More Digital Delirium

1. Digital Inequalities

Write each of the digits from 1 to 9 in the boxes below so that all the inequalities are satisfied

$$
\square<\square<\square>\square<\square>\square<\square<\square>\square .
$$

Prove that the digits can always be inserted to satisfy the inequalities no matter what string of inequalities are given.

2. Building Primes

Use each nonzero digit $1,2,3, \ldots, 9$ exactly once to build three prime numbers whose sum is less than 1000 . If A, B, and C are such prime numbers, what are the possible values of $A+B+C$?

3. Big Numbers

(a) What is special about the number 8549176320 .
(b) What do the following three numbers have in common: $a=3076521984, b=$ 3718250496 , and $c=6398410752$?

4. Fabulous Fractions

(a) Find four different decimal digits a, b, c, d so that $\frac{a}{b}+\frac{c}{d}<1$ and is as close to 1 as possible. Prove that your answer is the largest such number less than 1. Trouble getting started? Try this with just two digits: make a / b as large as possible but less than 1.
(b) Thanks to Sam Vandervelde for this problem. Use exactly eight digits to form four two digit numbers $\underline{a b}, \underline{c d}, \underline{e d}, \underline{g h}$ so that the sum $\frac{\underline{a b}}{\underline{c d}}+\frac{\underline{e f}}{\underline{g h}}$ is as small as possible. As usual, interpret $\underline{a b}$ as $10 a+b$, etc.
(c) Use exactly eight nonzero digits to form four two digit numbers $\underline{a b}, \underline{c d}, \underline{e d}, \underline{g h}$ so that the sum $\frac{a b}{\underline{c d}}+\frac{e f}{g h}$ is as small as possible. As usual, interpret $\underline{a b}$ as $10 a+b$, etc.
(d) Find six different nonzero decimal digits a, b, c, d, e, f so that $\frac{a}{b}+\frac{c}{d}=\frac{e}{f}$.
(e) Find six different nonzero decimal digits a, b, c, d, e, f so that $\frac{a}{b}+\frac{c}{d}+\frac{e}{f}<1$ and the sum is as large as possible.

