'Convexity' of Intersection Bodies

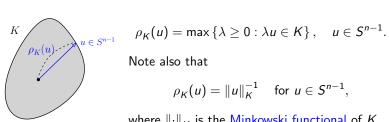
Jaegil Kim

University of Alberta

AIM Workshop on Sections of Convex Bodies, Palo Alto, August 5-9, 2013

Basic notions: Radial function

• The radial function ρ_K of a body K is defined by



$$\rho_K(u) = \max \left\{ \lambda \ge 0 : \lambda u \in K \right\}, \quad u \in S^{n-1}.$$

$$\rho_K(u) = \|u\|_K^{-1} \quad \text{ for } u \in S^{n-1},$$

where $\|\cdot\|_K$ is the Minkowski functional of K.

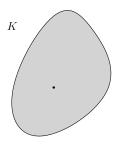
 A star body is a body whose radial function is positive and continuous.

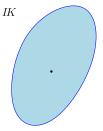
In 1988, Lutwak introduced the notion of intersection bodies.

$$\rho_{IK}(u) = |K \cap u^{\perp}| \quad \text{for each } u \in S^{n-1}.$$

In 1988, Lutwak introduced the notion of intersection bodies.

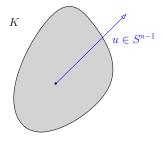
$$\rho_{IK}(u) = |K \cap u^{\perp}| \text{ for each } u \in S^{n-1}.$$

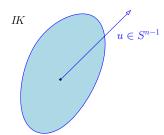




In 1988, Lutwak introduced the notion of intersection bodies.

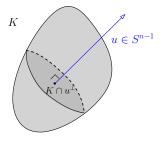
$$\rho_{IK}(u) = |K \cap u^{\perp}| \text{ for each } u \in S^{n-1}.$$

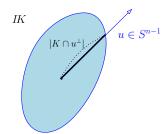




In 1988, Lutwak introduced the notion of intersection bodies.

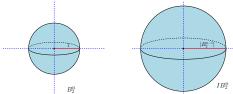
$$\rho_{IK}(u) = |K \cap u^{\perp}| \text{ for each } u \in S^{n-1}.$$





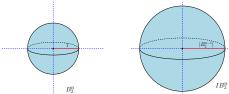
Intersection bodies: Examples

• For the ball $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, $IB_2^n = cB_2^n$ for $c = |B_2^{n-1}|$.

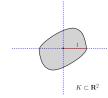


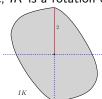
Intersection bodies: Examples

 $\bullet \ \ \text{For the ball} \ B_2^n=\{x\in\mathbb{R}^n: |x|\leq 1\}, \quad \ IB_2^n=cB_2^n \ \ \text{for} \ c=|B_2^{n-1}|.$



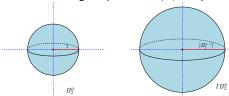
• For $K \subset \mathbb{R}^2$ symmetric, IK is a rotation of 2K by angle $\pi/2$.



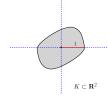


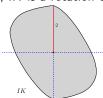
Intersection bodies: Examples

• For the ball $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, $IB_2^n = cB_2^n$ for $c = |B_2^{n-1}|$.



• For $K \subset \mathbb{R}^2$ symmetric, IK is a rotation of 2K by angle $\pi/2$.





• For $T \in GL(n)$,

$$I(TK) = |\det T| (T^{-1})^* (IK).$$

Intersection bodies: motivations

• Related to the solution for the **Busemann-Petty problem**: For symmetric convex bodies K, L in \mathbb{R}^n , is it true that

$$|K \cap H| \ge |L \cap H|$$
 for all hyperplanes $H \Rightarrow |K| \ge |L|$?

[yes if $n \le 4$, no if $n \ge 5$]. Larman, Rogers, Ball, Lutwak, Gardner, Zhang, Koldobsky, Schlumprecht.

Intersection bodies: motivations

• Related to the solution for the **Busemann-Petty problem**: For symmetric convex bodies K, L in \mathbb{R}^n , is it true that

$$|K \cap H| \ge |L \cap H|$$
 for all hyperplanes $H \Rightarrow |K| \ge |L|$?

[yes if $n \le 4$, no if $n \ge 5$]. Larman, Rogers, Ball, Lutwak, Gardner, Zhang, Koldobsky, Schlumprecht.

• Connection with the **Spherical Radon transform** \mathcal{R} .

$$\begin{split} \rho_{IK}(\theta) &= |K \cap \theta^{\perp}| = \int_{S^{n-1} \cap \theta^{\perp}} \int_{0}^{\rho_{K}(u)} r^{n-2} dr du \\ &= \frac{1}{n-1} \int_{S^{n-1} \cap \theta^{\perp}} \rho_{K}^{n-1}(u) du = \frac{1}{n-1} \mathcal{R} \rho_{K}^{n-1}(\theta), \end{split}$$

that is, $\rho_{IK} = \frac{1}{n-1} \mathcal{R} \rho_K^{n-1}$.

[Busemann, 1949] Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

[Busemann, 1949] Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

ullet Not true without symmetry assumption (K=-K)

[Busemann, 1949] Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

• Not true without symmetry assumption (K = -K)

[Busemann, 1949] Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

• Not true without symmetry assumption (K = -K)

"Convexity" is preserved under the intersection body operator.

[Busemann, 1949] Let K be a symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

• Not true without symmetry assumption (K = -K)

"Convexity" is preserved under the intersection body operator.

Main Question: **How much** of 'convexity' is preserved under the intersection body operator *I*?

How to measure 'convexity'

(1) Quasi-convexity

K is q-convex if $t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y \in K$ whenever $x,y \in K$, $t \in [0,1]$ "convexity" increases as $q \to 1$.

How to measure 'convexity'

(1) Quasi-convexity

$$K$$
 is q -convex if $t^{\frac{1}{q}}x+(1-t)^{\frac{1}{q}}y\in K$ whenever $x,y\in K,\ t\in [0,1]$ "convexity" increases as $q\to 1$.

(2) Banach-Mazur distance from B_2^n

$$d_{BM}(K, B_2^n) = \min \left\{ r : B_2^n \subset TK \subset rB_2^n, T \in GL(n) \right\}$$
 "convexity" increases as $d_{BM}(K, B_2^n) \to 1$.

How to measure 'convexity'

(1) Quasi-convexity

$$K$$
 is q -convex if $t^{\frac{1}{q}}x+(1-t)^{\frac{1}{q}}y\in K$ whenever $x,y\in K$, $t\in [0,1]$ "convexity" increases as $q\to 1$.

(2) Banach-Mazur distance from B_2^n

$$\begin{split} d_{BM}(K,B_2^n) &= \min \Big\{ r: B_2^n \subset \mathit{TK} \subset \mathit{rB}_2^n, T \in \mathit{GL}(n) \Big\} \\ &\text{"convexity" increases as } d_{BM}(K,B_2^n) \to 1. \end{split}$$

(3) Modulus of convexity

$$\delta_{\mathcal{K}}(\varepsilon) = \min \left\{ 1 - \frac{1}{2} \left\| x + y \right\|_{\mathcal{K}} : x, y \in \mathcal{K}, \left\| x - y \right\|_{\mathcal{K}} \geq \varepsilon \right\}$$
 "convexity" increases as $\delta_{\mathcal{K}}(\varepsilon)$ does.

Let $0 < q \le 1$. A star body $K \subset \mathbb{R}^n$ is called q-convex if

$$t^{\frac{1}{q}}x+(1-t)^{\frac{1}{q}}y\in \mathcal{K} \quad ext{whenever } x,y\in \mathcal{K},t\in [0,1]$$

or, equivalently, $\|x+y\|_K^q \le \|x\|_K^q + \|y\|_K^q$

Let $0 < q \le 1$. A star body $K \subset \mathbb{R}^n$ is called q-convex if

$$t^{\frac{1}{q}}x+(1-t)^{\frac{1}{q}}y\in \mathcal{K} \quad ext{whenever } x,y\in \mathcal{K},t\in [0,1]$$

or, equivalently, $||x+y||_K^q \le ||x||_K^q + ||y||_K^q$

$$B_q^2 = \{(x,y): |x|^q + |y|^q \le 1\}$$

Let $0 < q \le 1$. A star body $K \subset \mathbb{R}^n$ is called q-convex if

$$t^{rac{1}{q}}x+(1-t)^{rac{1}{q}}y\in \mathcal{K}$$
 whenever $x,y\in \mathcal{K},\,t\in [0,1]$

or, equivalently, $||x+y||_K^q \le ||x||_K^q + ||y||_K^q$

$$B_q^2 = \{(x,y) : |x|^q + |y|^q \le 1\}$$

Let 0 < q < 1. A star body $K \subset \mathbb{R}^n$ is called *q*-convex if

$$t^{rac{1}{q}}x+(1-t)^{rac{1}{q}}y\in \mathcal{K}$$
 whenever $x,y\in \mathcal{K},\,t\in [0,1]$

or, equivalently, $||x+y||_{\kappa}^q \leq ||x||_{\kappa}^q + ||y||_{\kappa}^q$

$$B_q^2 = \{(x,y): |x|^q + |y|^q \le 1\}$$

q = 1/4 q = 1/2

Let 0 < q < 1. A star body $K \subset \mathbb{R}^n$ is called *q*-convex if

$$t^{rac{1}{q}}x+(1-t)^{rac{1}{q}}y\in \mathcal{K}$$
 whenever $x,y\in \mathcal{K},\,t\in [0,1]$

or, equivalently, $||x+y||_{\kappa}^q \leq ||x||_{\kappa}^q + ||y||_{\kappa}^q$

$$B_q^2 = \{(x, y) : |x|^q + |y|^q \le 1\}$$

$$q = 1/2$$

$$q = 3/4$$

Let 0 < q < 1. A star body $K \subset \mathbb{R}^n$ is called *q*-convex if

$$t^{rac{1}{q}}x+(1-t)^{rac{1}{q}}y\in \mathcal{K}$$
 whenever $x,y\in \mathcal{K},\,t\in [0,1]$

or, equivalently, $||x+y||_{\kappa}^q \leq ||x||_{\kappa}^q + ||y||_{\kappa}^q$

$$B_q^2 = \{(x,y): |x|^q + |y|^q \le 1\}$$

q = 1/4 q = 1/2 q = 3/4

q = 1 (convex)

Quasi-convexity

Let 0 < q < 1. A star body $K \subset \mathbb{R}^n$ is called *q*-convex if

$$t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y \in K$$
 whenever $x, y \in K, t \in [0, 1]$

or, equivalently, $||x+y||_{\kappa}^q \leq ||x||_{\kappa}^q + ||y||_{\kappa}^q$

$$B_q^2 = \{(x,y): |x|^q + |y|^q \le 1\}$$

If K is q-convex, for which q' the intersection body IK is q'-convex?

(1) Quasi-convexity for Intersection bodies

Theorem [K.-Yaskin-Zvavitch, 2011]

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \le 1$. Then, if K is q-convex, IK is q'-convex where

$$q' = [(1/q - 1)(n-1) + 1]^{-1}$$

- If q=1, then q'=1: (just Busemann's theorem!)
- $q' \leq q$, but the formula for q' is sharp asymptotically.

(1) Quasi-convexity for Intersection bodies

Theorem [K.-Yaskin-Zvavitch, 2011]

Let K be a symmetric star body in \mathbb{R}^n and $0 < q \le 1$. Then, if K is q-convex, IK is q'-convex where

$$q' = [(1/q - 1)(n-1) + 1]^{-1}$$

- If q = 1, then q' = 1: (just Busemann's theorem!)
- $q' \leq q,$ but the formula for q' is sharp asymptotically.

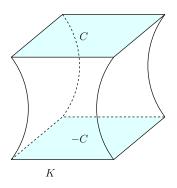
More generally, for a log-concave measure μ on \mathbb{R}^n ,

Consider the intersection body $I_{\mu}K$ w.r.t. μ defined by

$$\rho_{IK}(u) = \mu(K \cap u^{\perp}) \quad \forall u \in S^{n-1}.$$

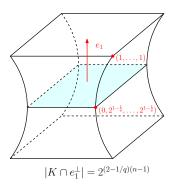
Then the above theorem still holds for $I_{\mu}K$.

Let
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
, where $C = \{(1, x_2, \dots, x_n) : |x_2|, \dots, |x_n| \le 1\}$.



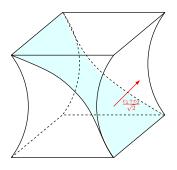
K is q-convex.

Let
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
, where $C = \{(1, x_2, \dots, x_n) : |x_2|, \dots, |x_n| \le 1\}$.



• *K* is *q*-convex.

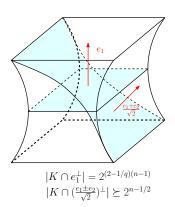
Let
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
, where $C = \{(1, x_2, \dots, x_n) : |x_2|, \dots, |x_n| \le 1\}$.



$$|K \cap (\frac{e_1 \pm e_2}{\sqrt{2}})^{\perp}| \succeq 2^{n-1/2}$$

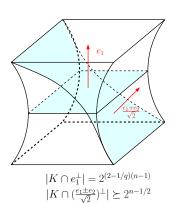
• *K* is *q*-convex.

Let
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
, where $C = \{(1, x_2, \dots, x_n) : |x_2|, \dots, |x_n| \le 1\}$.



- K is q-convex.
- $\begin{array}{l} \bullet \ \, \|e_1\|_{\emph{IK}} = 2^{(1/\emph{q}-2)(\emph{n}-1)}, \\ \|e_1 \pm e_2\|_{\emph{IK}} \lesssim 2^{1-\emph{n}}. \end{array}$

Let
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
, where $C = \{(1, x_2, \dots, x_n) : |x_2|, \dots, |x_n| \le 1\}$.



- *K* is *q*-convex.
- $\|e_1\|_{IK} = 2^{(1/q-2)(n-1)}$, $\|e_1 \pm e_2\|_{IK} \lesssim 2^{1-n}$.
- If *IK* is q'-convex, then

$$\|2e_1\|_{lK}^{q'} \leq \|e_1+e_2\|_{lK}^{q'} + \|e_1-e_2\|_{lK}^{q'}$$
 gives

$$q' \lesssim [(1/q-1)(n-1)+1]^{-1}$$
.

(2) Banach-Mazur distance from B_2^n

[Hensley, 1980] For any symmetric convex body K in \mathbb{R}^n ,

$$d_{BM}(IK, B_2^n) \leq C$$

where C > 1 is a universal constant.

- Note that $d_{BM}(B_{\infty}^n, B_2^n) = \sqrt{n}$. In fact, a lot of symmetric convex bodies are very far from the ball in high dimension.
- Nevertheless, the above theorem says that their intersection bodies should be bounded from the ball by an absolute constant.

(2) Banach-Mazur distance from B_2^n

[Hensley, 1980] For any symmetric convex body K in \mathbb{R}^n ,

$$d_{BM}(IK, B_2^n) \leq C$$

where C > 1 is a universal constant.

- Note that $d_{BM}(B_{\infty}^n, B_2^n) = \sqrt{n}$. In fact, a lot of symmetric convex bodies are very far from the ball in high dimension.
- Nevertheless, the above theorem says that their intersection bodies should be bounded from the ball by an absolute constant.

Questions [Lutwak, 1990's] Are the followings true?

- $\bullet \quad d_{BM}(IK,B_2^n) \leq d_{BM}(K,B_2^n),$
- $d_{BM}(IK, K) = 1 \Rightarrow d_{BM}(K, B_2^n) = 1$,
- $d_{BM}(I^mK, B_2^n) \rightarrow 1 \text{ as } m \rightarrow \infty.$



Partial answers

[Fish-Nazarov-Ryabogin-Zvavitch, 2011] If a star body K is close enough to the ball B_2^n , then

$$d_{BM}(I^mK, B_2^n) \to 1$$
 as $m \to \infty$.

Partial answers

[Fish-Nazarov-Ryabogin-Zvavitch, 2011] If a star body K is close enough to the ball B_2^n , then

$$d_{BM}(I^mK, B_2^n) \to 1$$
 as $m \to \infty$.

Theorem [Alfonseca-K., 2013]

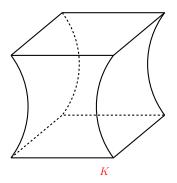
For every $\varepsilon > 0$, there exists an integer $N \ge 1$ such that for every $n \ge N$ and any convex body K of revolution in \mathbb{R}^n ,

$$d_{BM}(I^2K, B_2^n) \leq 1 + \varepsilon.$$

- Roughly speaking, the double intersection body of a body of revolution is close enough to an ellipsoid in high dimension.
- But the single intersection body is not enough for the above theorem.

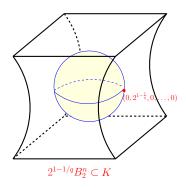
 $d_{BM}(\mathit{IK}, B_2^n) \leq d_{BM}(\mathit{K}, B_2^n)$ may not be true without convexity

Consider
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
,



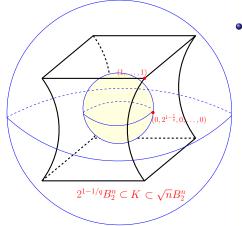
 $d_{BM}(\mathit{IK}, B_2^n) \leq d_{BM}(\mathit{K}, B_2^n)$ may not be true without convexity

Consider
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
,



 $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$ may not be true without convexity

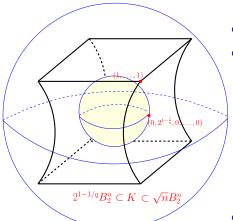
Consider
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
,



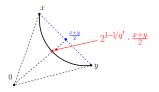
• $d_{BM}(K, B_2^n) \leq 2^{1/q-1} \sqrt{n}$.

 $d_{BM}(IK, B_2^n) \le d_{BM}(K, B_2^n)$ may not be true without convexity

Consider
$$K = \left\{ t^{\frac{1}{q}}x + (1-t)^{\frac{1}{q}}y : x \in C, y \in -C, 0 \le t \le 1 \right\}$$
,



- $d_{BM}(K, B_2^n) \le 2^{1/q-1} \sqrt{n}$.
- Note that IK is q'-convex where $q' = [(1/q-1)(n-1)+1]^{-1}$.

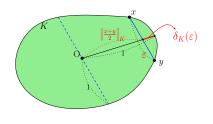


So, $d_{BM}(IK, B_2^n) \ge 2^{(1/q-1)(n-1)}$.

• $d_{BM}(IK, B_2^n) \gg d_{BM}(K, B_2^n)$.

(3) Modulus of convexity

$$\delta_{K}(\varepsilon) = \min \left\{ 1 - \left\| \frac{x+y}{2} \right\|_{K} : x, y \in K, \|x-y\|_{K} \ge \varepsilon \right\}$$

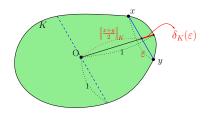


- If $\delta_K(\varepsilon)$ is big, we would say 'highly convex'.
- The parallelogram identity $\left|\frac{x+y}{2}\right|^2 + \left|\frac{x-y}{2}\right|^2 = \frac{|x|^2 + |y|^2}{2}$ gives the modulus of convexity for the ball,

$$\delta_{B_2^n}(\varepsilon) = 1 - \sqrt{1 - \left(\frac{\varepsilon}{2}\right)^2} = \frac{1}{8}\varepsilon^2 + o(\varepsilon^2).$$

(3) Modulus of convexity

$$\delta_{K}(\varepsilon) = \min \left\{ 1 - \left\| \frac{x+y}{2} \right\|_{K} : x, y \in K, \|x-y\|_{K} \ge \varepsilon \right\}$$



- If $\delta_K(\varepsilon)$ is big, we would say 'highly convex'.
- The parallelogram identity $\left|\frac{x+y}{2}\right|^2 + \left|\frac{x-y}{2}\right|^2 = \frac{|x|^2 + |y|^2}{2}$ gives the modulus of convexity for the ball,

$$\delta_{B_2^n}(\varepsilon) = 1 - \sqrt{1 - \left(\frac{\varepsilon}{2}\right)^2} = \frac{1}{8}\varepsilon^2 + o(\varepsilon^2).$$

[Nordlander, 1960] For every symmetric convex body K in \mathbb{R}^n ,

$$\delta_K(\varepsilon) \leq \delta_{B_2^n}(\varepsilon).$$

Uniform convexity: power type

A symmetric convex body K is called power type p if $\delta_K(\varepsilon) \gtrsim \varepsilon^p$

- 0 is impossible by Nordlander.
- ullet "convexity" increases as p o 2

Uniform convexity: power type

A symmetric convex body K is called power type p if $\delta_K(\varepsilon) \gtrsim \varepsilon^p$

- 0 is impossible by Nordlander.
- "convexity" increases as $p \rightarrow 2$

[Hanner, 1956] computed the modulus of convexity for the ℓ_p -balls.

• For 1 ,

$$\delta_{B_p^n}(\varepsilon) = \frac{p-1}{8} \, \varepsilon^2 + o(\varepsilon^2)$$
 (power type 2)

• For $p \ge 2$,

$$\delta_{\mathcal{B}_p^n}(\varepsilon) = \frac{1}{2p} \, \varepsilon^p + o(\varepsilon^p) \quad \text{(power type } p\text{)}$$

Uniform convexity for Intersection bodies

Theorem [K.] Let K be a symmetric convex body of dimension ≥ 3 .

• If *K* is uniformly convex, then so is *IK*. That is,

$$\delta_K(\varepsilon) > 0 \quad \Rightarrow \quad \delta_{IK}(\varepsilon) > 0.$$

2 If K is of power type p, then so is IK. That is,

$$\delta_K(\varepsilon) \gtrsim \varepsilon^p \quad \Rightarrow \quad \delta_{IK}(\varepsilon) \gtrsim \varepsilon^p.$$

- Similar results for bodies of revolution are given in [Alfonseca-K.]
- The value *p* in the second statement is optimal.

Indeed, IB_p^n contains a 2-dimensional ℓ_p -section. So, IB_p^n has the same power type of modulus of convexity as B_p^n .

Uniform convexity for Intersection bodies

In fact, IB_p^n contains a 2-dimensional ℓ_p -section.

- Consider the 2-dimensional $E = \operatorname{span} \{e_1, e_2\}$.
- Let $u \in E \cap S^{n-1}$. Take $v \in E \cap u^{\perp}$ (a rotation of u in E by $\pi/2$).

$$\mathcal{B}_{\rho}^{n}\cap u^{\perp}=\mathcal{B}_{\rho}^{n}\cap \left(E^{\perp}+\operatorname{span}\left\{v\right\}\right)=\left(\mathcal{B}_{\rho}^{n}\cap E^{\perp}\right)\oplus_{\rho}\left(\mathcal{B}_{\rho}^{n}\cap \operatorname{span}\left\{v\right\}\right)$$

which implies $|B_p^n \cap u^{\perp}| = c_{n,p}|B_p^n \cap E^{\perp}| \cdot \rho_{B_p^n}(v)$.

• Thus,
$$IB_p^n \cap E = c B_p^n \cap E$$
 where $c = c_{n,p}|B_p^n \cap E^{\perp}|$.

Uniform convexity for Intersection bodies

In fact, IB_p^n contains a 2-dimensional ℓ_p -section.

- Consider the 2-dimensional $E = \operatorname{span} \{e_1, e_2\}$.
- Let $u \in E \cap S^{n-1}$. Take $v \in E \cap u^{\perp}$ (a rotation of u in E by $\pi/2$).

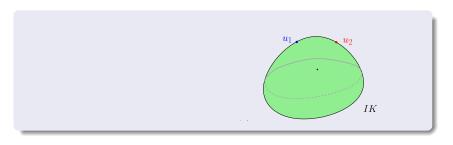
$$\mathcal{B}_{\rho}^{n}\cap u^{\perp}=\mathcal{B}_{\rho}^{n}\cap \left(E^{\perp}+\operatorname{span}\left\{v\right\}\right)=\left(\mathcal{B}_{\rho}^{n}\cap E^{\perp}\right)\oplus_{\rho}\left(\mathcal{B}_{\rho}^{n}\cap \operatorname{span}\left\{v\right\}\right)$$

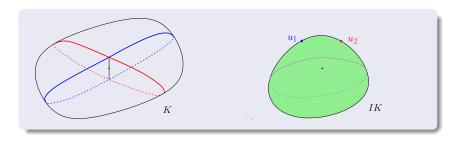
which implies $|\mathcal{B}_{p}^{n} \cap u^{\perp}| = c_{n,p}|\mathcal{B}_{p}^{n} \cap E^{\perp}| \cdot \rho_{\mathcal{B}_{p}^{n}}(v)$.

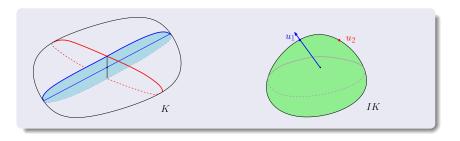
• Thus,
$$IB_p^n \cap E = c B_p^n \cap E$$
 where $c = c_{n,p} | B_p^n \cap E^{\perp} |$.

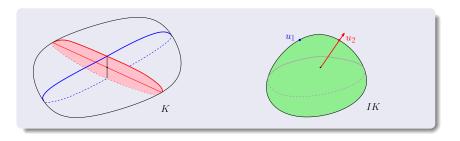
Theorem [K.] The double intersection body I^2K of a symmetric convex body $K \subset \mathbb{R}^n$, $n \geq 3$, is uniformly convex.

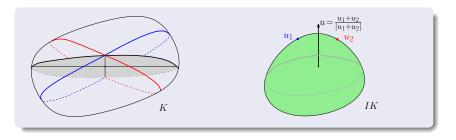
That is, every I^2K does not contain a line segment on its boundary.







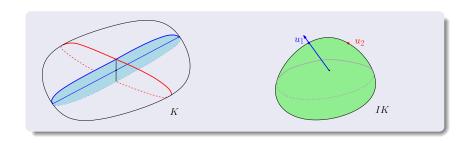


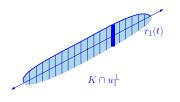


- **1** Let u_1 , u_2 be on the boundary of IK. We claim that $\frac{u_1+u_2}{2} \in IK$. WLOG, assume $|u_1|=|u_2|=1$.
- **2** Let $u = \frac{u_1 + u_2}{|u_1 + u_2|}$. Since

$$\left\| \frac{u_1 + u_2}{2} \right\|_{lK} = \frac{|u_1 + u_2|}{2} \left\| u \right\|_{lK} = \frac{|u_1 + u_2|}{2} / |K \cap u^{\perp}|,$$

we need to show $|K \cap u^{\perp}| \ge \frac{|u_1 + u_2|}{2}$.

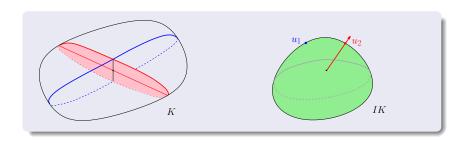


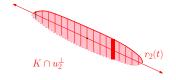


To get $|K \cap u_1^{\perp}|$, integrate sections by moving with **'uniform volume' speed**, i.e.,

$$| \mathbf{I} | \cdot r_1'(t) = \text{const}, \ \forall t \in [-1/2, 1/2].$$

Here, const is equal to 1 by the assumption $|K \cap u_1^{\perp}| = ||u_1||_{JK} = 1$.

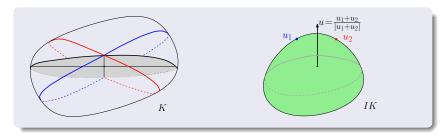


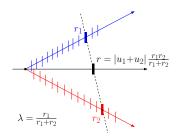


To get $|K \cap u_2^{\perp}|$, integrate sections by moving with **'uniform volume' speed**, i.e.,

$$\left| \mathbf{I} \right| \cdot r_2'(t) = \text{const}, \ \forall t \in [-1/2, 1/2].$$

Here, const is equal to 1 by the assumption $|K\cap u_2^\perp|=\|u_2\|_{JK}=1.$





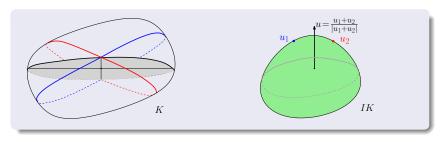
To get the volume of $K \cap u^{\perp}$, integrate its sections along with the parametrization

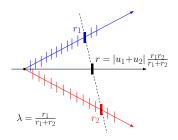
$$r(t) = |u_1 + u_2| \frac{r_1(t)r_2(t)}{r_1(t) + r_2(t)}.$$

$$\bullet |\mathbf{I}| \ge \left| (1 - \lambda) \mathbf{I} + \lambda \mathbf{I} \right| \ge \left| \mathbf{I} \right|^{1 - \lambda} \left| \mathbf{I} \right|^{\lambda}$$

•
$$r'(t) = |u_1 + u_2| \left[(1 - \lambda)^2 r_1' + \lambda^2 r_2' \right]$$

 $\geq |u_1 + u_2| \left[(1 - \lambda) r_1' \right]^{1 - \lambda} \left[\lambda r_2' \right]^{\lambda}$





$$\begin{split} |K \cap u^{\perp}| &= \int \left| \mathbf{l} \right| \, dr \geq \int \left| (1 - \lambda) \mathbf{l} \right| + \lambda \mathbf{l} \left| \, dr \right| \\ &\geq |u_1 + u_2| \int_{-1/2}^{1/2} \left(\left| \mathbf{l} \right| r_1' \right)^{1 - \lambda} \left(\left| \mathbf{l} \right| r_2' \right)^{\lambda} (1 - \lambda)^{1 - \lambda} \lambda^{\lambda} dt \\ &= |u_1 + u_2| \int_{-1/2}^{1/2} (1 - \lambda)^{1 - \lambda} \lambda^{\lambda} dt \\ &\geq \frac{1}{2} |u_1 + u_2| \end{split}$$

Equality case

To hold the equality, the following should be satisfied:

- Equality in the AM/GM inequality should hold: $\boxed{\lambda(t) = \frac{1}{2}}, \text{ so } r_1(t) = r_2(t) \text{ for all } t \in [-1/2, 1/2].$
- Equality in the Brun-Minkowski inequality should hold: the sections and are homothetic each other.
- $\blacksquare = \frac{1}{2}(\blacksquare + \blacksquare)$, the equality case of $\blacksquare \supset (1 \lambda) \blacksquare + \lambda \blacksquare$.

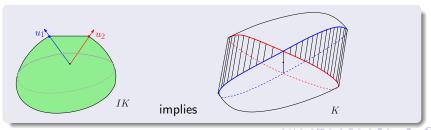
In this case three sections $\c I$, $\c I$, are congruent.

Equality case

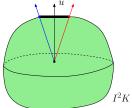
To hold the equality, the following should be satisfied:

- Equality in the AM/GM inequality should hold: $\lambda(t) = \frac{1}{2}$, so $r_1(t) = r_2(t)$ for all $t \in [-1/2, 1/2]$.
- Equality in the Brun-Minkowski inequality should hold: the sections and are homothetic each other.

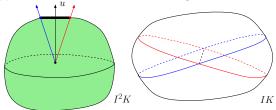
In this case three sections I, I, I are congruent.



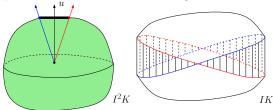
Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



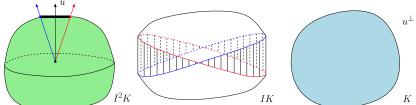
Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



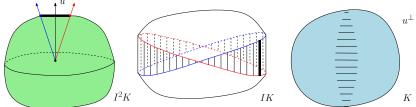
Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



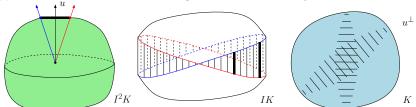
Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



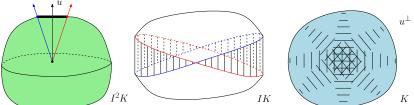
Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).

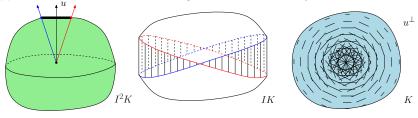


Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



Contradiction!

Let K be a symmetric convex body in \mathbb{R}^n , $n \geq 3$. Then the double intersection body I^2K of K does not contain a line segment on its boundary, (i.e., I^2K is uniformly convex).



Open questions

Question 1: Quantify the previous statement.

That is, what happens on K if IK has 'almost flat' chord on its boundary?

Open questions

Question 1: Quantify the previous statement.

That is, what happens on K if IK has 'almost flat' chord on its boundary?

Question 2: Prove or disprove that

$$\delta_{I^2K}(\varepsilon) \geq \delta_K(\varepsilon) \quad \forall \varepsilon > 0$$

and the equality holds if and only if K is an ellipsoid.

THANK YOU!