Finite Differences

AIM Math Teachers' Circle Summer Immersion Workshop July 26, 2012

Ted Alper tmalper@stanford.edu

1 Warming up (no formulas on this side!)

Problem 1 For each the following sequences, try to analyze

- What is "the" next number (or two) in "the" sequence?
- What is the **a** pattern that characterizes your sequence? (What types of descriptions count as a pattern?)
- Better still, Find as many patterns as you can describing the sequence.
- For each pattern, can you find other sequences that meet the same pattern? Can you characterize (in some way) the family of sequences?

(A) 3, 7, 11, 15, 19, ...

- **(B)** $13, 6, -1, -8, -15, -23, \ldots$
- (C) $-1, 0, 1, 4, 9, 16, \ldots$
- **(D)** $0, 4, 11, 21, 34, \ldots$
- (E) $1, 1, 3, 13, 37, 81, \ldots$
- (F) $-13, 5, 9, 5, -1, -3, 5, 29, 75, 149, 257, \ldots$
- (G) $1, 2, 4, 8, 16, 32, \ldots$
- **(H)** $1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$

2 Finite Differences

Given any sequence of numbers: $a_1, a_2, a_3, a_4, \ldots$

The sequence of differences is given by $a_2 - a_1, a_3 - a_2, a_4 - a_3, \ldots$

It is convenient to write them in the following format

a_1		a_2		a_3		a_4		a_5		a_6		$a_7 \dots$
	$a_2 - a_1$		$a_3 - a_2$		$a_4 - a_3$		$a_5 - a_4$		$a_6 - a_5$		$a_7 - a_6$	
-	1											

Example:

-8		-1		0		1		8		27		64
	7		1		1		7		19		37	

Of course, you can take the difference of a sequence of differences, and take the difference of *that* sequence, and so on.

-8		-1		0		1		8		27		64
	7		1		1		7		19		37	
		-6		0		6		12		18		
			6		6		6		6			
				0		0		0				

Problem 2 Go back and do this with our example functions. What happens? We should try to come up with some hypotheses, and maybe gather some evidence.

Useful Notation: If we represent our sequence as a_n , we can represent the sequence of differences using the *difference operator*, Δ :

$$\Delta a_n = a_{n+1} - a_n.$$

And, we can call the difference of the difference of a sequence $\Delta(\Delta a_n)$, which can also be written (with some caution) as $\Delta^2 a_n$

3 Working backward

If I know Δa_n , can I reconstruct a_n ? (At least, the terms of the sequence).

$$?$$
 $?$ $?$ $?$ $?$ $?$ $?$ $... 6 2 0 0 2 6 $...$$

What if I know $\Delta^2 a_n$ is the sequence 3n - 2? What if I know $\Delta^3 a_n$ is the constant sequence $-12, -12, -12, -12, -12, \ldots$?

4 Working diagonally

What if I know:

Do I know the entire (top row) sequence? What additional assumption might allow me to complete the sequence?

Can I find a *formula* for the sequence?

Or how about:

5 The general problem and an approach to a solution

if I know values on one diagonal $d_0, d_1, d_2, \ldots, d_n$ (and also that the rows below d_n is entirely 0)

d_0		?		?		?		?		?	?
	d_1		?		?		?		?		
		d_2		?		?		?			
			d_3		?		?				
				0		0					

Can I determine the sequence on the top row? Can I express it in a formula in terms of d_0, d_1, \ldots, d_n ?

5.1 Repertoire method

A very useful idea **that we should verify for ourselves with examples** (and maybe even prove):

If I write the sequence a_n as the sum of two sequences b_n and c_n , then the sequence of differences of a_n is the sum of the two sequence of differences for b_n and c_n . In fact, if $a_n = j \cdot b_n + k \cdot c_n$, then

$$\Delta a_n = j \cdot \Delta b_n + k \cdot \Delta c_n$$

(we could say: the difference operator is *linear*)

Next, can we solve the general problem some special cases? In each of these cases, assume the row below the last row given is entirely 0.

(case 0)

1		?		?		?		?		?		?
0		?		?		?		?		?		?
Ū	1	•	?	•	?	•	?	•	?	•		
	T		·		•		•		•			
0		?		?		?		?		?		?
	0		?		?		?		?		?	
		1		?		?		?		?		
0		?		?		?		?		?		?
	0		?		?		?		?		?	
		0		?		?		?		?		
		Ŭ	1	•	?	•	?	•	?	•		•••
			T		•		·		•			•••
0		?		?		?		?		?		?
	0		?		?		?		?		?	
		0		?		?		?		?		
			0		?		?		?			
				1		?		?				
	0	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									

5.2Pascal's Triangle

You probably already know

Can we see any connections to finite differences?

6 **Convenient** notation

It is helpful (but not universal) to use the notation for *falling powers*, that is:

$$x^{\underline{m}} = x(x-1)\cdots(x-m+1)$$

(Rising powers are similarly defined, $x^{\overline{m}} = x(x+1)\cdots(x+m-1)$, but we won't use them here.)

You may also know the expression

$$\binom{n}{m} = \frac{n!}{m!(n-m)!} = \frac{n(n-1)\cdots(n-m+1)}{m!}$$

in connection with binomial coefficients and Pascal's triangle, but we can also consider them as polynomials in their own right:

$$\binom{x}{m} = \frac{x^{\underline{m}}}{\underline{m}!} = \frac{x(x-1)\cdots(x-m+1)}{\underline{m}!}$$

What is $\Delta(x^{\underline{m}})$? What is $\Delta(\binom{x}{m})$? What is $\Delta^k(x^{\underline{m}})$? $\Delta^k(\binom{x}{m})$? The polynomial $\binom{x}{m}$ is 0 for $x = 0, 1, \ldots, m-1$ and 1 for x = m, (Let's verify this!) So we can see how its succession of finite differences will look. This gives a way to resurrect any polynomial from the first (well, 0th) diagonal difference sequence, solving the general problem above.

This approach also gives a nice proof of the recurrence relation:

$$p(x+n) = \binom{n}{1}p(x+n-1) - \binom{n}{2}p(x+n-2) + \ldots + (-1)^{n-1}p(x)$$

for any polynomial of degree less than n.

7 Problems that naturally lead to finite differences

Problem 3 Any problem where the sequence of solutions satisfies $a_{n+1} = a_n + P(n)$ where P(n) is a polynomial.

• $a_{n+1} = a_n + k$

•
$$a_{n+1} = a_n + n$$

We might need a starting point a_0 or a_1 .

Problem 4 In particular, many summations

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n$$

can be evaluated with this approach, since $S_{n+1} - S_n = \dots$

Problem 5 Can we evaluate:

1.
$$\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^{2}, \sum_{k=1}^{n} k^{3}$$

2.
$$\sum_{k=1}^{n} k \cdot (k+3)$$

3.
$$\sum_{k=1}^{n} k^{3}, \sum_{k=1}^{n} k^{4}$$

4.
$$\sum_{k=1}^{n} \sum_{j=1}^{k} j^{2} \text{ (this last one came up in a problem Josh told me yesterday)}$$

Problem 6 (Common) Into how many pieces can a pizza be divided by n straight vertical cuts? (Assume the pizza is essentially 2-dimensional – also convex. And no moving the pieces around between the cuts.)

Problem 7 Into how many pieces can a cake be cut with n straight cuts (not necessarily vertical! The point is that the cake has thickness, so now the shape is 3-dimensional and the cuts are not lines, but planes!)

Problem 8 (More repertoire method than finite differences) The polynomial equation $x^2 - x - 1 = 0$ has the two solutions $\phi = \frac{1+\sqrt{5}}{2} = 1.61803399...$ and $\Phi = -0.61803399...$ The recurrence relation $a_{n+1} = a_n + a_{n-1}$ has many solutions, the most famous being the fibonacci sequence $1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$ Show that the geometric sequences $\phi^1, \phi^2, \phi^3, \ldots$ and $\Phi^1, \Phi^2, \Phi^3, \ldots$ satisfy the same recurrence relation. Verify that, if you can find a and b for which $1 = a\phi^1 + b\Phi^1$ and $1 = a\phi^2 + b\Phi^2$, then the *n*th Fibonacci number must be $a\phi^n + b\Phi^n$.

8 (more advanced) Contest Problems

Problem 9 (AIME 1992) For any sequence of real numbers $A = (a_1, a_2, a_3, \ldots)$, define ΔA to be the sequence $(a_2 - a_1, a_3 - a_2, a_4 - a_3, \ldots)$, whose *n*th term is $a_{n+1} - a_n$. Suppose that all of the terms of the sequence $\Delta(\Delta A)$ are 1 and that $a_{19} = a_{92} = 0$. Find a_1 .

Problem 10 (From the 1995 Polya Team Mathematics Competition) it will be convenient for us to list the sequences in this round with initial index 0: that is, each sequence listed here should be considered to be of the form: $a_0, a_1, a_2, a_3, \ldots$

(1) The sequence 1, 1, 7, 13, 55, 133, ... is an example of a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} + 6a_{n-2}$$
 for all $n \ge 2$.

- (a) Find all geometric sequences a_0, a_1, a_2, \ldots that
 - (i) satisfy the same recurrence relation $a_n = a_{n-1} + 6a_{n-2}$ for all $n \ge 2$.
 - (ii) have the first term a_0 equal to 1.
- (b) For the sequence $1, 1, 7, 13, 55, 133, \ldots$ listed above, find a closed form expression for the 101^{st} term a_{100} (that is, an expression involving only simple sums, products, and exponentials, without the use of \sum notation or indices).
- (c) Prove that there is only one sequence of real numbers satisfying this recurrence relation with both an infinite number of positive terms and an infinite number of negative terms
- (2) The sequence $0, 1, 4, 9, 16, 25, \ldots, n^2, \ldots$ is an example of a sequence that satisfies the recurrence relation

$$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$$
 for all $n \ge 3$.

- (a) Find all geometric sequences $a_0, a_1, a_2, a_3, a_4, \ldots$ that
 - (i) satisfy the same recurrence relation $a_n = 3a_{n-1} 3a_{n-2} + a_{n-3}$ for all $n \ge 3$.
 - (ii) have the first term a_0 equal to 1.
- (b) For the general sequence $a_0, a_1, a_2, a_3, \ldots$ satisfying the recurrence relation, find a closed form expression for a_{100} in terms of a_0, a_1 , and a_2 .
- (c) Prove that there are no sequences of real numbers satisfying the recurrence relation with both an infinite number of positive terms and an infinite number of negative terms
- (3) Prove that the sequence given by $a_0 = 2$ and, for $n \ge 1$,

$$a_n$$
 = The integer closest to $(5+2\sqrt{7})^n$

satisfies a recurrence relation of the form $a_n = x \cdot a_{n-1} + y \cdot a_{n-2}$ for $n \ge 2$. (For partial credit, find the values for x and y.)