Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage

Mary Helen Barcellos-Hoff

Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

Tissue function requires coordinated multicellular behavior as a consequence of diverse signals integrated through the tissue microenvironment; importantly, these cell–cell and cell–microenvironment interactions also actively suppress cancer. Ionizing radiation (IR) elicits a well-defined cellular response to DNA damage that mediates the fate of the individual cell, concomitantly with a less well-characterized overarching tissue stress response that coordinates the response of multiple cell types via microenvironment signaling. We have now shown that these programs to reestablish homeostasis intersect via mutual regulation by transforming growth factor-β1 (TGFβ1), which acts as an extracellular sensor and signal of stress. In this review, the concept that this type of functional integration of cell and tissue stress response programs is essential to cancer suppression will be discussed. Our experiments using IR, and several recent studies that experimentally manipulate stromal TGFβ, show that disruption of microenvironment signaling actively promotes malignant progression. Understanding the dynamic interactions between tissue and cell stress responses will be necessary for an accurate assessment of cancer risk and may also provide targets for prevention.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: TGFβ; Stromal–epithelial; Ionizing radiation; Carcinogenesis; DNA damage

Contents

1. Introduction ... 139
 1.1. Radiation carcinogenesis 139
 1.2. Radiation-induced microenvironments 140
 1.3. Interaction between tissue and cellular stress responses: p53 and TGFβ1 140
 1.4. Contributions of irradiated microenvironment to neoplastic progression 142
 1.4.1. Radiation exposure induces a heritable malignant HMEC phenotype 143
 1.5. Integrative radiation carcinogenesis 144

2. Conclusion .. 144

Acknowledgments .. 145

References .. 145
1. Introduction

Multicellular dynamics between the target epithelium and cells in the stroma, vasculature, and immune and inflamma-
tory system during carcinogenesis are critical determinants of whether neoplastic capacity is expressed, suppressed, or
eliminated. The ability of neoplastic cells to subvert and re-
cruit support from normal cells is as essential to their sur-
vival as innate programmatic disruption of signals that con-
trol growth and death [1]. Indeed, several investigators have
argued that disruption of the cell interactions and tissue archi-
tecture can be a primary driver of carcinogenesis [2–6]. Even
so, it is still not widely appreciated that the converse is equally
true, i.e. normal tissues are very effective tumor suppressors
(reviewed in [7,8]). This review will highlight studies that
demonstrate how disruption of multicellular interactions, ei-
ther by carcinogens or experimental manipulation, actively
promotes the neoplastic process, and discuss the idea that a
more complete understanding of this aspect of carcinogenesis
can be used to intervene in the development of cancer.

To begin, our own studies using IR will illustrate some
general features of how disruption of the microenvironment
promotes carcinogenesis. In addition, recent publications by
Kupperwasser et al. [9], Bhownik et al. [10], and Maffini
et al. [11] offer exciting new models and further evidence that
microenvironment composition is a critical determinant of
cancer suppression or promotion. These studies highlight the
multicellular involvement in response to carcinogens and
in cancer progression, and the need to frame a higher order
view of cancer as an emergent phenomenon of tissues, rather
than a property of its component cells. Lastly, this review will
underscore tissue responses as a target for cancer prevention.

1.1. Radiation carcinogenesis

In many tissues of both humans and animals, exposure to
high dose ionizing radiation represents a well-established
carcinogen. Epidemiologic data demonstrates that increased
risk of breast cancer in women exposed to as little as 1 Gy
as a result of atomic bomb [12], therapeutic [13,14] or diag-
nostic [15] radiation exposures. Radiation has a well-defined
physical basis for action and a statistical probability of total
and specific chemical reactions. Radiation is generally thought
to produce damage in individual exposed cells at the time of
irradiation. However it has recently been recognized that non-
irradiated cells respond to the presence of irradiated cells,
the so-called bystander effect. Studies of carcinogenic po-
tential of IR have frequently focused on initial DNA dam-
age, which, if improperly repaired, can result in mutations or
chromosome damage. This paradigm has been challenged by
the recent recognition that cells surviving radiation can ex-
hibit a persistent state of genomic instability [16]. Although
DNA damage can cause cell death and eliminate potentially
dangerous cells, misrepaired damage may result in a muta-
tion that initiates the neoplastic cell. Consequently, DNA is
commonly considered the major target of IR damage. Non-
mutagenic effects of IR however can have persistent effects
that perturb the multicellular system in a manner that clearly
promotes, and may initiate, the neoplastic process.

We proposed that the ability of IR to induce changes in
tissue microenvironment is a critical component of its car-
cinogenic potential that affects the frequency and features of
neoplastic progression (reviewed in [3,8]), and thus have
sought to characterize the irradiated microenvironment and
determine how specific events contribute to carcinogenesis.
These studies have shown that IR exposure results in a non-
munational changes in interactions with the microenviron-
ment, stromal- epithelial, cell–cell and cell–extracellular ma-
trix. From these and other studies in the literature, we have
come to the conclusion the microenvironment and pheno-
type, as well as genome, are targets of IR effects that have
significant and persistent ramifications in the organism. Stud-
ies described below suggest that radiation can elicit specific
phenotypic alterations. Some aspects of the irradiated phe-
notype appear to result from intracellular signaling that cul-
minates in a heritable phenotypic changes; others may be
mediated by extracellular signaling from the irradiated mi-
croenvironment. In each model, we will discuss the role of
transforming growth factor-β1 (TGFβ1) as a specific func-
tional link between cell stress response to damage and the
signaling mediated through the microenvironment.

We proposed that the cell biology of irradiated tissues
is indicative of a tissue damage response program directed
towards restoring tissue function in which individual cell re-
sponses are coordinated by extracellular signaling [17]. Tis-
sue pathology and organ failure can arise from the lack of
orchestrated communication between cells and among differ-
cent cell types. We [18] and others [19] have argued radiation
exposure ultimately compromises tissue integrity by altering
the flow of information among cells. There are several general
features of tissue response to ionizing radiation that support
this concept summarized in Table 1.

We have used two models to ask whether radiation ex-
poure elicits a distinct phenotype, and if such phenotypic
changes can promote malignant progression. The first is the
mouse mammary gland and the second is cultured HMEC.
The basic biology of mammary gland is studied at many
levels: gross morphology visualized in wholemount prepa-
rations, histology, molecular analysis of DNA, RNA and
protein composition and abundance, and functional analysis

Table 1

<table>
<thead>
<tr>
<th>Tissue response to ionizing radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microenvironment is a target of radiation</td>
</tr>
<tr>
<td>Tissue response to ionizing radiation is global yet innately tissue- and cell-type specific</td>
</tr>
<tr>
<td>Tissue responses, like cellular responses, are evident very rapidly</td>
</tr>
<tr>
<td>Some protein responses are secondary to others, indicative of a dynamic network</td>
</tr>
<tr>
<td>Tissue response can be detected after exposure to low whole body doses (0.1 Gy)</td>
</tr>
<tr>
<td>Radiation-induced cell phenotypes can be persistent and heritable</td>
</tr>
<tr>
<td>Microenvironment remodeling is radiation-quality dependent</td>
</tr>
</tbody>
</table>
that includes developmental states and responses to challenge (e.g., hormone stimulation, radiation response, chemical carcinogens). A comprehensive study of normal mammary biology integrates gross and cellular histology, functional phenotype, and informed genetic variation [20]. Inbred mouse strains with different susceptibility to mammary carcinogenesis are a platform for discovery of genetic determinants of cancer, while genetically engineered mice can be used for hypothesis testing, and generation when combined with genome-wide integration like expression microarray. HMEC on the other hand provide species-relevance and can be cultured in various configurations to determine how intrinsic cellular pathways are affected by extracellular signaling and the microenvironment [21].

1.2. Radiation-induced microenvironments

Ionizing radiation leads to global remodeling of the extracellular matrix and induces activity of potent modulators of cell phenotype [22–24]. Using immunofluorescence and digital microscopy we observed dynamic extracellular matrix changes in the peri-epithelial stroma, adipose stroma and epithelial basement membrane. The tissue compartment, time after irradiation and quality of radiation differentially affect extracellular matrix remodeling. In parallel, integrin extracellular matrix receptors are also differentially expressed (Tamou and Barcellos-Hoff, unpublished data). Radiation also alters the expression of endothelial and tumor cell integrins [25,26]. Recent studies have shown that cell adhesion molecules are fundamental pathways for cell signaling [27,28], and play an important role during neoplasia [29–31]. Since signaling from cell adhesion molecules also mediates cell–ECM and cell–cell adhesion, they effectively prevent cell migration and invasion into surrounding tissues. More recently, disruption of adhesion systems has been postulated to contribute a rate-limiting step to progression by modulating neuroplastic processes by altering pathways that control genomic stability [32]. Mouse models in which ECM integrity is disrupted by transgenic manipulations also promote mammary tumorogenesis [33].

In response to damage, the flow of information both locally between cells and tissues, and distantly between organs is mediated in large part by cytokines [34]. An early and persistent event in irradiated tissues is the activation of the pluripotent cytokine, TGFβ. TGFβ is produced as a latent complex that is disrupted by transgenic manipulations also promote mammary tumorogenesis [33].

1.3. Interaction between tissue and cellular stress responses: p53 and TGFβ1

The mediators of cellular responses to DNA damage caused by radiation are very well characterized such that p53 is considered to be the major cellular sensor and signal of DNA damage. p53 is a classic tumor suppressor based on its major action as a transcription factor critical to determining cell fate decisions [43]. The p53 stress response pathway leads to two major cellular outcomes. Activation of p53 in damaged cells promotes apoptosis or induces cell cycle blockade. Apoptosis eliminates cells from the population that have sustained potentially carcinogenic DNA damage [44]. Cell cycle checkpoints at G1/S [43] or G2/M [45] cell cycle transition block provide time for cells to repair DNA. Since a cell's response to damage needs to be rapid, it is not surprising that the activation of the p53 stress response primarily involves post-translational changes in the p53 protein. Two major post-translational changes are: (1) a decrease in rate of p53 protein turnover and a consequent increase in the life time and total cellular content of the protein (e.g., protein stabilization), and (2) a myriad of p53 protein co-valent modifications involving serine phosphorylations and de-phosphorylations.
Whereas intracellular mediators of p53 stability following radiation exposure have been the subject of intense study, little is known about the extracellular factors that affect the p53 response to ionizing radiation. We therefore examined p53 serine 18 phosphorylation using immunoblotting and immunofluorescence from irradiated Tgfβ1 heterozygote and wildtype mammary gland [37]. Wildtype mammary epithelium showed massive induction of p53 phosphorylation, which was significantly reduced in irradiated Tgfβ1 +/- mice and did not recover at later times. Likewise nuclear phospho-specific p53 immunofluorescence was also significantly reduced in irradiated Tgfβ1 heterozygote compared to wild type mammary epithelium. Since chronic depletion in Tgfβ1 +/- mice could perturb aspects of cell physiology that modify the p53 radiation response, we examined animals that had received pan-specific TGFβ1 neutralizing antibodies shortly before irradiation. Similar to the results seen in the Tgfβ1 +/- mice, both immunoblotting of total tissue extracts and nuclear localization of phosphorylated p53 serine 18 determined by immunofluorescence staining were significantly reduced when TGFβ1 was transiently depleted prior to irradiation. Also, as seen in the knockout mice, TGFβ1 pan-specific neutralizing antibody treatment did not alter levels of total p53 indicating that TGFβ1 affected p53 post-translational modification rather than abundance. Recent experiments using primary mammary epithelial cell cultures demonstrate that this hypophosphorylation response is both epithelial cell autonomous and that the phosphorylation of p53 can be restored upon treatment with exogenous TGFβ (Jobling, Pajares and Barcellos-Hoff, unpublished data). Thus, it appears that TGFβ1 is necessary for the initiation of DNA damage responses in epithelial cells, which is both surprising and unprecedented.

One might postulate that sensors of damage have also evolved outside the cell that are capable of registering certain types of damage and producing a signal that recruit non-damaged cell to facilitate reestablishment of homeostasis. A number of striking similarities exist between p53 and TGFβ1; both regulate complex cellular decisions regarding fate by mediating cell proliferation and apoptosis, both are induced by a variety of damage and specifically ionizing radiation, both exist in latent forms, both exhibit redox modulation of protein activity, both are very rapidly activated (within minutes of exposure), and both are translationally and transcriptionally controlled to moderate later events. Recent studies using transgenic knockout animals have also demonstrated that each protein is auto-regulating as evidenced by striking phenotypes of haploid genotype. In addition, their respective intracellular signaling pathways intersect such that p53 status affects responses to TGFβ1. However, p53 is intracellular and mediates individual cell fate, while TGFβ1 is extracellular and orchestrates diverse multicellular fates.

Recent data from normal epithelial cells indicate that signaling events often attributed to p53 may be induced directly by TGFβ1. Both GADD-45 and WAF1/p21are induced by TGFβ treatment in primary p53 wildtype keratinocytes and in transformed cells that have non-functional p53 [46]. Furthermore, TGFβ1 activates c-Jun amino-terminal kinases within 5 min of exposure; this kinase pathway is involved in UV-mediated apoptosis and phosphorylation of c-Jun, all of which are part of the cellular stress response [42]. More importantly, p53 itself is increased during TGFβ1 induced apoptosis in rat liver epithelial cells [47]. Recent studies have demonstrated that p53 is involved in mammary gland involution as well [48]. Both p53 mRNA and protein were detected in the mammary epithelium within 48h following weaning and resulted in an 8-fold increase in levels of WAF1/p21mRNA, which was absent in BALB/c-p53null mice [48]. Elevated TGFβ1 gene expression is an early events during mammary involution [49].

A variety of studies have linked p53 status and TGFβ responsiveness in cancer cells. Mutant p53 correlates with reduced TGFβ responsiveness in human bronchial epithelial cells [50], murine keratinocytes [51] and thyroid epithelial cells [52]. A few reports have concluded that they are independent [53], or that mutant p53 is not required for loss of TGFβ response [54,55]. However, in HaCaT cell line, which have mutant p53, TGFβ exposure induces p53 nuclear relocalization [46]. Of course, transformed and cancer cells have a very high incidence of p53 mutations and disrupted TGFβ1 signaling [56], therefore these data may be influenced by such perturbations. On the other hand, fibroblasts, which are growth-stimulated by TGFβ1 in the presence of a functional p53, convert to a growth inhibited TGFβ1 response when transfected with mutant p53 or when p53 is abrogated by SV40 [57].

Interestingly, there is mounting evidence that TGFβ1 itself may signal certain events through the generation of ROS [58–63]. TGFβ1 induces the production of hydrogen peroxide in bovine endothelial cells [64], mouse osteoblastic cells, where its been shown to be necessary for the transcriptional activation of the egfr gene [65,66], and human lung fibroblasts, where it is generated by the activation of NADH oxidase [61]. Recent studies have implicated ROS as an important signal for TGFβ1 induced apoptosis [62,63]. TGFβ1 may also be involved in the ROS mediated bystander effect following α-particle irradiation according to recent meeting reports [65,66].

Finally, the importance of a role for TGFβ1 in p53 response gains support from Tgfβ1 gene knockout animals. Cultured keratinocytes from these animals were shown to have greatly increased levels of gene amplification, as evidenced by PALA-induced CAD resistance, an index of genomic instability [67]. These cells also lack the typical PALA-induced p53 dependent G1 arrest, but instability could be decreased by low levels of exogenous TGFβ without inducing G1 arrest. Notably PALA treatment also induced TGFβ activation in heterozygotes and wildtype cells. Other DNA damaging treatments such as cis-platinum [68] or alkylating agents [69] also induce TGFβ activity that contributes to therapeutic outcome. Such studies provide strong motivation...
for testing the hypothesis that TGFβ modulates the type and degree of p53 responses in situ.

Thus, we propose extracellular signaling is an important determinant of the tissue and cellular response to DNA damage. The functional interaction of TGFβ and p53 supports the hypothesis that genomic stability can be significantly affected by the character and activity of the microenvironment. This conclusion gains support from recent studies from the Moses lab in which TGFβ signaling was genetically abrogated by floxing the Tgfβ1R receptor specifically in stromal cells [10]. These mice developed gastric and prostate tumors without further insult, which the authors propose is due to dysregulation of another growth factor, hepatocyte growth factor. These data support the view that signaling from the stroma is critical to tumor control as are oncogenes to driving malignant cell behaviors. Like the stromelysin overexpressing mammary gland that spontaneously develops tumors [70], these mice are an exciting new model in which to test the evolution of epithelial genomic instability resulting from stromal disruption.

1.4. Contributions of irradiated microenvironment to neoplastic progression

Our previous studies have shown that radiation alters the environment in which mammary epithelial cells reside. We believe that these radiation-induced changes in the mammary tissue can under certain circumstances contribute to the known action of radiation as a carcinogen. To test this hypothesis we created radiation chimeric tissue by transplanting unirradiated preneoplastic mammary tissue to an irradiated mammary gland [71]. The female mammary gland is unique among all glands in that the epithelium develops postnatally from a rudiment that can be removed from the inguinal glands at approximately 3 weeks of age [72]. Surgical removal of the parenchyma results in a gland-free mammary fat pad, referred to as a cleared fat pad, suitable for receiving donor tissue at the time of clearing or later [72]. Transplantation of normal mammary epithelial cells produces ductal outgrowths that fill the fat pad and are nearly indistinguishable in whole mounts or histologically from intact gland [72]. In addition, an occasional mouse mammary epithelial cell line, like the COMMA-D, retains the ability to proliferate in vivo [73]. COMMA-D cells are non-tumorigenic if injected into the cleared fat pads of 3-week-old mice or subcutaneously of immature or adult mice, or into nude mice. Although clonal in origin, COMMA-D cells exhibit morphological and phenotypic diversity in culture [74]. However, the cell line harbors two mutant p53 alleles that confer neoplastic potential [75].

We hypothesized that radiation effects on the tissue microenvironment is evidence of an additional, previously unrecognized action of carcinogens in general [71]. We found that the irradiated stroma dramatically promoted the ability of the cells to progress to tumors. COMMA-D tumor incidence was 2–4-fold greater when cells were injected into the cleared fat pads of irradiated hosts. Animals irradiated from 1 to 14 days prior to transplantation showed a significant increase in tumor incidence, ranging from a peak of 100% at 3 days and was still twice sham-levels at 14 days post-irradiation. Furthermore, the mean size of tumors from irradiated animals were nearly five times larger than the few tumors that arose in sham-irradiated hosts, indicating that tumor features, as well as frequency, were affected.

It is difficult to ascertain from these experiments whether the neoplastic population is preexisting in the cells injected or induced during outgrowth. We tested the former possibility by subculturing the two morphological variants that occur in this cell line. One is cuboidal and predominantly keratin-positive and the other is spindle-shaped and vimentin positive. Experiments using clonal isolation suggest that the former give rise to the latter [76]. Both formed tumors in irradiated hosts but the spindle, vimentin-positive cells had greater neoplastic potential in both sham and irradiated hosts, whereas the cuboidal, keratin-positive cells were less tumorigenic. These data suggested that the mixture of cells in the parent population was interacting in a way that suppressed the tumorigenic potential of the spindle clones and supported mammary ductal outgrowth, perhaps from the keratin-positive, cuboidal cells. Interestingly, neither cell type alone formed normal ductal outgrowths in the fat pad, suggesting that their contributions were interdependent in maintaining mammary “stemness”.

These studies indicate that the microenvironment created by the irradiated stroma can promote neoplastic progression in unirradiated epithelial cells, which is evidence that events “outside of the box”, in terms of a widely held paradigm in which mutations alone drive carcinogenesis, can significantly increase cancer risk. We attribute this adverse “by-stander effect” of irradiated cells on unirradiated cells to the fact that either the dose or total body irradiation corrupted the extracellular signaling from the microenvironment that suppresses abnormal cells. The effect of the irradiated microenvironment on neoplastic progression is persistent for several weeks and appears to be independent of systemic radiation effects (as tested by hemi-body irradiation), which support the hypothesis that non-mutagenic effects of radiation can contribute significantly to radiation carcinogenesis, in vivo. Greenberger et al. have shown that irradiated bone marrow stroma actively contributes to leukemogenesis [77]. The effect of radiation on the microenvironment affected the frequency of neoplastic progression, and it also affected the features (e.g. tumor size) of the resulting cancer. However, it is also important not to lose sight that the normal microenvironment was very effective in suppressing the tumorigenic behavior of these cells, which has been recently reviewed [78].

A recent study from the laboratory of Soto and Sonnen-schein expands the critical role of stroma to chemical carcinogenesis in rats [11]. In this study, primary cultures of rat mammary epithelial cells were treated with N-methyl-nitrosourea (NMU). These cells retained the ability to form normal ductal outgrowths when placed in a non-treated cleared mammary fat pad. However when the same cells were placed in
NMU-treated hosts, tumors formed in almost all the outgrowths. The authors conclude that the stroma itself is a ‘target’ of chemical carcinogenesis since untreated epithelial cells also form tumors in treated hosts. This interpretation may be confounded by the high frequency of spontaneous transformation by rodent cells during culture; nevertheless, the data clearly support the hypothesis generated by our radiation studies, i.e. that the stroma is a target of carcinogens, and such activity is distinct from those actions affecting genomic change and proliferation [71]. And, as observed in our studies of the mouse, this rat model also demonstrate that the normal stroma is extremely effective in suppressing tumorigenesis.

1.4.1. Radiation exposure induces a heritable malignant HMEC phenotype

To evaluate whether IR exposure also perturbs epithelial cell behavior, we asked whether irradiated HMEC undergo tissue-specific morphogenesis in a three-dimensional culture model in which cells are grown suspended within a reconstituted basement membrane (rBM). These three-dimensional colonies recapitulate acinar morphology typical of functional mammary gland, i.e. a hollow sphere consisting of highly polarized cells. Furthermore, three-dimensional morphogenesis in rBM readily distinguishes between the behaviors of tumorigenic and non-tumorigenic mammary epithelial cells, which are nearly indistinguishable when cultured as monolayers. While tumor cells remain proliferative and fail to establish appropriate cell–cell and cell–ECM connections [79], non-malignant mammary epithelial cells growth arrest and form acini similar to those found in situ [80]. Mammary acinar-like structures form upon establishment of epithelial polarity characterized by appropriately localized cell adhesion molecules, e.g. intercellular E-cadherin, basal-lateral β1-integrin and basolateral α6-integrin [29].

Using this ability to organize into acini as a functional endpoint of cell–cell and cell–ECM interactions, we evaluated the response of HMEC to IR [81]. Single cells from the non-malignant cell line, HMT-3522, were irradiated with low doses (10–200 cGy) at the time of plating in the rBM assay. TGFβ was added to some cultures to mimic the presence of an irradiated stroma. The multicellular organization of colonies arising from irradiated, TGFβ-treated cells displayed pronounced disorganization in comparison to colonies from sham controls or following single treatments, which was quantified using confocal microscopy and analysis of the mathematical fit of an ellipse to the center of the segmented nuclei. Surprisingly, we also found that the number of cells per colony was significantly increased in double-treated specimens, suggesting that growth regulation was also altered. Since radiation causes apoptosis and TGFβ inhibits mammary epithelial proliferation, one concern is that the colonies surviving treatment were selected from previously existing heterogeneity within the population. To address this possibility we examined each treatment as a function of individual colonies. This analysis indicated that the dual-treated colonies form a distinct population that is not present in the sham cultures.

The assembly of cells into tissue-specific structures requires the interaction of different cell adhesion systems. E-cadherin is a crucial epithelial adhesion molecule that links cells via an homophilic extracellular domain and is anchored intracellularly to the cytoskeleton via dynamic interactions with the catenins [82]. Low E-cadherin immunoreactivity in breast cancer is associated with poor prognosis [83], while restoration of E-cadherin reverts the invasive phenotype of cancer cells [84]. E-cadherin was localized using immunofluorescence, confocal microscopy and image analysis.

Colonies from irradiated cells cultured in the presence of TGFβ showed a dramatic loss of E-cadherin immunoreactivity. E-cadherin protein levels were reduced compared to controls to similar levels by both IR and TGFβ but double-treatment resulted in no greater reduction. E-cadherin localization, and immunoreactivity, can be modified by the degree of association with cytoskeleton via the catenins. Preliminary data suggest that the loss of E-cadherin at the cell junctions in the dual treated colonies reflects a change in complex formation such that E-cadherin in not linked appropriately to the cytoskeleton (Erickson and Barcellos-Hoff, unpublished data). These observations suggest that low doses of radiation could dispose preneoplastic cells, which may already lack or have less E-cadherin [85,86], to further compromise this essential mediator of normal cell–cell adhesion. Likewise, the number of connexin-43 aggregates per colony was significantly decreased following radiation exposure, regardless of TGFβ exposure. Connexins are a family of proteins associated with gap junctions that mediate the transfer of molecules between cells. Breakdown of gap junctional complexes correlate with breast cancer metastatic potential [87].

Adhesion of cells to the ECM was evaluated by assessing the localization of several integrins, which are a class of ECM receptors. Integrins form heterodimers consisting of an α and β subunit, to bind to ECM proteins. β1-Integrin is critical for normal mammary gland development [88,89]. HMT-3522 colonies exhibit basal-lateral β1 integrin but colonies arising from irradiated cells showed significantly increased β1-integrin immunoreactivity that was distributed throughout the cytoplasm. TGFβ treatment did not affect β1 integrin in the absence of prior irradiation. In contrast, the immunoreactivity of α6- and α3-integrin, which partner with β4 integrin, decreased in colonies generated from irradiated cells or cultured in the presence of TGFβ. Since these integrins are dispensable for mammary alveolar morphogenesis [90], their loss may be a correlate rather than a driver of disrupted morphogenesis. A distinct collagen IV containing basement membrane was observed in all treatment groups, indicating that the changes in integrin expression was not due to the lack of appropriate ligand.

Together, these data demonstrate that colonies arising from irradiated cells exhibit a consistent phenotype consisting of inappropriate intercellular adhesion, deranged extracellular adhesion molecules, loss of gap junction proteins,
and disorganized tissue-specific organization. This phenotype is augmented by the presence of TGFβ, which itself is rapidly and persistently activated in irradiated tissue [23]. Since the phenotype is exhibited by the daughters of individually irradiated cells, radiation exposure appears to induce a heritable derangement of pathways affecting cell adhesion, ECM interactions, epithelial polarity and cell–cell communication.

The significance of the HMEC irradiated phenotype is suggested by a variety of studies showing that loss of microenvironment constraints has profound consequences on tumorigenesis, progression and metastasis. Experimentally induced loss of E-cadherin leads to an invasive phenotype while restoration of E-cadherin impedes malignant behavior [84,91]. Expression of constitutively active stromelysin that locally degrades the mammary epithelial basement membrane results in invasive tumors [70]. If disruption of the cell interactions can promote neoplastic behavior, then it is also possible to consider the potential therapeutic applications of whether restoration of appropriate extracellular signaling can control cancer. Studies from Bissell and colleagues have suggested that the microenvironment can override signaling from the microenvironment proteins that are necessary for maintenance of tissue architecture, cell polarity and growth control. This epigenetic event occurs as a high frequency that could promote neoplastic potential, albeit it may occur in a subset of genetically predisposed cells. The frequency of carcinogenic initiation by radiation exceeds the mutation potential by several logs in rat mammary gland [92]. Second is that the loss of cell–cell and cell–ECM adhesion as a result of this phenotype, or due to altered signaling from the microenvironment, could disrupt genomic integrity. It is well documented that the frequency of chromosome aberrations increases many cell generations after irradiation by an as yet unknown mechanism, e.g. in the progeny of irradiated bone marrow [93,94] and epithelial cells [95]. The loss tissue-specific architecture and cell–cell interactions, which are themselves also characteristic of malignant progression, precedes, and could augment, destabilization of the genome. Indeed, we have recently found that the daughters of irradiated cells show a dose dependent increase in abnormal centrosomes (Erickson and Barcellos-Hoff, unpublished data). Centrosomes are tiny organelles that contain discrete protein aggregates that nucleate microtubule growth, organize spindle functions, and provide docking sites for protein complexes involved in cell cycle progression, checkpoint control and epithelial cell polarization (reviewed in [96]). Abnormal centrosomes number, size and distribution are found in many solid tumors [97], but precede morphological changes in transformation by HPV E7 oncoprotein [98]. Overexpression of pericentrin, a component of centrosomes, induces chromosome instability and aneuploidy in prostate cancer cells [97]. We are investigating whether the aberrant polarity in the progeny of irradiated HMEC disrupts the linkage to centrosomes, or vice versa, either of which would provide a means of generating instability through chromosomal mis-segregation.

1.5. Integrative radiation carcinogenesis

Our studies using HMEC have two important implications for radiation carcinogenesis. The first is that radiation exposure of epithelial cells leads to a high probability of a persistently altered phenotype in daughter cells. This epithelial phenotype lacks critical controls imposed via receptors for microenvironment proteins that are necessary for maintenance of tissue architecture, cell polarity and growth control. This epigenetic event occurs as a high frequency that could promote neoplastic potential, albeit it may occur in a subset of genetically predisposed cells. The frequency of carcinogenic initiation by radiation exceeds the mutation potential by several logs in rat mammary gland [92]. Second is that the loss of cell–cell and cell–ECM adhesion as a result of this phenotype, or due to altered signaling from the microenvironment, could disrupt genomic integrity. It is well documented that the frequency of chromosome aberrations increases many cell generations after irradiation by an as yet unknown mechanism, e.g. in the progeny of irradiated bone marrow [93,94] and epithelial cells [95]. The loss tissue-specific architecture and cell–cell interactions, which are themselves also characteristic of malignant progression, precedes, and could augment, destabilization of the genome. Indeed, we have recently found that the daughters of irradiated cells show a dose dependent increase in abnormal centrosomes (Erickson and Barcellos-Hoff, unpublished data). Centrosomes are tiny organelles that contain discrete protein aggregates that nucleate microtubule growth, organize spindle functions, and provide docking sites for protein complexes involved in cell cycle progression, checkpoint control and epithelial cell polarization (reviewed in [96]). Abnormal centrosomes number, size and distribution are found in many solid tumors [97], but precede morphological changes in transformation by HPV E7 oncoprotein [98]. Overexpression of pericentrin, a component of centrosomes, induces chromosome instability and aneuploidy in prostate cancer cells [97]. We are investigating whether the aberrant polarity in the progeny of irradiated HMEC disrupts the linkage to centrosomes, or vice versa, either of which would provide a means of generating instability through chromosomal mis-segregation.

2. Conclusion

Despite many attempts to derive the sum from the parts in classical radiation biology, it is now evident that integrative radiation carcinogenesis must take into account complexity in which cellular events are governed by tissue-level processes.
The microenvironmental control of the initiated cell [102]. The data models provide further imperative to focus attention on cursor to genomic instability. Data from new mouse and human studies are evidence that radiation, the prototypic carcinogenic agent, is a mechanism of spontaneous carcinogenesis. Our future work will be to understand the mechanisms underlying this irradiated phenotype toward testing whether and how the irradiated phenotype is a precursor to genomic instability. If so, perhaps we should look more closely at alternative mechanisms of spontaneous carcinogenesis.

Malignant carcinogenesis progression by pathways other than irradiated stroma are evidence that radiation, the prototypic carcinogenic agent, is a mechanism of spontaneous carcinogenesis. Our future work will be to understand the mechanisms underlying this irradiated phenotype toward testing whether and how the irradiated phenotype is a precursor to genomic instability. If so, perhaps we should look more closely at alternative mechanisms of spontaneous carcinogenesis.

Acknowledgments

The author wishes to thank laboratory members who contributed to the research described herein and acknowledge funding from the Low Dose Radiation Program of the Office of Biological and Environmental Research, United States Department of Energy DE AC0376SF00098 and by grant number U01 ES012901 from the National Institute of Environmental Health Sciences, NIH and the National Cancer Institute, NIH.

References

