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Many of the tools of higher dimensional complex birational algebraic geometry—including singu-
larities of pairs, multiplier ideals, and log canonical thresholds— have ”characteristic p” analogs
arising from ideas in tight closure theory. Tight closure, introduced by Hochster and Huneke in
[17], is a closure operation performed on ideals in commutative rings of prime characteristic, and
has an independent trajectory as an active branch of commutative algebra. Huneke’s book [19]
gives a nice introduction from the algebraic perspective. Here we review some of the connections
with birational geometry that have developed since the survey [30] appeared. Basic references for
the birational geometry terms used here are [24], and [21] or [20].

Let X be an reduced, irreducible scheme of finite type over a perfect field k of positive characteristic
p. Even if we are mostly interested in complex varieties, such schemes arise in practice by reduction
to characteristic p.

Our goal is to understand the singularities of X (or of subschemes or divisors of X) in terms of
the Frobenius morphism F : X → X. On the underlying topological spaces, the Frobenius map
is simply the identity map, but the corresponding map of rings of functions OX → F∗OX is the
p-th power map. The Frobenius is a finite map of schemes of degree p, though it is not a map of
k-varieties unless k = Fp.

1 F-singularities.

The following simple fact is fundamental: the scheme X is smooth over k if and only if the Frobenius
is a vector bundle—that is, if and only if the OX -module F∗OX is locally free [22]. By weakening
the property that F∗OX is locally free in various ways, different classes of ”F-singularities” arise.

1.1 F-purity and log canonical singularities.

Suppose that the Frobenius map OX → F∗OX is locally split as a map of OX -modules. This
property of ”local Frobenius splitting,” called F-purity in the commutative algebra literature, was
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introduced by Hochster and Roberts in their proof of the Cohen-Macaulayness of rings of invariants
[18].

Local F-splitting should not be confused with global F-splitting, in which there is a global splitting
for the map OX → F∗OX , though of course there is no difference for affine X. Global F-splitting
(usually called ”Frobenius splitting”) was introduced by Mehta and Ramanathan to study coho-
mology of Schubert varieties [25]. The new book [8] gives a comprehensive overview of this rich
subject. On the other hand, local and global F-splitting are related as follows: Fix a projective
variety X together with a choice of ample line bundle L on it. Then X is globally F-split if and
only if the affine cone

Spec ⊕n≥0H
0(X,Ln)

over X with respect to L is locally F-split [31].

Local F-splitting is expected to be the ”characteristic p” analog of log canonical singularities. Fix a
complex variety XC. Because XC is defined by finitely many equations in finitely many unknowns,
we may consider a ring A finitely generated over the integers over which ”all the defining equations
of XC are defined.” We can then construct a scheme XA of finite type over A, and thus recover XC
as XA ×A SpecC. Furthermore, we may assume that XA → Spec A is faithfully flat (by inverting
an element of A if necessary). The closed fibers of the map XA → SpecA are considered ”prime
characteristic models”; these fibers are schemes of finite type over finite fields of different (positive)
characteristics. The reduction to prime characteristic process is described carefully in many places,
for example, in [30].

The following theorem was first proved by Watanabe in the mid-nineties although the published
version appeared (in greater generality) several years later in a joint paper with Hara [15].

Theorem 1 Let XC be a normal complex variety for which the canonical class is Q-Cartier. If, for
some choice of A as above, there is a dense set of closed points of Spec A such that the corresponding
prime characteristic models are F-pure, then XC has log canonical singularities.

The converse statement is an important open problem.

1.2 F-regularity and log terminal singularities.

The notion of F-regularity, which is a slightly stronger property than F-purity, is the prime char-
acteristic analog of log terminal singularities. For each natural number e, consider the iterated
Frobenius map F e : X → X, which on the level of sections is the pe-th power map. When X is
affine, it is said to be strongly F-regular if, for every non-zero function c ∈ OX , the map

OX → F e
∗OX (1)

s 7→ cspe
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splits for all sufficiently large e. For non-affine X, we require this condition locally.1 In fact, it
turns out that one need not consider all c, but may instead chose any c such that the complement
of the divisor defined by c is smooth.

Theorem 2 Let XC be a normal complex variety for which the canonical class is Q-Cartier. Then
XC has log terminal singularities if and only if for some choice of A as above, there is a dense set
of closed points of Spec A such that the corresponding prime characteristic models are F-regular.

The ”if” direction of Theorem 2 is proved in [15], and the ”only if” direction in [12]. In some ways,
F-regularity is easier to work with than F-purity, which is more complicated from an arithmetical
point of view. For example, the cone over an elliptic curve of prime characteristic is F-pure if
and only if the elliptic curve is ordinary (that is, not supersingular) [30, 4.3]. This difference may
account for the openness of the converse to Theorem 1.

1.3 F-rationality and Rational Singularities.

The prime characteristic analog of rational singularities is F-rationality, a fact that historically
preceded and motivated Theorems 1 and 2. By definition, a local ring of prime characteristic
is F-rational if every ideal generated by a system of parameters is tightly closed; an alternative
characterization more in our spirit is that a d-dimensional point x on X is an F-rational point if
and only if the local cohomology module Hd

{x}(OX) has no non-trivial proper submodules stable
under the action of the Frobenius module [29].

Replacing the words ”F-regular” and ”log terminal” with ”F-rational” and ”rational” in Theorem
2, we arrive at the theorem relating F-rationality with rational singularities. The proof of the
”if” direction uses the characterization of F-rationality in terms of local cohomology [29], while
the converse statement, due to Nobuo Hara, also invokes a variant of Kodaira vanishing [12]. In
fact, the equivalence of F-rational and rational singularities implies Theorem 2, by virtue of the
”canonical cover trick”; see [30, 4.12].

The Frobenius action on local cohomology is a crucial ingrediant also in the proofs of Theorems 1
and 2, and indeed, both F-regularity and F-purity admit characterizations in terms of the Frobenius
action on certain local cohomology modules, which come down to a criterion for purity of a map
due to Hochster; see [15] for precise statements in the language here.

1We caution the reader of a technical point: there are three different notions of F-regularity in the literature, all
of which are expected but not known to be equivalent. A ring R of prime characteristic is weakly F-regular if all its
all ideals are tightly closed, and F-regular if the same is true in any of its localizations. On the other hand, we are
mainly interested here in the case of normal varieties over a perfect field for which the canonical class is Q-Cartier,
and in this case, the three notions are all known to be equivalent [1]. This technical issue arises partially from the
vexing open question as to whether the operation of tight closure commutes with localization.
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1.4 F-injectivity and DuBois singularities.

Another closely related concept is F-injectivity. The scheme X is defined to be F-injective at a
d-dimensional point x if the map of local cohomology F : Hd

{x}(OX) → Hd
{x}(OX) is injective.

Karl Schwede has proposed that F-injectivity should be the prime characteristic analog of DuBois
singularities. In his 2006 PhD thesis, he gives much evidence, including a proof of an analog of
Theorem 1 establishing that ”F-injective implies DuBois” [27].

2 Singularities of Pairs.

Log terminal and log canonical singularities are most important in the context of pairs; therefore
it is natural to develop a theory of F-regularity, F-purity, and indeed tight closure of a pair (X, ∆),
where ∆ is an effective Q-divisor on normal X. The first to undertake this project were Hara and
Watanabe in [15].

For any effective Q-divisor D, we have an inclusion OX → OX(bDc) given by a section of bDc, and
hence composition maps induced by Frobenius

OX → F e
∗OX → F e

∗OX(bDc),

where bDc denotes the ”round-down” of D. Hara and Watanabe then defined:

Definition 1 (i.) The pair (X, ∆) is F-pure if and only if the map OX → F e
∗OX(b(pe − 1)∆c)

splits for every e.

(ii.) For X affine, the pair (X, ∆) is (strongly) F-regular if and only if for every non-zero c ∈
OX(X), the composition map

OX → F e
∗OX(b(pe − 1)∆c) ·c−−−−→ F e

∗OX(b(pe − 1)∆c)

splits for all sufficiently large e.

When ∆ = 0, this recovers the classical definitions of F-purity and (strong) F-regularity.

The hard part is to realize what these definitions should be. Having done so, Hara and Watanabe
then show that many of the basic properties of F-pure and F-regular varieties generalize to pairs.
Indeed, they show that the proofs of Theorems 1 and 2 generalize easily to this setting, interpreting
log-terminal to be ”Kawamata log terminal” [15].

A notion of divisorially F-regular is also introduced in [15], which Takagi has recently shown to
correspond to plt singularities [33].
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3 Multiplier Ideals and Test Ideals.

The prime characteristic analogs of multiplier ideals are test ideals. The test ideal of a commutative
ring of prime characteristic is an important aspect of the theory of tight closure, defined originally
by Hochster and Huneke without any regard for ”pairs”. By definition, the test ideal of R is the
set of all elements c such that cI∗ ⊂ I for all ideals I in R. Here I∗ denotes the tight closure of I,
but its definition is not important for the discussion. The non-obvious fact the that test ideal of
virtually any ring is non-zero is proved by Hochster and Huneke in [17].

Obviously the test ideal is the unit ideal if and only if all ideals of R are tightly closed, that is, if
and only if the ring is (weakly) F-regular. Indeed, the test ideal defines the non-F-regular locus of
Spec R, endowing it with a natural scheme structure2. Similarly, the multiplier ideal of a normal
Q-Gorenstein scheme defines the non-log-terminal locus, where here we mean multiplier ideal of
the pair (X, 0). Thus Theorem 2 can be interpreted loosely as saying that, after reducing to prime
characteristic, the multiplier ideal and the test ideal have the same radical. In fact, a much stronger
statement holds:

Theorem 3 Let XC be a normal complex (affine) variety for which the canonical class is Q-Cartier.
Let JC be its multiplier ideal, and JA be the corresponding ideal on XA, for any choice of A as above.
Then, for all the closed points in some dense open subset of Spec A, the pullback of JA to each of
the corresponding prime characteristic models is the test ideal of that model.

This theorem was proved independently in [13] and [32].

The theory of tight closure, and hence of test ideals, has been generalized to pairs by Hara and
Yoshida [16]. Fix a domain of prime characteristic p, and an ideal a. For each ideal J ⊂ R, they
define the tight closure of J with respect to the pair (R, a) as the ideal

J∗a = {z | there exists c 6= 0 s.t. cape
zpe ∈ J [pe] for all e � 0},

where J [pe] = F e
∗F e∗(J) is the ideal of R generated by the pe-th powers of the generators of J .

Taking a to the unit ideal of R, we arrive at Hochster and Huneke’s original definition of the tight
closure of J .3 They also define tight closures for pairs (R, at), where t is a positive rational number
by replacing ape

by adtp
ee in the definition above, the importance of allowing fractional coefficients

for multiplier ideals being well-known.

Having defined tight closure, Hara and Yoshida then define the test ideal of the pair (R, a) to be
the ideal τ(a) ⊂ R of all elements c such that cJa∗ ⊂ J for all ideals J , and show that many of the
basic properties of test ideals hold in this setting, including the obvious generalization of Theorem
3. The theory is further developed and refined in the papers papers [36] and [14]. Many properties
of multiplier ideals,4 such as the subadditivity property, the restriction theorem, the Briancon-
Skoda theorem, the description in the toric case are proved for test ideals using simple ”frobenius”

2Here, we brush aside the difficulties regarding the behavior of tight closure under localization, and assume that
weak and strong F-regularity are equivalent.

3We caution the reader that the terminology is misleading in this more general setting; this is not actually a
closure operation on J if a 6= (1). That is, Ja∗ 6= (Ja∗)a∗ in general.

4See the book [24].
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arguments. Thus issues of resolution of singularities and vanishing theorems are avoided. So many
of the techniques of multiplier ideals that have proven so powerful in complex geometry can be now
carried out in prime characteristic as well.

Furthermore, several new results for complex varieties have been discovered via tight closure for
pairs after reducing to prime characteristic. Notable are two results of Takagi. In [35], he proves
an inversion of adjunction result for pairs (X, Z) where Z is an arbitrary subscheme of a smooth
complex variety X. In [34], he shows the ”subadditivity” property for multiplier ideals can be
adapted to the singular case by multiplying by the Jacobian ideal. No direct proofs of these results
are known in the complex case, an interesting challenge for complex geometers.

4 F-thresholds.

We now briefly discuss prime characteristic analogs of log-canonical thresholds and their refinements
called ”jumping coefficients” as defined in [10].

Let Z be a subscheme of a smooth complex variety XC. The log canonical threshold of a pair
(XC, Z) is the supremum of all rational numbers t, such that the pair (XC, tZ) is log canonical.
Equivalently, it is the infimum over all t such that the multiplier ideal of the pair (XC, tZ) is non-
trivial. Naturally, if X has prime characteristic, one could consider an analogous number using
F-pure pairs. This is done by Takagi and Watanabe, who named this number the F-pure threshold
of a pair and proved some basic properties analogous to those of log canonical thresholds [37].

The jumping coefficients of the pair (XC, Z) are the values of t where the multiplier ideal of (XC, tZ)
makes a discrete jump—that is, the values of t such that J (XC, tZ) 6= J (XC, (t − ε)Z) for every
ε > 0. In prime characteristic, Mustata, Takagi and Watanabe introduced a notion of F-thresholds
for pairs which turn out to be jumping coefficients for test ideals [26]. Fix a pair (R, a), where R
is a regular local ring of prime characteristic p. For every ideal J ⊂ m containing a in its radical,
they define the F-threshold of the pair (R, a) with respect to J as

lim
e→∞

max{r|ar * J [pe]}
pe

,

where again J [pe] is the ideal generated by the pe-th powers of the generators of J . In particular,
taking J = m, they recover the F-pure threshhold. Like jumping coeffients, F-thresholds turn out
to be discrete and rational [7]; this is not obvious from the definition, but is based on a different way
to think about F-thresholds inspired by the work on D-module generators of Alvarez-Montaner,
Blickle and Lyubeznik [2].

There are many subtleties involving F-thresholds, which depend on the characteristic. For example,
fix a polynomial f ∈ Z[X1, . . . , xn], and consider the F-thresholds of the pairs (Fp[[X1, . . . , xn]], fmodp),
as we vary the prime number p. It is believed but not known that there are infinitely many p for
which the F-pure threshold of this pair agrees with the log canonical threshold of the corresponding
complex hypersurface. This problem harks back to the subtle arithmetic nature of F-purity.

For a fixed chacteristic p, another interesting open problem is whether the F-pure thresholds of
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a family of divisors on a fixed variety can have accumulation points. The corresponding problem
for log canonical thresholds is well known in birational geometry.

5 Connections with D-modules.

The connection between the log canonical threshold c of a complex polynomial f and its Bernstein-
Sato polynomial bf is well-known: −c is always a root of bf , in fact the smallest root greater than
−1. Also the jumping coefficients of f are roots of bf , as is shown in [10]. Mustata, Takagi and
Watanabe study F-pure thresholds for varying p, connecting them to the roots of the Bernstein-
Sato polynomial of (the complex polynomial) f as well [26]. In this way, they produce new roots of
the Bernstein-Sato polynomial. In the case where f is monomial, this process recovers all the roots
[9]. An interesting open problem would be to understand which roots one recovers in general.

The theory of D-modules in prime characteristic appears to have deep connections with the theory
of F-regularity, F-purity and tight closure. This possibility is first considered in [28], where an F -
pure ring is shown to be F-regular if and only if it is simple as a D-module. Deeper connections are
reported in the beautiful work of Manuel Blickle [5], [6], including an interesting connection with
the intersection homology D-module, which has had nice applications to equivariant D-modules in
prime characteristic [23]. Other interesting papers on D-modules and their interaction with Frobe-
nius are Lyubeznik’s paper on ”F-modules”, Emerton and Kisin’s paper on the prime characteristic
Riemann-Hilbert correspondence [11], and Blickle’s Cartier isomorphism for toric varieties [4]. Pre-
sumably, there are as yet unrevealed connections with F-crystals and crystalline coholomogy—some
connections are discussed in Blickle’s thesis [3].
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