GRAVITATIONAL LENSING IN THE KERR SPACETIME GEOMETRY

organized by Simonetta Frittelli and Arlie O. Petters

Workshop Summary

The workshop began with an overview of the problem presented by Dr. Arlie Petters that included a detailed discussion of the Kerr spacetime geometry and the basic assumptions and definitions for the case of lensing by a thin lens. The rest of the workshop was divided into AM and PM session with a half hour recap/discussion session at the start each day. A detailed schedule of talks is given at the end of this report.

The workshop can be broadly divided into three main parts:

I. Detailed Analysis of Kerr and Spinning Lenses

Ia: (V. Bozza and M. Sereno)

- Full calculations for non-equatorial case
- Are there ways in which calculations will lend themselves to observational work? i.e., Observables
- Self-lensing of Sgr A*

Ib: (A. Zakharov)

- Inferring spin from shadow
- Accretion disk
- Tests of GR Observables

II. Numerical and Observational Work (K. Rauch and W. Cash)

- Lightcurve plotting, ray tracing, orbits
- Gravitational Redshifts
- Doppler Shifts
- Magnification, Images, Time delay
- MAXIM

III. Mathematical Foundation (A.O. Petters, E.T. Newman, V. Perlick)

- Topology
- Invariants
- Kerr Black Holes