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Abstract. We prove that the coefficients of certain weight −1/2 harmonic Maass forms are
“traces” of singular moduli for weak Maass forms. To prove this theorem, we construct a theta
lift from spaces of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vector-
valued harmonic weak Maass forms on Mp2(Z), a result which is of independent interest.
We then prove a general theorem which guarantees (with bounded denominator) when such
Maass singular moduli are algebraic. As an example of these results, we derive a formula
for the partition function p(n) as a finite sum of algebraic numbers which lie in the usual
discriminant −24n + 1 ring class field. We indicate how these results extend to general
weights. In particular, we illustrate how one can compute theta lifts for general weights by
making use of the Kudla-Millson kernel and Maass differential operators.

1. Introduction and statement of results

A partition [2] of a positive integer n is any nonincreasing sequence of positive integers
which sum to n. The partition function p(n), which counts the number of partitions of n,
defines the rapidly increasing sequence of integers:

1, 1, 2, 3, 5, . . . , p(100) = 190569292, . . . , p(1000) = 24061467864032622473692149727991, . . . .

In celebrated work [21], which gave birth to the “circle method”, Hardy and Ramanujan
quantified this rate of growth. They proved the asymptotic formula:

p(n) ∼ 1

4n
√

3
· eπ

√
2n/3.

Rademacher [31, 32] subsequently perfected this method to derive his famous “exact” formula

(1.1) p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
· I 3

2

(
π
√

24n− 1

6k

)
.

Here I 3
2
(·) is a modified Bessel function of the first kind, and Ak(n) is a Kloosterman sum.

Remark. Values of p(n) can be obtained by rounding sufficiently accurate truncations of (1.1).
Bounding the error between p(n) and such truncations is a well known difficult problem.
Recent work by Folsom and Masri [17] gives the best known nontrivial bounds on this problem.
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tion, the Manasse family, and the Candler Fund for their support.
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We obtain a new formula for p(n). Answering Questions 1 and 2 of [6], we express p(n) as
a finite sum of algebraic numbers. These numbers are singular moduli for a weak Maass form
which we describe using Dedekind’s eta-function η(z) := q

1
24

∏∞
n=1(1 − qn) (note. q := e2πiz

throughout) and the quasimodular Eisenstein series

(1.2) E2(z) := 1− 24
∞∑

n=1

∑
d|n

dqn.

To this end, we define the Γ0(6) weight -2 meromorphic modular form F (z) by

(1.3) F (z) :=
1

2
· E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η(z)2η(2z)2η(3z)2η(6z)2
= q−1 − 10− 29q − . . . .

Using the convention that z = x + iy, with x, y ∈ R, we define the weak Maass form

(1.4) P (z) := −
(

1

2πi
· d

dz
+

1

2πy

)
F (z) =

(
1− 1

2πy

)
q−1 +

5

πy
+

(
29 +

29

2πy

)
q + . . . .

This nonholomorphic form has weight 0, and is a weak Maass form (for more on weak Maass
forms, see [8]). It has eigenvalue −2 with respect to the hyperbolic Laplacian

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

To describe our formula, we use discriminant −24n + 1 = b2− 4ac positive definite integral
binary quadratic forms Q(x, y) = ax2 + bxy + cy2 with the property that 6 | a. The group
Γ0(6) acts on such forms, and we let Qn be any set of representatives of those equivalence
classes with a > 0 and b ≡ 1 (mod 12). For each Q(x, y), we let αQ be the CM point in H,
the upper half of the complex plane, for which Q(αQ, 1) = 0. We then define the “trace”

(1.5) Tr(n) :=
∑

Q∈Qn

P (αQ).

The following theorem gives the finite algebraic formula for p(n).

Theorem 1.1. If n is a positive integer, then we have that

p(n) =
1

24n− 1
· Tr(n).

The numbers P (αQ), as Q varies over Qn, form a multiset of algebraic numbers which is
the union of Galois orbits for the discriminant −24n + 1 ring class field. Moreover, for each
Q ∈ Qn we have that 6(24n− 1)P (αQ) is an algebraic integer.

Theorem 1.1 gives an algorithm for computing p(n), as well as the polynomial

(1.6) Hn(x) = xh(−24n+1) − (24n− 1)p(n)xh(−24n+1)−1 + · · · :=
∏

Q∈Qn

(x− P (αQ)) ∈ Q[x].

One simply computes sufficiently precise approximations of the singular moduli P (αQ).

Remark. Using the theory of Poincaré series and identities and formulas for Kloosterman-type
sums, one can use Theorem 1.1 to give a new (and longer) proof of the exact formula (1.1).
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Example. We give an amusing proof of the fact that p(1) = 1. In this case, we have that
24n− 1 = 23, and we use the Γ0(6)-representatives

Q1 = {Q1, Q2, Q3} = {6x2 + xy + y2, 12x2 + 13xy + 4y2, 18x2 + 25xy + 9y2}.
The corresponding CM points are

αQ1 := − 1

12
+

1

12
·
√
−23, αQ2 := −13

24
+

1

24
·
√
−23, αQ3 := −25

36
+

1

36
·
√
−23.

Using the explicit Fourier expansion of P (z), we find that P (αQ3) = P (αQ2), and that

P (αQ1) ∼ 13.965486281 and P (αQ2) ∼ 4.517256859− 3.097890591i.

By means of these numerics we can prove that

H1(x) :=
3∏

m=1

(x− P (αQm)) = x3 − 23x2 +
3592

23
x− 419,

and this confirms that p(1) = 1
23

Tr(1) = 1. If β := 161529092 + 18648492
√

69, then we have

P (αQ1) =
β1/3

138
+

2782

3β1/3
+

23

3
,

P (αQ2) = −β1/3

276
− 1391

3β1/3
+

23

3
−
√
−3

2
·
(

β1/3

138
− 2782

3β1/3

)
.

The claim in Theorem 1.1 that p(n) = Tr(n)/(24n− 1) is an example of a general theorem
(see Theorem 3.6) on “traces” of CM values of certain weak Maass forms. This result pertains
to weight 0 weak Maass forms which are images under the Maass raising operator of weight
−2 harmonic Maass forms. We apply this to F (z) which is a weight −2 weakly holomorphic
modular form, a meromorphic modular form whose poles are supported at cusps. Theorem 3.6
is a new result which adds to the extensive literature (for example, see [5, 9, 10, 13, 14, 15,
22, 29, 30]) inspired by Zagier’s seminal paper [35] on “traces” of singular moduli.

To obtain this result, we employ the theory of theta lifts as in earlier work by Funke and
the first author [8, 18]. Here we use the Kudla-Millson theta functions to construct a new
theta lift (see Corollary 3.4), a result which is of independent interest. The lift maps spaces
of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vector valued harmonic
weak Maass forms for Mp2(Z). In Section 2 we recall properties of these theta functions, and
in Section 3 we construct the lift, and we then employ an argument of Katok and Sarnak to
prove Theorem 3.6. In Section 3 we also indicate how Corollary 3.4 and Theorem 3.6 extend
to general weights. In particular, we illustrate how to define theta lifts for general weights
using the Kudla-Millson kernel and Maass differential operators. For the sake of brevity and
the application to p(n), we chose to focus on the case of weight −2 harmonic Maass forms.

To complete the proof of Theorem 1.1, we must show that the values P (αQ) are algebraic
numbers1 with bounded denominators. To prove these claims, we require the classical theory of
complex multiplication, as well as new results which bound denominators of suitable singular
moduli. For example, we bound the denominators of the singular moduli (see Lemma 4.7)

1The algebraicity of such CM values follows from results of Shimura [33]. Here we give a new proof of this
algebraicity. Our proof has the advantage that it bounds denominators.
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of suitable nonholomorphic modular functions which contain the nonholomorphic Eisenstein
series E∗

2(z) as a factor. Theorem 4.5 is our general result which bounds the denominators of
algebraic Maass singular moduli such as P (αQ). These results are contained in Section 4. In
Section 5 we give further examples, and we then conclude with some natural questions.

2. The Kudla-Millson theta functions

We assume that the reader is familiar with basic facts about weak Maass forms (for example,
see [9]). Using the Kudla-Millson theta functions, we will construct a theta lift from spaces
of weight −2 harmonic weak Maass forms on Γ0(N) to weight −1/2 vector-valued harmonic
Maass forms on Mp2(Z). This lift will be crucial to the proof of Theorem 3.6 which interprets
coefficients of holomorphic parts of these weight −1/2 forms as “traces” of the CM values of
weight 0 weak Maass forms with Laplacian eigenvalue −2.

We begin by recalling some important facts about these theta functions in the setting of
the present paper (see [26], [9]). Let N be a positive integer. Let (V, Q) be the quadratic
space over Q of signature (1, 2) given by the trace zero 2× 2 matrices

(2.1) V :=

{
X =

(
x1 x2

x3 −x1

)
∈ Mat2(Q)

}
,

with the quadratic form Q(X) = N det(X). The corresponding bilinear form is (X, Y ) =
−N tr(XY ). We let G = Spin(V ), viewed as an algebraic group over Q, and write Ḡ for its
image in SO(V ). We realize the associated symmetric space D as the Grassmannian of lines
in V (R) on which the quadratic form Q is positive definite:

D ' {z ⊂ V (R); dim z = 1 and Q|z > 0}.

The group SL2(Q) acts on V by conjugation

g.X := gXg−1

for X ∈ V and g ∈ SL2(Q). This gives rise to the isomorphisms G ' SL2 and Ḡ ' PSL2 .
The hermitian symmetric space D can be identified with the complex upper half plane H as

follows: We choose as a base point z0 ∈ D the line spanned by ( 0 1
−1 0 ). Its stabilizer in G(R)

is equal to K = SO(2). For z = x + iy ∈ H, we choose gz ∈ G(R) such that gzi = z. If we
associate to z the vector

(2.2) X(z) := gz.

(
0 1
−1 0

)
=

1

y

(
−x zz̄
−1 x

)
∈ V (R),

then Q(X(z)) = N , and g.X(z) = X(gz) for g ∈ G(R). We obtain the isomorphism

(2.3) H −→ D, z 7→ gzz0 = RX(z).

The minimal majorant of ( , ) associated to z ∈ D is given by (X, X)z = (X, X(z))2− (X, X).
Let L ⊂ V be an even lattice and write L′ for the dual lattice. Let Γ be a congruence

subgroup of Spin(L), which takes L to itself and acts trivially on the discriminant group
L′/L. We write M = Γ\D for the associated modular curve.

Heegner points in M are given as follows. If X ∈ V (Q) with Q(X) > 0, we put

(2.4) DX = span(X) ∈ D.
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The stabilizer ΓX ⊂ Γ of X is finite. We denote by Z(X) the image of DX in M , counted
with multiplicity 1

|Γ̄X |
. For m ∈ Q>0 and h ∈ L′/L, the group Γ acts on Lm,h = {X ∈

L + h; Q(X) = m} with finitely many orbits. We define the Heegner divisor of discriminant
(m, h) on M by

(2.5) Z(m, h) =
∑

X∈Γ\Lm,h

Z(X).

2.1. The Kudla-Millson function. Kudla and Millson defined [26] a Schwartz function
ϕKM on V (R) valued in Ω1,1(D), the differential forms on D of Hodge type (1, 1), by

(2.6) ϕKM(X, z) =

(
(X, X(z))2 − 1

2π

)
e−π(X,X)z Ω,

where Ω = dx∧dy
y2 = i

2
dz∧dz̄

y2 . We have ϕ(g.X, gz) = ϕ(X, z) for g ∈ G(R). We define

ϕ0
KM(X, z) = eπ(X,X)ϕKM(X, z) =

(
(X, X(z))2 − 1

2π

)
e−2πR(X,z) Ω,(2.7)

where, following [25], we set

(2.8) R(X, z) :=
1

2
(X, X)z −

1

2
(X, X) =

1

2N
(X, X(z))2 − (X, X).

The quantity R(X, z) is always non-negative. It equals 0 if and only if z = DX , that is, if X
lies in the line generated by X(z). Hence, for X 6= 0, this does not occur if Q(X) ≤ 0. Recall
that for Q(X) > 0, the 2-form ϕ0

KM(X, z) is a Poincaré dual form for the Heegner point DX ,
while it is exact for Q(X) < 0.

2.2. The Weil representation. We write Mp2(R) for the metaplectic two-fold cover of
SL2(R). The elements of this group are pairs (M, φ(τ)), where M = ( a b

c d ) ∈ SL2(R) and
φ : H → C is a holomorphic function with φ(τ)2 = cτ + d. The multiplication is defined by

(M, φ(τ))(M ′, φ′(τ)) = (MM ′, φ(M ′τ)φ′(τ)).

We denote the integral metaplectic group, the inverse image of SL2(Z) under the covering map,
by Γ̃ = Mp2(Z). It is well known that Γ̃ is generated by T := (( 1 1

0 1 ) , 1), and S := (( 0 −1
1 0 ) ,

√
τ).

We let Γ̃∞ := 〈T 〉 ⊂ Γ̃.
We denote the standard basis elements of the group ring C[L′/L] by eh for h ∈ L′/L. Recall

(for example, see [3], [7]) that the Weil representation ρL associated with the discriminant
form L′/L is the unitary representation of Γ̃ on C[L′/L] defined by

ρL(T )(eh) := e(h2/2)eh,(2.9)

ρL(S)(eh) :=
e(− sig(L′/L)/8)√

|L′/L|

∑
h′∈L′/L

e(−(h, h′))eh′ .(2.10)

Here sig(L′/L) denotes the signature of the discriminant form L′/L modulo 8.
For k ∈ 1

2
Z, we let Hk,ρL

be the space of C[L′/L]-valued harmonic Maass forms of weight

k for the group Γ̃ and the representation ρL. We write M !
k,ρL

for the subspace of weakly

holomorphic forms (see [9] for definitions). We note that Hk,ρL
is denoted H+

k,L in [9].
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2.3. Theta series. For τ = u + iv ∈ H with u, v ∈ R, we put g′τ = ( 1 u
0 1 )

(
v1/2 0

0 v−1/2

)
. We

denote by ω the Weil representation of Mp2(R) on the space of Schwartz functions S(V (R)).

For h ∈ L′/L and ϕ ∈ S(V (R)) of weight k with respect to the action of S̃O(2, R) ⊂ Mp2(R),
we define the C[L′/L]-valued theta function

ΘL(τ, ϕ) =
∑
X∈L′

v−k/2(ω(g′τ )ϕ)(X)eX .(2.11)

It is well known that ΘL(τ, ϕ) is a (in general non-holomorphic) modular form of weight k for
Γ̃ with representation ρL. In particular, for the Kudla-Millson Schwartz function, we obtain,
in the variable τ , that

ΘL(τ, z, ϕKM) := ΘL(τ, z, ϕKM(·, z))

is a non-holomorphic modular form of weight 3/2 for Γ̃ with representation ρL. In z it is a
Γ-invariant (1, 1)-form on D.

We will also be interested in the standard Siegel theta function

ΘL(τ, z, ϕS) := ΘL(τ, z, ϕS(·, z)),

where ϕS(X, z) = e−π(X,X)z is the Gaussian on V (R) associated to the majorant (·, ·)z. In τ ,
it is a non-holomorphic modular form of weight −1/2 for Γ̃ with representation ρL, while it is
a Γ-invariant function in z. Explicitly we have

ΘL(τ, z, ϕS) := v
∑
X∈L′

e−2πvR(X,z)e(Q(X)τ)eX .

2.4. Differential operators. Let k ∈ 1
2
Z. Recall that the hyperbolic Laplace operator of

weight k on functions in the variable τ on H is given by

(2.12) ∆k = ∆k,τ = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

The Maass raising and lowering operators on non-holomorphic modular forms of weight k are
defined as the differential operators

Rk = 2i
∂

∂τ
+ kv−1,(2.13)

Lk = −2iv2 ∂

∂τ̄
.(2.14)

The raising operator Rk raises the weight of an automorphic form by 2, while Lk lowers it by
2. The Laplacian ∆k can be expressed in terms of Rk and Lk by

(2.15) −∆k = Lk+2Rk + k = Rk−2Lk.

We let ∂, ∂̄ and d be the usual differentials on D. We set dc = 1
4πi

(∂ − ∂̄), so that ddc =

− 1
2πi

∂∂̄. According to [8, Theorem 4.4], the Kudla-Millson theta function and the Siegel theta
function are related by the identity

L3/2,τΘL(τ, z, ϕKM) = −ddcΘL(τ, z, ϕS) =
1

4π
∆0,zΘL(τ, z, ϕS) · Ω.(2.16)
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Moreover, by [7, Prop. 4.5], it follows that the Laplace operators on the Kudla-Millson theta
kernel are related by

∆3/2,τΘL(τ, z, ϕKM) =
1

4
∆0,zΘL(τ, z, ϕKM).(2.17)

2.5. A lattice related to Γ0(N). For the rest of this section, we let L be the even lattice

L :=

{(
b a/N
c −b

)
: a, b, c ∈ Z

}
.(2.18)

The dual lattice is given by

L′ :=

{(
b/2N a/N

c −b/2N

)
: a, b, c ∈ Z

}
.(2.19)

We identify L′/L with Z/2NZ, and the quadratic form on L′/L is identified with the quadratic
form x 7→ −x2 on Z/2NZ. The level of L is 4N . The group Γ0(N) is contained in Spin(L)
and acts trivially on L′/L. We denote by `, `′ the primitive isotropic vectors

` =

(
0 1/N
0 0

)
, `′ =

(
0 0
−1 0

)
in L, and write K for the one-dimensional lattice Z ( 1 0

0 −1 ) ⊂ L. We have L = K + Z` + Z`′

and L′/L ∼= K ′/K. For λ ∈ V (R) and z = x + iy ∈ H we let λz ∈ V (R) be the orthogonal
projection of λ to RX(z). It is easily checked that

`z =
1

2Ny
X(z) and `2

z =
1

2Ny2
.

Following [3] we define a theta function for the smaller lattice K as follows. For α, β ∈ K⊗R
and h ∈ K ′/K we put

ξh(τ, α, β) =
√

v
∑

λ∈K+h

e
(
Q(λ + β)τ̄ − (λ + β/2, α)

)
,

ΞK(τ, α, β) =
∑

h∈K′/K

ξh(τ, α, β)eh.

According to [3, Theorem 4.1], the function ΞK(τ, α, β) transforms like a non-holomorphic
modular form of weight −1/2 for Γ̃ with representation ρK . For z ∈ H we put µ(z) =
( −x 0

0 x ) ∈ K ⊗ R. Theorem 5.2 of [3] allows us to rewrite ΘL as a Poincaré series:

Proposition 2.1. We have that

ΘL(τ, z, ϕS) =
1√
2`2

z

·ΞK(τ, 0, 0)+
1

2
√

2`2
z

∞∑
n=1

∑
γ∈Γ̃∞\Γ̃

[
exp

(
− πn2

2v`2
z

)
Ξ(τ, nµ(z), 0)

]
|−1/2,ρK

γ.



8 JAN HENDRIK BRUINIER AND KEN ONO

2.6. Poincaré series. We now recall some facts on Poincaré series with exponential growth
at the cusps. Let k ∈ 1

2
Z. Let Mν, µ(z) and Wν, µ(z) be the usual Whittaker functions (see

p. 190 of [1]). For convenience, we put for s ∈ C and y ∈ R>0:

Ms,k(y) = y−k/2M−k/2, s−1/2(y).(2.20)

For s = k/2, we have the identity

Mk/2,k(y) = y−k/2M−k/2, k/2−1/2(y) = ey/2.(2.21)

Let Γ∞ be the subgroup of Γ = Γ0(N) generated by ( 1 1
0 1 ). If k is integral, and m is a

positive integer, we define the Poincaré series

(2.22) Fm(z, s, k) =
1

2Γ(2s)

∑
γ∈Γ∞\Γ

[Ms,k(4πmy)e(−mx)] |k γ,

where z = x + iy ∈ H and s ∈ C with <(s) > 1 (for example, see [7] ). This Poincaré series
converges for <(s) > 1, and it is an eigenfunction of ∆k with eigenvalue s(1−s)+(k2−2k)/4.
Its specialization at s0 = 1−k/2 is a harmonic Maass form [7, Proposition 1.10]. Its principal
part at the cusp ∞ is given by q−m + C for some constant C ∈ C, and the principal parts at
the other cusps are constant.

The next proposition describes the images of these series under the Maass raising operator.

Proposition 2.2. We have that

1

4πm
RkFm(z, s, k) = (s + k/2)Fm(z, s, k + 2).

Proof. Since Rk commutes with the slash operator, it suffices to show that

1

4πm
RkMs,k(4πmy)e(−mx) = (s + k/2)Ms,k+2(4πmy)e(−mx).

This identity follows from (13.4.10) and (13.1.32) in [1]. �

We also define C[L′/L]-valued analogues of these series. Let h ∈ L′/L, and let m ∈ Z−Q(h)
be positive. For k ∈ Z− 1

2
we define

(2.23) Fm,h(τ, s, k) =
1

2Γ(2s)

∑
γ∈Γ̃∞\Γ̃

[Ms,k(4πmy)e(−mx)eh] |k,ρL
γ.

The series converges for <(s) > 1 and defines a weak Maass form of weight k for Γ̃ with
representation ρL. The special value at s = 1 − k/2 is harmonic. If k ∈ Z − 1

2
, it has the

principal part q−meh + q−me−h + C for some constant C ∈ C[L′/L].

3. The theta lift and “traces” of CM values of weak Maass forms

Here we construct the theta lift which we then use to prove that the coefficients of certain
weight −1/2 harmonic weak Maass forms are “traces” of CM values of weak Maass forms.
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3.1. A theta lift. Let L be the lattice (2.18). For k ∈ 1
2
Z, we let Hk(N) denote the space

of harmonic Maass forms of weight k for Γ := Γ0(N). We let H∞
k (N) denote the subspace of

Hk(N) consisting of those harmonic Maass forms whose principal parts at all cusps other than
∞ are constant. We write M !

k(N) for the subspace of weakly holomorphic forms in Hk(N),

and we put M !,∞
k (N) = M !

k(N) ∩H∞
k (N).

For a weak Maass form f of weight −2 for Γ we define

Λ(τ, f) = L3/2,τ

∫
M

(R−2,zf(z))ΘL(τ, z, ϕKM).(3.1)

According to [9, Proposition 4.1], the Kudla-Millson theta kernel has exponential decay as

O(e−Cy2
) for y →∞ at all cusps of Γ with some constant C > 0. Therefore the theta integral

converges absolutely. It defines a C[L′/L]-valued function on H that transforms like a non-
holomorphic modular form of weight −1/2 for Γ̃. We denote by Λh(τ, f) the components of
the lift Λ(τ, f) with respect to the standard basis (eh)h of C[L′/L].

The group O(L′/L) can be identified with the group generated by the Atkin-Lehner invo-
lutions. It acts on weak Maass forms for Γ by the Petersson slash operator. It also acts on
C[L′/L]-valued modular forms with respect to the Weil representation ρL through the natural
action on C[L′/L]. The following proposition, which is easily checked, shows that the theta
lift is equivariant with respect to the action of O(L′/L).

Proposition 3.1. For γ ∈ O(L′/L) and h ∈ L′/L, we have

Λγh(τ, f) = Λh(τ, f |−2 γ−1).

Proposition 3.2. If f is an eigenform of the Laplacian ∆−2,z with eigenvalue λ, then Λ(τ, f)
is an eigenform of ∆−1/2,τ with eigenvalue λ/4.

Proof. The result follows from (2.17) and the fact that

Rk∆k = (∆k+2 − k)Rk, ∆k−2Lk = Lk(∆k + 2− k).(3.2)

We may use symmetry of the Laplacian on the functions in the integral because of the very
rapid decay of the Kudla-Millson theta kernel [9, Proposition 4.1]. �

We now compute the lift of the Poincaré series.

Theorem 3.3. If m is a positive integer, then we have

Λ
(
τ, Fm(z, s,−2)

)
=

22−s
√

πNs(1− s)

Γ( s
2
− 1

2
)

∑
n|m

n · F m2

4Nn2 , m
n

(τ, s
2

+ 1
4
,−1

2
).

Proof. By definition we have

Λ
(
τ, Fm(z, s,−2)

)
= L3/2,τ

∫
M

(R−2,zFm(z, s,−2))ΘL(τ, z, ϕKM).

Employing Propsition 2.2 and (2.16), we see that this is equal to

m(s− 1)

∫
M

Fm(z, s, 0)∆0,zΘL(τ, z, ϕS)Ω.
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Using definition (2.22), we find, by the usual unfolding argument, that

Λ
(
τ, Fm(z, s,−2)

)
=

m(s− 1)

Γ(2s)

∫
Γ∞\H

Ms,0(4πmy)e(−mx)∆0,zΘL(τ, z, ϕS)Ω.

By Proposition 2.1, we may replace ∆0,zΘL(τ, z, ϕS) by ∆0,zΘ̃L(τ, z, ϕS), where

Θ̃L(τ, z, ϕS) =
1

2
√

2`2
z

∞∑
n=1

∑
γ∈Γ̃∞\Γ̃

[
exp

(
− πn2

2v`2
z

)
Ξ(τ, nµ(z), 0)

]
|−1/2,ρK

γ.

Recall that `2
z = 1

2Ny2 . The function Θ̃L(τ, z, ϕS) and its partial derivatives have square

exponential decay as y → ∞. Therefore, for <(s) large, we may move the Laplace operator
to the Poincaré series and obtain

Λ
(
τ, Fm(z, s,−2)

)
=

m(s− 1)

Γ(2s)

∫
Γ∞\H

(
∆0,zMs,0(4πmy)e(−mx)

)
Θ̃L(τ, z, ϕS)Ω(3.3)

= −ms(s− 1)2

Γ(2s)

∫
Γ∞\H

Ms,0(4πmy)e(−mx)Θ̃L(τ, z, ϕS)Ω

= −ms(s− 1)2

Γ(2s)

∞∑
n=1

∑
γ∈Γ̃∞\Γ̃

I(τ, s, m, n) |−1/2,ρK
γ,

where

I(τ, s, m, n) =

∫ ∞

y=0

∫ 1

x=0

Ms,0(4πmy)e(−mx)
1

2
√

2`2
z

exp

(
− πn2

2v`2
z

)
Ξ(τ, nµ(z), 0)

dx dy

y2
.

If we use the fact that K ′ = Z
(

1/2N 0
0 −1/2N

)
, and identify K ′/K ∼= Z/2NZ, then we have

Ξ(τ, nµ(z), 0) =
√

v
∑
b∈Z

e

(
− b2

4N
τ̄ − nbx

)
eb.

Inserting this in the formula for I(τ, s, m, n), and by integrating over x, we see that I(τ, s, m, n)
vanishes when n - m. If n | m, then only the summand for b = −m/n occurs, and so

I(τ, s, m, n) =

√
Nv

2

∫ ∞

0

Ms,0(4πmy) exp

(
−πNn2y2

v

)
dy

y
e

(
− m2

4Nn2
τ̄

)
e−m/n.

To compute this last integral, we note that

Ms,0(4πmy) = M0,s−1/2(4πmy) = 22s−1Γ(s + 1/2)
√

4πmy · Is−1/2(2πmy)

(for example, see (13.6.3) in [1]). Substituting t = y2 in the integral, we obtain∫ ∞

0

Ms,0(4πmy) exp

(
−πNn2y2

v

)
dy

y

= 22s−1Γ(s + 1/2)

∫ ∞

0

√
4πmyIs−1/2(2πmy) exp

(
−πNn2y2

v

)
dy

y

= 22s−1Γ(s + 1/2)
√

πm

∫ ∞

0

Is−1/2(2πm
√

t) exp

(
−πNn2t

v

)
t−3/4 dt.
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The latter integral is a Laplace transform which is computed in [16] (see (20) on p.197).
Inserting the evaluation, we obtain∫ ∞

0

Ms,0(4πmy) exp

(
−πNn2y2

v

)
dy

y

= 22s−1Γ (s/2)

(
Nn2

πm2v

)1/4

M1/4,s/2−1/4

(
πm2v

Nn2

)
exp

(
πm2v

2Nn2

)
= 22s−1Γ (s/2)

(
Nn2

πm2v

)1/2

Ms/2+1/4,−1/2

(
πm2v

Nn2

)
exp

(
πm2v

2Nn2

)
.

Consequently, we have in the case n | m that

I(τ, s, m, n) =
22s−2Nn√

πm
Γ (s/2)Ms/2+1/4,−1/2

(
πm2v

Nn2

)
e

(
− m2

4Nn2
u

)
e−m/n.

Substituting this in (3.3), we find

Λ
(
τ, Fm(z, s,−2)

)
=

22−s
√

πNs(1− s)

Γ( s
2
− 1

2
)

∑
n|m

n · F m2

4Nn2 ,−m
n

(τ, s
2

+ 1
4
,−1

2
).

Since Fm,h(τ, s,−1/2) = Fm,−h(τ, s,−1/2), this concludes the proof of the theorem. �

Corollary 3.4. If f ∈ H−2(N) is a harmonic Maass form of weight −2 for Γ0(N), then
Λ(τ, f) belongs to H−1/2,ρL

. In particular, we have

Λ
(
τ, Fm(z, 2,−2)

)
= −2N

∑
n|m

n · F m2

4Nn2 , m
n

(τ, 5
4
,−1

2
).

Proof. The formula for the image of the Poincaré series Fm(z, 2,−2) is a direct consequence
of Theorem 3.3. These Poincaré series for m ∈ Z>0 span the subspace H∞

−2(N) ⊂ H−2(N) of
harmonic Maass forms whose principal parts at all cusps other than ∞ are constant. Conse-
quently, we find that the image of H∞

−2(N) is contained in H−1/2,ρL
.

For simplicity, here we only prove that the image of the full space H−2(N) is contained in
H−1/2,ρL

in the special case when N is squarefree. For general N one can argue similarly, but
the technical details get more complicated. When N is squarefree, then the group O(L′/L) of
Atkin-Lehner involutions acts transitively on the cusps of Γ0(N). Consequently, we have

H−2(N) =
∑

γ∈O(L′/L)

γH∞
−2(N).

Using Proposition 3.1, we see that the whole space H−2(N) is mapped to H−1/2,ρL
. �

Theorem 3.5. The theta lift Λ maps weakly holomorphic modular forms to weakly holomor-
phic modular forms.

Proof. For simplicity we prove this only for the subspace M !,∞
−2 (N). If N is squarefree, one

obtains the result for the full space M !
−2(N) using the action of O(L′/L) as in the proof of

Corollary 3.4. For general N , the argument gets more technical and we omit the details.
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Let F ∈ M !,∞
−2 (N) and denote the Fourier expansion of F at the cusp ∞ by

F (z) =
∑
m∈Z

aF (m)e(mz).

We may write F as a linear combination of Poincaré series as

F (z) =
∑
m>0

aF (−m)Fm(z, 2,−2).

According to Corollary 3.4, we find that the principal part of Λ(F ) is equal to

−2N
∑
m>0

aF (−m)
∑
n|m

n · e
(
− m2

4Nn2
z

) (
em/n + e−m/n

)
.

We now use the pairing {·, ·} of H−1/2,ρL
with the space of cusp forms S5/2,ρ̄L

(see [8], Propo-
sition 3.5) to prove that Λ(F ) is weakly holomorphic. We need to show that {Λ(F ), g} = 0
for every cusp form g ∈ S5/2,ρ̄L

. If we denote the coefficients of g by b(M, h), we have

{Λ(F ), g} = −4N
∑
m>0

aF (−m)
∑
n|m

n · b
(

m2

4Nn2
,
m

n

)
= −4N{F,S1(g)}.

Here S1(g) ∈ S4(N) denotes the (first) Shimura lift of g as in [34]. Since F is weakly holo-
morphic, the latter quantity vanishes. �

Theorem 3.6. Let f ∈ H−2(N) and put ∂f := 1
4π

R−2,zf . For m ∈ Q>0 and h ∈ L′/L the
(m, h)-th Fourier coefficient of the holomorphic part of Λ(τ, f) is equal to

trf (m, h) = − 1

2m

∑
z∈Z(m,h)

∂f(z).

Proof. Inserting the definition of the theta lifting and using (2.16), we have

Λ
(
τ, f

)
= 4πL3/2,τ

∫
M

∂f(z)ΘL(τ, z, ϕKM)

=

∫
M

∂f(z)∆0,zΘL(τ, z, ϕS)Ω.

For X ∈ V (R) and z ∈ D we define ϕ0
S(X, z) = e2πQ(X)ϕS(X, z). Then the Fourier expansion

of the Siegel theta function in the variable τ is given by

ΘL(τ, z, ϕS) =
∑
X∈L′

ϕ0
S(
√

vX, z)qQ(X)eX .(3.4)

For m ∈ Q>0 and h ∈ L′/L, we put Lm,h = {X ∈ L + h; Q(X) = m}. The group Γ acts on
Lm,h with finitely many orbits. We write C(m, h) for the (m, h)-th Fourier coefficient of the
holomorphic part of Λ(τ, f). Using (3.4), we see that

C(m, h) =

∫
M

∂f(z)∆0,z

∑
X∈Lm,h

ϕ0
S(
√

vX, z)Ω.
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According to [8, Proposition 3.2], for Q(X) > 0 the function ϕ0
S(X, z) has square exponential

decay as y →∞. This implies that we may move the Laplacian in the integral to the function
∂f . Since ∆0∂f = −2∂f , we see that

C(m, h) = −2

∫
M

∂f(z)
∑

X∈Lm,h

ϕ0
S(
√

vX, z)Ω.

Using the usual unfolding argument, we obtain

C(m, h) = −2
∑

X∈Γ\Lm,h

1

|Γ̄X |

∫
D

∂f(z)ϕ0
S(
√

vX, z)Ω.(3.5)

It is convenient to rewrite the integral over D as an integral over G(R) = SL2(R). If we
normalize the Haar measure such that the maximal compact subgroup SO(2) has volume 1,
we have

I(X) :=

∫
D

∂f(z)ϕ0
S(
√

vX, z) Ω =

∫
G(R)

∂f(gi)ϕ0
S(
√

vX, gi) dg.

Using the Cartan decomposition of G(R) and the uniqueness of spherical functions, we find,
arguing as in the work of Katok and Sarnak [23, pp.208], that

I(X) = ∂f(DX) · Yλ(
√

mv/N),

where

Yλ(t) = 4π

∫ ∞

1

ϕ0
S

(
tα(a)−1X(i), i

)
ωλ(α(a))

a2 − a−2

2

da

a
.

Here ωλ(g) is the standard spherical function with eigenvalue λ = −2 (see e.g. [28], Chapters

5.4, 7.2, and 10.3), and α(a) =
(

a 0
0 a−1

)
. Note that ω−2(α(a)) = a2+a−2

2
. It is easily computed

that

ϕ0
S

(
tα(a)−1X(i), i

)
= ve−πNt2(a2−a−2)2 ,

and therefore

Yλ(t) = 2πv

∫ ∞

0

e−4πNt2 sinh(r)2 cosh(r) sinh(r) dr =
v

4Nt2
.

Hence Yλ(
√

mv/N) = 1
4m

. Inserting this into (3.5), we obtain the assertion. �

Remark. We can define similar theta liftings for other weights. For k ∈ Z≥0 odd we define a
theta lifting of weak Maass forms of weight −2k to weak Maass forms of weight 1/2− k by

Λ(τ, f,−2k) = (Lτ )
k+1
2

∫
M

(Rk
zf)(z)ΘL(τ, z, ϕKM).(3.6)

In view of Proposition 3.2 and identity (3.2), we should have that the lifting takes H−2k(N)
to H1/2−k,ρL

and maps weakly holomorphic forms to weakly holomorphic forms. Analogously,
for k ∈ Z≥0 even we define a theta lifting of weak Maass forms of weight −2k to weak Maass
forms of weight 3/2 + k by

Λ(τ, f,−2k) = (Rτ )
k
2

∫
M

(Rk
zf)(z)ΘL(τ, z, ϕKM).(3.7)
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The lifting should then take H−2k(N) to H3/2+k,ρL
. These maps should give the interpretations

in terms of a theta lift of the results discussed in [35, §9]. Moreover, they should yield
generalizations to congruence subgroups, arbitrary weights, and to harmonic Maass forms at
the same time. The lifting considered in [9] is (3.7) in the case k = 0. The lifting considered
in the present paper is (3.6) for k = 1.

3.2. The case of the partition function. Here we derive the formula for the partition
function stated in Theorem 1.1 from Theorem 3.6 and Corollary 3.4. We consider the theta
lift of Section 3.1 in the special case when N = 6. We identify the discriminant form L′/L
with Z/12Z together with the Q/Z-valued quadratic form r 7→ −r2/24.

The function η(τ)−1 can be viewed as a component of a vector valued modular form in
M !

−1/2,ρL
as follows. (Note that the latter space is isomorphic to the space Jweak

0,6 of weak

Jacobi forms of weight 0 and index 6.) We define

G(τ) :=
∑

r∈Z/12Z

χ12(r)η(τ)−1er.

Using the transformation law of the eta-function under τ 7→ τ + 1 and τ 7→ −1/τ , it is easily
checked that G ∈ M !

−1/2,ρL
. The principal part of G is equal to q−1/24(e1 − e−5 − e7 + e11).

On the other hand, G can be obtained as a theta lift. Let F ∈ M !
−2(6) be the function

defined in (1.3). It is invariant under the Fricke involution W6, and under the Atkin-Lehner
involution W3 it is taken to its negative. Hence, in terms of Poincaré series we have

F = F1(·, 2,−2)− F1(·, 2,−2) | W2 − F1(·, 2,−2) | W3 + F1(·, 2,−2) | W6.

The function P is given by 1
4π

R−2(F ). Using Corollary 3.4 and Proposition 3.1, we see

that Λ(τ, F ) is an element of M !
−1/2,ρL

with principal part −4Nq−1/24(e1 − e−5 − e7 + e11).
Consequently, we have

G = − 1

4N
· Λ(τ, F ).

Now Theorem 3.6 tells us that for any positive integer n the coefficient of G with index
(24n−1

24
, 1) is equal to

3

N(24n− 1)

∑
z∈Z

“
24n−1

24
,1

” P (z) =
1

24n− 1

∑
Q∈Qn

P (αQ).

On the other hand, this coefficient is equal to p(n) because

q
1
24

η(z)
=

∞∏
n=1

1

1− qn
=

∞∑
n=0

p(n)qn.

4. Complex Multiplication and singular moduli

We have proved that p(n) = Tr(n)/(24n − 1). To complete the proof of Theorem 1.1, we
require results from the theory of complex multiplication, and some new general results which
bound the denominators of singular moduli.
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4.1. Singular moduli for j(z). We first recall classical facts about Klein’s j-function

(4.1) j(z) = q−1 + 744 + 196884q + 21493760q2 + . . . .

A point τ ∈ H is a CM point if it is a root of a quadratic equation over Z. The singular
moduli for j(z), its values at such CM points, play a central role in the theory of complex
multiplication. The following classical theorem (for example, see [4, 11]) summarizes some of
the most important properties of these numbers.

Theorem 4.1. Suppose that Q = ax2 + bxy + cy2 is a primitive positive definite binary
quadratic form with discriminant D = b2 − 4ac < 0, and let αQ ∈ H be the point for which
Q(αQ, 1) = 0. Then the following are true:

(1) We have that j(αQ) is an algebraic integer, and its minimal polynomial has degree
h(D), the class number of discriminant D positive definite binary quadratic forms.

(2) The Galois orbit of j(αQ) consists of the j(z)-singular moduli associated to the h(D)
classes of discriminant D forms.

(3) If K = Q(
√

D), then the discriminant D singular moduli are conjugate to one another
over K. Moreover, K(j(αQ)) is the discriminant −D Hilbert class field of K.

Theorem 4.1 and the properties of the weight 2 nonholomorphic Eisenstein series

(4.2) E∗
2(z) := − 3

πy
+ E2(z) = 1− 3

πy
− 24

∞∑
n=1

∑
d|n

dqn

will play a central role in the proof of Theorem 1.1.

4.2. Bounding the denominators. Here we show that singular moduli like 6D ·P (αQ) are
algebraic integers, where −D denotes the discriminant of Q. We first introduce notation. For
a positive integer N , we let ζN denote a primitive N -th root of unity. For a discriminant
−D < 0 and r ∈ Z with r2 ≡ −D (mod 4N) we let QD,r,N denote the set of positive definite
integral binary quadratic forms [a, b, c] of discriminant −D with N | a and b ≡ r (mod 2N).
This notation is not to be confused with Qn introduced earlier. This set-up is more natural

in this section. For Q = [a, b, c] ∈ QD,r,N we let αQ = −b+
√
−D

2a
be the corresponding Heegner

point in H. We write OD for the order of discriminant −D in Q(
√
−D).

Theorem 4.2. Let D > 0 be coprime to 6 and r ∈ Z with r2 ≡ −D (mod 24). If Q ∈ QD,r,6 is
primitive, then 6D·P (αQ) is an algebraic integer contained in the ring class field corresponding
to the order OD ⊂ Q(

√
−D).

Remark. By Theorem 4.1, the multiset of values P (αQ) is a union of Galois orbits. Therefore,
Theorem 4.2 completes the proof of Theorem 1.1.

Theorem 4.2 will follow from Theorem 4.5 below, a general result on values of derivatives of
weakly holomorphic modular forms at Heegner points. The following lemma is our key tool.

Lemma 4.3. Let Γ ⊂ Γ(1) be a level N congruence subgroup. Suppose that f(z) is a weakly
holomorphic modular function for Γ whose Fourier expansions at all cusps have coefficients
in Z[ζN ]. If τ0 ∈ H is a CM point, then f(τ0) is an algebraic integer whose degree over
Q(ζN , j(τ0)) is bounded by [Γ(1) : Γ].
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Proof. We consider the polynomial

Ψf (X, z) =
∏

γ∈Γ\Γ(1)

(X − f(γz)).

It is a monic polynomial in X of degree [Γ(1) : Γ] whose coefficients are weakly holomorphic
modular functions in z for the group Γ(1). Consequently, Ψf (X, z) ∈ C[j(z), X].

The assumption on the expansions of f at all cusps means that for every γ ∈ Γ(1) the
modular function f | γ has a Fourier expansion with coefficients in Z[ζN ]. So the coefficients
of Ψf (X, z) as a polynomial in X are weakly holomorphic modular functions for Γ(1) with
coefficients in Z[ζN ], and therefore they are elements of Z[ζN , j(z)]. Hence we actually have
that Ψf (X, z) ∈ Z[ζN , j(z), X].

Since Ψf (f(z), z) = 0, we have, for every z ∈ H, that f(z) is integral over Z[ζN , j(z)] with
degree bounded by [Γ(1) : Γ]. When τ0 is a CM point, then j(τ0) is an algebraic integer, and
the claim follows. �

4.3. Square-free level. If the level N is square-free, then the group of Atkin-Lehner invo-
lutions acts transitively on the cusps of Γ0(N). Combining this fact with Lemma 4.3 leads
to a handy criterion for the integrality of CM values. We begin by recalling some facts on
Atkin-Lehner involutions (see e.g. [24] Chapter IX.7).

Let N be an integer and k a positive integer. If f is a complex valued function on the upper
half plane H and M = ( a b

c d ) ∈ GL+
2 (R) then we put

(f | M)(z) = (f |k M)(z) = det(M)k/2(cz + d)−kf(Mz).

So scalar matrices act trivially. We write M !
k(N) for the space of weakly holomorphic modular

forms of weight k for the group Γ0(N).
Let Q be an exact divisor of N (i.e. Q|N and (Q, N/Q) = 1), and let WN

Q be an integral
matrix of the form

WN
Q =

(
Qα β
Nγ Qδ

)
with determinant Q. If f ∈ M !

k(N), then f 7→ f |WN
Q is independent of the choices of α, β, γ, δ,

and defines an involution of M !
k(N), called an Atkin-Lehner involution. If we write

RN
Q =

(
α β

Nγ/Q Qδ

)
,

we have WN
Q = RN

Q

(
Q 0
0 1

)
, and RN

Q ∈ Γ0(N/Q). For another exact divisor Q′ of N , we have

f | WN
Q | WN

Q′ = f | WN
Q∗Q′ ,(4.3)

where Q ∗Q′ = QQ′/(Q, Q′)2. If (N ′, Q) = 1, then

f | WNN ′

Q = f | WN
Q .(4.4)

Clearly WN
N acts as the usual Fricke involution WN .

From now on we assume that N is square-free. Then the cusps of the group Γ0(N) are
represented by 1/Q, where Q runs through the divisors N . Two cusps a/c and a′/c′ (where
a, c, a′, c′ ∈ Z and (a, c) = (a′, c′) = 1) are equivalent under Γ0(N) if and only if (c, N) = (c′, N)
(for example, see [12], Prop. 3.8.3 and p. 103). In particular, a complete set of representatives
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for the cusps of Γ0(N) is given by WN
Q ∞ with Q running though the divisors of N . Moreover,

we have the disjoint left coset decomposition

Γ(1) =
⋃
Q|N

⋃
j (Q)

Γ0(N)RN
Q

(
1 j
0 1

)
.(4.5)

Lemma 4.4. Let N be square-free, and suppose that f ∈ M !
0(N) has the property that f | WN

Q

has coefficients in Z for every Q | N . If τ0 is a level N Heegner point of discriminant −D,
then f(τ0) is an algebraic integer in the ring class field for the order OD ⊂ Q(

√
−D).

Proof. The assumption on f implies that f ∈ Q(j, jN). Therefore, by the theory of complex
multiplication (see Theorem 4.1), f(τ0) is contained in the claimed ring class field. Since N is
square-free, the cusps of Γ0(N) are represented by WN

Q ∞ with Q | N . Consequently, Lemma
4.3 implies that f(τ0) is an algebraic integer. �

4.4. CM values of derivatives of weakly holomorphic modular forms. The goal of
this section is to prove the following theorem which easily implies Theorem 4.2.

Theorem 4.5. Let N be a square-free integer, and suppose that f ∈ M !
−2(N) has the property

that f |−2 WN
Q has coefficients in Z for every Q | N . Define ∂f = 1

4π
R−2f . Let D > 0

be coprime to 2N and r ∈ Z with r2 ≡ −D (mod 4N). If Q ∈ QD,r,N is primitive, then
6D · ∂f(αQ) is an algebraic integer in the ring class field for the order OD ⊂ Q(

√
−D).

To prove the theorem we need two lemmas.

Lemma 4.6. Let N be a square-free integer. Let f ∈ M !
−2(N) and assume that f |−2 WN

Q has
integral Fourier coefficients for all Q | N . Define

Af =
1

4π
R−2f −

1

6
fE∗

2 .

Let D > 0 and r ∈ Z with r2 ≡ −D (mod 4N). If Q ∈ QD,r,N is primitive, then 6 · Af (αQ)
is an algebraic integer in the ring class field for the order OD ⊂ Q(

√
−D).

Proof. First, computing the Fourier expansion, we notice that Af ∈ M !
0(N). Then, using the

fact that R−2(f |−2 WN
Q ) = (R−2f) |−2 WN

Q , we see that 6Af | WN
Q has integral coefficients

for all Q | N . Consequently, the assertion follows from Lemma 4.4. �

Lemma 4.7. Let N be a square-free integer. Let f ∈ M !
−2(N) and assume that f | WN

Q has

integral Fourier coefficients for all Q | N . Define f̂ = f ·E∗
2 . Let D > 0 be coprime to 2N and

r ∈ Z with r2 ≡ −D (mod 4N). If Q ∈ QD,r,N is primitive, then D · f̂(αQ) is an algebraic
integer in the ring class field for the order OD ⊂ Q(

√
−D).

Proof. We write Q = [a, b, c]. Since −D = b2 − 4ac is odd, b is odd. Hence

M =

(
−b −2c
2a b

)
is a primitive integral matrix of determinant D, satisfying MαQ = αQ. By the elementary
divisor theorem there exist γ1, γ2 ∈ Γ0(N) such that

M = γ−1
1

(
1 0
0 D

)
γ2.(4.6)
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We put

rD(z) = E∗
2(z)−DE∗

2(Dz) = E∗
2(z)− (E∗

2 | WD)(z).

Because of (4.6), we have

E∗
2 | M = rD | γ1M + E∗

2 .

Using the fact that (2aαQ + b)2 = −D, we find that that

E∗
2(αQ) =

1

2
(rD |2 γ1)(αQ),

f̂(αQ) =
1

2
(f · rD)(γ1αQ).

Arguing as in the proof of Proposition 3.1 of [29], we see that f̂(αQ) is contained in the claimed
ring class field. Hence, replacing Q by γ1Q ∈ QD,r,N , it suffices to prove that D

2
(f · rD)(αQ) is

an algebraic integer.
In view of Lemma 4.3 it suffices to show that for any γ ∈ Γ(1), the weakly holomorphic

modular form D
2
(f · rD) | γ has Fourier coefficients in Z[ζND]. According to (4.5), there exists

a γ′ ∈ Γ0(N), a divisor Q | N and j ∈ Z such that

γ = γ′RN
Q

(
1 j
0 1

)
= γ′WN

Q

(
1/Q j/Q
0 1

)
.

Consequently, we have

(f |−2 γ)(z) = Q ·
(
f |−2 WN

Q

) (
z + j

Q

)
∈ Q · Z[ζQ]((q1/Q)).

To analyze the situation for rD, we write the integral matrix WDγ of determinant D as

WDγ = γ′′
(

D1 k
0 D2

)
with γ′′ ∈ Γ(1) and positive integers D1, D2, k satisfying D1D2 = D. Then we have

(rD |2 γ)(z) = (E∗
2 | γ)(z)− (E∗

2 | WDγ)(z)

= E∗
2(z)− D

D2
2

E∗
2

(
D1z + k

D2

)
.

Taking into account that D is odd, we see that D
2
(rD |2 γ) ∈ Z[ζD]((q1/D)). This concludes

the proof of the lemma. �

Proof of Theorem 4.5. Using the notation of Lemma 4.6 and Lemma 4.7, we have

∂f(z) = Af (z) +
1

6
f̂(z).

Consequently, the assertion follows from these lemmas. �

Proof of Theorem 4.2. We apply Theorem 4.5 to the function F ∈ M !
−2(6) defined in (1.3).

Note that F | W 6
6 = F and F | W 6

3 = −F . Moreover, we have P = 1
4π

R−2F = ∂F . �
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5. Examples

To compute p(n) using Theorem 1.1, one first determines representatives forQn = Q24n−1,1,6,
a set which has h(−24n+1) many elements. Gross, Kohnen, and Zagier (see pages 504–505 of
[19]) establish a one to one correspondence between representatives of Qn and positive definite
binary quadratic forms under SL2(Z) with discriminant −24n + 1. Therefore, to determine
representatives for Qn, it suffices to use the theory of reduced forms (for example, see page 29
of [11]) to determine representatives for the SL2(Z) equivalence classes, and to then apply the
Gross-Kohnen-Zagier correspondence (see the Proposition on page 505 of [19]).

For example, if n = 2, then −24n + 1 = −47, and we have that h(−47) = 5 and
Q2 = {[6, 1, 2], [12, 1, 1], [18, 13, 3], [24, 25, 7], [36, 49, 17]}, where [a, b, c] := ax2 + bxy + cz2.
Calculating p(n), by Theorem 1.1, now follows from sufficiently accurate numerical approxi-
mations of the algebraic integers 6(24n− 1)P (αQ).

We used this method to compute the first few “partition polynomials” Hn(x).

n (24n− 1)p(n) Hn(x)

1 23 x3 − 23x2 + 3592
23

x− 419

2 94 x5 − 94x4 + 169659
47

x3 − 65838x2 + 1092873176
472 x + 1454023

47

3 213 x7 − 213x6 + 1312544
71

x− 723721x4 + 44648582886
712 x3

+9188934683
71

x2 + 166629520876208
713 x + 2791651635293

712

4 475 x8 − 475x7 + 9032603
95

x6 − 9455070x5 + 3949512899743
952 x4

−97215753021
19

x3 + 9776785708507683
953 x2

−53144327916296
192 x− 134884469547631

54·19 .

We conclude with some natural questions which merit further investigation.

(1) Is it true that (24n− 1)P (αQ) is an algebraic integer for all Q ∈ Qn?
(2) What can be said about the irreducibility of the Hn(x)?
(3) Is there a “closed formula” for the constant terms of the Hn(x) which is analogous to

the formula of Gross and Zagier [20] on norms of differences of j(z)-singular moduli?
(4) Do the singular moduli P (αQ) enjoy special congruence properties? If so, do such

congruences imply Ramanujan’s congruences modulo 5, 7, and 11?
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