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HOW TO COLOR POINTS AND OTHER THINGS
Tatiana Shubin tatiana.shubin@sjsu.edu

Imagine that you’re completely and utterly free – you’ve been awarded a long
week on a vacation island with no lesson plans to make, no papers to grade, no chores,
and no any other possible worries. There is also no TV or Internet, but you have lots of
blank paper, an unlimited supply of different colored paints and you decide to paint
whatever wild pattern comes into your mind – stripes, checks, paisley, bird’s eye, dog’s
tooth, herringbone, plaid, polka dots, oh my! Would there be any possible restriction to
your exploits?  Why should there be any?  For example, here’s an interesting question:

1.   Is it possible to paint every point of a plane with one of three colors so that all three
colors are used and every line of the plane consists of points of exactly two colors?

Or how about some others:

2.   Is it possible to color each point of a plane with one of two colors in such a way that
no two points exactly a unit distance apart are of the same color? What if we use three
colors instead? Four colors?

Well, perhaps dealing with the entire plane is too difficult. Let’s look at
something not as big, say, just one circle.

3.   Is it possible to color each point on a circle either red or blue in such a way that no
three points of the same color form an isosceles triangle? What if instead of just two
colors you can use three different colors? Four colors? 1,000,000 colors?

Some (dis?)similar problems:

A. A.1 Is it possible to split the natural numbers into two sets A and B such that the
sum of two distinct elements of A belongs to B and vice-versa?

A.2   Suppose that the set of all natural numbers is split into two sets B and R. We’ll call
the elements of B “blue”, and the elements of R “red”. Must there be integers x, y such
that either all four numbers x, y, x + y, and xy are red, or all four of them are blue?

A.3   Suppose that natural numbers are partitioned into finitely many pieces:
N = nAAA  ...21

(i.e., every integer is colored by one of n colors). Must there be integers x, y such that all
four numbers x, y, x + y, and xy are of the same color?1

1 This problem was posed by N. Hidman in 1979. It’s still open.
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B. B.1   If 5 points lie in a plane so that no 3 points form a straight line, prove that four
of the points will always form a convex quadrilateral.

B.2   If 9 points lie in a plane so that no 3 points are collinear, prove that 5 of the points
form a convex pentagon.

B.3   If the number of points that lie in the plane is 221  n (where 3n ), and no 3 of
them are collinear, ca one always select n points so that they form a convex n-sided
polygon?2

All the problems above belong to the part of mathematics called

Ramsey Theory.

Frank Ramsey, an English mathematician, economist and philosopher, proved his
famous theorem in 1928. It says that if a number of objects in a set is sufficiently large
and each pair of objects has one of a number of relations, then there is always a subset
containing a certain number of objects where each pair has the same relation. Ramsey
theory is concerned with finding just how large is sufficient.

To be a little more precise, we can look into a problem of finding Ramsey
Numbers. A slightly different way to state Ramsey’s theorem is to say that in any
coloring of the edges of a sufficiently large complete graph, one will find monochromatic
complete subgraphs. For two colors, Ramsey's theorem states that for any pair of positive
integers (r,s), there exists a least positive integer R(r,s) such that for any complete graph
with R(r,s) vertices, whose edges are colored red or blue, there exists either a complete
subgraph with r vertices which is entirely blue, or a complete subgraph with s vertices
which is entirely red.

Ramsey numbers are very hard to calculate. Only few Ramsey numbers are
known so far:

R(3,3) = 6; R(3,4) = 9; R(3,5) = 14; R(3,6) = 18; R(3,7) = 23;
R(3,8)=28; R(3,9) = 36; R(4,4) = 18; R(4,5) = 25.

It is also known that 49)5,5(43  R , and 165)6,6(102  R , but nobody
knows these two numbers exactly. In fact, Erdos used to say that if Aliens invade the
Earth and threaten to obliterate it in a year’s time unless human beings find R(5,5), w e
could possibly avoid the obliteration by putting the world’s best minds and fastest
computers to the task. But if the aliens demanded that we find R(6,6) within a year, we
would have no choice but to launch a pre-emptive attack.

2 It is known that if there are sufficiently many points than it’s possible to find n points forming a convex
polygon. It is not known whether or not 221  n is a sufficiently large number. This number was
conjectured by Erdos in 1934.
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Let’s go back to problem 3. Let’s cut the circle and straighten it up. If three points
on the circle formed an isosceles triangle, what would these three points look like on this
straight line?

Let’s consider the following four statements:

I. If all integers of a number line are colored, each with one of two colors, there must
be three monochromatic (this means ‘of the same color’) numbers forming an arithmetic
progression.

II. If all lattice points3 of a plane are colored, each with one of two colors, there must be
three monochromatic points forming an isosceles right triangle.

III.   If all lattice points of a plane are colored, each with one of three colors, there must
be three monochromatic points forming an isosceles right triangle.

IV.   If all lattice points of a plane are colored, each with one of two colors, there must be
four monochromatic points forming a square.

The proofs of these four statements that we’ve gone through should give you a
pretty good idea of how the following celebrated theorem can be proved.

Van der Waerden’s Theorem: For any given positive integers r and k, there is
some number N such that if the integers {1, 2, ... , N} are colored, each with one of r
different colors, then there are at least k monochromatic integers forming an arithmetic
progression.

The least such N is the Van der Waerden Number W(r, k). We have just seen that
W(2, 3) ≤ 21.  In fact, W(2, 3) = 9.  It’s not too hard to find W(3, 3) = 27. The current
record for an upper bound belongs to Timothy Gowers (a Fields medallist); he proved
that
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But it is an open problem to find the exact values of W(r, k) for most

values of r and k, or even to reduce an upper bound (the Gower’s bound is way bigger
than actual value – check it!).

3 Points with integer coordinates are called lattice points.


