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1. Introduction

Suppose you are stranded on a desert island, no electricity, and all of your batteries are dead
and you need to know how big 100! is. In fact, you are given 5 minutes to give an answer in
scientific notation, e.g. 1.6× 10122. If you can get the answer to within a factor of 2, a boat
will come rescue you.

OK, the 5 minutes starts now!

Time’s up, let’s collect the answers and see who gets to leave the island.

What did everyone try?

2. Exponents

Here’s an approach. Notice that

210 = 1024 ≈ 1000 = 103.

This means that

2 ≈ 100.3.

We could use this to solve the question of the chessboard and grains. One version is this
(from Wikipedia).

When the creator of the game of chess (in some tellings an ancient Indian
mathematician) showed his invention to the ruler of the country, the ruler
was so pleased that he gave the inventor the right to name his prize for the
invention. The man, who was very wise, asked the king this: that for the
first square of the chess board, he would receive one grain of wheat (in some
tellings, rice), two for the second one, four for the third one, and so forth,
doubling the amount each time. The ruler, arithmetically unaware, quickly
accepted the inventor’s offer, even getting offended by his perceived notion
that the inventor was asking for such a low price, and ordered the treasurer to
count and hand over the wheat to the inventor. However, when the treasurer
took more than a week to calculate the amount of wheat, the ruler asked him
for a reason for his tardiness. The treasurer then gave him the result of the
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calculation, and explained that it would be impossible to give the inventor
the reward.

The total number of grains of wheat on the chessboard will be 264 − 1. An approximation
of 264 is

264 ≈ (100.30)64 = 1064×0.30 = 1019.2

The name we usually give 1019 is “ten quintillion.” A calculation found on the internet
asserts that there are 5 quintillion grains of sand on all of the beaches in all of the world.

Back to 100!.

If 2 ≈ 100.3, then

5 =
10

2
≈ 101

100.3
= 101−0.3 = 100.7.

Notice also that
22 × 35 = 972 ≈ 1000 = 103.

Thus,

35 ≈ 103

100.6
= 102.4.

Therefore
3 ≈ 10

2.4
5 = 100.48.

Also,
4 = 22 ≈ 100.6

6 = 2× 3 ≈ 100.3 × 100.48 = 100.78

8 = 23 ≈ 100.9

9 = 32 ≈ 100.96

We can make a table of n with their exponents:

n exponent
1 0.00
2 0.30
3 0.48
4 0.60
5 0.70
6 0.78
7
8 0.90
9 0.96

10 1.00

How about if we fill in 0.84 for the 7 row? Then we could calculate

10! = 1× 2× 3× 4× 5× 6× 7× 8× 9× 10

≈ 100.00 × 100.30 × 100.48 × · · · × 100.96 × 101.00

= 100.00+0.30+0.48+···+0.96+1.00 = 106.56.
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How big is 106.56? Well it’s 100.56 times a million. And

100.56 = 100.48 × 100.08 =
100.48 × 100.78

100.70
≈ 3× 6

5
=

18

5
= 3.6.

Thus, our estimate is

10! ≈ 3.6× 106.

The actual value is

10! = 3628800.

Use these ideas to estimate the number of positions of Rubik’s cube which is

212 × 38 × 12!× 8!

12
.

(You should get an answer of around 43 quintillion.)

3. Making the table up to 100

There are certain entries we can fill in and others we cannot. What entries can we fill in?
Any number up to 100 whose prime factors are from the set {2, 3, 5}. This includes 12, 15,
16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, and 100.

n exponent n exponent n exponent n exponent n exponent
1 0.00 21 41 61 81 1.92
2 0.30 22 42 62 82
3 0.48 23 43 63 83
4 0.60 24 1.38 44 64 1.80 84
5 0.70 25 1.40 45 1.66 65 85
6 0.78 26 46 66 86
7 27 1.44 47 67 87
8 0.90 28 48 1.68 68 88
9 0.96 29 49 69 89
10 1.00 30 1.48 50 1.70 70 90 1.96
11 31 51 71 91
12 1.08 32 1.50 52 72 1.86 92
13 33 53 73 93
14 34 54 1.74 74 94
15 1.18 35 55 75 1.88 95
16 1.20 36 1.56 56 76 96 1.98
17 37 57 77 97
18 1.26 38 58 78 98
19 39 59 79 99
20 1.30 40 1.60 60 1.78 80 1.90 100 2.00
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What about the rest of the numbers? We should guess the answers and fill them in by
interpolation. For example, we have 30 ≈ 100.30+0.48+0.70 = 101.48 and 32 ≈ 101.50. So, we
should fill in 31 ≈ 101.49. Also 36 ≈ 101.56 so we should fill in 34 ≈ 101.53. Then, 33 ≈ 101.515

and 35 ≈ 101.545. Now we are getting more decimal places but notice that

33× 34× 35× 36 ≈ 101.515+1.53+1.545+1.56 = 106.15

is back to our 2 decimal places.

What if we take a longer stretch? We have 54 ≈ 100.30+3×0.48 = 101.74 and 60 ≈ 102×0.30+0.48+0.70 =
101.78. Now we have to split 1.78− 1.74 = 0.04 up into 6 intervals. So we’ll get, for example,

55 ≈ 101.74+(0.04)/6 = 101.74+0.006666....

Now there are lots of decimal places. However, in our estimation of 100! it is really the
product

55× 56× 57× 58× 59× 60

that we are interested in. This is approximately 10 to the power

(1.74 +
0.04

6
) + (1.74 +

2× 0.04

6
) + (1.74 +

3× 0.04

6
)

+(1.74 +
4× 0.04

6
) + (1.74 +

5× 0.04

6
) + (1.74 +

6× 0.04

6
).

This sum can be rearranged as

6× 1.74 +
0.04

6
× (1 + 2 + 3 + 4 + 5 + 6).

Now

1 + 2 + 3 + 4 + 5 + 6 = 6× 1 + 6

2

so that the above is

6× 1.74 +
7× 0.04

2
= 10.44 + 0.14 = 10.58.

In general, if we know that

N ≈ 10A

and

N + H ≈ 10B

then

(N + 1)× (N + 2)× · · · × (N + H)
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will be approximately 10 to the power AH plus

(B − A)

H
+

2(B − A)

H
+

3(B − A)

H
+ · · ·+ H(B − A)

H

=
(B − A)

H
× (1 + 2 + · · ·+ H)

=
(B − A)

H
× H(H + 1)

2

=
(B − A)(H + 1)

2
.

(Another way to do this calculation is to add up the exponents between the exponent for
N and the exponent for N + H inclusive. At N the value is A and at N + H the value
is B. Then use the trick of summing an arithmetic progression by taking the number of
terms times the average; this gives (H + 1)(A + B)/2. If we then subtract off the first term
A + (B − A)/H we get the same answer as before. )

We apply this to see that the first column will be

0.30 + 0.48 + 0.60 + 0.70 + 0.78 + 2× 0.78 +
0.12× 3

2
+ 0.96 + 1.00

+2× 1.00 +
0.08× 3

2
+ 3× 1.08 +

0.10× 4

2
+ 1.20 + 2× 1.20 +

0.06× 3

2

+2× 1.26 +
0.04× 3

2
= 18.39

For the second column we have

4× 1.3 +
0.08× 5

2
+ 1.40 + 2× 1.40 +

0.04× 3

2
+ 3× 1.44 +

0.04× 4

2

+2× 1.48 +
0.02× 3

2
+ 4× 1.50 +

0.06× 5

2
+ 4× 1.56 +

0.06× 5

2
= 29.59

For the third column we have

5× 1.60 +
0.06× 6

2
+ 3× 1.66 +

0.02× 4

2
+ 2× 1.68 +

0.02× 3

2

+4× 1.70 +
0.04× 5

2
+ 6× 1.74 +

0.04× 7

2
= 34.07

For the fourth column we have

4× 1.78 +
0.02× 5

2
+ 8× 1.80 +

0.06× 9

2
+ 3× 1.86 +

0.02× 4

2
+ 5× 1.88 +

0.02× 6

2
= 36.92

For the fifth column we have

1.92 + 9× 1.92 +
0.04× 10

2
+ 6× 1.96 +

0.02× 7

2
+ 4× 1.98 +

0.02× 5

2
= 39.2

This gives the sum of all five columns

18.39 + 29.59 + 34.07 + 36.92 + 39.20 = 158.17
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Thus, we have deduced that

100! ≈ 10158.17.

Can we put that into scientific notation? To do so we need to know about 100.17. Well, we
have

3

2
≈ 100.48

100.30
= 100.18

and (
6

5

)2

≈
(

100.78

100.70

)2

= 100.16.

Notice that 3/2 = 1.5 and (6/5)2 = 36/25 = 1.375, so our estimate is

100! ≈ 1.4× 10158.

Another way to do these sums is, for example, when summing the fourth column goes as
follows. The sum between 81 and 90 inclusive is 10 × (1.96 + 1.92)/2 then between 90 and
96 inclusive is 7× (1.96 + 1.98)/2, then between 96 and 100 inclusive is 5× (1.98 + 2.00)/2.
This gives 19.4 + 13.79 + 9.95 = 43.28. But we have counted the values at 96 and 98 twice.
We subtract them off getting a total of 43.28− 1.96− 1.98 = 39.20 as before.

4. Better approximations

We can improve some of our approximations. For example, we know that 103 = 1000 exactly,
and

1200 = 3× 4× 100 ≈ 100.60 × 100.48 × 102 = 103.08.

So the exponent changes from 3 to 3.08 as n changes from 1000 to 1200. If we interpolate
between 1000 and 1200 in 200 equal steps, each step will have size 3.08−3

200
= 0.0004. This

means we should expect that

1024 ≈ 103+24×0.0004 = 103.0096

and since 1024 = 210 we expect that

2 ≈ 23.0096/10 = 100.30096 ≈ 100.301

is a good 3 decimal place approximation. Therefore, 5 ≈ 100.699. Similarly we expect that

972 ≈ 103−28×0.0004 = 102.9888

so that

35 = 972/4 ≈ 102.9888−0.602 = 102.3868

or

3 ≈ 100.477.

It would be interesting to use these 3-decimal place values to estimate 100!.
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5. Thoughts on interpolation

The simplest act of interpolating between exponents might be described as follows. You have
a number M that you know is (approximately) 10A. You have a larger number N which is
(approximately) 10B. Then you interpolate that the average M+N

2
is approximately 10 to

the power A+B
2

. Supposing that the original numbers A and B are very accurate, is A+B
2

more likely to be an underestimate or an overestimate?

We can reason as follows (let’s assume that M = 10A and N = 10B). We want to compare

M + N

2
=

10A + 10B

2

with

10
A+B

2

to see if one is always larger that the other. Notice that

10
A+B

2 = 10
A
2 × 10

B
2 =

√
10A ×

√
10B =

√
M ×

√
N =

√
MN.

So, we are trying to compare
√

MN

with

M + N

2
.

Which of these is larger?

It is well known that, for two positive numbers, the arithmetic mean is larger than (or equal
to if the numbers are the same) the geometric mean. Can you give a proof?

We can compare the squares of each of these quantities. The square of the geometric mean
is just MN . The square of the arithmetic mean is

(M + N)2

4
.

So, multiplying by 4, we want to compare 4MN with M2 + 2MN + N2. Look that the
difference:

M2 + 2MN + N2 − 4MN = M2 − 2MN + N2.

This difference is a perfect square, namely (M −N)2, so it’s positive, unless M = N . In any
case, the geometric mean is never larger.

What does this mean about our interpolation? It means that our interpolation is ALWAYS
SMALLER than the actual value.
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6. Explicit Upper and Lower estimates

Is our estimate of 1.4× 10158 for 100! too big or too small?

The idea in the last section raises this question. Can we give explicit upper and lower
estimates for 100!. In other words can we find two numbers X and Y that aren’t too far
apart (whatever that means) for which we can say that

X < 100! < Y.

We know that the 0.30 in 2 ≈ 100.30 is an underestimate. How do we know this? Because if
we use it we are led to

1024 = 210 ≈ 1010×0.30 = 103 = 1000.

We also know that the process of interpolation always gives an underestimate. If we also
had underestimates for the powers of 10 that 3 and 5 are, then our proceedure from the first
section would lead to an overall underestimate. Are the values 5 ≈ 100.70 and 3 ≈ 100.48

underestimates or overestimates?

They are overestimates, so further ideas would be needed to carry out the suggestion of
giving explicit estimates. Please explore!

7. The answer

Mathematica tells us that

100! = 93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369

7920827223758251185210916864000000000000000000000000

This is approximately
9.3× 10157
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