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Chapter A: Lecture Notes

Lecture notes were TeXed in real time by John Voight.

A.1 Agrawal: A Polynomial Time Algorithm for Testing Primality

The primality testing algorithm we present is based upon the following identity: n is
prime if and only if

(1 +X)n ≡ 1 +Xn (mod n),

where we consider this congruence as an identity in the polynomial ring (Z/nZ)[X]. This
easily gives a randomized algorithm which runs in polynomial time: rather than verifying
it completely (which would be far too expensive), you verify it modulo a randomly chosen
degree log n polynomial Q(X); repeating this sufficiently often, you expect to witness a
failure of this congruence to hold fairly quickly if n is composite.

Conjecture. To prove that n is prime, it is enough to let Q(X) run over the set

{X − 1, X2 − 1, . . . , X log2 n − 1}.
We were unable to prove this conjecture, but, instead the modified conjecture, which

is then a proposition:

Proposition (Modified conjecture). To prove that n is prime, it is enough to let Q(X) run
over the set

R = {(X + a)r − 1 : 1 ≤ r ≤ 16(log n)5, 1 ≤ a ≤ 8(log n)7/2},
except when n has a ‘small’ prime factor (≤ (log n)5).

Remark. One can replace the assumption that n does not have a small prime factor by adding
to the list the polynomials Xk.

For a fixed r, this gives only that n is a prime power, which is a condition readily
checked.

We now prove the modified conjecture.

If n is prime, clearly all of these conditions will hold.

Assume that n is composite and does not have a ‘small’ prime factor. Assume that

(1 +X)n ≡ 1 +Xn (mod n,Q(X))

for every Q(X) ∈ R. First, observe that n is not a prime power. This follows as

(1 +X)n ≡ 1 +Xn (mod n, (X + 1)r − 1)

so substituting X for X + 1 everywhere we get

(X − 1)n ≡ Xn − 1 (mod n,Xr − 1)

and substituting Xk for X we get

(Xk − 1)n ≡ Xnk − 1 (mod n,Xr − 1)

hence ∏

k<r

(Xk − 1)n ≡
∏

k<r

(Xkn − 1)

so rn ≡ r (mod n) for all r ≤ 16(log n)5.
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Suppose p2 | n for p a prime. Then rn−1 ≡ 1 (mod p2) (n does not have a small prime
divisor) so rgcd(n−1,p(p−1)) ≡ 1 (mod p2) as the group is cyclic. Therefore rp−1 ≡ 1 (mod p2)
for all r ≤ 16(log n)5. A simple counting argument (look at all of the possible numbers whose
prime divisors are all smaller than (log n)2, the identity holds for them but there are more
than p of them) shows that this cannot happen.

Assume that n is composite but not a prime power. Let p | n, p prime, and fix r. Now:

Claim. We have

(1 +X)n ≡ 1 +Xn (mod n, (X + a)r − 1)

for 1 ≤ a ≤ 8(log n)7/2 if and only if

(X − a)n ≡ Xn − a (mod n,Xr − 1)

for 1 ≤ a ≤ 8(log n)7/2.

This can be seen by replacing X by X − a as appropriate.

Definition. A number m is introspective for g(X) if

g(X)m ≡ g(Xm) (mod p, xr − 1).

Both n and p are introspective for X − a, 1 ≤ a ≤ 8(log n)7/2. Indeed, a prime p is
trivially introspective for every polynomial.

Observe that if m1 and m2 are introspective for g(X), then so is m1m2. This is clear
as

g(X)m1m2 ≡ g(Xm1)m2 ≡ g(Xm1m2) (mod p,Xr − 1).

Secondly, observe trivially that if m is introspective for g1(X) and g2(X), then it is for
g1(X)g2(X).

Now let I = {nipj : i, j ≥ 0} and

T =
{∏

1≤a≤8(logn)7/2(X − a)ea : ea ≥ 0
}
.

Observe that every m ∈ I is introspective for every g(X) ∈ T .
Let t be the order of the group generated by n and p in (Z/rZ)∗. There are > t elements

in I less than or equal to n2
√
t.

Furthermore, there are > n2
√
t distinct polynomials of degree < t which are distinct

modulo p and h(X), where h(X) is an irreducible factor of the rth cyclotomic polynomial
in Fp. We show this as follows.

The number of polynomials in T of degree < t is at least 2min{t,8(log n)
7/2} by simply

considering products of distinct linear factors in T . Assume that t > 4(log n)2 and t <
16(log n)5. (We will come back to this: we can choose the value of r to obtain it.) Then

n2
√
t = 22

√
t logn < 2t

and

n2
√
t < n8(log n)

5/2

= 28(log n)
7/2

.

Let F = Fp[X]/(h(X)), and let g1(X), g2(X) be of degree < t in T and g1(X) 6= g2(X).
Suppose g1(X) = g2(X) (mod p, h(X)). Then

g1(X
m) ≡ g1(X)m ≡ g2(X)m ≡ g2(X

m) (mod p, h(X))
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for all m ∈ I. Therefore Xm is a root in F of the polynomial g1(Y ) − g2(Y ). This is a
contradiction, as each of the elements Xm are distinct (they are roots of unity in the field)
for the t representatives of the group generated by n and p, but the degree of g1(Y )− g2(Y )
is < t.

Let m1 ≡ m2 (mod r), m1 6= m2 ∈ I and m1,m2 ≤ n2
√
t; this is possible as t is the

order of the group generated by n and p in Z/rZ. Let g(X) ∈ T be of degree < t. Then

g(X)m1 ≡ g(Xm1) ≡ g(Xm2) ≡ g(X)m2 (mod p, h(X))

so g(X) (mod h(X), p) is a root in F of the polynomial Y m1−Y m2 . Since g was an arbitrary

element of T , each g(X) is a root of this polynomial with degree ≤ n2
√
t but there are more

than n2
√
t of them, contradiction.

Finally, we show that t > 4(log n)2 and t < 16(log n)5. Suppose the order of n is

≤ 4(log n)2 in (Z/rZ)∗. Then r | ∏d≤4(log n)2(n
d − 1) < 216(log n)

5
. Now use the fact that the

least common multiple of the first k numbers is at least 2k.

It is easy to see that this algorithm has runtime (log n)10.5.

A.2 Agrawal: Finding Quadratic Nonresidues

Let p − 1 = 2`s, s odd. To find a quadratic non-residue, compute continuously −1,
(−1)1/2, (−1)1/4, . . . , (−1)1/2`−1

. One can quickly compute (−1)1/2 from an algorithm due
to Schoof, but one gets stuck at (−1)1/8.

The idea: in primality testing, we want to know if Z/nZ is a field, so we embed it into
(Z/nZ)[X]/(Xr − 1); this ring has enough structure to pull out a nice algorithm. Assume
that ` ≥ 2, and we try only to compute

√
−1. Now we embed in Fp[X]/(X2 + 1). Consider

g(X) = (1 −X)s. Observe that (g(X))2
`
= 1 in Fp[X]/(X2 + 1), so g(X) is a 2`th root of

unity.

Assume that ` = 2. In this case, g(X) is a fourth root of unity. But X is also a
fourth root, so g(X) = Xk (mod X −ω) where ω is the ‘real’ fourth root of unity. Consider
g(X) mod (X2 + 1): observe that g(X) 6= Xk (mod X2 + 1) for any k. For suppose

(1−X)s ≡ Xk (mod X2 + 1);

then

(1− 1/X)s = 1/Xk (mod 1/X2 + 1),

so

(1−X)s = −(Xs/Xk) (mod X2 + 1),

hence −(Xs/Xk) = Xk (mod X2 + 1), a contradiction because s is odd. So compute
gcd(g(X)−Xk, X2 + 1), for each k, one of them will factor X2 + 1.

If ` > 2, then you cannot argue g(X) ≡ Xk (mod X − ω). If ` > 2, then it is possible
that g(X) is an eighth root or a sixteenth root or so on. Suppose that g(X) modulo X 2 + 1
is an eighth root, for example. Then g(X2) = (1−X2)s ≡ Xk (mod X − ζ) for some factor
X − ζ of X4 + 1 and k odd. But (1 − X2)s is even, so it cannot be an odd power, so
gcd((1−X2)s −Xk, X4 + 1) will give either a linear factor (in which case we are done) or a
product of quadratic factors (X − ζ2)(X + ζ2) or the products similar to (X − ζ)(X − ζ3)
and (X − ζ)(X + ζ3).
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Let h(X) be a quadratic factor of X4 + 1. Now if (1 − X)s 6≡ Xk (mod h(X)), then
h(X) can be factored and we are done. Suppose

(1−X)s ≡ Xk (mod (X − ζ)(X − ζ3))

and

(1−X)s ≡ Xk′ (mod (X + ζ)(X + ζ3)).

If you replace X by X3, then you get

(1−X3)s = X3k (mod (X3 − ζ)(X3 − ζ3))

so

(1−X3)s ≡ X3k = (1−X)3s (mod (X − ζ)(X − ζ3)).
That means that 3 is introspective for (1 − X)s. The same argument applies to the other
congruence, so one obtains that 3 is introspective for (1−X)s mod X4 + 1.

Now try all over again now with X − a replacing 1−X; the bad case will be when we
have 3 is introspective for (a−X)s mod X4 + 1 for a large number of a. Here we get stuck,
but this should be impossible.

Remarks.

A. There was a solution due to Lehmer which says for any fixed ` that you can solve this
problem? (Cohen) But that assumes the existence of a nonresidue to begin with, which is
exactly our problem. (Bernstein) But also this doesn’t seem to scale well. (Cohen) There is a
strategy to deal with this, and we always work modulo a degree four polynomial. (Agrawal)

B. The fact that s > 1 means that the same techniques as in the primality test do not seem
to apply. Can you solve the problem if s = 3, or for other small s? (Lenstra) The case of
a Fermat prime is trivial (3 is a nonresidue, and there probably aren’t any above 65537).
(Lenstra, Elkies) It seems as though if s is bounded, there are only a finite number of
problematic a. For example, (a−X3)s ≡ (a−X)3 (mod h(X)) does not hold for ‘many’ a
(Pomerance).

C. One strategy to solve this problem: translate this problem into rings and stare at it. (Lenstra)

D. Is there a strategy to deal with cases beyond eighth roots (where we have the special situation
that every odd integer has square 1)? (Elkies) Yes, but we need to solve this problem first.
(Agrawal)

E. How many values of a do you need? (Voloch) It seems unlikely you can generate the whole
group with the (X − a)s without the GRH. (Bernstein)

A.3 Bernstein: Proving Primality After Agrawal-Kayal-Saxena

The lecture notes are available on the speaker’s website: the talk (and more)1, related
problems2, older paper on AKS3, and putting AKS into context4.

1http://cr.yp.to/papers.html#quartic
2http://cr.yp.to/papers.html#abccong
3http://cr.yp.to/papers.html#aks
4http://cr.yp.to/primetests.html
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A.4 Edixhoven: About Point Counting over Arbitrary Finite Fields

Consider a system of equations f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0 given by
polynomials fi ∈ Fq[x1, . . . , xn]. This is not essentially different than the case of a single
hypersurface (every variety is birational to a hypersurface, or, also, one can use the inclusion-
exclusion principle). We let q = pr.

Question. For fixed n, is there an algorithm that computes the number of solutions in Fq in
time polynomial in the quantities: log q (or r and log p), d = maxi deg fi, and m?

If you fix p, and m = 1, then the answer is yes (Lauder-Wan) using p-adic methods.
We discuss the case where p is not fixed. If p is not fixed, then one knows that the answer
is yes for elliptic curves (Schoof) using `-torsion points and curves of a given genus via the
`-torsion of their jacobian (Pila).

Conceptually, all methods use Lefschetz fixed points formula:

#X(Fq) =
∑2 dimX

i=0 (−1)iTr(Frobq |H i
c(X))

where we denote H i
c(X) cohomology with compact support. This is true for X a scheme

of finite type which is separated over Fq. For these cohomology groups, one can take a p-
adic approach using a de Rham-type cohomology, lifting X to a p-adic ring R and take the
hypercohomology of the de Rham sequence, quite explicit and computable but the complexity
is worse than linear in p. Instead, one can also use mod ` methods (` 6= p); here one takes
the groups H i

c(XFq ,et
,F`) which is a lot less explicit. The H i derive from injective resolutions

on the etale topology. In this setup, there is the advantage that you can choose `. For an
elliptic curve, one has

E(Fq)[`]∨ = H1(EFq ,et
,F`).

What is the simplest interesting case where we want to but cannot yet compute an H i with
i ≥ 2? We think of surfaces, or modular forms of weight ≥ 3 (to generalize the case of elliptic
curves, which correspond to eigenforms of weight 2). We assume that there is a cohomology
group of dimension ≥ 2 (if it is of dimension 1, Frobenius acts as a power of the cyclotomic
character).

We consider as an example the modular form ∆ = q
∏

n≥1(1− qn)24 =
∑

n≥1 τ(n)q
n is

an eigenform of weight 12, viewed as a function on the upper half-plane. Then ∆(dq/q)⊗6

is an SL2(Z)-invariant on H, so it descends to H/SL2(Z). The variety we work with is the
ten-fold product of the universal elliptic curve E; we find that H11(E10) has dimension 2.
For all p, and ` 6= p, τ(p) mod ` is the trace of Frobp on H11(E10

Fp,et
,F`), which is also the

trace of Frobp on H
11(E10

Q,et,F`) with Gal(Q/Q) acting on it: it is the two-dimensional Galois

representation (modulo `) associated to ∆. The action factors through Gal(K∆,`/Q) acting
faithfully where K∆,`/Q is a finite extension.

Compute explicitly the extension K∆,`. One gets as a byproduct a computation of the
actual representation, which we cannot easily compute now. A bit of work yields that K∆,`

is the Galois closure of the field definition of a suitable element x ∈ J1(`)(Q)[`], where J1(`)
is the jacobian of X1(`), if X1(`)(C) = H/Γ1(`) together with te cusps, and Γ1(`) is the set of

matrices

(
a b
c d

)
with a ≡ 1 (mod `), c ≡ 0 (mod `). Still: need to compute this efficiently.

This is not so easy because the genus g of X1(`) is quadratic in `.
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We have the following strategy for finding Q(x) (based a suggestion of Jean-Marc
Couveignes). We have a surjection

X1(`)(C)g → J1(`)(C) = Cg/Λ

where Λ = H1(X1(`)(C),Z). We have Cg/Λ ⊃ (1/`)Λ/Λ 3 x. (For r prime, Tr · x =
τ(r) · x.) This map on complex points is given by (Q1, . . . , Qg) ∈ X1(`)(C) maps to the

point [Q1 + · · · +Qg − gP0] =
∑g

i=1

∫ Qi

P0
(ω1, . . . , ωg) ∈ Cg/Λ. Here, for P0 one can choose a

Q-rational cusp.

Generically, there is a unique point (Q1, . . . , Qg) up to permutation which gives the
point x, namely, α =

∑
i j(Qi) ∈ Q(x). Now one estimates the height of α, approximates α

in C by lifting (numerically) the straight line path from 0 to x (possible because the map
X1(`)

g → J1(`) is generically unramified). It will probably be a good idea to replace the
divisor gP0 by a sum of g distinct points P1, . . . , Pg, with small height, defined over a small
and solvable extension of Q. As x and the Pi determine the Qi (up to permutation), and
as x is a torsion point (Néron-Tate height zero) one expects that the height of α is not
much bigger than that of the Pi. So one hopes that the required number of correct digits
of the approximation of α grows polynomially in `. The tool to be used for estimating
the height of α is Arakelov geometry. A good indication that this proposed strategy works
is that the height estimate works well in the function field case (a nice application of the
Grothendieck-Riemann-Roch theorem).

A.5 Gao: Factoring Polynomials under GRH

We consider the following problem: Given a prime p and f ∈ Fp[x], where deg f = n, f
is separable, and f splits completely, find a proper factor of f (in deterministic polynomial
time).

Berlekamp algorithm reduces general polynomials in Fq[x] (q a power of p) to polyno-
mials of the above type. Without GRH, we are stuck already at x2 − a. So throughout we
assume GRH.

Ronyai (1988) shows that this can be done in time (nn log p)O(1), or more precisely
(nr log p)O(1) whenever r | n, r > 1, so in particular if n is even f can be split in deter-
ministic polynomial time. Bach, von zur Gathen and Lenstra (2001) give an algorithm with
polynomial time if φk(p) is smooth for some k where φk(x) is the kth cyclotomic polynomial.
Evdokimov (1994) shows for any n and p, f can be factored in time (nlogn log p)O(1). We dis-
cuss work in Cheng and Huang (2000), and Gao (2001) plus some unpublished results. GRH
will be needed only to compute an rth nonresidue in Fp or in its extensions, for 1 ≤ r ≤ n.

Definition. An algebra R/Fp is called elementary if R ∼= (Fp)
⊕

m for some m.

Let R be elementary over Fp. Then we write R = Fpε1 + · · · + Fpεm where the εi are
primitive idempotents, which are unique in R.

Fact.

A. If f, g ∈ R[x], then gcd(f, g) can be defined properly and can be computed in deterministic
polynomial time for any elementary algebra R.

B. If f ∈ R[x] is monic, separable (i.e. (f, f ′) = (1)), and f splits completely, then R1 =
R[x]/(f(x)) is also elementary. Given a zerodivisor in R1, one can compute a proper factor
of f or a zerodivisor of R.
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C. Given a nontrivial ring endomorphism of R1 over R, one can find a proper factor of f or a
zerodivisor of R. (Need GRH to get an rth nonresidue, for 1 ≤ r ≤ n, where n = deg f .)

D. Given a quadratic nonresidue in Fp, there is a deterministic polynomial time algorithm for
computing square roots in R. More precisely we have a function σ : R → R, such that (i)
σ(A) is a square root of A if A is a square in R, (ii) if A =

∑m
i=1 aiεi ∈ R, ai ∈ Fp, then

σ(A) =
m∑

i=1

σ(ai)εi,

and (iii) for a ∈ Fp, σ(a2) = ±a. For example, if p ≡ 3 (mod 4), then we can take
σ(A) = A(p+1)/4, and for a ∈ Fp,

σ(a2) =

{
a, if a is a square,

−a, otherwise.

Now let f ∈ Fp[x] be separable, so that

f =
n∏

i=1

(x− ai), ai ∈ Fp.

To factor f , define

R2 = Fp[z1, z2]/(f(z1), f(z2)),
which is the tensor product of Fp[z]/(f(z)) with itself. Then R2 is an elementary algebra.
In the following, we will identity z1 and z2 with their images in R2. Let

εi =

∏
j 6=i(z1 − aj)∏
j 6=i(ai − aj)

, 1 ≤ i ≤ n,

and

ηi =

∏
j 6=i(z2 − aj)∏
j 6=i(ai − aj)

, 1 ≤ i ≤ n.

Then εiηj, 1 ≤ i, j ≤ n, are all the primitive idempotents of R2. They have the
following properties:

n∑

i=1

εi = 1,
n∑

j=1

ηj = 1,

and

z1 = a1ε1 + · · ·+ anεn =
∑

i,j

aiεiηj,

z2 = a1η1 + · · ·+ anηn =
∑

i,j

ajεiηj.

Let

A =
1

2
(z1 + z2 + σ((z1 − z2)2) ∈ R2,

which can be computed in deterministic polynomial time. Then

A =
∑

i,j

1

2
(ai + aj + σ((ai − aj)2)εiηj
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where

1

2
(ai + aj + σ((ai − aj)2)) =

{
ai, if σ((ai − aj)2) = ai − aj
aj, if σ((ai − aj)2) = aj − ai.

Hence A encodes information about the “squareness” of the differences of the roots of
f . By using characteristic polynomials and gcd technique, one can extract the factors of f .

Definition. For 1 ≤ i ≤ n, define

∆i = {1 ≤ j ≤ n : j 6= i, σ((ai − aj)2) = −(ai − aj)}.

Theorem. We can always find a proper factor of f in Fp[x] except when

#∆i = (n− 1)/2, 1 ≤ i ≤ n, (1)

and in this exception case f can be factored over Fp[z1] as

f(x) = (x− z1)f0f1
where

f0 =
n∑

i=1

∏

j∈∆i

(x− aj)εi, f1 =
n∑

i=1

∏

j /∈∆i,j 6=i
(x− aj)εi.

To further factor f0 over R1 = Fp[z1]/(f(z1)), we compute in the ring

R3 = R1[z2, z3]/(f0(z2), f0(z3)),

and similarly for f1.

Theorem. We can always split f0 or f1 except when

#(∆i ∩∆j) = (n− 3)/4, 1 ≤ i < j ≤ n, (2)

and in this exception case, f0 is factored over R1[z2]/(f0(z2)) as

f0(x) = (x− z2)f00f01
where f00, f01 ∈ R1[z2][x] both of degree (n− 3)/4; similarly over the ring R1[z2]/(f1(z2)),

f1(x) = (x− z2)f10f11.

A system of subsets satisfying (1) and (2) is called an Hadamard design. When n ≡
3 mod 4 is a prime, there is always an Hadamard design.

To further split f00, let R2 = R1[z2]/(f0(z2)), and we compute in the ring

R4 = R2[z3, z4]/(f00(z3), f00(z4)).

Similarly for f01, f10, and f11.

Theorem. We can always split f00, f01, f10, or f11 except when

#(∆i ∩∆j ∩∆k) = (n− 7)/8, 1 ≤ i < j < k ≤ n. (3)
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It can be proved, however, that (3) is impossible. It remains open how to explore
this information to obtain a proper factor of f in Fp[x]!

A.6 Kedlaya: Counting Points using p-adic Cohomology

We introduce a different p-adic setup for counting points (or equivalently computing
zeta functions). If X is a variety over Fq, we want to count points using ‘de Rham’ cohomol-
ogy. We will demonstrate Monsky-Washnitzer cohomology (a kind of rigid cohomology for
smooth affine varieties). We restrict to the case where X is an affine curve, since in higher
dimensions other methods will be faster. Then X = SpecFq[t1, . . . , tn]/(f1, . . . , fm).

Let W = W (Fq) be the Witt vectors, and let K = W [1/p] be the fraction field of W .
Define

W 〈t1, . . . , tn〉† =
{∑

IcIt
I : I = (i1, . . . , in) ∈ Zn

≥0, cI ∈ W,
convergent for ti ∈ K, |ti| ≤ 1 + ε for some ε > 0

}
.

In other words, vp(cI) ≥ rεI − c for some r, c with r > 0. Modulo p, W 〈t1, . . . , tn〉† reduces
to the polynomial ring Fq[t1, . . . , tn], since all but finitely many coefficients are divisible by
p. We define K〈t1, . . . , tn〉† = W 〈t1, . . . , tn〉†[1/p]. Let

Aint = W 〈t̃1, . . . , t̃n〉†/(f̃1, . . . , f̃n)

where f̃i is a lift of fi. Then

Aint[1/p] = K〈t̃1, . . . , t̃n〉†/(f̃1, . . . , f̃n).
There exists a lift so that Aint is flat over W .

Let Ω1
A be the A-module generated by symbols dt1, . . . , dtn modulo the submodule

generated by df̃1, . . . , df̃m. Then there is a K-linear derivation d : A → Ω1
A. Letting

Ωi
A =

∧i
AΩi

A; you get the de Rham complex

A = Ω0
A

d−→ Ω1
A

d−→ . . .

and you ‘define’

H i
MW (X) =

ker(Ωi
A → Ωi+1

A )

img(Ωi−1
A → Ωi

A)
.

It turns out that Hq
MW (X) is independent of choices (A is unique up to noncanonical iso-

morphism, funny automorphisms are homotopic to the identity) and given X → Y , there
is a map AY → AX and the induced maps H i

MW (Y ) → H i
MW (X) also do not depend on

choices.

The spaces H i(X) are finite-dimensional, but it is not obvious; it relies upon relating
this cohomology to rigid cohomology for proper varieties, namely, crystalline cohomology
which we know is finite-dimensional for other reasons. Moreover, they satisfy the Lefschetz
trace formula: if F : X → X is the q-power Frobenius, then (Monsky)

#X(Fqi) =
∑

j(−1)j Tr((qF−1)i|Hj(X)).

The idea: try to compute H i(X) and the map induced by F (find Aint → Aint lifting
q-power Frobenius).
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Example. Look at X = SpecFq[x, y, z]/(y2 − f(x), yz − 1) with charFq = p odd. Let
deg f = 2g + 1, f monic. Lift it to A = K〈x, y, z〉†/(y2 − P (x), yz − 1), where P (x) is
monic, degree 2g + 1 over W . It is easy to compute that H0(X) is one-dimensional. Now
H1(X) is generated by xi dx/y for i = 0, . . . , 2g−1, and xi dx/y2, i = 0, . . . , 2g. Note H1(X)
splits under y 7→ −y into plus and minus eigenspaces.

You need to find relations in H1(X) that d(xi/yj) = 0. (This is a special situation:
all relations are ‘algebraic’.) Lift the p-power Frobenius by W → W by the Witt vector

Frobenius, x 7→ xp, and y 7→ yp
√
F (P (x))/P (X)p. Compose this map with itself n times to

get a q-power Frobenius lift, and this allows us to compute the zeta function of a genus g

hyperelliptic curve over Fpn in time Õ(g4n3p).

A.7 Lauder: Counting Solutions to Equations in Many Variables
over Finite Fields

We present an algorithm which allows us to count solutions to a homogeneous equation
f(X1, . . . , Xn) ∈ Fq[X1, . . . , Xn] of degree d (for simplicity we assume d ≥ 2, n ≥ 2) with
running time which does not increase exponentially in number of variables. In other words,
we are interested in computing the number of projective solutions

Nk = #{(x1 : · · · : xn) ∈ Pn−1F
qk

: f(x1, . . . , xn) = 0}

for every k ≥ 1. We encode these numbers in the generating function

Z(f, T ) = exp(
∑

kNkT
k/k) ∈ Q[[T ]]

which, by a theorem of Dwork, is in fact a rational function. We assume that f is nonsingular,
i.e. f and ∂f/∂xi for i = 1, . . . , n have no common projective solution. In this situation, we
know that

Z(f, T ) =
P (T )(−1)

n+1

(1− T )(1− qT ) . . . (1− qn−2T )
where degP = (1/d)((d− 1)n + (−1)n(d− 1)).

If we compute Nk naively for k = 1, . . . , degP then we can of course recover the
polynomial P (T ); the time required to do this, however, requires (qdegP )n ≈ 2d

n−1 log q eval-
uations of f . The input is given by

(
d+n−1
n−1

)
≤ dn−1 terms of size log q, and the output size

is approximately (dn−1 log q)O(1). We would like the running time to be polynomial in this
quantity.

If n = 2, we are counting solutions of a univariate polynomial, and this can be done in
time (d log q)O(1). For n = 3, we have an algorithm of Schoof-Pila for curves which has run
time (log q)∆ where ∆ depends on d exponentially. In general, there is an algorithm (due
to L. and Wan) which runs in time (pdn log q)O(n). Notice the n in the exponent—we would
like to lose this dependence.

The new result: If f is ‘sufficiently generic’ (we exclude a Zariski closed set which is
efficiently computable), p 6= 2, and p - d, then we can find P (T ) using (pdn log q))O(1) bit
operations. As a corollary, we see that if f ∈ Z[X1, . . . , Xn] is sufficiently generic, then
there exists an algorithm which takes as input a prime p, outputs the number of solutions
f mod p = 0, and has run time O(p2+ε).

Recall that P (T ) = det(I − T Frobq |Hn−2(X)), where we write X for the projective
variety defined by the equation f = 0. The action of Frobq can be represented by a matrix
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with entries in a field of characteristic zero, and we find that

Nk = (−1)nTr(Frobkq |Hn−2(X)) + 1 + qk + · · ·+ (qk)n−2.

For curves, for example, the dimension is n− 2 = 1, and H1(X) is a Z`-module, for ` 6= p.

Instead, we work with the p-adic theory, where Hn−2(X) is a R-module for a ring R ⊃
Zp. We compute instead Frobq = Frob

logp(q)
p , and compute the matrix of Frobp |Hn−2(X).

(Specifically, R = Qq(π) where Qq is the unramified extension of Qp of degree logp q and
πp−1 = −p. Also our Hn−2(X) is actually the primitive part of the cohomology space.)
Consider the family

fY =
n∑

i=1

aiX
d
i + Y h(X1, . . . , Xn),

and assume that a1 . . . an 6= 0. Then f1 = f and f0 is a diagonal form, for which it is easy to
count the number of solutions. Now Frobp(Y ) is a p-adic analytic function with the property
that Frobp(Y ) evaluated at a Teichmuller lift of y1/p is exactly the Frobp associated to fy.

We see that Frobp(Y ) = C(Y p)−1 Frobp(0)C
τ−1(Y ) where τ mod p : α 7→ αp, and C(Y )

is a matrix of power series around the origin satisfying the differential equation dC/dY =
C(Y )B(Y ) with initial condition C(0) = I, where B(Y ) is easily computed. This gives a
way to compute Frobp(Y ) in a radius around the origin, and we need to extend this to the
closed disc of radius 1.

The entries of the matrices are p-adic holomorphic functions, so to compute these
modulo a power of p we find rational functions with denominators corresponding to the
values of Y where the variety becomes singular and then recover the numerator from the
power series. Using overconvergence we get a bound on the degree of these rational functions.
We evaluate the rational functions at Y = 1. One gets nice complexity because we work with
univariate power series, with decay in the coefficients on the order of 1/p, and one needs to
take the power of p approximately on the order of dn log q.

In the old algorithm, we would work in Hn−2(X), the ring of power series in X1, . . . , Xn

over an R = Q(m)
p (π) where Q(m)

p is the unramified extension of Qp of degree m (if q = pm)
and πp−1 = −p modulo an infinite subspace; the power series we must work with have on
the order of (pdn log q)n terms.

Problem. Find an algorithm which counts the number of points on a curve in time (d log q)O(1).

A.8 Lenstra: Primality Testing with Pseudofields

This is joint work with Carl Pomerance.

If f, g are real-valued functions on a set X and g > 0, then we say f = Õ(g) if there
exists c ∈ R>0 such that for all x ∈ X, |f(x)| ≤ g(x)max{2, log g(x)}c.

Theorem. There is a deterministic algorithm that given n ∈ Z, n > 1, correctly decides

whether or not n is prime and that has runtime Õ((log n)6).

The theorem of AKS begins (in brief) as follows. Let n ∈ Z>1 be a positive integer, r
a prime number with r - n, and

(X + a)n ≡ Xn + a (mod n,Xr − 1)
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for a small set of a, and the multiplicative order of n modulo r is at least c(log n)2. Together

with other conditions, we conclude n is a prime. This has runtime Õ(r3/2(log n)3). For

r = O((log n)5), we get Õ((log n)21/2) with effective constant. For an ineffective constant,

one can get Õ((log n)15/2). It would be optimal to have Õ((log n)6), which would require

r = Õ((log n)2) but here we run into Artin’s conjecture on primes with prescribed primitive
root. To get around this, we generalize the situation slightly to give more parameters.

In fact, we replace Xr−1 by (Xr−1)/(X−1) = Xr−1+ · · ·+X+1; the proof remains
essentially unchanged. Instead of considering congruences, we instead think of equalities in
the ring

A = Z[X]/(n,Xr−1 + · · ·+X + 1) ⊃ Z/nZ.
This is a Galois extension of Z/nZ of degree r − 1. We now replace the polynomial X r−1 +
· · ·+X +1 with other polynomials f(X) for which the same proof techniques apply. In this
case, A is a field if and only if n is a prime number and n is a primitive root modulo r. We
are led to introduce rings that ‘try very hard’ to be fields.

Definition. A pseudofield is a pair A,α where A is a ring (commutative with 1) and α ∈ A
such that there exists n ∈ Z>1 and d ∈ Z>0 satisfying:

• Z/nZ is a subring of A with #A ≤ nd, and there exists σ ∈ AutA with:

– σdα = α;
– for all q | d prime, σd/q(α)− α ∈ A∗; and
– σα = αn;

• Equivalently, A ∼= (Z/nZ)[X]/(f) as a ring with X 7→ α for some monic polynomial f ∈
(Z/nZ)[X] of degree d satisfying:

– f(X) | f(Xn);

– f(X) | (Xnd −X); and

– for all primes q | d, (f,Xnd/q −X) = (1).

Also equivalently, a pseudofield is characterized by the conditions that A ⊃ Z/nZ be
Galois with cyclic group generated by σ, α generates A as a ring, and σα = αn.

Theorem. There is a deterministic algorithm that given n ∈ Z>1 and f ∈ (Z/nZ)[X] decides
if (Z/nZ)[X]/(f) is a pseudofield in time

Õ((d+ log n)d log n).

It is routine to verify this using the second set of conditions.

Example.

A. If r is a prime with r - n, then A = (Z/nZ)[X]/(X r−1 + · · ·+ 1) is a pseudofield if and only
if the order of n modulo r is r − 1.

B. If n is prime, then A,α is a pseudofield if and only if A is a field and A = Fn[α].

C. If A = Z/nZ (so that d = 1) and α = (a mod n), then A,α is a pseudofield if and only if
an ≡ a (mod n)—in other words, n is a pseudoprime to base a.

Theorem. Let A,α be a pseudofield of characteristic n and degree d such that d > (log n/ log 2)2,

n has no prime factor ≤ k = b
√
d(log n/ log 2)c, and such that

(α + a)n = an + a
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for a = 1, 2, . . . , k (mod n). Then n is a power of a prime number.

The proof uses: for each prime p | n, there exists a unique τ ∈ 〈σ〉 such that for all
β ∈ A, τ(β) ≡ βp (mod pA). This is a result coming from Galois theory for rings.

This leads to a deterministic primality test with runtime equal to the time to construct

the pseudofield plus the time to check the conditions; the latter takes time Õ(d3/2(log n)3).

In the context of primality testing, there is a procedure which converts any (honest)
method for constructing finite fields to a method for checking primality. If the algorithm
on input n crashes, then n was not prime; if it returns a polynomial f , then one checks
(efficiently) if this gives rise to a pseudofield, which then verifies that n is prime, and otherwise
produces a proof that n is not prime.

Therefore we look for algorithms for constructing finite fields. Our construction relies
on the following theorem:

Theorem (Kummer 1846). For r prime and q | (r − 1), put

fq,r =
∏

i∈Fr
iq=1

(
X −

∑

j(r−1)/q=i

ζjr

)
∈ Z[X]

where ζr is a primitive rth root of unity in C. The polynomial f is monic and irreducible
of degree q. If p is prime, p 6= r, then (fq,r mod p) ∈ Fp[X] is irreducible if and only if the
order of p(r−1)/q modulo r is equal to q.

Fact. Let Ai, αi be a pseudofield of characteristic n and degree di > 1 for i = 1, 2 such that
gcd(d1, d2) = 1; then A1 ⊗Z A2, α1 ⊗ α2 is a pseudofield of characteristic n and degree d1d2.

Theorem. There exists an effective computable constant c such that there is a deterministic
algorithm that given n ∈ Z>1 finds a finite sequence of pairs (r1, q1), . . . , (rk, qk) such that:

• qi > 1, qi pairwise coprime;

• ri prime, qi | (ri − 1);

• The order of n(ri−1)/qi modulo ri is qi; and

• d =
∏
qi satisfies

(log n/ log 2)2 < d < c(log n/ log 2)2

and max ri < d.

This algorithm runs in time Õ((log n)24/11), with an effective constant.

A.9 Pomerance and Bleichenbacher: Constructing Finite Fields

Consider the following problem: Given a prime p and an integer d > 1, find an irre-
ducible polynomial f ∈ Fp[X] of degree d. And do so in time polynomial in d and log p.
There is a randomized algorithm which attacks this problem by picking a polynomial at
random (approximately 1 out of every d polynomials will be irreducible), and testing each
for irreducibility (which is fast), continuing this procedure until you find one, then stop. But
we are interested here in a deterministic algorithm. Already for d = 2, this is a difficult
problem, equivalent to finding a quadratic nonresidue modulo p.

Assuming the ERH, Adleman and Lenstra have a solution to this problem. Uncondi-
tionally, they also find an irreducible polynomial of degree d′ with d ≤ d′ < cd log p, where c
is an effectively computable number. Letting d = (log n)2 and n = p (where you do not know
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a priori if n is prime), the polynomial produced has degree O(log3 n), and the runtime of the

AKS algorithm becomes Õ((deg f)3/2 log3 n) = Õ((log n)15/2). We improve this theorem to
the following:

Theorem. Such a polynomial can be produced with d ≤ d′ ≤ 4d for p sufficiently large and
d ≥ (log p)11/6+ε.

The bound for the ‘sufficiently large’ part depends effectively on the choice of ε.

Theorem. There is an effectively computable function Nε and a deterministic algorithm such
that if ε > 0, n > Nε, and D > (log n)11/6+ε, the algorithm produces pairs (q1, r1), . . . , (qk, rk)
such that for each i, ri is prime, ri < D, qi | ri − 1, the order of n(ri−1)/qi modulo ri is qi.
Further, the q1, . . . , qk are pairwise coprime, and D ≤

∏
i qi ≤ 4D. This algorithm runs in

time Õeff(D
12/11).

Let ηi be the Gaussian period of degree qi in Q(ζri
) (the trace of ζri

into the unique
subfield of degree qi over Q). The element η = η1 . . . ηk has degree q1 . . . qk over the rationals
(by coprimality). If n is prime, and if f(x) is the minimal polynomial of η then f mod n
is irreducible over Fn. Checking if f(X) | f(Xn) in (Z/nZ)[X] (together with some other
conditions), we see that f gives rise to a pseudofield.

Let x = D6/11−ε/4. Throughout, we assume that n is ‘sufficiently large’ with the bound
being effectively computable, depending only on the choice of ε.

Proposition. All but O(x/ log3 x) primes r ≤ x have a prime q | (r−1) with q > x1/(log log x)
2

and the order of n(r−1)/q modulo r is equal to q.

Therefore up to x, almost all of the primes are useful in the context of our theorem.
This proposition is a natural extension of the argument in the original AKS paper, together
with an added ingredient about the distribution of primes r such that r − 1 is smooth due
to Pomerance and Shperlinski.

Proposition. Let Q be a set of primes q with x1/(log log x)
2
< q ≤ x1/2 and

∑
q∈Q 1/(q− 1) <

(3− ε)/11. Then there are > δx/ log2 x primes r ≤ x such that r − 1 is free of primes from
Q ∪ (x1/2, x).

This proposition follows from a method of Balog, together with some effective estimates
on the distribution of primes in residue classes. Together, these two propositions give the
corollary:

Corollary. Let Q be the set of primes q in the first proposition satisfying q ≤ √x. Then
∑

q∈Q

1

q − 1
≥ 3− ε

11
.

Proof. If this inequality did not hold, then by the first and second propositions, there must
be primes r ≤ x having the properties of both propositions. By the first proposition, r − 1
has a prime factor q > x1/) log log x)

2
and the order of n(r−1)/q modulo r is equal to q. By one

of the properties in the second proposition, q ≤ x1/2. Then q ∈ Q. This contradicts the
second proposition. ¤

Proposition. There exists a subset of Q in the corollary with product in the interval [D, 4D].
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The proof of this theorem relies upon combinatorial number theory (essentially, you
can solve a bin packing problem using the primes q). It relies upon:

Theorem (Continuous Frobenius theorem). If S is an open subset of R>0, S is closed under
addition, and 1 6∈ S, then for any t, 0 < t ≤ 1, the du/u measure of S ∩ (0, t) is ≤ t, i.e.

∫ t

0

χS(u)
du

u
≤ t

where χS(u) is the characteristic function of S.

Now a remark about effectivity. It was proven by de la Vallée Poussin in 1896 that

π(x, k, a) = #{p ≤ x : x ≡ a (mod k)} ∼ π(x)/φ(k)

as x→∞. The Siegel-Walfisz theorem states that this is true for k < (log x)A for any fixed
A. This theorem is inherently ineffective because it depends on the existence or nonexistence
of Siegel zeros. The Siegel-Walfisz theorem is ubiquitous in analytic number theory, being
used in the Bombieri-Vinogradov theorem, Fouvry’s theorem, and much else. The analytic
number theory we use is an effective version of the Bombieri-Vinogradov theorem that does
not rely on the Siegel-Walfisz theorem, and we replace the Fouvry theorem by a (weaker)
result of Deshouillers-Iwaniec.

Now we give an outline of the proof of the Frobenius theorem. First, it is sufficient
to prove the case where St = S ∩ (0, t) =

⋃n
i=1(ai, bi) (i.e. St contains only finitely many

intervals). Second, since 1 6∈ S, for all (h1, . . . , hn) ∈ Nn
≥0 either

∑n
i=1 hiai ≥ 1 or

∑n
i=1 hibi ≤

1 (*). Now fix b1, . . . , bn such that b1 > b2 > · · · > bn and consider all sets
⋃n
i=1(ai, bi)

satisfying b1 ≥ a1 ≥ b2 ≥ · · · ≥ bn ≥ an (**) as well as condition (*). Under these conditions,
there exists a maximum to

∑n
i=1(log(bi)−log(ai)). We may thus assume that St =

⋃n
i=1(ai, bi)

is a maximum. We show in the paper that we can assume that b1 > a1 > b2 > · · · > bn > an.

Let U = {h ∈ Nn
≥0 : ha = 1} with a = (a1, . . . , an). Let an+1 = bn+1 = 0. For all

h = (h1, . . . , hn) ∈ U and 1 ≤ k ≤ n,

hk

(
n∑

i=1

(bi − ai)hi
)
≤ hk(bk − bk+1).

This is trivial if hk = 0, and otherwise,
∑n

i=1 aihi = 1 which implies

n∑

i=1

aihi − ak + ak+1 < 1.

and therefore by assumption (*)

n∑

i=1

bihi − bk + bk+1 ≤ 1.

Let v = (v1, . . . , vn) ∈ Rn such that vh ≥ 0 for all h ∈ U . Then there exists ε > 0 such
that for all 0 ≤ x ≤ ε,

n⋃

i=1

(ai + vix, bi)
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satisfies (*) and (**). By assumption

n∑

i=1

(log bi − log(ai + vix))

is maximal for x = 0, so
∑n

i=1 vi/ai ≥ 0. Then a theorem by Farkas (or the dual theorem of
linear programming) implies that there exists pj ≥ 0 such that

∑̀

i=1

hijpj =
1

ai

where U = {h1, . . . , h`} and hj = (h1j, . . . , hnj). Now multiply the equation

hk

(
n∑

i=1

(bi − ai)hi
)
≤ hk(bk − bk+1).

by akpj and sum up

n∑

k=1

∑̀

j=1

akpjhkj

(
n∑

i=1

(bi − ai)hij
)
≤

n∑

k=1

∑̀

j=1

akpjhkj(bk − bk+1).

After some simple arithmetic, we find that

n∑

i=1

(log bi − log ai) ≤ t.

A.10 Silverberg: Applications of Algebraic Tori to Crytography

In this lecture we discuss ‘torus-based cryptography’, and counterexamples to con-
jectures in an article entitled Looking Beyond XTR, and compare TBC with Lucas-based
cryptosystems and XTR, and understand LUC, XTR, and Beyond in terms of algebraic tori.
This is joint work with Karl Rubin, and inspired by XTR.

The cryptosystem XTR (due to A. Lenstra and E. Verheul) concerns the extension
Fp6/Fp2 : they consider the subgroup of F∗p6 of order p2 − p + 1 with generator g; the public

knowledge is TrFp6/Fp2 (g), what is shared is TrFp6/Fp2 (g
ab), where Tr(ga) and Tr(gb) are trans-

mitted. In this setup, you get the security of F∗pn while transmitting only φ(n) elements of
Fp.

Let L/k be a finite cyclic extension with intermediate field F . Let g ∈ L \ F , and
denote by Cg the Gal(L/F )-conjugacy class of g, so the characteristic polynomial of g over
F is

∏
h∈Cg

(X − h). For L = Fp6 , F = Fp2 , k = Fp, the polynomial is x3 − s1x2 + s2x− s3,
where s1 = TrL/F (g), s3 = NL/F (g), and s2 = TrL/F (gg

σ), where 〈σ〉 = Gal(L/F ). If g is in
the subgroup of L∗ of order p2 − p+ 1, then s3 = 1 and s2 = TrL/F (g)

p. Therefore knowing
TrL/F (g) is equivalent to knowing all the symmetric polynomials on Cg which is equivalent to
knowing Cg as a set, so you know Cga and this is equivalent to knowing TrL/F (g

a). In other
words, you can exponentiate, but you cannot multiply: Tr(g) and Tr(h) do not determine
Tr(gh); i.e. knowing Cg and Ch does not allow you to know Cgh.

Bosma-Hutton-Verheul conjecture that for all n, there exists a divisor d | n such that
d | φ(n) and for L = Fpn and F = Fpd , you can recover all the coefficients s1, . . . , sn/d of the
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characteristic polynomial of g over F from the first φ(n)/d of them for all g in the subgroup
of L∗ of order Φn(p) and not in any proper subfield.

We show that this is in fact false. In particular, when n = 30, it is false; for p = 7,
d = 1, no 10 symmetric polynomials determine all of them, and no 8 determine any of the
others (except the ones determined by the symmetry of the characteristic polynomial). For
p = 7, d = 2, no 4 symmetric polynomials determine all of them.

Fact. The order Φn(p) subgroup of F∗pn is

{α ∈ F∗pn : NFpn/M(α) = 1 for all M ( Fpn}.

Let L/k be an abelian degree n extension of fields. Let

TL/k = ker

(
ResL/k(Gm)

⊕NL/M−−−−→
⊕

k⊂M(L

ResM/k(Gm)

)
;

recall that Gm(k) = k∗, and (ResL/k Gm)(k) = L∗. If L/k is not cyclic, dim(TL/k) = 0. If
L/k is cyclic, then TL/k is an algebraic torus over k of dimension φ(n), i.e. TL/k is isomorphic

over k to Gφ(n)
m . Here, TL/k ∼=L Gφ(n)

m .

Assume from now on that L/k is cyclic. Then

TL/k(k) = {α ∈ L∗ : NL/M(α) = 1 for all k ⊂M ( L}.
Conjecture (Voskresenskii). TL/k is rational, i.e. there exists a birational map TL/k →
Aφ(n).

This is true if n = pa or paqb (Klyachko 1988). It is not known for n = pqr. Let us

look at the case when n = 2, say, char k 6= 2. Then L = k(
√
d), and TL/k = ker(NL/k) which

is a conic which can be parameterized, and we obtain

ψ : P1 ∼−→ TL/k

a 7→ (a+
√
d)/(a−

√
d)

∞ 7→ 1

We have ψ(a)ψ(b) = ψ((ab + d)/(a + b)). (This is also just Hilbert’s theorem 90.) Writing
Tn for TL/k when k = Fq, this induces a way to do the multiplication in T2 in P1(k).

We also give an explicit example when n = 6 for char(k) 6= 3, [k(ζ9) : k] = 6 (e.g. k = Fq
with q ≡ 2, 5 (mod 9)). TL/k is dimension 2 and contained in ResM/k(TL/M) = T ′ ∼k A3

where M/k is the subextension of degree 3. But TL/M = ker(NL/M) is dimension 1, and
NL/F = 1 defines a hypersurface in T ′ ∼ A3. Therefore T6 ∼ A2, so we can use the
multiplication in T6 but represent elements of T6 by 2 elements of F8. This gives rise to the
cryptosystem CEILIDH.

Open problems:

A. Improve the efficiency of multiplication and exponentiation for the system CEILIDH.
B. Repeat this analysis for n = 30, i.e.

1. Find explicit birational isomorphisms between T30 and A8,
2. Find prime powers q of size 1024/30 ≈ 35 bits such that Φ30(q) has a 160-bit

prime factor,
3. Are there special attacks on DL in F∗q30?
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Now we look to understand LUC, XTR, and Beyond in terms of algebraic tori. For H
a subgroup of Gal(L/k) = G which is a direct factor, write ΣH for the group of permutations
of H. Then ΣH acts on

⊕
σ∈GA1 ∼−→L ResL/k A1 ⊃ ResL/k(Gm).

Let
XF = img

(
TL/k → ResL/k(Gm)/ΣGal(L/F )

)
.

For LUC and XTR, you look at

{TrL/F (α) : α ∈ TL/k(k)}
which is the image of TL/k(k) under TL/k → XF → ResF/k(A1), where the latter map is a
birational isomorphism.

TL/k

²²
²²

TrL/F

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

XF

TrL/F
// ResF/k(A1)

∼
// F

Assume that n is squarefree. Write Gal(L/F ) = H1 × · · · ×Ht where Hi are cyclic of
prime order.

Theorem. The action of ΣHi
on ResL/k(Gm) preserves TL/k and XF is birational to TL/k/(ΣH1×

· · · × ΣHt).

In XTR, we obtain XF birational to T6/S3; in the cases n = 30 and d = 1, 2, one gets
T30/(S2 × S3 × S5), T30/(S3 × S5), which are not groups.

We have maps L→ F for every symmetric function s1, . . . , s[L:F ]. We have a surjection

TL/k → XF and an injection XF ↪→ F [L:F ] by the direct sum of these functions. A BHV
conjecture implies that for the subset consisting of the first dφ(n)/de functions (where d =
[F : k]), the map remains injective. Further, a BHF conjecture implies that every n has a
divisor d so that d also divides φ(n), and the map XF → Aφ(n) (induced by the first φ(n)/d
symmetric functions) is a birational isomorphism. This is true for (n, d) = (1, 1) (DH), (2, 1)
(LUC), (6, 2) (XTR), and (`, 1) and (2`, 2) where ` is prime (see Doing more with fewer bits,
by Brouwer-Pellikaan-Verheul), but:

Theorem. This is false for n = 30 (d = 1, 2) if char(k) lies outside a finite set.

To prove this, we first do a computer search for 2 elements of T30(F7) with the same
image a ∈ (F7)

8 but different images in XF . Using Hensel’s Lemma, every lift of a to Z8
7

has at least 2 inverse images in XF (Q7). Therefore the map is not generically one-to-one
over Q7, so it is not generically one-to-one over Q, hence over any field of characteristic 0.
Then reduce modulo p to get it over Fp and therefore all fields of characteristic p (outside of
a finite set).

A.11 Stein: Modular Forms Database

The lecture notes5 are available on the speaker’s website. The tables6 are also available
there.

5http://modular.fas.harvard.edu/mfd/talks/mfd1/
6http://modular.fas.harvard.edu/Tables/
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A.12 Voloch: Multiplicative Subgroups of a Finite Field

The lecture notes7 are available on the speaker’s website.

A.13 Wan: Partial Counting of Rational Points over Finite Fields

We are motivated by the following problem. Let Fqd = Fq[α]/h(α), where h is irre-
ducible of degree d > 1 over Fq. We look at the group

G = 〈a− α : a ∈ Fq〉 = (F∗qd)
I ⊂ F∗qd ,

where I = [F∗
qd : G]. When does I = 1, for example?

Let D | (qd − 1), and let

N = #{(x, y) : x− α = yD, x ∈ Fq, y ∈ Fqd}.
By a character sum argument counting, you can write this as

N =
∑

φ:F∗
qd→C∗

φD=1

∑

x∈Fq

φ(x− α).

By the Riemann hypothesis (Weil), we have |N − q| ≤ (D− 1)(d− 1)
√
q. Therefore we have

seen:

Proposition. Let S ⊂ Fq. Let GS = 〈a− α : a ∈ S〉 = (F∗
qd)

IS . Then

(#S)IS ≤ N ≤ q + (IS − 1)(d− 1)
√
q.

If (#S) > (d− 1)
√
q, then

IS ≤
q − (d− 1)

√
q

(#S)− (d− 1)
√
q
.

In particular, if (#S) = q, then IS = 1 and G = F∗
qd.

Therefore we consider the problem: Can we compute N in time polynomial in d, D,
and log q?

The general setup: Let f(x1, . . . , xn) ∈ Fq[x1, . . . , xn], and d1, . . . , dn ≥ 1. We want to
count

Nd1,...,dn(f) = #{(x1, . . . , xn) : f(x1, . . . , xn) = 0, xi ∈ Fdi
q }.

Can we compute Nd1,...,dn(f), or at least estimate it? How does this quantity vary when the
di vary?

For example, we consider the Artin-Schreier hypersurface. Let

f(x1, . . . , xn, y1, . . . , yn′) ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ],
where n, n′ ≥ 1. For each d ≥ 1, we consider

Nd(f) = #{(x0, . . . , xn, y1, . . . , yn′) : xp0 − x0 = f(x1, . . . , xn, y1, . . . , yn′),

xi ∈ Fqd , yj ∈ Fq}.
Heuristically (for suitable f), we expect

Nd(f) = qdn+n
′

+O(q(dn+n
′)/2)

where the constant depends on p, f , and d.

7http://www.ma.utexas.edu/users/voloch/preprint.html
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Theorem (Deligne). Write f = fm + fm−1 + · · · + f0, where fi are homogeneous of degree

i. Assume fm defines a smooth projective hypersurface in Pn+n′−1
Fq

, and that p - m, d = 1.
Then

|N1(f)− qn+n
′| ≤ (p− 1)(m− 1)n+n

′

q(n+n
′)/2.

What about d > 1?

Definition. If d ≥ 1, we define the dth fibred sum of f to be
⊕d

yf = f(x11, . . . , x1n, y1, . . . , yn′) + · · ·+ f(xd1, . . . , xdn, y1, . . . , yn′).

Theorem (Fu-W). Write f = fm + · · ·+ f0, and assume that
⊕d

y fm is smooth in Pdn+n′−1Fq

and p - m. Then
|Nd(f)− qdn+n

′ | ≤ (p− 1)(m− 1)dn+n
′

q(dn+n
′)/2.

Example. In the case that we can write

f(x, y) = f1m(x1, . . . , xn) + f2m(y1, . . . , yn′) + f≤m−1(x, y),

and f1m is smooth in Pn−1Fq
, f2m is smooth in Pn′−1Fq

. Then
⊕d

y fm is smooth in Pdn+n′−1Fq
if

and only if p - d.
Since the condition that the fibred sum be smooth is Zariski open, we have shown it is

nonempty if p - d and therefore there exist many examples of such f to which the theorem
applies.

Definition. Let Md be the set of f over Fq such that
⊕d

y fm is smooth. Then Md is Zariski

open in the set of all f over Fq with deg f ≤ m.

Theorem (Gao-W). Md is Zariski dense if and only if p - d. In fact,
∞⋂

d=1
p-d

Md =

p(m−1)n⋂

d=1
p-d

Md

and this intersection is Zariski open and dense.

Problem. What about Kummer hypersurfaces

xD0 = f(x1, . . . , xn, y1, . . . , y
′
n)

where xi ∈ Fqd and yj ∈ Fq?

Remark. We expect |Nd − qdn+n
′ | = O(q(dn+n

′)/2), but one can get the weaker estimate
O(qdn/2+n

′−1/2) in many cases (Katz).

Now we consider partial zeta functions over Fq. Let f(x1, . . . , xn) ∈ Fq[x1, . . . , xn],
d1, . . . , dn ≥ 1. Define

Zd1,...,dn(f, T ) = exp

( ∞∑

k=1

Nd1,...,dn,k
T k

k

)

where
Nd1,...,dn,k = #{(x1, . . . , xn) : f(x1, . . . , xn) = 0, xi ∈ Fqdik}.

Without loss of generality, we may assume gcd(d1, . . . , dn) = 1, since otherwise we can just
enlarge the ground field Fq.
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Proposition.

A. If d1 | · · · | dn, then Zd1,...,dn(f, T ) ∈ Q(T ).

B. (Faltings) Zd1,...,dn(f, T ) =
∏d

i=1 Pi(T )
ζi
d, where d = lcm(d1, . . . , dn) and ζd is a primitive dth

root of unity, Pi(T ) ∈ Q(T ), and Pi(0) = 1.

By exponentiation to a root of unity, we mean the formal binomial expansion. From a
counting point of view, this is ‘as good as rational’.

Theorem. In all cases, Zd1,...,dn(f, T ) ∈ Q(T ).

Proof. Let Xd = X × · · · ×X︸ ︷︷ ︸
d

. We have a map

σ : Xd → Xd

(x(1), . . . , x(d)) 7→ (x(d), x(1), . . . , x(d−1))

Faltings constructs a large subvariety Yd1,...,dn ↪→ Xd which is stable under σ. Then

Nd1,...,dn(f) = #Fix(σ ◦ Frobq |Y (Fq)) =
∑

(−1)iTr(σ ◦ Frob |H i
c(Y )).

Note σ ◦ Frobq = Frobq ◦σ. This implies Faltings’ ‘near’ rationality as in the proposition.

Now Zd1,...,dn(f, T ) ∈ 1 + TQ[[T ]]. We refine the above argument as follows. First, for
gcd(a, d) = 1, you have

Nd1,...,dn(f) = #Fix(σa ◦ Frobq |Y (Fq)).
We consider Y → Y/G, where G = 〈σ〉 ∼= Z/dZ. We have a character χ : G → C∗, and
define the L-function

L(χ, T ) = exp

( ∞∑

k=1

T k

k

(
1

d

∑

τ∈G
χ(τ−1)#Fix(τ ◦ Frobkq |Y (Fq))

))
.

By Grothendieck, L(χ, T ) ∈ Q(ζd)(T ). This implies that

Zd1,...,dn(f, T )
φ(d) =

∏

χ∈Ĝ

L(χ, T )
∑

gcd(a,d)=1 χ(σ)
a ∈ Q(ζd)(T )

so Zd1,...,dn(f, T ) ∈ Q(T ) (essentially by unique factorization). ¤

Open problem: can you bound the total degree of Zd1,...,dn(f, T )? The best bound we
have is 3 · 2d+1(3 + dm)d1+···+dn+1, m = deg f . Can this be improved to O(d)O(1)? Yes, if
d1 = · · · = dr = d and dr+1 = · · · = dn = 1 (Fu-W).

Chapter B: Problems

Problem/Question 1. If

(X − 1)n ≡ Xn − 1 (mod n,Xr − 1)

and gcd(r, n) = 1 does this imply that

n2 ≡ 1 (mod r)

when n is composite? (AKS)

Remarks.
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(i) In the simplest case, r = 5 and n ≡ 2 (mod 5), what do the heuristics say? This feels
like the traditional series of pseudoprime tests, and although they were first thought to be
sufficient, counterexamples exist. (Bernstein) It was thought that the old pseudoprime tests
2n ≡ 2 (mod n) combined with the quadratic test with least discriminant d with the Jacobi
symbol (d/n) = −1 (constructing a Lucas sequence of discriminant d) would be enough to
show that n is prime. There should be infinitely many composite numbers which pass both
of these tests. There is no known example, and there is a $620 prize to find an example
of a number that pass the various tests. (Pomerance) There are no heuristic reasons yet to
believe this. (AKS)

(ii) For r ≥ 5, there are 5000 pairs (n, r) that all satisfy these conditions. (AKS)

(iii) The most naive heuristic (looking at 2 as a random element modulo n) for the first claim
relies upon the fact that

∑
1/n diverges, whereas in this case we are looking at

∑
1/nr which

converges. (Lenstra) These heuristics need to take into account smoothness. (Bernstein)

(iv) Is there a reason why n2 ≡ 1 (mod r) comes into the play? For all counterexamples with
r ≥ 7, p | n implies p2 ≡ 1 (mod r). (Lenstra, AKS)

(v) In these conditions we see that rn ≡ r (mod n). (Lenstra) So if p | n, the numbers p − 1,
p+1, p2+1 must be very smooth (for r = 5). The heuristics show that there should be ‘lots’
of primes p satisfying these three numbers; create many n from these p, and as in the case
of Carmichael numbers, then perhaps for some n this should fail. (Pomerance) If p − 1 is
smooth for all p | n and n is squarefree, then the multiplicative group of n has smooth order.
The maximal order of any element in that group can be made small, so it would not be
unusual for n2 ≡ 1 (mod r). Much of this can be found in Grantham’s thesis. (Pomerance)

(vi) These heuristics are compatible with the AKS primality test because there we have r growing
with n. (Bernstein)

(vii) What about r À (log log n)2? The largest r found was 97, and for r ≥ 13 we found only
approximately 40 such elements. (AKS)

(viii) Are prime powers special? (Lenstra) For r ≥ 5, all n found were squarefree. (AKS) The
search was done for n ≤ 1011, r < 100.

Problem/Question 2. Consider Fp and d ∈ Z>0, and S ⊂ Fp with #S = d. Let h(X) ∈
Fp[X] with h(s) 6= 0 for all s ∈ S. Let G be the group generated by X − s for s ∈ S. In
the original AKS paper, we have #G ≥ 2d. There are techniques for getting #G ≥ (5.82)d

(using lattice point counting); there seems to be much more room for improvement (perhaps
using ABC). (Bernstein, Voloch) Perhaps

(log#G)/d→∞
as d→∞ uniformly over h.

Remarks.

(i) It is hard to find examples with #G smaller than pd. Every improvement speeds up by
a constant factor the AKS by a factor related to square of the base of the improvement.
(Bernstein)

(ii) Does it help to know if S is an interval? (Voloch, Lenstra) Not used thus far.

(iii) For Kummer extensions, the extensions will look like multiplicative cosets of a root of unity
times a single number—can this be used? (Bernstein)

(iv) Is this problem independent of h? (Cohen) For example, h(X) = Xd−1 with group generated
by X has small order. (Bernstein)
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(v) Instead of looking at Fp[X]/(h), look at an elliptic curve E over Fq and the subgroup of
E(Fq) generated by simple x coordinates. (Elkies) Using Weil restriction of scalars, you are
looking at a curve C inside of an abelian variety over Fp and look at the subgroup of points
generated by C(Fp). This is then amenable to class field theory techniques. (Voloch) The
interesting case is the analogous case with AKS: q = pd and #S = d, dimA = d.

Problem/Question 3. Find a deterministic polynomial time algorithm for recognizing
perfect numbers. (Lenstra)

Given two monic polynomials f, g ∈ Z[X] with no common irreducible factor, and two
integers n,m ∈ Z>0, find in polynomial time all x ∈ Z such that f(x) | m and g(x) | n, with
|x| < H(f, g,m, n) for some function H.

Remarks.

(i) The first problem would be more interesting than perfect numbers themselves. You are given
the numbers m,n in binary. (Lenstra) A solution to the second problem gives a solution to
the first: If x is prime and xk ‖ n, and n is perfect, then 1 + x+ · · ·+ xk | 2n.

(ii) There is one solution for very small H which is to just try out the necessary values of x.

(iii) There are some results on when m | f(x), which has typographical similarity to our problem.
(Coppersmith)

(iv) If n is a perfect number, there is only one choice of xk where the factor 2 is irrelevant;
therefore you are reduced to the case where m = n. (Pomerance)

(v) By Gary Miller’s thesis, if you are given a multiple of φ(n), you can factor n using a ran-
domized algorithm or deterministically under the GRH. (Pomerance) You can replace φ(n)
by σ(n). (Lenstra)

(vi) If you allow randomization, the first problem should be doable. (Lenstra) There is a paper
of Bach-Shallit.

(vii) This algorithm will recognize perfect numbers but it may not recognize imperfect numbers.
(Lenstra)

(viii) There is a more general notion (multiply perfect) where σ(n)/n = k has small height. Does
this affect the problem? (Elkies) No, because you try out each k one at a time, and for fixed
k this is virtually identical to the original problem.

(ix) A different problem is to just consider f = g, or to look at rational functions which are
integer-valued.

(x) Are there heuristics for the number of such x which are related to heuristics for the largest
prime divisor of f(x)? (Pomerance)

(xi) Look at f(x) = (x4 + x5 + · · · + x8) | n. Choose h ∈ R and g ≈ e
√
8 logn log h. Then you can

find the set of all x with |x| ≤ h such that gcd(f(x), n) > g. This can be done ‘reasonably
fast’. (Bernstein) This is the state of the art due to LLL, but it completely fails to solve the
problem.

Problem/Question 4. These questions are motivated by the questions posed by AKS
concerning finding quadratic nonresidues modulo a prime p.

(a) It is known that finding a single quadratic nonresidue for a given prime is polynomially
equivalent to solving all quadratic equations. How far can one do this for finding a single bit
of data (or few bits of data) for higher degrees? (Elkies)
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(b) We do not know yet that there is a deterministic polynomial time algorithm for finding
quadratic nonresidues. Is there a subexponential algorithm?

Remarks.

(i) The best known deterministic algorithm is due to Burgess and Vinogradov which runs in
time p1/(4

√
e). (Pomerance) This is sheer enumeration. If you allow exponential time, is there

something better than enumeration? (Bernstein)

(ii) For cubic extensions, you can use Cardano’s formula. (Gao) Is it equivalent to finding a
quadratic nonresidue in the cubic extension given by a cubic nonresidue? (Elkies) If cubics
includes quadratics, then you can make a quadratic extension. Then there is a trick due to
Berlekamp which allows you to solve cubics in the extension by solving them in the ground
field. (Lenstra)

(iii) If you know a kth nonresidue in the appropriate extension, then you can factor polynomials
up to degree six (unpublished). (Gao) The Galois group is cyclic, so solvability by radicals
applies.

(iv) Given a quadratic nonresidue, any even degree polynomial f with f | (Xp−X) can be split
nontrivially deterministically in polynomial time, due to Ronyai. (Lenstra) But this does
not determine all solutions. You can specify quadratic conditions that must be satisfied by
the factors. (Gao) There is a certain combinatorial structure on systems of roots which must
be attended to, and you run into difficulties at degree 7. Conjecturally, you should be able
to go higher.

(v) If you have GRH then you can deterministically in polynomial time solve quadratic exten-
sions. Can you solve higher degree equations? (Elkies) On the GRH, you can construct
appropriate nonresidues (since you can construct finite fields). (Lenstra) You can do it for
fixed degree in time nlogn(log p)O(1) with the GRH due to Ronyai, Evdokimov. (Cheng)

Problem/Question 5. Suppose that you have a nonconstant family of elliptic curves Eλ

over Fp (e.g. the Frey curves), λ ∈ P1(Fp). Can you find deterministically λ such that Eλ

and Eλ+1 are not isogenous (i.e. #Eλ(Fp) 6= #Eλ+1(Fp)). (Elkies)
Remarks.

(i) You want p sufficiently large and the degree small. (Elkies) If you can do this, then you
should also be able to do it for λ and 1 − λ, and then you can ‘separate them apart’ by
applying Schoof’s algorithm and obtain a deterministic square root.

(ii) Over Q, there are only finitely many isogeny classes, so you just need to check that λ is not
a root of a finite list of polynomial equations. (Elkies)

(iii) Can you deterministically find λ, µ such that Eλ, Eµ are not isogeneous? (Coppersmith)
What happens to Schoof’s algorithm if you just run it with λ a variable? (Lenstra)

(iv) There are bounds p1/2+ε on the number of isogeny classes (Hasse interval) over Fp.

(v) You can also ask the question for the family of all elliptic curves over Fp, deterministically.
(Pomerance) This you can do by looking at if −1 and −2 are both squares. (Elkies)

Problem/Question 6. Let f(X,Y ) ∈ Fq[X,Y ] be irreducible. Let g(Y ) = f(aY + b, Y ).
Count (or estimate) the number of pairs a, b over Fq such that g is irreducible over Fq. (Gao)

Remarks.

(i) Is it > 0 when q > d4, where d is the total degree of f? (Gao) Or perhaps some other bound
on q?
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(ii) It is equivalent to count the number of reducible ones, so use the Schoof-Pila algorithm.
(Elkies) But it is slightly different because you are counting points on a surface.

(iii) The polynomial f(X,Y ) = Xq −X + Y is always divisible by Y under such a substitution.
(Lenstra) Therefore we need q > d.

(iv) Do you need to assume that f is irreducible over Fq? (Pomerance)

(v) What does Hilbert’s irreducibility theorem say in this case? (Lenstra)

(vi) Applying the Chebotarev density theorem, this number is rq2 + O(q3/2), where r ∈ Q≥0.
(Wan) How big is the constant?

(vii) View g as a polynomial in 3 variables, Y, a, b. The surface g = 0 is a cover of the affine
plane given by the variables a, b. What is the Galois group of this cover (over Fq(a, b))? Is it
possibly the full symmetric group? (Lenstra) Then r(#G) is equal to the number of elements
in the Galois group that are a full d-cycle. Note this extension is separable whenever f is
irreducible. (Edixhoven)

(viii) If r = 0 then all elements of the set are reducible, since any one irreducible element will have
Frobenius which is a full d cycle. (Lenstra)

Problem/Question 7. Let m ≥ n ∈ Z. Prove there is a polynomial g ∈ Fq[x] of degree
≤ 2 log n so that xm + g(x) has an irreducible factor of degree n. (Gao)

Remarks.

(i) If q is large compared to fixed m,n, this seems provable. (Gao)

(ii) For q = 2, there is an application to computing discrete logs in F∗2n . (Coppersmith)

(iii) If m is the smallest power of q which is ≥ n, then α is a root of the irreducible factor, then
the order of α is at least ≥ n(log n)/(log logn), so this group has large order. (Gao)

(iv) For all q, and m = n, it is proven if deg g ≤ n/2.

(v) Consider the variant where instead of restricting the degree consider restricting the number
of nonzero terms of xm+g(x) to a fixed number (such as 7) (Bernstein), or at least ≤ 2 log n
(Pomerance).

(vi) Alternatively, find a trinomial of degree m ≤ 2n over Fq with a primitive irreducible factor
of degree n. (Gao) For small q this may not be possible.

(vii) For fixed n, q, what is the sparsest polynomial of degree ≤ 2n with a primitive and irre-
ducible factor of degree n? (Pomerance) This should be uniform in q, surely 5 but perhaps
7. (Bernstein) Trivially, sparsity n works by taking an irreducible polynomial of degree n
(excluding (n, q) = (2, 2)). (Lenstra) Sparsity (1− ε)n should be possible. (Wan)

Problem/Question 8. Look at
∑
nρ over the zeros ρ of the Riemann zeta function with

the imaginary part of ρ the interval [T, 2T ]. This is ≈ T/(2π)Λ(n). Can you make a primality
test out of this? (Conrey)

The sum
∑
nρζ ′(ρ)/ζ ′′(ρ) ≈ T/(2π) log p log q if n = pq. Can you make a factoring

algorithm out of this?

Problem/Question 9. Compute the zeta function of SpecZ/nZ, namely

ζ(s) =
∏

p|n

1

1− p−s ,

without knowing the prime factorization of n. Computing the special value s = 1 gives you
φ(n) which is enough to factor n. (Wan)
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Replace n by a polynomial f(x) ∈ Fp[x], so given

ζ(s) =
∏

g|f
g monic,irreducible

1

1− g

can you recover the factorization of f in Fq[x] in deterministic polynomial time? (Wan)

Remarks.

(i) Can you compute the latter using Drinfeld modules? (Lenstra) Take A = Fp[x]/(f). Define
an Fp-linear map T : A → A where T (α) = αp − xα which defines the Carlitz module, and
makes A into an Fp[T ]-module. If you write f =

∏
g g

ei
i , and define φ(f) =

∏
i g

ei−1
i (gi −

1), then φ(f)(T ) kills A. But also f
∏

i(gi − 1) also kills A. Mimic the factorization of
integers using upper bounds on φ(n) to factor f probabilistically using this ‘exponent’ of the
multiplicative group.

Problem/Question 10. To speed up the elliptic curve factorization algorithm, pick E/Q
with large torsion group so that its reduction modulo n is more likely to be smooth. Mazur’s
results show that this torsion subgroup can be no larger than 16. There is a result of
Kamienny-Mazur-Merel: there is a bound on #E(K)tors in terms of [K : Q]. So try to find
a number field K where p splits completely and such that E(K)tors large. (Pomerance)

Remarks.

(i) Whatever advantage you gain might be swamped by the expense of working in the larger
number field. (Pomerance)

(ii) One problem is that for any given number field, there are only finitely many curves over that
number field with a fixed torsion subgroup (since then modular curves have genus ≥ 2).

(iii) If n = p2q, choose a discriminant D such that D is a nonsquare modulo q, and find an elliptic

curve E/Q(
√
D). Then E(Q(

√
D))tors injects into E(Fq2). (Bleichenbacher)

Problem/Question 11. Given a (random) number n of 10000 digits, it may be impossible
to find 5000 digit primes p, q such that n = pq. Much easier: find some 10000 digit primes
p, q such that n is the first 10000 digits of pq. Instead, find 7500 digit primes p, q such that
n is the first 10000 digits of pq. (Coppersmith) Therefore, do this for 6000 digit primes.
(Bernstein)

Remarks.

(i) Coppersmith’s algorithm works as follows. Pick at random p0 of 7500 digits. Pick q0 =
b(n/p0)105000c. Add x to p0 and y to q0 where x, y have 2500 digits a piece to fix this up.
We want

(p0 + x)(q0 + y) = p0q0 + p0y + q0x+ xy ≈ n105000

so use lattice reduction. At the end, check to make sure p0 and q0 are prime.

(ii) This has applications in cryptography. (Bernstein)

Problem/Question 12. Let p be prime, write p − 1 = 2`m where m is odd, and assume

` ≥ 3. Find in deterministic polynomial time x ∈ Fp such that x2
`−1

+ 1 is not a 2`−1th
power. (Kedlaya)

Remarks.
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(i) This should be a sufficient condition for the deterministic nonresidue algorithm of Agrawal
to work.

Problem/Question 13.

(a) Do the p-adic point counting methods of Lauder which allow you to go from one curve from
another in a family apply to p-adic methods without the linear factor? (Edixhoven)

(b) Do Fesenko’s methods for proving good properties of Hasse-Weil L-functions of curves over
number fields provide anything useful for computations? (Edixhoven)

Remarks.

(i) Does Riemann-Roch provide anything useful? (Apparently not; involves linear algebra over
matrices of size the number of points.) (Wan)

Problem/Question 14. Pila’s method for computing roots of unity is exponential in g. Is
there any reason it can’t be made linear? (Elkies)

Remarks.

(i) Huang has a randomized algorithm (depends on factoring polynomials) with exponent gO(1).
(Lauder) They avoid using a full projective model. (Pila)

(ii) For any prime `, you work in a group of size `2g, so shouldn’t be much worse. See also
Edixhoven’s talk. The calculation there (on modular curves) can also be done for Drinfeld
modular curves. (Elkies) Is there an analogue of the point-counting problem for Drinfeld
modules? (Kedlaya)

(iii) Has anyone tried doing Schoof-Pila in genus 2? (Kedlaya) Gaudry and Schost have applied
AGM. (Couveignes) They also did small torsion. (Edixhoven)

Problem/Question 15. Given a variety over a finite field, can you verify that a given
function is its zeta function (i.e., is the question in NP)? (Lenstra, Edixhoven)

Remarks.

(i) Yes (for g fixed), because you can verify the orders of the Jacobian over the first g extension
fields. (Elkies)

Problem/Question 16. How can you compute with points as in Edixhoven’s talk? In
that application, you can avoid writing down explicit `-torsion points (only the fields of
definition), but can you write them down for other transformation? (Edixhoven)

Remarks.

(i) Can one work out instances of the passage from H1 to H2? E.g., K3 surface of Néron-Severi
rank 19 (the rank 20 case is standard)? (Elkies)

(ii) More comments on `-adic computation of zeta functions? (Pila)

Problem/Question 17.

(a) Can deformation theory be applied `-adically? (Various)

(b) Under what circumstances do Betti numbers stay the same under reduction modulo p?
(Various)

(c) Is finding the genus of a plane curve polynomial time (in the degree)? (Wan)

Problem/Question 18. Can you compute roots modulo p of a fixed polynomial (à la
Schoof-Pila) in polynomial time, like x3 − 2? (Schoof)
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Remarks.

(i) A problem is realizing a given polynomial as the characteristic polynomial of an endomor-
phism, if its roots do not lie in a CM field. Does it help to consider modular forms? (Pila)

B.1 Remarks on Agrawal’s Conjecture

These notes concern Agrawal’s conjecture, the first problem in the problem session:

Conjecture. Let n and r be two coprime positive integers. If

(X − 1)n ≡ Xn − 1 (mod n,Xr − 1)

then either n is prime or
n2 ≡ 1 (mod r).

(If Agrawal’s conjecture were true, this would improve the polynomial time complexity

of the AKS primality testing algorithm from Õ((log n)7.5) to Õ((log n)3).)

The contents are due to Lenstra and Pomerance and suggest strongly that this conjec-
ture is false.

Proposition (Lenstra). Let p1, . . . , pk be k pairwise distinct prime integers, and let n =
p1 . . . pk. Suppose that:

(i) k ≡ 1 (mod 4);

(ii) pi ≡ 3 (mod 80) for all i;

(iii) (pi − 1) | (n− 1) for all i; and

(iv) (pi + 1) | (n+ 1) for all i.

Then
(X − 1)n ≡ Xn − 1 (mod n,X5 − 1)

and n2 6≡ 1 (mod 5).

Remark. This result is also true for k ≡ 3 (mod 4).

Proof. By assumption we get n = 3k ≡ 3 (mod 80) because 34 ≡ 1 (mod 80). So n ≡ 3
(mod 5) and then n2 6≡ 1 (mod 5).

We also have the following identity:

(X − 1, X4 +X3 +X2 +X + 1, n) = (1)

in the polynomial ring Z[X]. Hence, in order to prove the identity

(X − 1)n ≡ Xn − 1 (mod n,X5 − 1)

it suffices to prove that

(X − 1)n ≡ Xn − 1 (mod n,X4 + · · ·+X + 1).

The Chinese remainder theorem gives the following isomorphism:

Z[X]/(n,X4 + · · ·+X + 1) ∼=
k∏

i=1

Fpi
[X]/(X4 + · · ·+X + 1).

Each ring factor Ri = Fpi
[X]/(X4 + · · · + X + 1) is actually a field since each prime pi is

prime to 5 and the 5th cyclotomic polynomial is irreducible in Fp[X] so that Ri is nothing
but the splitting field of Fpi

[ζ5] for a primitive 5th root of unity ζ5.
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It therefore suffices to prove that each prime pi = p satisfies

(ζ5 − 1)n = ζn5 − 1

in the field Fp[ζ5]. We see from (ii) that

(ζ5 − 1)p
2

= ζp
2

5 − 1 = ζ−15 − 1

(since p ≡ 3 (mod 5), we have p2 ≡ −1 (mod 5)). Thus

(ζ5 − 1)p
2

= −ζ−15 (ζ5 − 1).

Hence the order of (ζ5 − 1) in Fp[ζ5] divides 10(p2 − 1).

It remains to check the residue class of n modulo 10(p2 − 1); more precisely, it suffices
to show that

n ≡ p (mod 10(p2 − 1)).

We can factor 10(p2 − 1) into 4 pairwise coprime factors:

10(p2 − 1) = 5(24)

(
p− 1

2

)(
p+ 1

4

)

so it suffices to verify this modulo each factor. Since n, p ≡ 3 (mod 80) by assumption, the
first follows. Assumption (iii) implies that

n ≡ 1 (mod (p− 1)/2)

and so
n = p (mod (p− 1)/2)

since p ≡ 1 (mod (p− 1)/2), and

n ≡ p (mod (p+ 1)/4)

similarly. This completes the proof. ¤

By this proposition, we have a heuristic which suggests the existence of many counterex-
amples to the Agrawal conjecture. This argument taken from analytic number theory is very
similar to the one already used by Pomerance to find counterexamples to the Baillie-PSW pri-
mality testing algorithm which can be found at http://www.pseudoprime.com/dopo.pdf.

Fix some arbitrarily large integer m and let T be very large. Let P = Pm(T ) denote
the set of primes p in the interval [T, Tm] such that:

A. p ≡ 3 (mod 80);
B. (p− 1)/2 is squarefree and divisible only by primes q ≤ T with q ≡ 3 (mod 4);
C. (p+ 1)/4 is squarefree and divisible only by primes r ≤ T with r ≡ 1 (mod 4).

Both smoothness conditions (2) and (3) are rather restrictive: heuristically, the cardinality
of the set P is asymptotically (T →∞)

#P ∼ cm
Tm

(log Tm)2

for some positive constant cm that depends on the choice of m. In particular, we can take a
sufficiently large integer T such that

#P >
Tm

(log Tm)3

which we assume from now on.
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Also choose an odd integer k ≡ 1 (mod 4) such that k < T 2/(log Tm). We consider the
squarefree numbers n that run over products of k distinct primes of the set P . Obviously
such an integer n satisfies n < eT

2
. The number of choices for n is exactly given by the

binomial coefficient
(
#P
k

)
, and we get the lower bound:

(
#P

k

)
≥
(

Tm

(log Tm)3(T 2/ log Tm)

)(T 2/ log Tm)−4

> (Tm−3)(T
2/ log Tm)−4 = e(1−3/m)T 2−4(m−3) log T

> e1−(4/m)T 2

.

for large T and fixed m.

Let Q denote the product of primes q ≤ T with q ≡ 3 (mod 4), and let R denote the
product of primes r ≤ T with r ≡ 1 (mod 4). Then Q and R are coprime and asymptotically
the product QR equals e(1+o(1))T as T →∞, so that QR < e2T for some large T . Thus, the
number of choices for the numbers n that satisfy in addition n ≡ 1 (mod Q) and n ≡ −1
(mod R) should be asymptotically

e(1−4/m)T 2

e−2T > eT
2(1−5/m).

But any such n is a counterexample to Agrawal’s conjecture by Lenstra’s proposition.
We see therefore that for fixed m and for all large T , there should be at least eT

2(1−5/m)

counterexamples to Agrawal’s conjecture below eT
2
. That is, if we let x = eT

2
, this argument

implies that the number of counterexamples ≤ x is expected to be À x1−ε for any ε > 0.


