FACTORIALS AND SQUARES: NOTES AND EXTENSIONS

ESTELLE BASOR

1. The Problem

Can one remove one of the factorials from

$$
1!2!3!\cdots 99!100!
$$

so that what remains is a square?

2. Solution and Notes

The answer to this problem is 50 !.

Here is why.
$100!=100 \times 99!, 98!=98 \times 97!, 96!=96 \times 95!$ and so on. So

$$
1!2!3!4!\cdots 97!98!99!100!=2(1!)^{2} 4(3!)^{2} \cdots 98(97!)^{2} 100(99!)^{2}
$$

and thus the product is

$$
2 \cdot 4 \cdots 98 \cdot 100 \times 1!^{2} 3!^{2} \cdots 97!^{2} 99!^{2}=2^{50} \times 50!\times 1!^{2} 3!^{2} \cdots 97!^{2} 99!^{2}
$$

Since $2^{50}=4^{25}$ if we remove 50 ! we have a square.
Some extensions.

If we think about $1!2!3!\cdots 99!100$! we see it cannot be a square since 50 ! is not a square since 47 appears as a single factor.

So now let's generalize and let's give the product a name.
Let $G(n)=1!2!3!\cdots(n-1)!n!$ and ask the question is $G(n)$ ever a square if $n \neq 1$?
Note that G has the property that $G(n)=n!\times G(n-1)$.
It doesn't take too long to realize that if n is a multiple of 4 , say $4 k$ then what we did before works and we can take out the $2 k$! and we have a square. So this reduces the question to whether or not $2 k$! is a square. But it cannot be since there is always a prime factor between k and $2 k$ for $k>1$. This is Bertrand's Postulate, conjectured in 1845 by Joseph Bertrand (18221900) and proved by Chebyshev (18211894) in 1850.

For other cases, let us go back to the example.
$G(101)=G(100) 101!$ is a square times $50!\times 101$! and so cannot be a square. Here we even have that 101 is prime.
$G(102)=G(100) 101!102!$ is a square times $50!\times 101!102$! and this last factor is a square times $50!\times 102$ and hence is not a square.
$G(103)=G(100) 101!102!103!$ is a square times $50!\times 102 \times 103!$ and thus it is not a square. Here 103! must have a prime between 51 and 102.

These arguments can be carried out in general. It takes a bit of work and makes use of Bertrand's Postulate. A future question that follows from the very first posed question might be how many different ways can one of the factorials be taken out to get a square.

