The Teachers' Circle: Farey Fractions \& Ford Circles (A Freshman's Dream)

September 2009

The nth set of Farey fractions are all fractions between 0 and 1 with denominator at most n; we collect them in the set F_{n}. For example,

$$
F_{1}=\{0,1\} \quad \text { and } \quad F_{2}=\left\{0, \frac{1}{2}, 1\right\}
$$

(here we view 0 as $\frac{0}{1}$ and 1 as $\frac{1}{1}$).
(1) List $F_{2}, F_{3}, \ldots, F_{7}$.
(2) From our construction, the set F_{n} contains the set F_{n-1}, i.e., all $(n-1)$ st Farey fractions are also nth Farey fractions. What do you notice about the fractions that are in F_{n} but not in F_{n-1} ? State as many observations as you can come up with.
(3) Show that if $\frac{a}{b}<\frac{c}{d}$, then

$$
\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}
$$

(If your proof is algebraic, try to come up with a non-algebraic explanation.) The fraction $\frac{a+c}{b+d}$ is called the mediant of $\frac{a}{b}$ and $\frac{c}{d}$.
(4) Let $0 \leq \frac{a}{b}<\frac{c}{d} \leq 1$ with $b c-a d=1$. Show that $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in F_{n} if

- $b, d \leq n$ and
- $b+d-1 \geq n$.
(Hint: if $\frac{a}{b}<\frac{h}{k}<\frac{c}{d}$, write $k=b(c k-d h)+d(b h-a k)$.)
(5) Let $0 \leq \frac{a}{b}<\frac{c}{d} \leq 1$ with $b c-a d=1$, and let $\frac{h}{k}=\frac{a+c}{b+d}$. We proved already that $\frac{a}{b}<\frac{h}{k}<\frac{c}{d}$. Show further that

$$
b h-a k=1 \quad \text { and } \quad c k-d h=1
$$

(Hint: look at the previous hint.)
(6) Conclude that $F_{n} \backslash F_{n-1}$ consists of mediants of consecutive fractions in F_{n-1}, and that if $\frac{a}{b}<\frac{c}{d}$ are consecutive then $b c-a d=1$.

It's time for some polygonal geometry. An integer point (x, y) in the plane is called visible if the line segment from the origin to (x, y) contains no other integer point.
(7) For a given positive number n, draw a triangle with vertices $(0,0),(n, 0)$, and (n, n). Mark all visible points in this triangle. What do you observe? Try to prove your assertions.

Now it's time for some circle geometry. Ford circles are constructed as follows: Start with two circles in the plane that touch each other, one tangent to the x-axis at $(0,0)$ and the other tangent to the x-axis at $(1,0)$. From here we will create new circles corresponding to Farey fractions; namely, the next circle should be tangent to the x-axis at $\left(\frac{1}{2}, 0\right)$ and to the existing two circles, the next two circles tangent to the x-axis at $\left(\frac{1}{3}, 0\right)$ and $\left(\frac{2}{3}, 0\right)$, respectively, and tangent to their two neighbor circles, etc.
(8) Find a formula for the centers and radii of the Ford circles.

