

= . 

 
 

Question 4: Brian is having difficulty seeing that 0.47  represents the fraction 
47

100
.  Describe the two approaches you could use to help explain this to him.  

 

Question 5:  A teacher asked his students to each draw a 1 10←  machine picture 

of the fraction 
319

1000
. 

 
JinJin drew: 

 
Subra drew: 

 
The teacher marked both students as correct. Are each of these solutions indeed 
valid? Explain your thinking. 
 
JinJin said all that she would need to do in order to get Subra’s solution is to 
perform some explosions. What did she mean by this? Is she right? 
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B. RETURNING TO DIVISION 
 
Recall from exploration 10 that a fraction is just a division problem in disguise. For 

example, the fraction 
1

8
 is the result of dividing one whole into eight parts.  

 
Let’s actually perform this division problem in a 1 10←  machine, making use of 
decimals.  We seek groups of 8 in the following picture:  

 
Clearly none are to be found, so let’s unexplode:  
 

 
 
Now there is one group of 8, leaving two behind:  

 
Let’s unexploded it again:  
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This gives two groups of 8 leaving four behind:  
 

 
 
Unexploding again:  

 
 
And here we have five groups of 8 leaving no remainders:  

 
 

We now see that as a decimal, 
1

8
 turns out to be 0.125. 

 
 

Comment: And backwards … 
125 1 125 1

0.125
1000 8 125 8

×
= = =

×
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Question 11:  

a) Perform the division in a 1 10←  machine to show that 
1

4
, as a decimal, is 

0.25. 

b) Perform the division in a 1 10←  machine to show that 
1

2
, as a decimal, is 

0.5. 

c) Perform the division in a 1 10←  machine to show that 
3

5
, as a decimal, is 

0.6. 

d) CHALLENGE: Perform the division in a 1 10←  machine to show that 
3

16
, as 

a decimal, is 0.1875. 
 

 
 
Not all fractions lead to simple decimal representations. For example, consider the 

fraction 
1

3
. We seek groups of 3 in the following picture. 

 
  
Unexploding requires us to look for groups of 3 instead in:  
 

 
 
 
Here there are three groups of 3 leaving one behind:  

 
 
Unexploding gives:  
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in which we find another three groups of 3 leaving one behind:  

 
Unexploding gives:  
 

 
 
 
and we seem to be caught in an infinitely repeating cycle.  
 
 
 
 
 
 
 



DOTS, BOXES, PILES and HOLES 

© 2009 James Tanton   www.jamestanton.com 

101

We are now in a philosophically interesting position. As human beings, we cannot 
conduct this, or any, activity for an infinite amount of time. But it seems very 
tempting to write:  
 

1
0.33333

3
= ⋯  

 
with the ellipsis “⋯ ” representing the instruction  “keep going forever with this 
pattern.” In our minds it seems we can almost imagine what this means, but as a 
practical human being it is beyond our abilities: one cannot actually write down 
those infinitely many 3s represented by ⋯ . 
 
Nonetheless, many people choose not to contemplate what an infinite statement 
means and like to carry on and say: “Some decimals are infinitely long” and simply 

not be worried by it.  In which case, the fraction 
1

3
 is one of those fractions whose 

decimal expansion goes on forever! 
 
 

 

COMMENT: Many people make use of a vinculum to represent infinitely long 

repeating decimals. For example, 0.3  means “repeat the 3 forever”:  
 

0.3 0.3333= ⋯  
 

and 0.142  means “repeat 142 forever”: 
 

0.142 0.142142142142= ⋯  
 
Notice that the vinculum is still being used in its correct sense to bring together 
symbols as a single group! 
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As another (complicated) example, here is the work that converts the fraction 
6

7
 

to an infinitely long repeating decimal. Make sure to understand the steps one line 
to the next.  
 

 

 

 
Do you see, with this 6 in the final right-most box that we have returned to the 
very beginning of the problem? This means that we shall simply repeat the work we 
have done and obtain the same sequence 857142 of answers, and then again, and 
then again.  
 

We have:   
6

0.857142857142857142857142
7
= ⋯  
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Question 13:  

a) Compute 
4

7
 as an infinitely long repeating decimal. 

b) Compute 
1

11
 as an infinitely long repeating decimal. 

 

Question 14: Which of the following fractions give infinitely long decimal 
expansions?  

1 1 1 1 1 1 1 1 1

2 3 4 5 6 7 8 9 10
 

 

 
 
We began this exploration with the problem of computing 1024 3÷ . We found the 
answer 341 with one dot yet to be divided by three:  
 

1024 3 341 1R÷ =  

 
In terms of fractions this translates to:  
 

1
1024 3 341

3
÷ =  

 
and in terms of decimals we have:  
 

     1024 3 341.33333÷ = ⋯  
 
 
 

Question 15:  

a) Use a 1 10←  machine to compute 133 6÷ , writing the answer as a decimal. 
b) Use a 1 10←  machine to compute 255 11÷ , writing the answer as a decimal  
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D. EXPLORATION 
 

The prefix deci- means “ten” (a decade is ten years and December used to be the 
tenth month of the year!) and our exploration of decimals in this chapter have all 
been with regard to a 1 10←  machine and the power of ten. But we can repeat this 
work in any machine we desire.  
 
For example, let’s work with a 1 5←  machine and the powers of five.  (Thus, five 
dots in any one box “explode” to become one dot one place to the left.)  
 
The following picture computes  1432 13÷  in a 1 5←  machine:  

 

 
 
 
We see that ...1111.110131432 =÷  in base 5.  
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ADVENTURE 1:   

Compute 1 11÷  in 1 3←  machine and show that it yields the answer 0.020202…. 
   
 

Comment: The number “11” in a 1 3←  machine is the number 1 3 1 4× + = . This 

problem has just shown that the fraction 
1

4
 in base three is 0.020202…. 

 
 
 

ADVENTURE 2:    Compute 2 5÷  in 1 4←  machine. 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


