Geometry - Pyramids

1. The diagram is a net for a cube. (This two dimensional object could be folded into a three-dimensioanl object.) Eight points have been labeled. Use these labels to mark the other vertices on your diagram. Explain.

2. How many different nets for a unit cube can you sketch?

Geometry - Pyramids

3. Sketch perspective drawings of the following polyhedra. Each part requires a separate drawing.
(a) a cube.
(b) a pyramid with a square base and an apex centered directly above the center of the base. Your pyramid must have the same height as the cube in part (a). Hint: start with a new cube.
(c) a pyramid with a square base and an apex centered directly above one of the vertices of the base. Your pyramid must have the same height as the cube in part (a). Hint: start with a new cube.
4. On graph paper carefully (i.e. use the squares and a compass) draw a net for each pyramid:
(a) The pyramid in question 1(b) with a base of 4 x 4 squares. Using your drawing, briefly explain (in writing) how you designed this net.
(b) The pyramid in question 1(c) with a base of 4 x 4 squares. Again, briefly explain.

Find the matching Cube

Find the matching Net
4

d.

d.

Getting the volume of a sphere

© W. Fendt 2000
(1) Show that the area of the circular cross-section on the left is equal to the area of the "washer" cross-section on the right.
(2) Explain how to use this to show that the volume of a sphere is indeed, $\frac{4}{3} \pi r^{2}$.

