Tiling Torment

The problem

There are many problems that involve tiling (covering) all the squares on a chessboard (or similar board) with tiles of various sizes. The chessboard may be $8 \times 8,7 \times 7$ or other sizes and may or may not have squares missing. The tiles can be dominoes (2×1) or tiles of other sizes.

Questions

The Basics

1. Is it possible to tile a 7×7 board with 2 x 1 tiles?

2. In general, is it possible to tile an nxn board with 2×1 tiles? If so, which boards can you tile and why?

Taking it Further

3. Now consider the 7×7 board again. If you remove one square, is it possible to tile the board? If so, does it matter which square you remove? Describe completely.
4. In general, if n is odd, is it possible to tile an $n x n$ board with $2 x 1$ tiles if one square is covered with a 1×1 tile? Does it matter which square is covered?
5. Remove two diagonally opposite corners of a chessboard. Is it possible to tile this shape with 312×1 tiles?
6. In general, if n is even, is it possible to tile an nxn board with 2 x 1 tiles if two squares are removed? Does it matter which two squares are removed?
7. Is it possible to tile an 8 x 8 board with 21 "L-shaped" tiles of three squares and one 1 x 1 tile? If so, how? Describe all possible locations for the 1 x 1 tile. If not, why not?
8. Is it possible to tile an 8 x 8 board with 213 x 1 tiles and one 1 x 1 tile? If so, how? Describe all possible arrangements. If not, why not?

Impossible Cases

9. Prove that an 8×8 chessboard cannot be covered without overlapping by fifteen 4×1 polyominoes and the single polyomino shown below:

10. Prove that a 10x10 board cannot be covered without overlapping by the polyominoes show below:

11. Prove that a 102×102 board cannot be covered without overlapping by 4×1 tiles.
12. Add your own problems, using different shaped tiles and different size boards.
