AIM Teachers' Circle - Partitions

November 2011

Here are some of our favorite partition identities:
(1) The number of partitions of n into m parts equals the number of partitions of n whose greatest part is m.
(2) The number of partitions of n into at most m parts of size at most k equals the number of partitions of n into at most k parts of size at most m.
(3) The number of partitions of n that are self conjugate equals the number of partitions of n into distinct odd parts.
(4) (Euler) The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.
(5) The number of partitions of n into an even number of odd parts equals the number of partitions of n into distinct parts where the number of odd parts is even. ${ }^{1}$
(6) (Sylvester) The number of partitions of n into k odd parts (repetition allowed) equals the number of partitions of n into k separate sequences of consecutive integers (1-term sequences allowed).
(7) (Bressoud) The number of partitions of n into super-distinct ${ }^{2}$ parts equals the number of partitions of n into distinct parts where each even part is greater than twice the number of odd parts.

And here are two problems on counting partitions:
(8) How many partitions are there with at most m parts of size at most k ? Use this setup to prove the recurrence for binomial coefficients ("Pascal's triangle").
(9) Let c_{m} denote the number of partitions whose k th part is at most $k-1$ (so their Ferrer's diagram fits into a "staircase"). Show that

$$
c_{m+1}=c_{0} c_{m}+c_{1} c_{m-1}+\cdots+c_{m} c_{0}
$$

where we define $c_{0}=1$. The numbers c_{m} are called Catalan numbers and are given by the formula

$$
c_{m}=\frac{1}{m+1}\binom{2 m}{m} .
$$

[^0]
[^0]: ${ }^{1}$ The same statement holds when we replace the two evens with odd.
 ${ }^{2}$ Two parts are super distinct if they differ by at least 2 .

