
INVARIANTS OF SINGULARITIES VIA INTEGRATION

MIRCEA MUSTAŢǍ

This is a note written for the AIM workshop on ”Numerical invariants of singularities
and of higher-dimensional algebraic varieties”. Its goal is to give an informal introduction
to some of the results relating invariants of singularities (most notably, the log canonical
threshold) with various integration theories.

The general (though rather imprecise) framework is the following. We will deal with
a field K having an absolute value | · | and a measure. On Kn we have the corresponding
product measure. The goal is to relate the singularities of a polynomial f in K[x1, . . . , xn]
with the asymptotic behavior of µ ({x ∈ Kn | |f(x)| < ε}), when ε goes to zero. This can
be done by studying the behavior of certain integrals. The key is to use a log resolution
of singularities for f and some version of the Change of Variable Formula. The main
examples we will consider are K = C, K = Qp (or more general p-adic fields) and
K = C((t)).

In the first section we deal with the Archimedean case: K = C. We start with a
question of Gelfand about the meromorphic extension of complex powers, and describe
its solutions. The first solution, due independently to Bernstein and Gelfand and to
Atiyah, is a first instance of combining integration with resolution of singularities. The
second solution, due to Bernstein, uses the existence of the Bernstein-Sato polynomial
and integration by parts. In the second section we give a brief overview of the p-adic side
of the story. We review p-adic integration, define the Igusa zeta function and state the
main result of Igusa about the rationality of the zeta function. In particular, we see the
connection between the largest pole of this function and the log canonical threshold.

In the third section we cover some basic facts about spaces of arcs and motivic
integration. The main goal is to underline the similarities and the differences with the
p-adic case. The fourth section presents the geometric results relating the approaches to
singularities via spaces of arcs and via divisorial valuations. In particular, we give the
description of the log canonical threshold in terms of the codimensions of certain subsets
of the space of arcs. In the last section we deviate slightly from the main topic of these
notes to present one of the basic applications of the theory of motivic integration: the
definition of stringy invariants of varieties with mild singularities.

1. Complex powers and singularities

A good introduction to the results in this section is Igusa’s book [Ig]. We consider
the case of a polynomial with complex coefficients, but similar results hold over R.
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Let f ∈ C[x1, . . . , xn] be a nonconstant polynmial. One can show that if s ∈ C is
such that Re(s) > 0 and if Φ ∈ C∞0 (Cn) is a C∞-function with compact support on Cn,
then

(1) Zf,Φ(s) :=

∫
Cn

|f(z)|2sΦ(z)dz dz

is well-defined, and by taking s→ Zf,−(s) we get a holomorphic map on {s ∈ C | Re(s) >
0} with values in the space of distributions on Cn. This is the complex power associated
to f . Gelfand asked whether every complex power can be extended meromorphically to
C.

The first solution was due independently to Bernstein and Gelfand and to Atiyah
(see [Ig] for details and for precise references). The idea is to use a log resolution of
singularities for f . This is a morphism π : Y → Cn that is proper and birational, with Y
nonsingular, and such that in local coordinates y1, . . . , yn on Y we can write

f(π(y)) = u(y) · yan
1 · · · yan

n , det(Jac(π))(y) = v(y) · yk1
1 · · · ykn

n ,

where u and v do not vanish anywhere.

The idea is to use the Change of Variable Formula to reduce the computation of the
integral in (1) to integrals of the form

(2)

∫
Cn

n∏
i=1

|zi|2sai+ki · ψ(z)dzdz,

for a suitable ψ ∈ C∞0 (Cn). These integrals are easy to analyze directly and one gets

Theorem 1.1 (Bernstein-Gelfand, Atiyah). With the above notation, there is a meromor-
phic function on C with values in the space of distributions on Cn such that if Re(s) > 0,
its value is given by Zf,−(s). Moreover, every pole is of the form −ki+m

ai
for some positive

integer m, some local chart on Y and some i as above.

Recall that the log canonical threshold of f (more precisely, of the pair (X,V (f)) is
defined in terms of a resolution of singularities by

(3) lc(f) := min
i

ki + 1

ai

,

where the minimum is taken over all i and over all local charts on Y as above. It follows
from Theorem 1.1 that the complex power associated to f is holomorphic in the region
{s ∈ C | Re(s) > − lc(f)}.

One can compare the above result with the following ”local” version that is often
used to describe the log canonical threshold. The proof proceeds along the same lines,
using the resolution of singularities and the Change of Variable Formula.

Theorem 1.2. If f is a polynomial in C[x1, . . . , xn], then

lc(f) = sup

{
s > 0 | 1

f(z)s
∈ L2

loc(Cn)

}
.
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We now describe the second solution to Gelfand’s question, due to Bernstein. In
fact, motivated by this problem, Bernstein introduced what is now called the Bernstein-
Sato polynomial of f . In order to prove its existence he developed the basics of the theory
of modules over the Weyl algebra.

Bernstein proved that there is a nonzero polynomial in one variable b(s) such that
we have a relation of the form

(4) b(s)f s = P (s, x, ∂x) • f s+1,

for some polynomial differential operator P ∈ C[s, x, ∂x], where • stands for the action
of this operator. This relation has to be interpreted formally, but it has the obvious
meaning whenever we can make sense of f s. The polynomials b(s) for which there is P
as above form an ideal, and the monic generator of this ideal is called the Bernstein-Sato
polynomial of f , and denoted by bf (s).

Theorem 1.3 (Bernstein). If f ∈ C[x1, . . . , xn] is a nonconstant polynomial, then there
is a meromorphic function on C with values in the space of distributions on Cn such that
if Re(s) > 0, its value is given by Zf,−(s). Moreover, if s is a pole of this function, then
there is a root λ of bf and a nonnegative integer r such that s = λ− r.

The idea of the proof is to use the equation (4) and integration by parts to write

(5) |b(s)|2 ·
∫

Cn

|f(z)|2sΦ(z)dz dz =

∫
Cn

|f(z)|2(s+1) ·Ψ(z)dz dz,

for a suitable Ψ ∈ C∞0 (Cn). As we have seen, the right-hand side is defined and holomor-
phic in s when Re(s) > −1. We now multiply by |b(s+ 1)|2, and continuing this way, we
get the assertion in the theorem.

In general, the Bernstein-Sato polynomial is a very subtle invariant of the singu-
larities of f . Comparing the assertions about the poles in Theorems 1.1 and 1.3 one
can speculate on connections between the roots of bf and the invariants coming from the
resolution of singularities. In fact, there is such a precise connection:

Theorem 1.4 (Kashiwara, Lichtin). If f ∈ C[x1, . . . , xn], then all roots of bf are negative
rational numbers. Moreover, with the above notation for a resolution of f , every root λ
of bf is of the form λ = −ki+m

ai
for some i and some positive integer m.

Theorem 1.5 (Kollár, Lichtin). If f ∈ C[x1, . . . , xn], then the largest root of bf (s) is
− lc(f).

Theorem 1.5 was proved in [Kol]. Note first that Theorem 1.4 implies that for every
root λ of bf we have λ ≤ − lc(f). On the other hand, one shows that there is a root of
bf in [− lc(f), 0) using the description of lc(f) in Theorem 1.2 and using the idea in the
proof of Theorem 1.3 of combining equation (4) and integration by parts.

The rationality statement in Theorem 1.4 was proved by Kashiwara in [Ka] using
deep results in the theory of D-modules. Buliding on Kashiwara’s work, Lichtin described
the relation between the roots of bf and the resolution of singularities in [Li].
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2. Igusa zeta functions

In this section we give an overview of the p-adic point of view. Again, our main
reference for p-adic integration and for Igusa zeta functions is Igusa’s book [Ig]. The idea
is that if f is a polynomial with integer coefficients, then the asymptotic behavior of the
number of solutions of f in Z/pmZ, when m goes to infinity, is closely related to the
singularities of f .

We will work in the following more general setup. Let p be a prime and let K be a
p-adic field, i.e. a finite extension of the field of p-adic rational numbers Qp. The integral
closure of the ring Zp of p-adic integers is denoted by OK . It is a discrete valuation ring
with fraction field K, and we denote a generator of the maximal ideal m by π. The residue
field of OK is a finite extension of Fp, so it is equal to Fq for some q = pe.

On K we have the m-adic topology, induced by the metric

d(u, v) = |u− v|K :=

(
1

q

)ordπ(u−v)

,

where ordπ is the valuation on K corresponding to OK . In other words, an element u in
OK is close to zero if it is divisible by a large power of π. A basis of open neighborhoods
of the origin is given by the powers of the maximal ideal in OK . Note that OK is compact,
and therefore K is locally compact.

We have on K the Haar measure µ: it is the unique measure that is invariant under
translations and such that µ(OK) = 1. These requirements imply that µ(m`) = 1

q` for

` ≥ 0. We have the product measure on Kn such that µ(
∏

i m
`i) =

(
1
q

)P
i `i

. Since Kn is

locally compact, the standard result of measure theory hold in this setting.

Suppose now that f ∈ OK [x1, . . . , xn] is a nonconstant polynomial. One can show
that if we put

(6) Zf (s) :=

∫
On

K

|f(x)|sKdx,

this defines a holomorphic function Zf on {s ∈ C | Re(s) > 0}, the Igusa zeta function of
f . In fact there are several variations, involving an auxiliary function Φ as in the previous
section, integrating on a different subset of Kn, or involving also a character of the group
of units in K. We refer to [Ig] for this more general definition.

Note that the Igusa zeta function gives a convenient way to encode the numbers

(7) cr = #{u ∈ (OK/m
r)n | f(u) = 0}

(with the convention c0 = 1). Indeed, we have

Zf (s) =
∑
m∈N

µ ({u ∈ On
K | ordπ(f(u) = m}) · 1

qms

and the measures in this formula can be computed as

µ ({u ∈ On
K | ordπ(f(u) = m}) = µ ({u ∈ On

K | ordπ(f(u) ≥ m})
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−µ ({u ∈ On
K | ordπ(f(u) ≥ m+ 1}) = cm · 1

qmn
− cm+1 ·

1

q(m+1)n
.

The advantage of the integral formula in the definition of the Igusa zeta function
is that p-adic integrals, too, satisfy a Change of Variable Formula. As in the case of
Theorem 1.1, one can use a log resolution of f (defined over Qp) to reduce the computation
of Zf to the computation of integrals involving only monomial expressions. Arguing in
this way one gets the following

Theorem 2.1 (Igusa). The function Zf admits a meromorphic extension to C, that is

in fact a rational function of
(

1
q

)s

. Moreover, with the notation for a log resolution from

§1, if λ is a pole of Zf , then there is i such that Re(s) = −ki+1
ai

.

Using the previously described connection between the Igusa zeta function and the
numbers cm, one can deduce from the above theorem the rationality of the generating
series associated to f , a statement that had been conjectured by Borevich.

Corollary 2.2. If f is in OK [x1, . . . , xn], then the power series

Pf :=
∑
m∈N

cm
qmn

tm

is a rational function.

Note that Theorem 2.1 implies that Zf is holomorphic in the half-plane {s ∈ C |
Re(s) > − lc(f)}. On can reformulate this by saying that the radius of convergence of
the series Pf is at least qlc(f), or equivalently

lim sup
m→∞

c1/m
m ≤ qn−lc(f).

One can not expect to get also a lower bound for the numbers cm in general. How-
ever, this holds after possibly enlarging the field K.

Theorem 2.3 (Igusa). After possibly passing to a finite extension of K, we can find a
pole λ of Zf with Re(λ) = − lc(f). Therefore

lim sup
m→∞

c1/m
m = qn−lc(f).

A proof of this theorem can be found in [VZG]. Note that in loc. cit. one develops
the whole story not just for a polynomial, but for an arbitrary ideal. We will switch to
this setup in the following section, when discussing spaces of arcs.

We end this section with what is arguably the most interesting open problem con-
cerning Igusa zeta functions.

Conjecture 2.4 (Igusa). Let f be a polynomial in Z[x1, . . . , xn]. For every prime p, we
denote by Zf,p the Igusa zeta function constructed over Qp. If p is large enough, then for
every pole λ of Zf,p, its real part is a root of the Bernstein-Sato polynomial bf (s).
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A slightly weaker version of the conjecture, in terms of eigenvalues of the monodromy
instead of roots of the Bernstein-Sato polynomial, is known as the Monodromy Conjecture.
We refer to [Den] for a discussion of this conjecture, and to [Ve3] for some recent progress.

3. Spaces of arcs and motivic integration

We replace now the field Qp (or one of its extensions) by the field C((t)) of Laurent
power series. In this case the set of solutions in Z/pmZ is replaced by the set of solutions
in C[t]/(tm). This is the set of closed points of a scheme, the (m−1)st jet scheme Hm−1 of
the hypersurface H defined by f . Instead of counting the number of elements, we compute
the dimensions of these schemes, and we have the following analogue of Theorem 2.3.

Theorem 3.1 (Mustaţǎ). If f ∈ C[x1, . . . , xn] defines a hypersurface H in Cn, then

lim
m→∞

dim Hm−1

m
= n− lc(f).

As in the p-adic setting, one can define integrals on the space (C[[t]])n. This is an
infinite-dimensional space and this time the integrals will take value in a more complicated
ring. We sketch in this section the basics of motivic integration. There are by now several
introductions to this topic that we recommend to the reader: [Bli], [Cr] and [Ve2], as well
as some survey papers [DL1] and [Lo]. Due to Kontsevich [Kon] (see [Ba1]), this theory
was generalized by Denef and Loeser in [DL3] to the case of an ambient singular variety.
There are constructions in a much more general set-up (see [CL]), but these go beyond
the scope of these notes. For applications to singularities, it turns out that it is more
effective to use the geometry behind motivic integration, and we will explain this in the
next section. In particular, Theorem 3.1 above will be a consequence of more general
geometric results.

Let X be an arbitrary scheme of finite type over C. Its mth jet scheme Xm is
characterized by its functor of points as follows:

(8) Hom(SpecA,Xm) ' Hom(SpecA[t]/(tm+1), X)

for every C-algebra A. In particular, the set of closed points of Xm is equal to the set of
m-jets Hom(Spec C[t]/(tm+1), X) of X. For example, X0 = X and X1 = TX, the total
tangent space of X.

Existence is proved locally, first for affine schemes and then suitably gluing the jet
schemes of affine charts. Note that if X = Cn, then Xm = (C[t]/tm+1)n ' C(m+1)n. If X
is a closed subscheme of Cn, then we get a corresponding closed embedding Xm ↪→ (Cn)m.
Moreover, the equations of Xm can be obtained by ”formally differentiating” m times the
equations defining X.

Example 3.2. If X ↪→ C2 = Spec C[u, v] is defined by f = u2 − v3, then X2 ⊆ (C2)2 =
Spec C[u, v, u′, v′, u′′, v′′] is defined by (f, f ′, f ′′), where

f ′ = 2uu′ − 3v2v′, f ′′ = 2uu′′ + 2(u′)2 − 6v(v′)2 − 3v2v′′.
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The truncation maps C[t]/(tm+1) → C[t]/(tm) induce morphisms Xm → Xm−1.
The projective limit of the Xm is the space of arcs X∞ of X, whose C-valued points
correspond to elements of Hom(Spec C[[t]], X). The above constructions are functorial:
for a morphism f : X → Y , we get morphisms fm : Xm → Ym and f∞ : X∞ → Y∞.

As a side remark, we mention that the space of arcs of a variety attracted some
attention before the theory of motivic integration. For example, Kolchin proved the
following theorem (see [IK] for a modern proof).

Theorem 3.3 (Kolchin). If X is an irreducible variety, then X∞ is also irreducible.

Suppose now that π : Y → X is a resolution of singularities of X, i.e. π is proper,
birational and Y is smooth. While X∞ is irreducible by the above theorem, the irre-
ducible components of (π∞)−1(Xsing) contain a lot of information about the singularities
of X. Nash conjectured that they are in bijection with the divisors that appear on every
resolution of singularities of X (see [IK] for the precise statement). While the conjecture
was disproved in general in loc. cit., it still attracts a great deal of interest.

If X is nonsingular of dimension n, then every projection Xm → Xm−1 is locally
trivial (in the Zariski topology), with fiber Cn. In particular, we have dim Xm = (m +
1)n. In what follows we will assume that we work in an ambient nonsingular variety of
dimension n, and we denote by φm : X∞ → Xm the canonical projection.

The space of arcs X∞ is infinite-dimensional, but in what follows we will deal with
some subsets of finite codimension. A cylinder in X∞ is a subset of the form C = ψ−1

m (S),
where S ⊆ Xm is a constructible subset. It is clear that the cylinders form an algebra of
subsets of X∞. Since each projection Xm → Xm−1 is locally trivial, we may define

codim(C) := codim(S,Xm) = (m+ 1)n− dim(S).

Similarly, one says that C is irreducible (closed, locally closed) if S is.

Cylinders are the most important ”measurable sets” for motivic integration. The
other subsets that appear are of the form Y∞ for some proper closed subset of X. These
sets, however, have ”measure zero” or ”infinite codimension”, hence they can be ignored
in this theory. The key property is that a cylinder can never be contained in such a set.

The interesting functions on X∞ are given by the order of vanishing along closed
subschemes of X. If Y ↪→ X is such a subscheme defined by the ideal IY , then one defines
ordY : X∞ → N ∪ {∞} by

(9) ordY (γ) = ord(γ−1IY )

(note that γ−1IY is an ideal in C[[t]], and by convention it is zero if and only if its order
is ∞). The finite level sets are locally closed cylinders:

ord−1
Y (m+ 1) = φ−1

m (Ym) r φ−1
m+1(Ym+1),

while the set ord−1
Y (∞) = Y∞ can be ignored for the purpose of motivic integration.
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The above setup is very similar to that in the p-adic theory. The key new idea in
motivic integration concerns the ring where the measure takes its values. This is a local-
ization of the Grothendieck ring of varieties over C. This Grothendieck ring, denoted by
K0(Var/C), is defined as the quotient of the free abelian group on the set of isomorphism
classes [V ] of complex varieties, modulo the relations

[V ] = [W ] + [V rW ],

where V is a complex variety and W is a closed subvariety of V . K0(Var/C) becomes a
ring with the product [V ] · [W ] = [V ×W ], the unit being the class of a point. Note that
if f : V → W is locally trivial in the Zariski topology, with fiber F , then [V ] = [W ] · [F ]
in the Grothendieck ring.

One denotes by L the class of the affine line A1 in the Grothendieck ring. The
motivic measure takes values in the localization K0(Var/C)[L−1]. If C = φ−1

m (S) is a
cylinder, then µ(C) = [S] · L−mn.

In fact, in order to compute integrals one has to work in a suitable completion K̂0

of the above localization (a more recent construction of Cluckers and Loeser [CL] shows
that, in fact, it is enough to just invert some elements in the Grothendieck ring). If
f : X∞ → Z ∪ {∞} is such that

(1) For every m ∈ Z, the set f−1(m) is a cylinder.
(2) The set f−1(∞) is contained in the space of arcs of a proper closed subset of X,

then we may consider the sum∫
X∞

L−f :=
∑
m∈Z

µ(f−1(m)) · L−m.

If this sum is convergent in the above mentioned completion of the localized Grothendieck
ring, one says that f is integrable, and the above sum is called the motivic integral of f.
One can define in a similar way the integral of L−f over a cylinder in X∞

One can do this slightly more generally by allowing also rational powers of L (by
adjoining L1/m for a suitable m). In this case one can integrate also functions that take
values in 1

m
Z ∪ {∞}, for some m.

A basic fact about motivic integrals is that they are easy to compute for divisors
with simple normal crossings. More precisely, one has the following

Theorem 3.4 (Kontsevich). Suppose that D = a1D1 + · · · + arDr is a Q-divisor with
simple normal crossings on X and let ordD :=

∑r
i=1 ai ordDi

. Then ordD is integrable if
and only if all ai > −1, and in this case its motivic integral admits the following ”rational
expression” ∫

X∞

L− ordD =
∑

J⊆{1,...,r}

[D◦
J ] ·
∏
j∈J

L− 1

Laj+1 − 1
,

where for every J , one puts DJ =
⋂

j∈J Dj r
⋃

i6∈J Di.
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The key result of the theory is the following Change of Variable Theorem. Together
with resolution of singularities and the previous result, this can be used to compute
motivic integrals of functions of the form ordY .

Let π : X ′ → X be a proper, birational morphism of nonsingular complex varieties.
Denote by KX′/X the discrepancy divisor. This is an effective divisor, locally defined by
the determinant of the Jacobian matrix of π.

Theorem 3.5 (Kontsevich). With the above notation, f : X∞ → 1
m

Z∪ {∞} is integrable
if and only if so is f ◦ π∞ + ordKX′/X

. In this case, for every cylinder C in X∞, we have∫
C

L−f =

∫
π−1
∞ (C)

L−f◦π∞−ordKX′/X .

The proof of this theorem follows formally from a more geometric result that we
will state in the next section (see Theorem 4.2 below). To continue the parallel with the
p-adic setting, we mention that Denef and Loeser [DL4] have defined a motivic Igusa zeta
function by putting for a polynomial f ∈ C[x1, . . . , xn]

Zf :=

∫
X∞

L−s·ordf ,

where one has to interpret this time the symbol L−s as a new variable. Theorems 3.4 and
3.5 have analogues in this setting, and one gets in this way a rationality result as in the
case of the p-adic Igusa zeta function. There is also a version of Conjecture 2.4 above for
motivic Igusa zeta functions, for which we refer to [Ve2].

4. Singularities via spaces of arcs

We have seen that motivic integration is an analogue of p-adic integration that
satisfies a Change of Variable Theorem. In particular, we can use it to interpret invariants
defined via resolution of singularities in terms of codimensions of certain cylinders.

Let X be a nonsingular variety and Y ↪→ X a closed subscheme. As in §1, we
consider a log resolution of singularities π : X ′ → X for the pair (X, Y ). We recall the
definition: π is proper and birational, X ′ is nonsingular, and the union of π−1(Y ) with
the exceptional locus of π is a divisor with simple normal crossings. We write

(10) π−1(Y ) =
r∑

i=1

aiDi, KX′/X =
r∑

i=1

kiDi.

In addition, we may assume that π is an isomorphism over X rY , hence ki = 0 if ai = 0.

Define the contact locus of order m of Y by Contm(Y ) := ord−1
Y (m), and similarly

Cont≥m(Y ) := ord−1
Y (≥ m). If we apply Theorem 3.5 to the function f = 0 and integrate

over the cylinder Contm(Y ), then we get

(11) µ(Contm(Y )) =
∑

ν=(νi)i∈Nr

µ

(
r⋂

i=1

Contνi(Di)

)
L−
P

i kiνi ,



10 M. Mustaţǎ

where the sum is over those ν such that
∑

i=1 aiνi = m (hence this is a finite sum).

By considering the codimensions of the corresponding cylinders, one deduces the
following

Theorem 4.1 ([ELM]). With the above notation, for every m we have

codim Contm(Y ) = min
ν

r∑
i=1

νi(ki + 1),

where the sum is over all ν = (νi)i ∈ Nr such that ∩νi≥1Di 6= ∅ and
∑r

i=1 νiai = m.

The formula for the log canonical threshold in Theorem 3.1 is then an easy conse-
quence, using the fact that codim Cont≥m(Y ) = codim(Ym−1, Xm−1). Similar descriptions
can be given for other invariants of singularities, the minimal log discrepancies. More-
over, the generalization of motivic integration from [DL3], one can give a description of
minimal log discrepancies in terms of the codimensions of certain sets of arcs even when
the ambient variety is singular (see [EMY]). We note that for these invariants it is not
clear how to give an interpretation in terms of Lebesgue or p-adic integrals.

In fact, in order to relate invariants of singularities with the codimension of the
contact loci one does not need to use the formalism of motivic integration. One can
use instead the following geometric result, that is the key ingredient in the Change of
Variable Theorem. The advantage of this approach is that, as we will see, it makes more
transparent the connection between the usual approach to singularities (via divisorial
valuations) and that via cylinders in the space of arcs.

Theorem 4.2 (Kontsevich). Let π : X ′ → X be a proper, birational morphism between
nonsingular complex varieties. Given an integer e ≥ 0, consider the contact locus

Conte(KX′/X)m := {γ ∈ X ′
m | ordKX′/X

(γ) = m}.

If m ≥ 2e, then the locus Conte(KX′/X)m is a union of fibres of πm : X ′
m → Xm, each of

which is isomorphic to Ae. Moreover, if γ, γ′ ∈ Conte(KX′/X)m lie in the same fiber of
πm, then they lie over the same jet in X ′

m−e.

We want to stress one point: the morphism π∞ is ”almost everywhere” a bijection.
More precisely, if π is an isomorphism overXrZ, then the induced mapX ′

∞rπ−1(Z)∞ →
X∞ r Z∞ is bijective by the Valuative Criterion for properness. On the other hand, this
map is very far from being an isomorphism. In fact, the theorem implies that if we
consider the decomposition

X ′
∞ r π−1(Z)∞ =

∐
e∈N

Conte(KX′/X),

then on the eth piece π∞ behaves like a fibration in the sense that it increases the codi-
mension of the cylinders by e: if C ⊆ Conte(KX′/X) is a cylinder, then π∞(C) is also a
cylinder and codim π∞(C) = codim C + e.

For a proof of the theorem we refer to Looijenga’s Bourbaki talk in [Lo]. We now
explain the applications to the study of singularities. Invariants of singularities like the log
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canonical threshold or minimal log discrepancies are defined by considering all divisorial
valuations of the function field of our variety X (one then proves that it is enough to con-
sider those valuations corresponding to divisors on a suitable resolution of singularities).
We now show how to recover all divisorial valuations using cylinders in the space of arcs.

Let X be a nonsingular variety. A divisor over X is a prime divisor E on a normal
variety X ′ such that there is a birational morphism X ′ → X. Every such divisor defines
a valuation ordE of the function field K(X ′) = K(X), and we identify two such divisors
if they give the same valuation. A divisorial valuation of K(X) is a valuation of the form
q · ordE for some divisor E over X. A fundamental invariant of a divisorial valuation
v = q · ordE is its log discrepancy : this is q(kE +1), where kE is the coefficient of E in the
divisor KX′/X .

We can get valuations starting also from irreducible cylinders in the space of arcs of
X. Indeed, we may assume that X = Spec(A), and if C is such a cylinder, then we define

ordC(f) := min
γ∈C

ordV (f)(γ)

for every f ∈ A. This extends uniquely to a valuation of K(X), which is nontrivial if and
only if C does not dominate X.

Example 4.3. Suppose that E is a prime divisor on X ′ such that we have a birational
morphism π : X ′ → X. We may assume that X ′ is smooth, and let Cq(E) be the closure
of π∞(Contq(E)). This is a closed, irreducible cylinder that depends only on the valuation
corresponding to E and

ordCq(E) = q · ordE.

The following results relate divisorial valuations with spaces of arcs. For proofs, see
[ELM].

Theorem 4.4. If C is an irreducible cylinder in X∞ that does not dominate X, then there
are a unique positive integer q and a unique divisor E over X such that C ⊆ Contq(E)
and ordC = ordCq(E). In particular, ordC is a divisorial valuation.

The applicability of this result in studying singularities comes from the fact that
the log discrepancy of E translates as the codimension of the corresponding cylinder in
X∞, as follows.

Theorem 4.5. For every q and E, the codimension of Cq(E) is equal to the log discrep-
ancy of the valuation q · ordE.

5. Stringy invariants

One of the first applications of motivic integration was towards defining stringy
invariants of singular algebraic varieties. These are invariants that take into account the
singularities of the variety, and behave well with respect to birational transformations.
We review here the definition of stringy Hodge and Betti numbers. The starting point is
the following result.
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Theorem 5.1 (Kontsevich). Two K-equivalent nonsingular projective varieties have the
same Hodge numbers.

Recall that two nonsingular projective varieties X1 and X2 are called K-equivalent
if there are projective birational morphisms Y → X1 and Y → X2 such that KY/X1 and
KY/X2 are numerically equivalent (in fact, in this case one can show that these two divisors
are equal). For example, this is the case with two birational Calabi-Yau varieties.

An earlier version of the above theorem, proved by Batyrev in [Ba2], stated that
birational Calabi-Yau varieties have the same Betti numbers. Its proof used p-adic inte-
gration to show that the two varieties have the same number of points over finite fields, and
then the Weil conjectures to deduce that the two varieties have the same Betti numbers.

Before explaining the proof of Theorem 5.1, let us review the definition of the Hodge-
Deligne polynomial. Recall that if X is a complex nonsingular projective variety, with
dim(X) = n, its Hodge polynomial is

E(X;u, v) =
n∑

p,q=0

(−1)p+qhp,qupvq,

where hp,q is the Hodge number hq(X,Ωp
X). The Poincaré polynomial ofX can be obtained

as E(X; t, t), hence the Euler-Poincaré characteristic of X is equal to E(X; 1, 1).

It is a theorem of Deligne [Del] that the Hodge polynomial can be extended ad-
ditively to arbitrary complex varieties, i.e. one can define a polynomial with integer
coefficients E(Y ;u, v) for every complex variety Y , such that if Z is a closed subvariety
of Y , then E(Y ;u, v) = E(Z;u, v) + E(Y r Z;u, v). In other words, E induces a group
homomorphism

(12) K0(Var/C) → Z[u, v].

In fact, this is a ring homomorphism: since the left-hand side is generated by classes [X],
with X nonsingular and projective, it is enough to show that for such X1 and X2 we
have E(X1×X2;u, v) = E(X1;u, v) ·E(X2;u, v) . This follows from the Küneth formula.
E(Y ;u, v) is called the Hodge-Deligne polynomial of Y , and E(Y ; t, t) the virtual Poincaré
polynomial of Y . It is known that the Euler-Poincaré charcateristic χ(Y ) of every Y
is equal to the Euler-Poincaré characteristic χc(Y ) for the cohomology with compact
support, and that it gives an additive function. Equivalently, for every Y we have

E(Y ; 1, 1) = χ(Y ) = χc(Y ).

The definition of E(Y ;u, v) is in terms of the mixed Hodge structure on the coho-
mology with compact support of Y . However, in order to compute it one does not need
to know the definition: one can do the computation by induction on dimension, compact-
ifying and resolving singularities to reduce to the case of a nonsingular, projective variety.
For example, we have

E(A1;u, v) = E(P1;u, v)− E(pt;u, v) = (1 + uv)− 1 = uv.

We deduce that E(An;u, v) = (uv)n.
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There is also an alternative way of proving the existence of the morphism (12).
Bittner showed in [Bit] that the Grothendieck group K0(Var/C) admits a presentation as
the free abelian group on isomorphism classes of nonsingular complex projective varieties,
with relations

[BlZX]− [E] = [X]− [Z],

where BlZX is the blowing-up of the nonsingular projective varietyX along the nonsigular
closed subvariety Z, and E is the exceptional divisor. The key ingredient in this result
is the Weak Factorization Theorem of [AKMW]. Therefore in order to construct (12) it
is enough to show that the Hodge polynomial of nonsingular projective varieties satisfies
the above ”blowing-up relation”, which can be done by a direct computation.

Suppose now that X is a nonsingular variety. Using the morphism (12) one can
specialize the motivic measure from the localized Grothendieck ring K0(Var/C)[L−1] to
Z[u±1, v±1]. We consider the completion of this ring given by Laurent power series in u−1

and v−1, and we compute integrals with respect to the corresponding topology on this
ring. These are the Hodge realizations of the motivic integrals we have defined in the
previous section. We denote the integral corresponding to the function f by

∫
X∞

(uv)−f .
Of course, theorems 3.4 and 3.5 have analogues in this setting.

Let us give now the proof of Theorem 5.1. Suppose that Y → X1 and Y → X2 are
projective, birational morphisms of nonsingular projective varieties such that KY/X1 =
KY/X2 . Note that by definition we have∫

(X1)∞

(uv)0 = E(X1;u, v),

and similarly for X2. On the other hand, the Change of Variable Formula gives∫
(X1)∞

(uv)0 =

∫
Y∞

(uv)
−ordKY/X1 =

∫
Y∞

(uv)
−ordKY/X2 =

∫
(X2)∞

(uv)0,

which completes the proof.

One can use similar ideas to define the stringy E-polynomial for varieties with mild
singularities. Suppose that X is a variety with Gorenstein canonical singularities. If
Y → X is a resolution of singularities of X, then we have a discrepancy divisor KY/X and
by our assumption on the singularities of X this is an integral, effective divisor. Therefore
we may define

Est(X;u, v) :=

∫
Y∞

(uv)
−ordKY/X .

It can be easily deduced from the Change of Variable Formula that this is well-defined,
i.e. it does not depend on the resolution we have chosen.

Using Theorem 3.4 one can write down an explicit formula in terms of the resolution:
if KY/X =

∑r
i=1 aiDi, then

(13) Est(X;u, v) =
∑

J⊆{1,...,r}

E(D◦
J ;u, v) ·

∏
j∈J

uv − 1

(uv)aj+1 − 1
.
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Note that the stringy E-function is in general not a polynomial, but a rational function.
Of course, this expression makes sense without any mention of motivic integration. The
merit of this theory is in proving the independence of resolution. Nowadays, however, this
can be achieved also using the Weak Factorization Theorem of [AKMW].

One can define Est(X;u, v) more generally when X has log terminal singularities.
In this case, the discrepancy divisor KY/X is a Q-divisor, and its coefficients ai are > −1.
In particular, the above integral makes sense, though we need to allow fractional powers
of u and v in the expression of Est(X;u, v). One can specialize this invariant to the
stringy Poincaré function by putting Pst(Y ; t) = Est(X; t, t) and further to the stringy
Euler-Poincaré characteristic by putting

χst(X) := lim
u,v→1

Est(X;u, v).

Note that (13) becomes

χst(X) =
∑

J⊆{1,...,r}

χ(D◦
J) ·

∏
j∈J

1

aj + 1
.

Another remarkable application of motivic integration is to the proof of the so-called
McKay correspondence. If G is a finite group actiong on a smooth variety M preserving
its canonical class, then the quotient X = M/G has Gorenstein canonical singularities,
so the above Est(X;u, v) is defined. On the other hand, one can define orbifold Hodge
numbers and a polynomial Eorb(X;u, v) in terms of the action of G on M . The McKay
correspondence at the level of Hodge numbers asserts that

Est(X;u, v) = Eorb(X;u, v).

This was proved by Batyrev [Ba3] and Denef and Loeser [DL2] in the case when M = Cn

and G ⊂ SL(n) and by Lupercio and Poddar [LP] and Yasuda [Yas] in general.

We recall that in the definition of the stringy E-function we had to assume that our
variety has log terminal singularities. Veys [Ve1] extended this definition to more general
singularities, under the assumption that the Minimal Model Program holds.

By now there are stringy version of other invariants, too. For example, in [dFLNU]
one constructs a stringy analogue of the total Chern class of a smooth projective vari-
ety. The main ingredient is a realization of motivic integration with values in a ring of
constructible functions. A stringy version of the elliptic genus is constructed in [BL].
However, so far there is no interpretation of the elliptic genus in terms of motivic integra-
tion. Therefore the independence of the resolution is proved in thais case using the Weak
Factorization Theorem of [AKMW].
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