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Abstract. We prove new cases of the Fontaine-Mazur conjecture, that a two di-

mensional p-adic representation ρ of GQ,S which is potentially semi-stable at p with
distinct Hodge-Tate weights arises from a twist of a modular eigenform of weight

k ≥ 2. Our approach is via the Breuil-Mézard conjecture, which we prove (many
cases of) by combining a global argument with recent results of Colmez and Berger-

Breuil on the p-adic local Langlands correspondence.
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Introduction

In [FM] Fontaine and Mazur made a remarkable conjecture, predicting that
global p-adic Galois representations which are potentially semi-stable at prime di-
viding p and unramified outside finitely many places, ought to come from algebraic
geometry. For two dimensional representations, the conjecture asserts that poten-
tially semi-stable representations with odd determinant come from modular forms.
The purpose of these notes is to prove that this is so in many cases. Our methods re-
veal an intimate connection between modularity lifting theorems, the Breuil-Mézard
conjecture, and Breuil’s p-adic local Langlands correspondence.
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To state our main theorem, let p > 2, S a set of primes containing {p,∞},
GQ,S the Galois group of the maximal extension of Q unramified outside S, and
GQp ⊂ GQ,S a decomposition group at p. We prove the following

Theorem. Let O be the ring of integers in a finite extension of Qp, having residue
field F, and

ρ : GQ,S → GL2(O)

a continuous representation. Suppose that
(1) ρ|GQp

is potentially semi-stable with distinct Hodge-Tate weights.
(2) ρ becomes semi-stable over an abelian extension of Qp.

(3) ρ̄ : GQ,S
ρ→ GL2(O) → GL2(F) is modular, and ρ̄|Q(ζp) is absolutely irre-

ducible.
(4) ρ̄|GQp

�
(
χ ∗
0 χ

)
,
(
ωχ ∗
0 χ

)
for any character χ : GFv → F×, where ω denotes

the mod p cyclotomic character
Then (up to a twist) ρ is modular.

The condition (2) in the theorem can be removed, assuming a compatibility be-
tween the p-adic and classical local Langlands correspondences, which describes the
locally algebraic vectors in the p-adic unitary representation of GL2(Qp) attached
to a de Rham representation. (The precise statement is given in §1.2). This result
should, hopefully, soon be proved by Colmez. Assuming (2) it is a result of Colmez
and Berger-Breuil [Co], [BB 1]. What we prove here is the theorem assuming (1),
(3), (4) and this compatibility.

The restrictions in (4) are almost certainly not intrinsic to our method, and
should be removed in a later version of the paper. They require some extra argu-
ments which we have not included here. The restriction that p > 2 is also likely
to be unnecessary, at least in many cases (for example ρ̄|GQp

irreducible) since the
p-adic Langlands correspondence, is available in this situation, unlike the usual
difficulties encountered in integral p-adic Hodge theory when p = 2.

In fact we prove the theorem in somewhat greater generality, where Q is replaced
by any totally real field in which p splits completely. Let us also remind the reader
that the hypothesis ρ̄-modular is now not so serious thanks to the work of Khare-
Wintenberger [KW] on Serre’s conjecture. For example it holds for odd ρ̄ with odd
conductor.

One consequence of the theorem (using only the case when ρ becomes semi-
stable over an abelian extension) is a conjecture made in [Ki 4, 11.8] which gives a
construction of the eigencurve of Coleman-Mazur in purely Galois theoretic terms.

We now explain how the Breuil-Mézard conjecture and the p-adic local Langlands
correspondence enter the proof of the theorem. The first fundamental breakthrough
in the direction of the Fontaine-Mazur conjecture was made by Wiles and Taylor-
Wiles [Wi], [TW] a little over 10 years ago. They showed how one could deduce
the modularity of certain p-adic Galois representations, assuming the mod p re-
duction was modular. Subsequently a number of authors established modularity
lifting theorems for (2-dimensional) potentially Barosotti-Tate representations, and
more generally representations of small Hodge-Tate weights [Di 2], [CDT], [BCDT],
[DFG], [Ta 2]. There was also work of Skinner-Wiles establishing the conjecture
for ordinary representations [SW 1], [SW 2].

One of the themes in these papers is that in order to prove a modularity lifting
theorem one needs to show a certain local deformation ring is formally smooth (i.e. a
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power series ring). In [BCDT] the authors considered potentially Barsotti-Tate
representations, and they made a conjecture predicting when one could expect this
formal smoothness. This conjecture was later generalized by Breuil-Mézard [BM]
who predicted that µGal, the Hilbert-Samuel multiplicity of the mod p reduction of
the local deformation ring, should be given by a certain invariant µAut which could
be computed representation theoretically.

In [Ki 2] we showed how to modify the Taylor-Wiles argument, so that it applied
when the local deformation was not formally smooth. This was used to establish a
fairly general modularity lifting theorem for potentially Barsotti-Tate Galois repre-
sentations. However, another consequence of this modification was that one could
use a global argument to show that µGal ≥ µAut, and that establishing a modularity
lifting theorem was essentially equivalent to proving the reverse equality. This is
explained in §2 of this paper.

The tool which enables us to prove the reverse inequality is the p-adic local
Langlands correspondence, whose study was initiated by Breuil [Br 1], [Br 2], and
developed by Breuil, Berger and Colmez [BB 1], [BB 2], [Co]. A key insight,
due to Colmez, is that one can construct instances of this correspondence using
Fontaine’s theory of ϕ,Γ-modules. The papers just cited show how to construct
unitary GL2(Qp)-representations starting with a local Galois representation which
Colmez terms trianguline. For de Rham representations, this means that the rep-
resentation becomes semi-stable over an abelian extension of Qp. In September
2005, at the Montreal conference on p-adic representations, Colmez explained a
quite general construction which associated a local Galois representation to a p-
adic unitary GL2(Qp)-representation satisfying a mild restriction. This association
works integrally, and using it we show that the local deformation rings we wish to
study act faithfully on certain GL2(Qp)-representations. This leads to the required
inequality.

We first announced these results at the Montreal conference for ρ which become
crystalline over an abelian extension in Qp, and ρ̄ absolutely irreducible at p. The
previous day Colmez had outlined his theory, attaching local Galois representations
to certain GL2(Qp)-representations. The ad hoc arguments we had in mind at
that time for proving the inequality µGal 6 µAut, immediately suggested that one
should formulate Colmez’s correspondence on the level of deformation rings for
representations of GQp and GL2(Qp) :

Θ : RGQp
→ RGL2(Qp).

The advantage of this was that, thanks to the previous work of Colmez and Berger-
Breuil, one knew that the image of Spec Θ contained all trianguline points. A local
analogue of an argument of Gouvêa-Mazur [GM] and Böckle [Bö] then showed
that these points were Zariski dense in SpecRGQp

[1/p]. This showed that Θ was
injective, and its surjectivity was reduced to a calculation involving a map of Ext
groups. Colmez was soon able to carry out this calculation.

This allowed the association of a unitary GL2(Qp) representation to each GQp-
representation, however this was not yet useful since one could not say much about
the locally algebraic vectors in the GL2(Qp) representation attached to a de Rham
representation of GQp . On the other hand just the existence of Colmez’s functor
made possible the application of our method to cases where ρ̄ was reducible at p,
and greatly simplified the arguments. Then, to our surprise, about a month after
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the conference Colmez informed us that it ought to be possible to prove that the
locally algebraic vectors were of the right kind.

Finally, let us mention that using Colmez’s correspondence, and especially the
isomorphism Θ, Emerton has found an alternative approach to the Fontaine-Mazur
conjecture (at least in many cases). His method has as a consequence a stronger
version of the conjecture made in [Ki 4, 11.8], which we only dared raise as a question
[Ki 4, 11.7(2)]. Namely that a two dimensional representation of GQ,S which is
trianguline at p arises (up to twist) from an overconvergent modular eigenform.

Acknowledgment: Our debt to the work of Christophe Breuil and Pierre
Colmez will be obvious to the reader. We would like to them, as well as Matthew
Emerton for useful conversations and correspondence.

§1 Breuil-Mézard conjecture and the p-adic local Langlands.

(1.0) Notation: Throughout p will denote an odd prime. We denote by Q̄p an
algebraic closure of Qp and we write GQp = Gal(Q̄p/Qp) and IQp ⊂ GQp for the
inertia subgroup. We will write χcyc : GQp → Z×p for the cyclotomic character.

We denote by Z̄p the ring of integers of Q̄p, and by F̄p the residue field of Z̄p.
Let Qab

p ⊂ Q̄p denote the maximal abelian extension of Qp. Local class field theory
gives an inclusion Q×

p ⊂ Gal(Qab
p /Qp) normalized to take uniformizers to geometric

Frobenius. This allows us to consider characters of GQp as characters of Q×
p .

(1.1) The Breuil-Mézard conjecture: Let E/Qp be a finite extension, and
V a finite dimensional E-vector of dimension d, equipped with a continuous action
of GQp .

Suppose that V is potentially semi-stable in the sense of Fontaine [Fo]. Attached
to V is d-dimensional Q̄p-representation of the Weil-Deligne group WDQp of Qp.

Given a representation τ : IQp → GLd(Q̄p) with open kernel, we say that V is of
type τ if the restriction to IQp of the associated Weil-Deligne group representation
is equivalent to τ. This is possible only if τ extends to a representation of the Weil
group of Qp. Such τ are said to be of Galois type.

Now let F ⊂ F̄p be a subfield. Fix a continuous representation

ρ̄ : GQp → GL2(F),

and fix τ as above, with d = 2. We also fix an integer k ≥ 2. When End F[GK ]ρ̄ = F ρ̄
admits a universal deformation ring R(ρ̄). In [BM] Breuil-Mézard conjectured that
the deformations of ρ̄ to characteristic 0 which are of type τ and with Hodge-Tate
weights 0 and k−1 are parameterized by a quotient R(k, τ, ρ̄). Moreover, they gave
a conjectural formula for the Hilbert-Samuel multiplicity of R(k, τ, ρ̄)/pR(k, τ, ρ̄) in
terms of certain representation theoretic data attached to the triple (k, τ, ρ̄).

We will recall this conjecture below. In fact we will define the corresponding
invariant in all cases, not just those when ρ̄ has trivial endomorphisms. Before
giving this definition, we recall a result from [Ki 1], which establishes the existence
and basic properties of the ring R(k, τ, ρ̄). In fact it will be more convenient to work
with representations of fixed determinant.

Let VF denote the underlying F-vector space of ρ̄. Recall that the universal framed
deformation ring R�(ρ̄) of ρ̄ is the ring representing the functor which to a local
Artin ring A with residue field F, attaches the set of isomorphism classes of a
deformation VA of ρ̄ to A, together with a lifting to VA of some fixed choice of basis
for VF.
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We also fix a finite, totally ramified extension E/W (F)[1/p] with ring of integers
O and a uniformizer π ∈ O such that τ factors through GL2(E), and a character
ψ : GQp → O×. For E′/E a finite extension we will denote by OE′ the ring of
integers of E′, and by πE′ a uniformizer of E′.

Proposition (1.1.1). There exists a unique (possibly trivial) quotient R�,ψ(k, τ, ρ̄)
of R�(ρ̄)⊗W (F) O with the following properties.

(1) R�,ψ(k, τ, ρ̄) is p-torsion free, R�,ψ(k, τ, ρ̄)[1/p] is reduced and all its com-
ponents are 5-dimensional.

(2) If E′/E is a finite extension, then a map x : R�(ρ̄) → E′ factors through
R�,ψ(k, τ, ρ̄) if and only if the corresponding E′-representation Vx is po-
tentially semi-stable of type τ, with Hodge-Tate weights 0 and k − 1 and
determinant ψχ where χ denotes the p-adic cyclotomic character.

If ρ̄ has only scalar endomorphisms, then there exists a quotient Rψ(k, τ, ρ̄) of R(ρ̄)
with analogous properties, except that the dimension in (1) is 2 rather than 5.

(1.1.2) If E is not a finite extension of Qp, then the meaning of the condition that
Vx is potentially semi-stable of type τ may not be completely clear. There are two
ways to address this problem. The first is to extend the usual constructions of p-adic
Hodge theory to representations over finite extensions of W (F)[1/p]. When taking
tensor product of Vx with Bcris one should then take completed tensor product

Vx⊗̂QpBcris := ∪i≥0Vx⊗̂Qpt
−iB+

cris,

while the tensor product of Vx with Bst = Bcris[`u] should be defined by tensoring
the above by ⊗BcrisBst.

The second way, is to note that ρ̄ is defined over a finite subfield F′′ ⊂ F, and
that τ and ψ are defined over a finite extension E′′ of W (F′′)[1/p]. Let OE′′ be
the ring of integers of E′′. Applying the above proposition one obtains a complete
local OE′′ algebra Rψ,�(k, τ, ρ̄)′′. Then one can define Vx in (2) to be potentially
semi-stable of type τ if and only if x induces an E′ valued point of Rψ,�(k, τ, ρ̄)′′.

Using the results of [Ki 1] one can show that these two definitions give equivalent
notions of potentially semi-stable representations of type τ. The cautious reader can
simply adopt the second definition here.

(1.1.3) Suppose that τ : IQp → GL2(E) is of Galois type. In the appendix to
[BM] Henniart shows that there is a unique finite dimensional Q̄p-representation
σ(τ) of GL2(Zp), with open kernel, such that if τ̃ is any extension of IQp to a
representation of WDQp , and π is the smooth representation of GL2(Qp) associated
to τ̃ by the local Langlands correspondence, then π|GL2(Zp) contains σ(τ).

We may assume that σ(τ) is defined over E, (increasing E if necessary). Fol-
lowing [BM], we set σ(k, τ) = σ(τ) ⊗E Symk−2E2. This is a finite dimensional
representation of the compact group GL2(Zp), and hence it contains a GL2(Zp)-
stable O-lattice Lk,τ .

Now any irreducible, finite dimensional representation of GL2(Zp) on an F-vector
space is isomorphic to σn,m = SymnF̄ ⊗ detm where n ∈ {0, 1, . . . , p − 1} and
m ∈ {0, 1, . . . p − 2}. (Note that such a representation necessarily factors through
GL2(Fp), since the normal subgroup ker (GL2(Zp) → GL2(Fp)) is a pro-p group,
and hence has a fixed vector). Then we have

(Lk,τ )ss ⊗O F ∼−→ ⊕n,mσa(n,m)
n,m
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where n and m run over the same ranges explained above.
We set

µAut = µAut(k, τ, ρ̄) =
∑
n,m

a(n,m)µn,m(ρ̄)

where µn,m(ρ̄) ∈ {0, 1, 2} will be defined below.
(1.1.4) For i a positive integer, we denote by ωi : IQp → F̄×p the fundamental

character of level i, and we write ω = ω1. Recall that if Qpi denotes the unramified
extension of Qp, of degree i, and Zpi denotes the ring of integers of Qpi , then ωi is
obtained by composing the maps

IQp
∼−→ IQpi

∼−→ Z×pi → F̄×p

where the second map is given by local class field theory normalized as in (1.0). We
extend the map Z×pi → F̄×p to Q×

pi , by sending p to 1, and view ωi as a character if
GQp via the class field theory isomorphism. In particular ω = ω1 is then the mod
p cyclotomic character.

Suppose first that ρ̄ is absolutely irreducible. For (n,m) ∈ {0, 1, . . . , p − 1} ×
{0, 1, . . . p− 2} we set µn,m(ρ̄) = 1 if

ρ̄|IQp
∼

(
ωn+1

2 0

0 ω
p(n+1)
2

)
⊗ ωm

and µn,m(ρ̄) = 0 otherwise. Note that for a given ρ̄, there are exactly two pairs
(n,m) such that µn,m(ρ̄) 6= 0.

Suppose now that ρ̄ is reducible. For λ ∈ F̄×p , we denote by µλ : GQp → F̄×p
the unramified character sending the geometric Frobenius to λ. We set µn,m(ρ̄) = 0
unless

ρ̄ ∼
(
ωn+1µλ ∗

0 µλ′

)
⊗ ωm

for λ, λ′ ∈ F̄×p , in which case we set
(1) µn,m(ρ̄) = 2 if λ = λ′, ∗ is peu ramifié (including the case ∗ trivial) and

n = p− 1.
(2) µn,m(ρ̄) = 0 if λ = λ′, ∗ is très ramifié, and n = 0.
(3) µn,m(ρ̄) = 1 otherwise
The following conjecture generalizes the Breuil-Mézard conjecture to the case

when ρ̄ has non-trivial endomorphisms. It is the crux of out approach to the
Fontaine-Mazur conjecture, explained in the introduction, and we will prove most
cases of it.

Conjecture (1.1.5). The Hilbert-Samuel multiplicity of R�,ψ(k, τ, ρ̄)/(π) is equal
to µAut.

(1.2) Review of Colmez’s functor: We review some results of Colmez which
allow one to attach a Galois representations to certain representations of GL2(Qp).
We begin by recalling the definition of some mod p GL2(Qp) representations studied
by Barthel-Livne and Breuil.

From now on we assume that F = F̄p.
(1.2.1) Write G = GL2(Qp), K = GL2(Zp) and denote by Z the center of

GL2(Qp). If σ is any representation of KZ on a finite dimensional F-vector space
Vσ, then we denote by I(σ) = IndGKZσ the compact induction of σ.
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Recall [BL, Prop. 5] that I(σ) has a natural action by the algebra of KZ-bi-
invariant functions ϕ : G→ End FVσ. That is, the functions ϕ satisfying ϕ(h1gh2) =
σ(h1)ϕ(g1)σ(h2), for all g ∈ G, and h1, h2 ∈ KZ acts on I(σ). Explicitly, if f ∈ I(σ)
then this action is given by [BL, Prop. 5].

ϕ(f)(g) =
∑

KZy∈KZ\G

ϕ(gy−1)f(y) =
∑

yKZ∈G/KZ

ϕ(y)f(y−1g).

Next we regard F2 as a representation of KZ with GL2(Zp) acting in the natural
way via then map GL2(Zp) → GL2(Fp), and the element p ∈ Z acting trivially.
Let r ∈ [0, p − 1] be a non-negative integer, and set σ = SymrF. Denote by T the
endomorphism of I(σ) corresponding to the KZ-bi-invariant function which is sup-
ported on the double coset KZ

[
1 0

0 p−1

]
KZ and takes

[
1 0

0 p−1

]
to the endomorphism

Symr
[

0 0

0 1

]
. According to [BL, Prop. 8] F[T ] is the full endomorphism algebra of

I(σ).
Let χ : Q×

p → F× be a character, and λ ∈ F. For x ∈ F we denote by µx : Q×
p →

F× the unramified character sending p ∈ Q×
p to x.

We set π(r, λ, χ) = I(σ)/(T − λ)I(σ)⊗ χ ◦ det . The structure of these represen-
tations is given by the following result [BL, Thm. 30, Cor. 36], [Br 1, Thm. 1.1,
1.3], where Sp denotes the space of F-valued, locally constant functions on P1(Qp),
modulo the space of constant functions.

Proposition (1.2.2).
(1) π(r, λ, χ) is irreducible unless (r, λ) ∈ {(0,±1), (p− 1,±1)}.
(2) If (r, λ) = (0,±1) then π(r, λ, χ) is a non-trivial extension of χµ±1 ◦ det by

χµ±1 ◦ det⊗Sp .
(3) If (r, λ) = (p−1,±1) then π(p−1, λ, χ) is a non-trivial extension of χµ±1 ◦

det⊗Sp by χµ±1 ◦ det .
(4) If (r, χ, λ) and (r′, χ′, λ′) are two such triples then there exists an isomor-

phism
π(r, λ, χ) ∼−→ π(r′, λ′, χ′)

exactly in the following cases:

(i) r = r′, or and {χ′, λ′} is {χ, λ} or {χµ−1,−λ}.
(ii) λ = 0, r′ = p− 1− r and χ′ ∈ {χωr, χωrµ−1}.
(iii) {r, r′} = {0, p− 1}, λ 6= ±1, and {χ′, λ′} is {χ, λ} or {χµ−1,−λ}.

(1.2.3) Let Π be a representation of GL2(Qp) on a W (F)-module. If Π has finite
length, we say that Π is admissible if each of its Jordan-Hölder factors has a central
character.

If Π has finite length then it is a Wn(F)-module for some n ≥ 1, and the admissi-
bility condition implies that the Jordan-Hölder factors of Π are either 1-dimensional,
or an infinite dimensional subquotient of some π(r, λ, χ) [Br 1, 1.2].

We have the following result of Colmez.

Theorem (1.2.4). There exists an exact contravariant functor V ∗ from the cat-
egory finite length, admissible GL2(Qp)-representations to the category of finite
length representations of W (F)[GQp ]. Moreover, we have

(1) V ∗(Π) = 0 if Π is 1-dimensional
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(2) V ∗(π(r, λ, χ)) = χµλ−1 if λ 6= 0.
(3) V ∗(π(r, 0, χ)) = Ind

GQp
GQ

p2
ωr+1

2 ⊗ χ.

(1.2.5) It will often be more convenient to use a covariant functor. For this,
suppose we fix a character GQp → O× as before, which we regard as a character
of Q×

p via local class field theory. Suppose that Π is a finite length O[GL2(Qp)]-
module, which is admissible as a W (F)[1/p]-module. Then we define Vψ(Π) =
(V ∗(Π))∗(χcycψ) where V ∗(Π)∗ denotes the Pontryagin dual of the finite length O-
module V ∗(Π). We will typically only use this functor when Π has central character
ψ. The formulas (2) and (3) of (1.2.4) then become

(1) Vψ(π(r, λ, χ)) = ωr+1µλχ if λ 6= 0.
(2) Vψ(π(r, 0, χ)) = Ind

GQp
GQ

p2
ωr+1

2 ⊗ χ.

where in each case ψ = ωrχ2 is the central character of the representation to which
the functor Vψ is being applied.

Suppose now that Π is a representation of GL2(Qp) on a W (F)-module and set
Πn = Π ⊗Z Z/pn. Suppose that Π is p-adically complete and separated, so that
Π = lim←−Πn, and that for each n Πn is of finite length and admissible. We set
Vψ(Π) = lim←−Vψ(Πn). Since admissible representations have finite length inverse
limits in this category are exact, so one sees that Vψ(Π)/pVψ(Π) = Vψ(Π1), and
in particular that Vψ(Π) is a finitely generated W (F)-module, since it is p-adically
separated. We call such a representation Π an admissible lattice. If it carries the
structure of an O-module, we call it an admissible O-lattice.

The following result should, hopefully, soon be proved by Colmez. For trianguline
representations it is proved in [Co] and [BB 1]. In the rest of the paper, we proceed
as if (1.2.6) is known. The reader who wishes to remain on completely firm ground
can assume that we deal only with representations which become semi-stable over
an abelian extension of Qp. This corresponds to the representation τ in (1.1) being
abelian.

Expectation/Theorem (1.2.6). Let E′/E be a finite extension and V a 2-
dimensional E′-vector space equipped with a continuous action of GQp . Suppose
that V is potentially semi-stable of type τ with Hodge-Tate weights 0, k− 1 (k ≥ 2)
and that detV = ψχ.

Then there exists an admissible OE′-lattice Π with central character ψ such that
Vψ(Π) ⊗Zp Qp

∼−→ V. If Π′ is another such lattice, then there exists a continuous
isomorphism of E′[GL2(Qp)]-modules Π′ ⊗Zp Qp

∼−→ Π⊗Zp Qp.

Moreover, there exists a GL2(Zp)-equivariant inclusion σ(k, τ) ↪→ Π⊗Zp Qp.

(1.3) Hilbert-Samuel multiplicities: Suppose that A is a Noetherian local
ring with maximal ideal m and M a finite A-module. There is a polynomial PAM (X)
such that PAM (n) is equal to the length of M/mn+1M for sufficiently large integers
n.

If A has dimension d, then PAM has degree at most d, and the Hilbert-Samuel
multiplicity e(M,A) of M is defined to be d! times the coefficient of Xd in PAM .

Suppose now that G is a group, and that M is equipped with an action of
G. Let α be a collection of irreducible representations of G on finite dimensional
A/m-vector spaces. Then instead of considering the length of M/mn+1M one can



THE FONTAINE-MAZUR CONJECTURE FOR GL2 9

consider the number of Jordan-Hölder factors of M/mn+1M as an A[G]-module,
which are isomorphic to an element of α. We denote this number by χAM,α(n).

Proposition (1.3.1). There is a polynomial PAM,α of degree at most d such that
for sufficiently large n such that χAM,α(n) = PAM,α(n) for sufficiently large positive
integers n. Moreover the coefficient of Xd in PAM,α has the form eα(M,A)/d! where
eα(M,A) is a non-negative integer.

Proof. The proof is identical to the standard result for G trivial [Ma, §13]. Note
that one only has to show that PAM,α as above, of some degree exists, since the
bound on the degree follows from the case when G is trivial. �

Proposition (1.3.2). If

0→M ′ →M →M ′′ → 0

is an exact sequence of A[G]-modules which are finite over A, then we have

eα(M,A) = eα(M ′, A) + eα(M ′′, A)

Proof. The proof with G trivial goes over unchanged [Ma, Thm. 14.6] �

Proposition (1.3.3). Let f : M → M ′ be an inclusion of A-finite A[G]-modules,
and x ∈ A such that M and M ′ have no x-torsion.

(1) If f is an inclusion then

eα(M/xM,A/xA) 6 eα(M ′/xM ′, A/xA).

(2) If f is an isomorphism at all the generic points of SpecA, then

eα(M/xM,A/xA) = eα(M ′/xM ′, A/xA).

Proof. Let P = ker (f). If p ∈ SpecA/x ⊂ SpecA is a minimal prime of A/x,
such that A/p has dimension d − 1, then then Pp = 0, for otherwise p would be
an associated prime of P, [Ma, Thm. 6.5] and x ∈ p would be a zero divisor of M.
Hence eα(P/xP,A/xA) = 0, and we may replace M by its image in M ′ in (2).

Next let Q ⊂ M ′/M be the submodule consisting of elements which are killed
by some power of x. Choose i > 0 so that xi kills Q. The sequence

0→ Q[x]→ Q
x→ Q→ Q/xQ→ 0

and (1.3.2) shows that

eα(Q[x], A/xA) = eα(Q[x], A/xiA) = eα(Q/xQ,A/xiA) = eα(Q/xQ,A/xA).

Hence, if M ′′ denotes the preimage of Q in M ′′, then using (1.3.2) we see that
eα(M/xM,A/xA) = eα(M ′′/xM ′′, A/xA). Hence we may replace M by M ′′ and
assume that M ′/M is x-torsion free.

Now (1) follows from (1.3.2), and the same argument as in the first paragraph
shows that under the hypothesis of (2), eα(M ′/(M + xM ′), A/xA) = 0, so (2) also
follows �

(1.3.4) We now return to the situation without the action of a group. If q ⊂ A
is any m-primary ideal, and M is a finite A-module, then there is a polynomial Pq

of degree at most d such that the length of M/qn+1M is given by Pq(n). As above,
we write eq(M,A) for d! times the leading coefficient of Pq. If M = A we write
simply eq(A) for eq(A,A). If q = m we sometimes abbreviate eq(A) to e(A).
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Proposition (1.3.5). Let f : (A,m) → (B, n) be a local map of Noetherian com-
plete local rings such that

(1.3.6) dimB = dimA+ dimB/mB.

Then

(1.3.7) en(B) 6 em(A)en/mB(B/mB).

Proof. We first reduce to the case where A has infinite residue field. Suppose A/m is
finite. Let B0 ⊂ B be a coefficient ring for B [Ma, Thm. 29.3]. So B0

∼−→ B/n if B
has equal characteristic p > 0, and B0 is a discrete valuation ring with uniformizer
p, and B0/pB0

∼−→ B/n, if B has mixed characteristic. Since A/m is finite A
contains a unique coefficient ring A0, which maps to B0. One checks easily that
replacing A by the m-adic completion of A ⊗A0 B0 does not change either side of
(1.3.7). In particular, we may assume that A and B have the same residue field.

If B0/pB0 is a finite field, let κ′ be an algebraic closure of B0/pB0. Again, one
sees easily that replacing A by the m-adic completion of A ⊗A0 W (κ′) and B by
the n-adic completion of B ⊗B0 W (κ′) does not change either side (1.3.7). Thus,
we may assume that A and B have infinite residue fields.

We now prove the proposition by induction on dimA. Suppose first that dimA =
0, so that A is an Artin ring, and em(A) is its length. We prove the inequality
by induction on the length of A. If this is 1, then A is a field, and there is noting
to prove. Let I ⊂ A be an ideal such that mI = 0. Then using the induction
hypothesis, and (1.3.2), we have

en(B) 6 en(I ⊗A B,B) + en(B/I,B) = en(I ⊗A/m B/m, B) + en(B/I,B)

6 (dimA/mI + em/I(A/I))en/mB(B/m) = em(A)en/mB(B/m).

Suppose that dimA > 0. Let 0 = ∩ni=1qi be a minimal primary decomposition
of {0} ⊂ A, where the radicals pi = r(qi) satisfy dimA/pi = dimA if and only if
1 6 i 6 m for some m 6 n. Let I = ∩mi=1qi. By (1.3.3) (applied with G = 1)
replacing A by A/I does not change the right hand side of (1.3.7), and (1.3.6)
implies that replacing B by B/IB does not change the left hand side of (1.3.7)
[Ma, Thm. 15.1]. Thus we may assume that A has no embedded primes, and that
for each minimal prime pi of A the quotient A/pi has dimension equal to dimA.

By [Ma, Thm. 14.14], since A/m is infinite, there is a m-primary ideal q ⊂ A
such that mr+1 = qmr for some r > 0, (an ideal q with this property is called a
reduction of m) and q is generated by a sequence of parameters x1, . . . xd for A.
The condition (1.3.6) implies that x1, . . . , xd extends to a sequence of parameters
of B, which implies that

(1.3.8) en(B) 6 en/x1B(B/x1B)

by [Ma, Thm. 14.9].
None of the xj can be a zero-divisor, since otherwise we would have xj ∈ pi for

a minimal prime pi, and dimA/xjA ≥ dimA/pi = dimA, which is impossible [Ma,
Thm. 13.6]. Hence if we set x = x1, then

em(A) = eq(A) = eq/xA(A/xA) = em/xA(A/xA)
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where the second equality follows from [Ma, Thm. 14.11] and the fact that x is not
a zero divisor, while the other two equalities follow from [Ma, Thm. 14.13] since q
and q/xA are reductions of m and m/xA respectively. Finally, we have

en(B) 6 en/xB(B/xB) 6 em/xA(A/xA)en/mB(B/mB) = em(A)en/mB(B/mB),

where in the second inequality we have used the induction hypothesis applied to
A/xA, which we saw above has dimension < dimA. �

Proposition (1.3.9). Let κ be a field and (A1,m1) and (A2,m2) Noetherian, com-
plete local κ-algebras with residue field κ. Write n for the radical of B = A1⊗̂κA2.
Then

en(B) = em1(A1)em2(A2).

Proof. We repeat the proof of (1.3.5) with A = A1. As in (1.3.5), we may assume
that κ is infinite. If dimA1 = 0, then since B is flat over A1, one sees by induction
on the length of A1, that

en(B) = em1(A)en/m1B(B/m1B) = em1(A1)em2(A2).

Suppose that d = dimA1 > 0. As in the proof of (1.3.5), we may assume that
dimA1/p = dimA1, for any minimal prime p ⊂ A1. Let q1 ⊂ m1 and q2 ⊂ m2 be
reductions of m1 and m2 respectively, which are generated by systems of parameters:
q1 = 〈x1, . . . xd〉 and q2 = 〈y1, . . . , ye〉. If mr+1

1 = q1m
r
1 and ms+1

2 = q2m
s
2 then

nr+s+1 = (m1B + m2B)r+s+1

⊂ q1(m1B + m2B)r+s + q2(m1B + m2B)r+s = (q1B + q2B)nr+s

so q = q1B+ q2B is a reduction of n. Now x = x1 is a not a zero divisor in A1, and
hence it is not a zero divisor in A1 ⊗κ A2/m

j
2 for any j ≥ 1, or in B. Thus using

[Ma, Thm 14.11] we find

en(B) = eq(B) = eq/xB(B/xB) = en/xB(B/xB).

Thus (1.3.8) is an equality in this context. Arguing exactly as in the last part of
of the proof of (1.3.5) now proves that en(B) = em1(A1)em2(A2) by induction on
d. �

(1.4) Deformation rings and pseudo-deformation rings: In this subsec-
tion we compare deformation rings of Galois representations with the corresponding
pseudo-deformation ring.

(1.4.1) Let G be a group and R a commutative ring with 1. Recall [Ta 1, §1]
that a pseudo-representation of G over R of dimension d is a function T : G → R
such that T has the following properties of the trace of a representation of G on a
finite free R-module.

(1) T (1) = d
(2) T (g1g2) = T (g2g1) for g1, g2 ∈ G.
(3)

∑
σ∈Sd+1

ε(σ)Tσ(g1, . . . , gd+1) = 0 for g1, . . . gd+1 ∈ G, where Sd+1 is the
symmetric group on d + 1 letters, ε(σ) denotes the sign of σ, and if σ has
the cycle decomposition

(i11, i
2
1, . . . , i

k1
1 )(i12, . . . , i

k2
2 ) . . . (i1mσ , . . . , i

kmσ
mσ )
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then Tσ : Gd+1 → R is the function

(g1, . . . , gd+1) 7→ T (i11 . . . i
k1
1 )T (i22 . . . i

k2
2 ) . . . T (i1mσ . . . i

kmσ
mσ ).

If A → A′ is a surjection of rings, and TA′ : G → A′ is a pseudo-character,
then by a deformation of TA′ to A we mean a lifting of TA′ to an A-valued pseudo-
character. If T is a pseudo-representation of G over R, then we may regard T as
map R[G]→ R by linearity.

In the following we shall work with a profinite, finitely topologically generated
group G. Let κ be a topological field. If κ is discrete and has characteristic p > 0,
then we set W equal either to κ or to a Cohen ring for κ. In all other cases, we set
W = κ.

Suppose that Tκ : G→ κ is a continuous pseudo-representation of dimension d.
For a local Artinian W -algebra A with residue field κ, denote by Dps

Tκ
(A) the set of

continuous deformations of Tκ to A.

Lemma (1.4.2). Dps
Tκ

is (pro-)represented by a Noetherian, complete local W -
algebra Rps

Tκ
.

Proof. By [Ta 1, Thm. 1] there is a finite subset S ⊂ G such that a continuous
pseudo-representation of G is determined by its values on S. This implies that the
tangent spaceDps

Tκ
(κ[ε]) is finite dimensional over κ. The lemma now follows directly

from Grothendieck’s representability criterion [Maz, §18]. �

Lemma (1.4.3). Let Vκ be a finite dimensional κ-vector space equipped with a
continuous action of G such that End κ[G]Vκ = κ. Let RVκ denote the universal
deformation ring of Vκ and Tκ the pseudo-deformation corresponding to Vκ. Let

θ : Rps
Tκ
→ RVκ

denote the map induced by sending a G-representation to its trace.
(1) If Vκ is absolutely irreducible, the θ is an isomorphism.
(2) If char κ 6= 2, Vκ is a non-trivial extension of ω1 by ω2 for two distinct

character ω1 and ω2 of G, and Ext1κ[G](ω1, ω2) is 1-dimensional over κ,

then θ is a surjection.

Proof. (1) follows from a result of Nyssen [Ny]. To prove (2) we shall adapt an
argument of Carayol which applies when Vκ is absolutely irreducible [Ca, Thm. 1].

It suffices to show that θ induces a surjection on tangent spaces. For this, fix
a basis of Vκ such that the resulting representation ρ̄ : κ[G] → GL2(κ) is upper
triangular. Let A = κ[ε]/ε2 denote the dual numbers over κ, and suppose that
ρ : A[G] → GL2(A) is a deformation of ρ, which satisfies trρ(σ) = trρ̄(σ) for
σ ∈ A[G]. Write ρ(σ) = ρ̄(σ) + ∆(σ) where ∆(σ) ∈ M2(εκ). Since ρ is a ring map.
one sees that

tr(ρ̄(σ1)∆(σ2) + ∆(σ1)ρ̄(σ2)) = tr(∆(σ1σ2)) = 0

for σ1, σ2 ∈ κ[G]. Taking σ1 ∈ ker ρ̄ we see that tr(∆(σ1)ρ̄(σ2)) = 0 for all σ2 ∈ κ[G].
Our hypotheses imply that ρ̄(κ[G]) consists of all upper triangular matrices in
M2(κ), so ∆(σ1) has the form

(
0 ∗
0 0

)
.
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Now for σ ∈ A[G] write ∆(σ) =
(
α(σ) β(σ)

γ(σ) −α(σ)

)
· ε, and ρ̄(σ) =

(
a(σ) b(σ)

0 d(σ)

)
. If σ

satisfies ρ̄(σ) =
(

1 0

0 0

)
or

(
0 0

0 1

)
computing the trace of ∆(σ2) shows that α(σ) = 0.

Choose σ0 ∈ A[G] so that ρ̄(σ0) =
(

0 1

0 0

)
. Then the calculations above show that

for any σ ∈ A[G] α(σ) = α(σ0)b(σ). Hence after replacing ρ by UρU−1, where
U =

(
1 0

α(σ0) 1

)
we may assume that α(σ) = 0 for all σ ∈ A[G].

But now σ 7→ b(σ) + β(σ) gives a F[ε]×-valued cocycle corresponding to an
extension of ω1 by ω2. Since Ext1F[G](ω1, ω2) is 1-dimensional, this cocycle vanishes
on ker ρ̄, and so ∆ vanishes on the kernel of ρ̄. We can now conclude as in Carayol’s
argument: ∆ corresponds to a derivation of ρ̄(κ[G]), which is necessarily inner, and
this shows that ρ is equivalent to ρ̄. �

Corollary (1.4.4). Suppose that G = GQp and κ ⊂ F̄p, and that Vκ is as in (1.4.3)
and satisfies one of the conditions (1) or (2). Then the map

(1.4.5) (Rps
Tκ

[1/p])red → (RVκ [1/p])
red

induced by θ is an isomorphism.

Proof. When Vκ satisfies (1.4.3)(1), there is nothing to show. Suppose that it
satisfies (1.4.3)(2). Note that (1.4.5) is a surjection between reduced Jacobson
rings, and so it suffices to check that induces a surjection on closed points. If
E/W [1/p] is a finite extension, and x an E-valued point of (Rps

Tκ
[1/p])red, then

after replacing E by a finite extension, we may assume that x corresponds to a
G-representation Vx.

Let OE denote the ring of integers of E, and πE a uniformiser. If Vx is absolutely
irreducible, then it contains a lattice whose reduction mod πE is an extension of
ω1 by ω2, and so x corresponds to a point of RVκ . If Vx is reducible, then it is
an extension of two characters ω̃1 and ω̃2 lifting ω1 and ω2 respectively. Now any
extension of ω̃1 by ω̃2 gives rise to the pseudo-representation corresponding to x.
Thinking of ω̃1 and ω̃2 as O×E -valued characters, consider the map

Ext1OE [GQp ](ω̃1, ω̃2)→ Ext1κ[GQp ](ω1, ω2).

Since the right hand side is a finitely generated OE-module, the image of this map
is non-zero, and hence it is surjective. It follows that we may assume that Vx has
a lattice which gives rise to Vκ, which again shows that x is induced by a point of
RVκ . �

Corollary (1.4.6). Let TF be a two dimensional pseudo-representation of GQp
over F and assume that TF is either irreducible, or a sum of two distinct pseudo-
representations of dimension 1, given by F×-valued characters ω1 and ω2 of GQp .

If p = 3 assume also that ω1ω
−1
2 6= ω.

Denote by Rps,◦
TF

the image of Rps
TF

in (Rps
TF

[1/p])red. Then there is a finite free
Rps,◦
TF

-module M of rank 2, equipped with a continuous action of GQp , such that for
σ ∈ GQp the trace of σ on M is given by T (σ) ∈ Rps,◦

TF
.

Proof. This follows from (1.4.4) once we remark that, ω1 and ω2 are distinct, then
Ext1GQp

(ω1, ω2) is one dimensional, provided that ω2ω
−1
1 is not the mod p cyclotomic

character. Since we can exchange the roles of ω1 and ω2, the only case in which
(1.4.4) does not apply is when ω2ω

−1
1 = ω = ω−1, which can happen only if p =

3. �
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Proposition (1.4.7). Suppose ω1, ω2 : GQp → F× are two F-valued characters
such that ω1ω

−1
2 /∈ {ω, ω−1, 1}, let VF = ω1⊕ω2 and denote by TF the corresponding

pseudo-representation. Write R�
VF

for the universal framed deformation ring of VF
as in (1.1), and mTF and mVF for the radicals of Rps

TF
and RVF respectively. Then

(1) dimR�
VF

= dimRps
TF

+ dimR�
VF
/mTFR

�
VF
.

(2) dimR�
VF
/mTFR

�
VF

= 3.
(3) e(R�

VF
/mTFR

�
VF

) = 2.

Proof. A standard cohomological calculation shows that dimR�
VF

= 8 (cf. [Ki 2,
2.3.4]), and using (1.4.3) and (1.4.6), one obtains in a similar way that dimRps

TF
= 5.

Hence we need to show that R = R�
VF
/mTFR

�
VF

is 3-dimensional, and that if m

denotes its maximal ideal then em(R) = 2.
Now consider the functor which to a local F-algebra, with residue field F assigns

the set of framed deformations VA of VF to A, such that VA is an extension of ω2

by ω1 (viewed as A-valued characters). Since ω1 6= ω2, there is a unique finite free,
rank 1 A-submodule LA ⊂ VA on which GQp acts via ω1. Using this, one sees easily
that this functor is representable by a complete local F-algebra Rω1 . We define in
a similar way a complete local F-algebra Rω2 . Since

H2(GQp , ω1ω
−1
2 ) = H2(GQp , ω2ω

−1
1 ) = 0,

Rω1 and Rω2 are formally smooth, and since the space of extensions of ω2 by ω1

(resp. ω1 by ω2) is 1-dimensional one finds that

dimRω1 = dimRω2 = 3.

Now let VR denote the tautological framed deformation of VF to R. Let p be a
minimal prime of R, and κ(p) the residue field of p. Write VR/p = VR⊗RR/p. Then
(VR/p)F(p) has semi-simplification ω1 ⊕ ω2. Suppose that (VR/p)F(p) is an extension
of ω2 by ω1. We claim that p is induced by a prime of Rω1 . To see this, for any
F[GQp ]-module M and i = 1, 2 write M [ωi] ⊂M for the submodule on which GQp
acts by ωi. Then VR/p[ω1] has R/p-rank 1, and GQp acts on VR/p/(VR/p[ω1]) via
ω2. Since VR/p/(VR/p1 [ω1])⊗R R/m is a quotient of VR ⊗R R/m, it follows that it
is one dimensional over F, so that VR/p/(VR/p[ω1]) is a free R/p-module of rank 1,
and the same argument now shows that VR/p is free of rank 1 over R/p.

This shows that p contains the kernel of R → Rω1 . Now since p is a minimal
prime of R, VR is a non-trivial extension of ω2 by ω1. By (1.4.3), applied with
κ = κ(p), any deformation of (VR/p)κ(p) which induces a trivial deformation on
pseudo-representations is trivial. Hence R→ Rω1 is an isomorphism at p.

It follows that the map
R→ Rω1 ⊕Rω2

is an isomorphism at the minimal primes of R, so R is 3-dimensional. Since we have
already seen that Rω1 and Rω2 are formally smooth we find (cf. [Ma, Thm. 14.7])

em(R) = em(Rω1 , R) + em(Rω2 , R) = 2.

�
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(1.5) GL2(Qp)-representations mod p: In this subsection we study certain
(pro-)finite length, admissible GL2(Qp)-representation built out of irreducible mod
GL2(Zp)-representations, and the Galois representations obtained from them by
applying the functor Vψ introduced in (1.2).

(1.5.1) As in (1.2), fix an integer r ∈ [0, p−1], and we consider the representation
σ = SymrF2 of KZ obtained by letting p ∈ K act trivially. We also fix a character
χ : Q×

p → F×, and an element λ ∈ F.
The operator T introduced in (1.2.1) acts on I(σ) = IndGKZSymrF2 and hence

on Iχ(σ) = I(σ)⊗ χ ◦ det . We set

Π(r, λ, χ) = lim←−Iχ(σ)/(T − λ)nIχ(σ)

The GL2(Qp)-representation Π(r, λ, χ) is naturally a module of F[[S]], where S
acts on Iχ(σ)/(T − λ)nIχ(σ) by T − λ. We will sometimes write T − λ for S. As
mentioned in (1.2.5), inverse limits on the category of admissible representations
are exact. In particular one sees that Π(r, λ, χ)/(T − λ)n ∼−→ Iχ(σ)/(T − λ)n. The
list of possibilities for π(r, λ χ) = Π(r, λ, χ)/(T − λ) is given in (1.2.2).

Denote by ψ the central character of Iχ(σ) (and hence also of Π(r, λ, χ)).

Lemma (1.5.2). Let

Vψ(Π(r, λ, χ)) = lim←−Vψ(Iχ(σ)/(T−λ)nIχ(σ)) = lim←−Vψ(Π(r, λ, χ)/(T−λ)nΠ(r, λ, χ))

Then Vψ(Π(r, λ, χ)) is a finite free F[[S]]-module which has rank 1 if λ 6= 0 and has
rank 2 if λ = 0.

Proof. Let i = 1 if λ 6= 0 and 2 if λ = 0. The exactness of Vψ and (1.2.4) implies
that

Vψ(Π(r, λ, χ))/SVψ(Π(r, λ, χ)) ∼−→ Vψ(π(r, λ, χ))

has F-dimension i, and hence one sees that there is a surjection

F[[S]]i/Sn → Vψ(Π(r, λ, χ)/(π − λ)nΠ(r, λ, χ)).

Since Iχ(σ) has no T −λ torsion (this is easily seen using the fact that the functions
in Iχ(σ) are compactly supported), Π(r, λ, χ)/(π − λ)nΠ(r, λ, χ) has a filtration of
length n where the associated graded pieces are isomorphic to π(r, λ, χ). Hence
Vψ(Π(r, λ, χ)/(π − λ)nΠ(r, λ, χ)) has length n by (1.2.4), and this surjection is an
isomorphism. The lemma follows by passing to the limit over n. �

Lemma (1.5.3). Vψ(Π(r, 0, χ)) is a deformation to F[[T ]] of the absolutely irre-
ducible 2-dimensional F-representation Vψ(π(r, 0, χ)) of GQp . If R denotes the uni-
versal deformation ring of this representation, then the map R→ F[[T ]] is surjective.

Proof. It suffices to consider the case when χ is trivial. We first consider the case
when r ∈ [0, p− 2]. Let E be a finite extension of W (F)[1/p], with ring of integers
O and uniformizer πE , and let E(T ) ∈ W (F)[T ] be the Eisenstein polynomial of
πE . Write e = [E : W (F)[1/p]].

Consider SymrW (F)2 viewed as a KZ-module, by letting p ∈ KZ act trivially.
The compact induction IndGKZSymrW (F)2 is a W (F)[T ]-module, where T acts via
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the KZ-bivariant function on SymrW (F)2 which is supported on KZ and takes[
1 0

0 p−1

]
to Symr

[
1 0

0 p

]
(cf. 1.2.1). Then [Br 2, Prop. 3.3.3] asserts that

(1.5.4) (IndGKZSymrW (F)2)/(E(T )) ∼−→ (IndGKZSymrO2)/(T − πE)

is p-torsion free, and that its reduction modulo πE is isomorphic to π(r, 0, 1).
Let ψ̃ denote the central character of (1.5.4). (So ψ̃ corresponds via class field
theory to χr+1

cyc .) By [BB 1, Thm. 4.3.1, 5.3.2] taking the p-adic completion of
IndGKZSymrW (F)2/(E(T )) and applying Vψ̃ yields a lattice in a two dimensional,
crystalline E-representation VπE of GQp , having Hodge-Tate weights 0, r+1. More-
over, if D∗

cris(VπE ) denotes the weakly admissible module contravariantly associated
to VπE , then the trace of the Frobenius ϕ on D∗

cris(V
∗
πE ) is equal to πE .

Let R0,r+1 denote the quotient of R corresponding to crystalline deformations
having Hodge-Tate weights 0, r+1. Suppose that A is any finite local W (F)-algebra,
and consider a map ofW (F)-algebras θ : R0,r+1 → A. Denote by VA the correspond-
ing A-representation of GQp . The theory of Fontaine-Laffaille [FL] implies that there
is an element ap ∈ R0,r+1 such that for any A and θ as above, the trace of ϕ on
Dcris(V ∗A) is equal to θ(ap). Here V ∗A denotes the A-dual of VA.

Now the reduction of (1.5.4) modulo p is

IndGKZSymrF2/T e
∼−→ Π(r, 0, 1)/T eΠ(r, 0, 1).

It follows that R → F[[T e]] factors through the quotient R0,r+1 and sends ap to T.
Since this is true for any e, the lemma follows when r ∈ [0, p− 2]. When r = p− 1
it follows from the case r = 0 and (1.5.5) below. �

Lemma (1.5.5). There is a morphism of F[T ][GL2(Qp)]-modules

IndGKZSymp−1F2 → IndGKZ1

which induces a continuous isomorphism of F[[T ]][GL2(Qp)]-modules

Π(0, λ, χ) ∼−→ Π(p− 1, λ, χ)

for λ ∈ F\{±1}.

Proof. It suffices to consider the case χ = 1.
We recall the notation of [Br 1, 2.3]. Suppose that σ, Vσ and I(σ) are as in (1.2).

If g ∈ G and v ∈ Vσ we denote by [g, v] ∈ I(σ) the function which is supported
KZg−1 and given by [g, v](g′) = σ(g′g)v for g′ ∈ KZg−1. If ϕ : G → End FVσ is a
KZ-bivariant function, then the corresponding operator Tϕ on I(σ) is given by [Br
1, 2.4]

Tϕ([g, v]) =
∑

g′KZ∈G/KZ

[gg′, ϕ(g′−1)(v)].

We identify Symp−1F2 with the space of polynomials in F[x, y] which are homo-
geneous of degree p− 1, with

(
a b

c d

)
acting by(

a b
c d

)
xp−1−jyj = (ax+ cy)p−1−j(bx+ dy)j .
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Let I ⊂ GL2(Zp) denote the Iwahori subgroup consisting of matrices whose re-
duction modulo p is upper triangular. Then we identify I\K with P1(Fp) via(
a b

c d

)
7→ (c, d), and we may think of x, y as projective co-ordinates on P1(Fp), so

that Symp−1 becomes a subspace of IndKI 1, consisting of the functions with average
value 0.

Set α =
(

1 0

0 p

)
, and denote by T the operator introduced in (1.2), which cor-

responds to the KZ-bi-invariant function ϕα supported on KZα−1KZ and send-
ing α−1 to Symr

(
0 0

0 1

)
. A simple calculation (cf. [Br 1, Prop. 4.1.2]) shows that

the elements [α, 1] and [1, 1] of IndGKZ1 are I-invariant. Let b ∈ IndGKZ1 be an
element contained in the F-span of {T j [α, 1], T j [1, 1]}j≥0. Since the stabilizer of
xp−1 ∈ Symp−1F2 ⊂ IndKI 1 is I ⊂ K, there is a unique map of F[GL2(Zp)]-modules

Symp−1F2 → IndGKZ1

taking xp−1 to b, and we denote by

hb : IndGKZSymp−1F2 → IndGKZ1 = I(1)

the map obtained by Frobenius reciprocity. hb is characterised by the property that
hb([1, xp−1]) = b.

We now find a b such that the composite of hb with the projection I(1) →
I(1)/Tn is compatible with the action of T. Let C ⊂ K denote the set of matrices
of the form

(
1 0

i 1

)
with i = 0, 1, . . . p−1 together with the matrix w =

(
0 1

1 0

)
. Then

C consists of a set of representatives for KZαKZ/KZ, and we compute

T ([1, xp−1]) =
∑

gKZ∈G/KZ

[g, ϕα(g−1)(xp−1)]

=
∑
k∈C

(kα) · [1, ϕα(α−1k−1)(xp−1)] =
∑
k∈C

(kα) · [1, (
(

0 0
0 1

)
k−1)(xp−1)]

=
∑

k∈C\{1}

(kα) · [1, yp−1] =
∑

k∈C\{1}

(kαw) · [1, xp−1]

Hence we have

(1.5.6) hb(T [1, xp−1]) =
∑

k∈C\{1}

(kαw) · b.

Suppose that b = T j [α, 1] for some j ≥ 0. Then

kαwT j [α, 1] = T j [kαwα, 1] = T j [kpw, 1] = T j [1, 1].

In particular the summands in the right hand side of (1.5.6) do not depend on k.
Since there are p summands, we see that hb(T [1, xp−1]) = 0.

Suppose that b = T j [1, 1] for some j ≥ 0. Then

hb(T [1, xp−1]) =
∑

k∈C\{1}

T j [kαw, 1] = T j(
∑

k∈C\{1}

[kα, 1]) = T j(T [1, 1]− [α, 1]).
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Hence if we set b = [α, 1]− T [1, 1], then we find hb(T [1, xp−1]) = Thb([1, xp−1]), so
hb is a map of F[T ][GL2(Qp)]-modules.

Now let λ ∈ F. Then hb is non-zero modulo T − λ, for if (T − λ)c = b for some
c ∈ IndGKZ1 then by comparing supports one find that c must be in F · [1, 1] (see
[BL, Lem. 20]). But then [α, 1] would be in the span of [1, 1] and T [1, 1] which is
not the case.

Suppose that λ 6= ±1. Taking the reduction of hb modulo (T − λ)n gives a map
of F[T ][GL2(Qp)]-modules

(1.5.7) I(Symp−1F2)/(T − λ)n → I(1)/(T − λ)n.

Since I(1)/(T − λ) is irreducible, and (1.5.7) is non-zero modulo T − λ, it is sur-
jective by Nakayama’s lemma. Since both sides have the same length, (1.5.7) is an
isomorphism. Passing to the limit over n, yields the isomorphism of the lemma. �

Lemma (1.5.8). If λ ∈ F×, then the action of GQp on Vψ(Π(r, λ, χ)) is given by
the F[[S]]×-valued character χµT−1 , where µT−1 is the unramified character of GQp
sending the geometric Frobenius corresponding to p, Frob−1

p to T−1 = (S + λ)−1.

Proof. We use the notation of the proof of (1.5.4). Again it suffices to consider the
case when χ is trivial. Let [λ] ∈ W (F) be the Teichmüller representative of λ and
consider the quotient

(1.5.9) (IndGKZSymrW (F)2)/(E(T − [λ])) ∼−→ (IndGKZSymrO2)/(T − ([λ] + πE))

Let ψ̃ denote the central character of (1.5.9) (as in (1.5.4), ψ̃ is induced by χr+1
cyc ). By

[BB 2, §7.2] p-adically completing (1.5.9) and applying Vψ̃ produces an unramified
character GQp → O× sending Frob−1

p , to the inverse of the unit root of the quadratic
equation X2− ([λ]+πE)X+pr+1. Hence applying Vψ to (IndGKZSymrF2)/(T −λ)e

produces the character

GQp → (O/πeE)× ∼−→ (F[[S]]/Se)×

given by sending Frob−1
p to T−1 = (S + λ)−1. The lemma follows as in (1.5.4). �

Lemma (1.5.10). Let r̄ : GQp → F be a 2-dimensional pseudo-representation with
determinant ψχcyc, and denote by Rps(r̄) its universal deformation ring. Suppose
that Vψ(π(r, λ, χ)) is a factor of the semi-simple F-representation VF of GQp at-
tached to r̄.

Then there is map θ : Rps(r) → F[[S]] such that for σ ∈ GQp , the element
θ(T (σ)) ∈ F[[S]] acts on Vψ(Π(r, λ, χ)) by σ + ψχcyc(σ)σ−1.

Moreover, the map θ is surjective unless (χµλ−1)2 = ψχcyc (that is VF is scalar),
in which case the image of θ has the form F[[S′]], where S′ ∈ F[[S]] is an element of
S-adic valuation 2.

Proof. If VF is irreducible, this follows from (1.5.3), since Vψ(Π(r, χ, λ)) is a defor-
mation of VF.

If VF is reducible, then Vψ(Π(r, χ, λ)) is a direct summand of the deformation
χµT−1⊕χ−1ψχcycµT of VF by (1.5.8), and this gives a map θ : Rps(r)→ F[[S]], with
T (σ) acting as claimed.
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Now if σ ∈ GQp acts via the geometric Frobenius on the residue field of Q̄p, then

(1.5.11) θ(T (σ)) = χ(σ)(S + λ)−1 + χ−1ψχcyc(σ)(S + λ).

The coefficient of S in the above expression is −χ(σ)λ−2 + χ−1ψχcyc(σ), which is
0 if and only if for all such σ (χµλ−1)2 = ψχcyc.

For i ≥ 2, the coefficient of Si in (1.5.11) is (−1)iχ(σ)λ−i−1 6= 0, so if the
coefficient of S in (1.5.11) is 0, then we may take S′ =

∑∞
i=2 S

iλ−i−1. �

(1.6) Local patching and multiplicities: In this subsection we give a con-
struction of certain finite modules over deformation rings for certain 2-dimensional
pseudo-representations of GQp .

(1.6.1) We now return to the notation of (1.1). In particular k ≥ 2, ψ : GQp →
O× as in (1.1.1), τ : IQp → GL2(E) is of Galois type, and

Lk,τ ⊂ σ(k, τ) = σ(τ)⊗E Symk−2E2

is a GL2(Zp)-stable O-lattice. We will regard ψ as a character of Q×
p , as before,

and we assume that the central character of σ(k, τ) is ψ|Z×p .
We also fix a 2-dimensional pseudo-representation r̄ of GQp over F. Thus r̄ is

the trace of a unique semi-simple, 2-dimensional F-representation of GQp , which we
denote by VF [Ta 1, Thm. 1]. We denote by Rps(r̄) the universal deformation ring
of r̄.

Suppose that E′ is a finite extension of E with ring of integers OE′ , and that r is
a deformation of r̄ to OE′ . Regarding r as an E′-valued pseudo-representation, there
is a representation Vr of GQp on a 2-dimensional E′-vector space, so that r is given
by the trace of Vr. Moreover the semi-simplification of Vr is uniquely determined.

Suppose that Vr is potentially semi-stable of type τ with Hodge-Tate weights,
0, k − 1, and has determinant ψχcyc. We will say that Vr has type (k, τ, ψ). By
(1.2.6) there is an admissible OE′ -lattice Πr such that Vr

∼−→ Vψ(Πr) ⊗Zp Qp,
Πr has central character ψ and there is a K = GL2(Zp)-equivariant embedding
σ(k, τ)→ Πr⊗Zp Qp. Since Π(Vr) has central character ψ, this embedding becomes
KZ-equivariant, if we let Z act on σ(k, τ) via ψ, and hence we obtain a map

IndGKZσ(k, τ)→ Πr ⊗Zp Qp.

Multiplying this map by a power of p, if necessary, we may assume that it induces
a map

(1.6.2) IndGKZLk,τ → Πr.

Denote by Π(r) the closure of the image of (1.6.2). It is an admissible O-lattice,
whose E′-span is Πr ⊗Zp Qp if Vr is absolutely irreducible, and is a proper closed
submodule otherwise. Let V (r) = Vψ(Π(r)). The E′-span of the image of the
composite

V (r)→ Vψ(Πr)→ Vr

is Vr if Vr is absolutely irreducible and is a 1-dimensional E′-subspace of Vr other-
wise.
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Next suppose that we are given a finite collection of distinct deformations U =
{r1, . . . rn} of r̄, and for each ri a potentially semi-stable representation Vri of type
(k, τ, ψ) giving rise to ri. Then we obtain a map as in (1.6.2) for each ri, and we
denote by Π(U) the closure of the image of

IndGKZLk,τ → ⊕ni=1Πri .

This is again an admissible O-lattice
Finally if we are given a countable collection U = {ri}i≥1 of deformations, and

a a potentially semi-stable representation Vri of type (k, τ, ψ) giving rise to ri, then
we set

Π(U) = lim←−Π(U ′)

where U ′ runs over finite subsets of U. We set V (U) = lim←−V (Π(U ′)).

Lemma (1.6.3). Suppose U = {ri}i≥1 is as above. Then

(1) V (U) is naturally a Rps(r̄)-module.
(2) If U ′ ⊂ U is any subset than the natural map V (U) → V (U ′) is a map of

Rps(r̄)-modules
(3) If r ∈ U is a deformation of r̄ to OE′ , then Rps(r̄) acts on V (r) via the

image of the corresponding map xr : Rps(r̄)→ OE′ . In particular V (r) is an
xr(Rps(r̄))-module.

Proof. It suffices to prove the lemma when U = {r1, . . . , rn} is finite, where the ri
are distinct pseudo-representations.

Note that we have an inclusion V (U) ↪→ ⊕ni=1Vri , and Rps(r̄) acts on each Vri

via the corresponding character xri : Rps → OE′ . We saw in (1.4) that Rps is
topologically generated by the elements T (σ) with σ ∈ GQp . Hence it suffices to
check that the map T (σ) : V (U)→ ⊕nr=1Vri induced by T (σ) has image in V (U).

The operator σ2 − T (σ)σ + ψ(σ)χcyc(σ) acts on each Vri by 0, so that T (σ) on
⊕ni=1Vri is given by σ+ψχcyc(σ)σ−1, which preserves V (U) since V (U) ⊂ ⊕ni=1Vri

is a GQp-stable subspace. �

(1.6.4) Suppose that Q is a representation of GL2(Qp) on an F-vector space,
and that we given a finite collection P of representations of the form π(r, λ, χ), all
with some fixed central character ψ. We set Q bP = lim←−Q

′ where Q′ runs over finite
length quotients of GL2(Qp) all of whose Jordan-Hölder factors are isomorphic to
a subquotient of a representation π(r, λ, χ) ∈ P.

It is clear that the functor Q 7→ Q bP is right exact. We write Vψ(Q bP ) =
lim←−Vψ(Q′).

Lemma (1.6.5). Let Q = IndGKZL where L = SymrF2 ⊗ χ ◦ det is an irreducible
representation of KZ on a finite dimensional F-vector space (so r ∈ [0, p−1]). Then
Q bP is a successive extension of representations of the form Π(r, λ, χ) introduced in
(1.5).

Proof. By [BL, Prop. 32] any irreducible quotient of IndGKZL is a quotient of
IndGKZL/(T − λ)IndGKZL. The lemma follows easily from this. �
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Lemma (1.6.6). V (U) is a finite Rps(r̄)-module of dimension 6 2. In particular,
if Rps

U (r̄) denotes the image of Rps(r̄) in EndV (U), then Rps
U (r̄) is a flat O-algebra

of relative dimension at most 1.

Proof. From the construction, one sees that V (U) is p-adically separated (and even
mRps(r)-adically separated, where mRps(r) is the maximal ideal of Rps). Hence it suf-
fices to show that V (U)/πV (U) is a finitely generated Rps(r)-module of dimension
at most 1. The claim regarding the dimension of Rps

U (r) follows from this.
Let P be the set of π(r, λ, χ) with central character ψ, such that Vψ(π(r, λ, χ))

is a factor in VF. Then P is a finite set, and V (U) is a quotient of (IndGKZL̄k,τ ) bP
where L̄k,τ = Lk,τ/pLk,τ .

Let {0} = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lm = L̄k,τ be a filtration by KZ-stable
subspaces, such Li+1/Li is an irreducible KZ-module for i = 1, . . .m − 1. For
i = 1, . . .m, let V (U)i denote the image of the composite

Vψ((IndGKZLi) bP )→ Vψ((IndGKZL̄k,τ ) bP )→ V (U)/πV (U).

Then V (U)i is a GQp-stable subspace of V (U), and is hence Rps(r̄)-stable, since the
elements T (σ) of Rps(r̄) act on V (U)/πV (U) via σ + ψχcycσ

−1. Hence it suffices
to show that V (U)i+1/V (U)i is a finitely generated Rps(r̄)-module of dimension at
most 1.

Now for i = 1, . . . r − 1, (IndGKZ(Li+1/Li)) bP is isomorphic to a successive ex-
tension of representations of the form Π(r, λ, χ) by (1.6.5), so the lemma follows
from (1.5.10). (In fact it is not hard to check that (IndGKZ(Li+1/Li)) bP is actually
isomorphic to a Π(r, λ, χ) unless Li+1/Li

∼−→ Symp−2F2 ⊗ χ ◦ det, in which case it
is an extension of two such spaces). �

(1.6.7) Let Ir be the kernel of the map xr of (1.6.3)(3), corresponding to a
deformation r of r̄ which corresponds to a potentially semi-stable representation of
type τ, Hodge-Tate weights 0, k−1, and determinant ψχcyc. Let I be the intersection
of all the ideals Ir with r of this kind. The set of such r has a countable subset
U0 such that I = ∩r∈U0Ir. (This holds for any set of ideals corresponding to closed
points of SpecRps(r̄).) In particular, any Rps

U (r̄) is a quotient of Rps
U0

(r̄). We shall
study specific components of SpecRps

U0
(r̄).

Suppose now that ρ̄ : GQp → GL2(F) is indecomposable with trace given by r̄.
Set

µ′Aut = µ′Aut(k, τ, ρ̄) =
∑
n,m

a(n,m)µ′n,m(ρ̄)

where a(n,m) is as in (1.1.2), µ′n,m(ρ̄) = 0 if µn,m(ρ̄) = 0 and µ′n,m(ρ̄) = 1 other-
wise.

We will use the notion of (1.3.2)

Lemma (1.6.8). Let α = {ρ̄} if ρ̄ is absolutely irreducible, and α = {ωn+1+mµλλ′}
if ρ̄ ∼

(
ωn+1µλ ∗

0 µλ−1

)
⊗ωmµλ′ with n,m ∈ [0, p−2] and λ, λ′ ∈ F×. If ρ̄ is reducible

and n = 0, then we suppose that λ 6= ±1. Then

eα(V (U)/πV (U), Rps(r̄)) 6 µ′Aut

unless ρ̄ has scalar semi-simplification, in which case

eα(V (U)/πV (U), Rps(r̄)) 6 2µ′Aut.
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Proof. We use the notation of the proof of (1.6.6). Let i ∈ [1, p − 1] and suppose
that Li+1/Li = SymrF2 ⊗ (det)s. It suffices to show that

(1.6.9) eα = eα(Vψ((IndGKZ(Li+1/Li)) bP ), Rps(r̄)) = µ′r,s(ρ̄)

unless ρ̄ has scalar semi-simplification in which case it is equal to 2µ′r,s(ρ̄).
Comparing the definition of µ′r,s(ρ̄) with the formulas of (1.2.5) one sees that

µ′r,s(ρ̄) 6= 0 if and only if there exists an extension χ of (det)s to Q×
p such that

ψ = ωrχ2, and a λ ∈ F such that Vψ(π(r, λ, χ)) is the unique element of α. (This
is where we use the hypothesis that λ 6= ±1 if ρ̄ is reducible and n = 0, since in
this exceptional case whether µ′0,s(ρ̄) 6= 0 also depends on the extension class ∗.)
By (1.6.5) this is equivalent to asking that the left hand side of (1.6.9) is non-zero,
in which case it is equal to eα(Vψ(Π(r, λ, χ), Rps(r̄))), where the Rps(r̄)-module
structure on Π(r, λ, χ) is given by (1.5.3) and (1.5.10). These lemmas also show
that eα = 1 unless ρ̄ has scalar semi-simplification, in which case eα = 2. �

Proposition (1.6.10). Suppose that ρ̄ is absolutely irreducible. Then

e(Rps
U0

(r̄)/πRps
U0

(r̄)) 6 µAut(k, τ, ρ̄).

Proof. By (1.4.6), Rps
U0

(r̄) is a quotient of the universal deformation ring of VF and
hence carries a finite free Rps

U0
(r̄)-module of rank 2 equipped with a continuous

action of GQp . Denote this module by M(U0).
Let σ ∈ Rps

U0
(r̄)[GQp ]. By definition

Pσ(X) = X2 − T (σ)X +
1
2
(T (σ)2 − T (σ2))

is the characteristic polynomial of σ acting on M(U0), and by construction Pσ(σ)
annihilates V (U0). Hence, by (1.6.11) below, (and because Rps

U0
(r̄) is reduced by

construction) M(U0) is a Rps
(U0)

(r̄)[GQp ]-submodule of V (U0) at each generic point
of SpecRps

U0
(r̄). Hence there exists an inclusion of Rps

(U0)
(r̄)[GQp ]-modules M(U0) ↪→

V (U0).
Set α = {VF}. Since M(U0) is a finite free Rps

U0
(r̄)-module of rank 2, and VF is ab-

solutely irreducible we see that the Hilbert-Samuel multiplicity of Rps
U0

(r̄)/πRps
U0

(r̄)
is equal to eα(M(U0)/πM(U0), RpsU0(r̄)). Using the above inclusion, together with
(1.6.8) and (1.3.3), we find that

eα(M(U0)/πM(U0), R
ps
U0

(r̄)) 6 eα(V (U0)/πV (U0), R
ps
U0

(r̄)) 6 µ′Aut = µAut

�

Lemma (1.6.11). Let κ be a field, and V and W representations of a group G
on finite dimensional κ-vector spaces. Suppose that V is absolutely irreducible, and
for σ ∈ κ[G] let Pσ(X) = det(X − σ|V ). If Pσ(σ)|W = 0 for all σ ∈ κ[G], then W
is V -isotypic.

Proof. It suffices to consider the case when W is absolutely irreducible. Let I ⊂
κ[G] be the two-sided ideal generated by the elements Pσ(σ) for σ ∈ κ[G], and J
(resp. J ′) the kernel of κ[G] acting on V (resp. W ). By Burnside’s theorem κ[G]
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surjects onto End κW and End κV, so in particular κ[G]/J and κ[G]/J ′ are simple
κ-algebras and (J +J ′)/J ′ is either 0 of κ[G]/J ′. If σ ∈ J, then Pσ(X) = Xd where
d = dimV, and so σd ∈ I. Hence J is contained in the radical of I ⊂ J ′ Hence
(J + J ′)/J ′ 6= κ[G], and so J ⊂ J ′, and hence J = J ′ as κ[G]/J is simple.

It follows that V and W both have dimension d, and that if we consider κ[G] as
a κ[G] module via multiplication on the left, then we find that

V d ∼ κ[G]/J = κ[G]/J ′ ∼W d

hence V ∼W as required. �

(1.6.12) Suppose that Z ⊂ SpecRps
U0

(r̄)[1/p] is an irreducible component. We
say that Z is of irreducible type if the pseudo-representation of GQp at the generic
point of Z corresponds to an absolutely irreducible representation. Otherwise we
say that Z is of reducible type. Note that although the representation at the generic
point of Z is a priori defined over some finite extension of the residue field at that
point, (1.4.6) guarantees that it is actually defined over the residue field itself in
almost all cases. Of course all components are of irreducible type if VF is irreducible.
In fact one can show that a component of irreducible type cannot meet a component
of reducible type, but we shall not need this hear.

Suppose that VF ∼ ω1 ⊕ ω2 is reducible. Let Z be a component of reducible
type, and x ∈ Z a closed point, which corresponds to an absolutely reducible
representation of GQp , Vx. Since Vx has distinct Hodge-Tate weights, Vx is in fact
reducible, and its semi-simplification V ss

x is uniquely determined by x. Suppose
V ss
x ∼ ω̃1⊕ ω̃2 with ω̃i reducing to ωi, for i = 1, 2. If we insist that Vx be potentially

semi-stable, and indecomposable then this determines which of ω̃1 and ω̃2 appears
as a subspace of Vx. We say that the point x is of type ωi if ω̃i appears as a subspace.
Explicitly this means that the image of inertia in ω̃i(1− k) is finite. It is not hard
to see that either all points on Z are of type ω1 or all are of type ω2, and we say
that Z is of type ω1 or ω2 respectively.

Proposition (1.6.13). Suppose that VF ∼ ω1 ⊕ ω2, with ω1 6= ω2, ωω2. Choose
U = Uω1 so that SpecRps

U (r̄) ⊂ SpecRps
U0

(r̄) is the closure of the union of the
components of irreducible type and of type ω1. Then

e(Rps
U (r̄)/πRps

U (r̄)) 6 µAut(k, τ, ρ̄).

Proof. Let I irr ⊂ Rps
U (r̄) be the ideal corresponding to the components of irreducible

type, and Iω1 ⊂ Rps
U (r̄) the ideal corresponding to components of type ω1. Write

V (Uω)irr and V (U)ω1 for V (U)/I irr and V (U)/Iω1 respectively.
Since Ext1F[GQp ](ω2, ω1) is one dimensional, Rps

U (r̄) carries a finite free mod-
ule of rank 2, M(U) equipped with a continuous action of GQp , by (1.4.6), and
M(U)/Iω1M(U) has a finite free rank 1-submodule Lω1 on which GQp acts via a
character ω̃1 : GQp → (Rps

U (r̄)/I irr)×.
The same argument as in (1.6.10), using (1.4.6) as well as (1.3.3) and (1.6.8)

shows that

(1.6.14) e{ω1}(R
ps
U (r̄)/(I irr, π), Rps

U (r̄)) 6 e{ω1}(V (U)irr/πV (U)irr, Rps
U (r̄)).
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Similarly, using (1.6.11), one sees that there is aGQp-equivariant inclusion Lω1 ↪→
V (U)ω1 , so that (1.3.3) gives

(1.6.15) e(Rps
U (r̄)/(Iω1 , π), Rps

U (r̄)) = e{ω1}(L
ω1/πLω1 , Rps

U (r̄))

6 e{ω1}(V (U)ω1/πV (U)ω1 , Rps
U (r̄)).

Now the map
V (U)→ V (U)irr ⊕ V (U)ω1

is an isomorphism at all the generic points of Rps
U (r̄). Hence combining ((1.6.14)

and (1.6.15), and using (1.3.3), and (.6.8) one finds that

e(Rps
U (r̄)/πRps

U (r̄), Rps
U (r̄)) = e(Rps

U (r̄)/(I irr, p), Rps
U (r̄))+e(Rps

U (r̄)/(Iω1 , π), Rps
U (r̄))

6 e{ω1}(V (U)irr/πV (U)irr, Rps
U (r̄)) + e{ω1}(V (U)ω1/πV (U)ω1 , Rps

U (r̄))

= e{ω1}(V (U)/πV (U), Rps
U (r̄)) 6 µ′Aut = µAut.

�

Corollary (1.6.16). Suppose that ρ̄ is either absolutely irreducible, or a non-trivial
extension of ω2 by ω1, where ω1, ω2 : GQp → F× are characters satisfying ω1 6= ωω2.
Then

e(Rψ(k, τ, ρ̄)/πRψ(k, τ, ρ̄)) 6 µAut(k, τ, ρ̄).

Proof. Let U = U0 if ρ̄ is irreducible, and U = Uω1 if not. By (1.4.6) there is a
surjection Rps(r̄)→ Rψ(k, τ, ρ̄). By (16.10) and (1.6.13) it suffices to show that this
surjection factors through Rps

U (r̄).
Since Rψ(k, τ, ρ̄) is p-torsion free, and formally smooth after inverting p, by

(1.1.1), it suffices to check that for any finite extension E′/E, an E′-valued point
x of Rψ(k, τ, ρ̄) gives rise to an E′-valued point of Rps

U (r̄). Now x corresponds to a
2-dimensional E′-representation which is a potentially semi-stable of type τ with
Hodge-Tate weights 0, k − 1. Moreover Vx admits a lattice which is a deformation
of ρ̄ to the ring of integers OE′ of E′. Hence the trace of Vx is a deformation r of
r̄. It follows from the maximality of Rps

U0
(r̄) that x factors through Rps

U0
(r̄), which

completes the proof if ρ̄ is absolutely irreducible. If ρ̄ is reducible, then x lies either
on a component of irreducible type or of type ω1, and hence also factors through
Rps
U (r̄). �

Proposition (1.6.17). Suppose that ρ̄ ∼ ω1⊕ω2 where ω1, ω2 → F×, and ω1ω
−1
2 /∈

{1, ω, ω−1}. Then

e(R�,ψ(k, τ, ρ̄)/πR�,ψ(k, τ, ρ̄)) 6 µAut(k, τ, ρ̄).

Proof. Choose U irr so that SpecRps
U irr(r̄) ⊂ SpecRps

U0
(r̄) is the union of the com-

ponents of irreducible type. For i = 1, 2 choose U red
ωi so that SpecRps

Ured
ωi

(r̄) ⊂
SpecRps

U0
(r̄) is the union of components of type ωi. We set

Rirr = Im (R�,ψ(k, τ, ρ̄)→ R�,ψ(k, τ, ρ̄)⊗Rps
U0

(r̄) R
ps
U irr(r̄)[1/p])
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and similarly for Rred
ω1

and Rred
ω2
. Note that for i = 1, 2, Rred

ωi is a quotient of the
maximal quotient of R�,ψ(k, τ, ρ̄) over which the universal representation of GQp is
an extension of ω̃′ by ω̃ for two characters ω̃′, ω̃ with ω̃ lifting ωi.

Let mU0 denote the radical of Rps
U0

(r̄), and mirr, mred
ω1

and mred
ω2

the radicals of Rirr,

Rred
ω1

and Rred
ω2

respectively. By (1.1.1) dimRirr = 5, while dimRirr/mU0R
irr 6 3, by

(1.4.7) and dimRps
U irr(r̄) 6 2 by (1.6.6). Since

dimRirr 6 dimRirr/mU0R
irr + dimRps

U irr(r̄)

by [Ma,Thm. 15.1], each of these inequalities is an equality. Hence, applying (1.3.5),
we have

(1.6.18) e(Rirr/πRirr) 6 e(Rps
U irr(r̄)/π)e(Rirr/mU0R

irr) 6 2e(Rps
U irr(r̄)/πR

ps
U irr(r̄)).

where the second inequality follows from (1.4.7). The same argument shows that
for i = 1, 2

e(Rred
ωi /π) 6 e(Rps

Ured
ωi

/pi
(r̄))e(Rred

ωi /mU0R
red
ωi ).

and that dimRred
ωi /mU0R

red
ωi = 3. By construction Rred

ωi /mU0R
red
ωi carries a reducible

representation of GQp , and since ω1 6= ω2 one sees easily that this representation is
an extension of ω2 by ω1 if i = 1, and of ω1 by ω2 if i = 2. Hence Rred

ωi /mU0R
red
ωi

is a quotient of the ring Rω1 introduced in the proof of (1.4.7), and since Rωi is
formally smooth of dimension 3, Rred

ωi /mU0R
red
ωi = Rωi . In particular we see that

e(Rred
ωi /mU0R

red
ωi ) = 1, so that

(1.6.19) e(Rred
ωi /π) 6 e(Rps

Ured
ωi

(r̄)/π).

Now let ρ̄ω1 be a non-trivial extension of ω2 by ω1 and ρ̄ω2 be a non-trivial
extension of ω1 by ω2.

Using (1.6.18) and (1.6.19), together with (1.6.13) we compute

e(R�,ψ(k, τ, ρ̄)/π) = e(Rirr/π) + e(Rred
ω1
/π) + e(Rred

ω2
/π)

6 2e(Rps
U irr(r̄)/π) + e(Rps

Ured
ω1
/π) + e(Rps

Ured
ω2
/π)

= e(Rps
Uω1

(r̄)/π) + e(Rps
Uω2

/π) 6 µAut(k, τ, ρ̄ω1) + µAut(k, τ, ρ̄ω2)

= µAut(k, τ, ρ̄)

where the first two equalities follows from (1.3.3)(2), and the final equality follows
from the definition of µAut. �

§2 Modularity via the Breuil-Mézard conjecture

(2.1) Quaternionic forms: We recall some standard facts and notation from
the theory of quaternionic forms. Further details may be found in [Tay 2, §1] or
[Ki 2, §3].

(2.1.1)Let F be a totally real field, and D a quaternion algebra with center F
which is ramified at all the infinite places of F and at a set of finite places Σ, which
does not contain any primes dividing p. We fix a maximal order OD of D, and for
each finite place v /∈ Σ, an isomorphism (OD)v

∼−→M2(OFv ). For each finite place
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v of F we will denote by N(v) the order of the residue field at v, and by πv ∈ Fv a
uniformizer.

Let U =
∏
v Uv ⊂ (D ⊗F AfF )× be a compact open subgroup contained in∏

v(OD)×v . We assume that if v ∈ Σ, then Uv = (OD)×v , and that Uv = GL2(OFv )
for v|p.

Let A be a topological Zp-algebra. For each v|p, we fix a continuous represen-
tation σv : Uv → Aut(Wσv ) on a finite free A-module. We write Wσ = ⊗v|p,AWσv

and we denote by σ :
∏
v|p Uv → Aut(Wσ) the corresponding representation. We

regard σ as being a representation of U by letting Uv act trivially if v - p.
Finally, we fix a continuous character ψ : (AfF )×/F× → A× such that for any

place v of F, σ on Uv ∩O×Fv is given by multiplication by ψ−1. We think of (AfF )×

as acting on Wσ via ψ−1, so that Wσ becomes a U(AfF )×-module.
Let Sσ,ψ(U,A) denote the set of continuous functions

f : D×\(D ⊗F AfF )× →Wσ

such that for g ∈ (D ⊗F AfF )× we have f(gu) = σ(u)−1f(g) for u ∈ U, and
f(gz) = ψ(z)f(g) for z ∈ (AfF )×. If we write (D⊗F AfF )× =

∐
i∈I D

×tiU(AfF )× for
some ti ∈ (D ⊗F AfF )× and some finite index set I, then we have

Sσ,ψ(U,A) ∼−→
f 7→{f(ti)}

⊕i∈IW
(U(AfF )×∩t−1

i D×ti)/F
×

σ .

We will make the following assumption:
(2.1.2)
For all t ∈ (D ⊗F AfF )× the group (U(AfF )× ∩ t−1D×t)/F× has prime to p-order.

The calculations of [Tay 1, 1.1] show that (U(AfF )×∩ t−1D×t)/F× is automatically
finite, and a 2-group if U is sufficiently small. Thus (2.1.2) holds for U sufficiently
small.

Assuming (2.1.2), Sσ,ψ(U,A) is a finite projective A-module, and the functor
Wσ 7→ Sσ,ψ(U,A) is exact in Wσ.

(2.1.3) Let Q be a finite set of finite primes of F, such that for v ∈ Q, D is
unramified at v and v - p. Suppose that for each v ∈ Q,

Uv = {g ∈ GL2(OFv ) : g =
( ∗ ∗

0 ∗
)

(πv)}.

For v ∈ Q fix a quotient ∆v of (OFv/πvOFv )× of p-power order, and write ∆ =∏
v∈Q ∆v.Define a compact open subgroup U∆ =

∏
v(U∆)v ⊂ U by setting (U∆)v =

Uv if v /∈ Q, and (U∆)v the set of g =
(
a b

c d

)
∈ Uv such that ad−1 maps to 1 in

∆v. Then ∆ ∼−→ U/U∆ acts naturally Sσ,ψ(U∆, A) via the right multiplication of
U on D×\(D⊗F AfF )×. For h ∈ ∆ we denote by 〈h〉 the corresponding operator on
Sσ,ψ(U∆, A).

Lemma (2.1.4). We have
(1) The operator

∑
h∈∆〈h〉 on Sσ,ψ(U∆, A) induces an isomorphism∑

h∈∆

〈h〉 : Sσ,ψ(U∆, A)∆
∼−→ Sσ,ψ(U,A)

(2) Sσ,ψ(U,A) is a finite projective A[∆]-module
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Proof. The argument in [Tay 2, 2.3] uses duality on the space Sσ,ψ(U∆, A), which is
not available in our level of generality. However we have the following more direct
argument: It suffices to show that ∆ acts freely on D×\(D ⊗F AfF )×/U∆(AfF )×.
If u ∈ U fixes one of these double cosets, then there exists t ∈ (D ⊗F AF )× and
v ∈ U∆(AfF )× such that uv−1 ∈ t−1D×t ∩ U∆(AF )×. Hence (uv−1)2

r ∈ F× for
some r > 0, and in particular u2r ∈ U ∩U∆(AfF )× = U∆. Since U/U∆ is a p-group,
we are done. �

(2.1.5) Let S be a set of primes containing Σ, the primes dividing p, and
the primes v of F such that Uv ⊂ D×

v is not maximal compact. Let Tuniv
S,A =

A[Tv, Sv]v/∈S , be a commutative polynomial ring in the indicated formal variables.
For each finite prime v of F we fix a uniformiser πv of Fv. We consider the left ac-
tion of (D ⊗F AfF )× on Wσ-valued functions on (D ⊗F AfF )× given by the formula
(gf)(z) = f(zg). Then Sσ,ψ(U,A) becomes a Tuniv

S,A -module with Sv acting via the

double coset U
(
πv 0

0 πv

)
U and Tv via U

(
πv 0

0 1

)
U. These operators do not depend

on the choice of πv. We write Tσ,ψ(U,A) or simply Tσ,ψ(U) for the image of Tuniv
S,A

acting on Sσ,ψ(U,A).
Let m be a maximal ideal of Tuniv

S,A . We say that m is in the support of (σ, ψ)
if Sσ,ψ(U,A)m is non-zero. We say that m is Eisenstein if Tv − 2 ∈ m for all but
finitely many primes which split in some fixed abelian extension of F.

(2.1.6) Let Q be a finite set of primes of F which is disjoint from S, and for
each v ∈ Q fix a quotient ∆v of (OFv/πv)× of p-power order. Define compact open
subgroups UQ and U−Q of

∏
v(OD)×v , by setting (UQ)v = (U−Q )v = Uv if v /∈ Q, and

defining
(U−Q )v = {g ∈ GL2(OFv ) : g =

( ∗ ∗
0 ∗

)
(πv)}

and
(UQ)v = {g =

(
a b

c d

)
∈ (U−Q )v : ad−1 7→ 1 ∈ ∆v}.

Suppose that O and F are as in (1.1.1). We will assume here that F is a finite
field. We fix a maximal ideal m ⊂ Tuniv

S,O such that m is induced by a maximal ideal
of Tσ,ψ(U) = Tσ,ψ(U,O), and for v ∈ Q the Hecke polynomial X2−TvX +N(v)Sv
has distinct roots in Tuniv

S,O /m. After increasing F, we may assume each of these
polynomials has two distinct roots αv, βv ∈ F.

Write SQ = S ∪Q. Consider the polynomial ring Tuniv
SQ,O[Uπv ] over Tuniv

SQ,O in the
formal symbols Uπv for v ∈ Q. Let mQ denote the ideal Tuniv

SQ,O[Uπv ] generated by
m ∩ Tuniv

SQ,O and the elements Uπv − α̃v, where α̃v ∈ O is any lifting of αv.
Denote by T̃σ,ψ(UQ) (resp. T̃σ,ψ(U−Q )) the rings of endomorphisms of Sσ,ψ(UQ,O)

(resp. Sσ,ψ(U−Q ,O)) generated by the elements of T univ
SQ,O[Uπv ] where Uπv acts by the

endomorphisms corresponding to the double cosets Uv
(
πv 0

0 1

)
Uv.

Lemma (2.1.7). The ideal mQ induces proper, maximal ideals in T̃σ,ψ(UQ) and
T̃σ,ψ(U−Q ). If αvβ−1

v 6= N(v)±1 for all v ∈ Q, then the natural map

(2.1.8) Sσ,ψ(U,O)m → Sσ,ψ(U−Q ,O)mQ

is an isomorphism of Tuniv
SQ,O-modules.
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Proof. The first claim follows from the fact that the Hecke polynomial X2−TvX+
N(v)Sv vanishes at X = Uπv . To see the second claim, it suffices to consider the
case when Q consists of a single element. Since αvβ−1

v 6= N(v)±1, the map

Sσ,ψ(U,O)⊕2
m → Sσ,ψ(U−Q ,O)m; (f1, f2) 7→ f1 +

(
1 0
0 πv

)
f2

is an isomorphism after inverting p, and a calculation using the fact that αv 6= βv
shows that it is an isomorphism (see for example [Ki 3, 7.5]). Here the subscript m
on the right hand side means localisation with respect to the ideal m ∩ T univ

SQ,O.

Since X2 − TvX + N(v)Sv has distinct roots in F, by Hensel’s lemma it has two
distinct roots Av, Bv ∈ Tσ,ψ(U)m, lifting αv and βv respectively. Then

(Uπv −Bv)(f1 +
(

1 0
0 πv

)
f2) = (Uπv −Bv)(f1 +Bvf2),

and since αv 6= βv, Uπv − Bv induces an automorphism of Sσ,ψ(U−Q ,O)mQ . This
shows that (2.1.8) is a surjection between finite free O-modules of the same rank,
and hence an isomorphism. �

(2.2) Global patching and multiplicities: We now carry out the Taylor-
Wiles style patching argument (as modified in [Di] and [Ki 2]), which allows to
relate the local deformation rings studied in §1, with patched Hecke algebras.

Keeping the notation above, we denote by GF,S the Galois group of the maximal
extension of F, which is unramified outside S. For each finite prime prime v we
denote by GFv the absolute Galois group of Fv, and we fix a map GFv → GF,S
induced by the inclusion of an algebraic closure of F into an algebraic closure of
Fv. We also fix a continuous absolutely irreducible representation

ρ̄ : GF,S → GL2(F).

Write VF for the underlying F-vector space of ρ̄ and fix a basis for VF.
Let Σp = Σ ∪ {v}v|p. For v ∈ Σp, we denote by R�

v the universal framed de-
formation O-algebra of ρ̄|GFv (considered with the chosen basis for VF), and by
R�,ψ
v the quotient of R�

v corresponding to deformations with determinant ψ. We
denote by RψF,S the universal framed deformation O-algebra of ρ̄, and by R�,ψ

F,S the
complete local O-algebra representing the functor which assigns to a local Artinian
O-algebra A, the set of isomorphism classes of tuples {VA, βv}v∈Σp , where VA is
a deformation of VF to A having determinant ψ, and βv is a lifting of the chosen
basis of VF to an A-basis of VA. For v ∈ Σp, the functor {VA, βw}w∈Σp 7→ {VA, βv}
induces the structure of an R�,ψ

v -algebra on R�,ψ
F,S . Finally we set R�,ψ

Σp
= ⊗̂OR�,ψ

v ,

where in the tensor product v runs over the elements of Σp.
We now assume the following conditions hold.
(1) ρ̄ is unramified outside the primes of F dividing p, and has odd determinant.
(2) The restriction of ρ̄ to GF (ζp) is absolutely irreducible.
(3) If p > 3, then [F (ζp) : F ] > 2.
(4) If v ∈ S \ Σp, then

(1−N(v))((1 + N(v))2 det ρ̄(Frobv)− (N(v))(trρ̄(Frobv))2) ∈ F×.

Here, Frobv denotes an arithmetic Frobenius at v.
Then as in [Ki 2, 2.3.5], we have
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Proposition (2.2.1). Set g = dimFH
1(GF,S , ad0ρ̄(1)) − [F : Q] + |Σp| − 1. For

each positive integer n, there exists a finite set of primes Qn of F, which is disjoint
from S, and such that

(1) If v ∈ Qn, then N(v) = 1(pn) and ρ̄(Frobv) has distinct eigenvalues.
(2) |Qn| = dimFH

1(GF,S , ad0ρ̄(1)). If SQn = S ∪Qn, then as an R�,ψ
Σ,p -algebra

R�,ψ
F,SQn

is topologically generated by g elements. In particular g ≥ 0.

(2.2.2) Suppose now that m ⊂ Tuniv
S,O is as in (2.1.6), and that m is non-Eisenstein,

with associated representation ρ̄. That is, if v /∈ S, and Frobv ∈ GF,S is an arith-
metic Frobenius, then ρ̄(Frobv) has trace equal to the image of Tv in F.

For n ≥ 1 fix a set Qn as in (2.2.1). Let ∆v be the maximal p-quotient of
(OF,v/πv)×, and ∆Qn =

∏
v∈Qn ∆v. For each v ∈ Qn we fix a choice of zero in F

of the polynomial X2 − TvX + N(v)Sv (increasing F if necessary), and we denote
by mQn ∈ Tuniv

SQn ,O the corresponding maximal ideal. We apply the discussion of
(2.1.6) and (2.1.7) to each of these Qn.

There is a map of O-algebras RψF,SQn → Tσ,ψ(UQn)mQn
such that for v /∈ SQn ,

the trace of Frobv on the tautological RψF,SQn -representation of GF,SQn maps to

Tv. Thus, we regard Sσ,ψ(UQn ,O)mQn
as an RψF,S-module via this map. Moreover

RψF,SQn has a natural structure of O[∆Qn ]-algebra so that the induced O[∆Qn ]-
structure on Sσ,ψ(UQn ,O)mQn

is the one given by (2.1.4) [Ta 2, 1.3, 2.1]. By (2.1.4)
this is a finite free O[∆Qn ]-module, whose rank does not depend on n. Denote this
rank by r. We now set

Mn = R�,ψ
F,SQn

⊗RψF,SQn
Sσ,ψ(UQn ,O)mQn

.

for n ≥ 0, where SQ0 = S.
Fix a filtration by F-subspaces

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ls = Wσ ⊗O F = Wσ̄

on Wσ̄ such that Li is GL2(Zp)-stable, and σi = Li+1/Li is absolutely irreducible.
This induces a filtration on Sσ,ψ(UQn ,O)mQn

⊗O F whose associated graded pieces
are the finite free F[∆Qn ]-modules Sσi,ψ(UQn ,F)mQn

. We denote by

0 = M0
n ⊂M1

n ⊂ . . .Ms
n = Mn ⊗O F,

the induced filtration in Mn, obtained by extension of scalars.
Following [Ki 2], set j = 4|Σp| − 1, h = |Qn|, and d = [F : Q] + 3|Σp|. Then

g = h+ j − d. We fix surjections

(2.2.3) O[[y1, . . . , yh]]→ O[∆Qn ]

Then M0
∼−→Mn/(y1, . . . , yh) by (2.1.4) and (2.1.7).

The map RψF,SQn → R�,ψ
F,SQn

is formally smooth of relative dimension j. We
extend the maps (2.2.3) to maps

(2.2.4) O[[y1. . . . , yh+j ]]→ R�,ψ
F,SQn
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in such a way that R�,ψ
F,SQn

is identified with RψF,SQn [[yh+1, . . . yh+j ]]. We also fix

surjections of R�,ψ
Σp

-algebras

(2.2.5) R�,ψ
Σp

[[x1, . . . , xg]]→ R�,ψ
F,SQn

and a lifting of the maps in (2.2.4) to maps

O[[y1. . . . , yh+j ]]→ R�,ψ
Σp

[[x1, . . . , xg]].

We regard eachMn as aR�,ψ
Σp

[[x1, . . . , xg]]-module via (2.2.5) and the mapRψF,SQn →
Tσ,ψ(UQn)mQn

introduced above.
For n ≥ 1 let

cn = (πn, (y1 + 1)p
n

− 1, . . . , (yh + 1)p
n

− 1, yp
n

h+1, . . . , y
pn

h+j) ⊂ O[[y1, . . . , yh+j ]].

The proof of [Ki 2, 3.3.1] (which is of course based on the argument of Taylor-Wiles)
shows that, after replacing the sequence {Qn}n≥1 by a subsequence, we may as-
sume that there exist maps of R�,ψ

Σp
[[x1, . . . , xg]]-modules fn : Mn+1/cn+1Mn+1 →

Mn/cnMn which reduce modulo (y1, . . . , yh) + cn to the identity on M0/cn. More-
over, the same finiteness argument as in loc. cit implies that we may assume that
this map is compatible with the filtration on Mn ⊗O F defined above.

Passing to the limit over n, we obtain a map of R�,ψ
Σp

[[x1, . . . , xg]]-modules

M∞ →M∞/(y1, . . . yh)M∞
∼−→M0.

Since Mn is a finite free O[∆Qn ][[yh+1, . . . , yh+j ]]-module Mn/cnMn is a finite free
O[[y1, . . . yh+j ]]/cn-module, and M∞ is a finite free O[[y1, . . . yh+j ]]-module. More-
over, M∞ ⊗O F has a filtration

0 = M0
∞ ⊂M1

∞ ⊂ . . .Ms
∞ = M∞ ⊗O F

and since M i
n/M

i−1
n is a finite free O[∆Qn ][[yh+1, . . . , yh+j ]]-module, M i

∞/M
i−1
∞ is

a finite free O[[y1, . . . , yh+j ]]-module for i = 1, . . . s.
(2.2.6) We now assume that p splits in F, so that Fv = Qp for v|p. For each

such v, let Iv ⊂ GFv denote the inertia subgroup, and fix a representation τv :
Iv → GL2(E) of Galois type. Suppose that for v|p the representation Wσv of
Uv

∼−→ GL2(OFv ) has the form σ(kv, τv) = Symkv−2O2
Fv
⊗σ(τv) where kv ≥ 2, and

σ(τv) is a representation with open kernel which is associated to τv by the local
Langlands correspondence in the sense explained in (1.1.3).

For each v ∈ Σp we now define a quotient R̄�,ψ
v of R�,ψ

v such that the ac-
tion of R�,ψ

v on each Mn factors through R̄�,ψ
v . If v|p R̄�,ψ

v is the ring denoted
R�,ψ(kv, τv, ρ̄) in (1.1.1). That the action of R�,ψ

v on Mn factors through R̄�,ψ
v

follows from the fact that the Galois representations attached to Hilbert modular
eigenforms are compatible with the local Langlands correspondence [Ki 1], as well
as the compatibility of the local and global Jacquet-Langlands correspondences.

For v - p we fix an unramified character γ : GFv → O× such that γ2 = ψ|GFv ,
and ρ̄|GFv is an extension of γ by γ(1). Again, the fact that the action of R�,ψ

v on
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Mn factors through R̄�,ψ
v is a consequence of the compatibility between the local

and global Langlands and Jacquet-Langlands correspondences.
We set R̄�,ψ

Σp
= ⊗̂OR̄�,ψ

v where v runs over Σp. The relative dimension, over O
of R̄�,ψ

v is 3 + [Fv : Qp] = 4 if v|p, and 3 if v - p. In particular R̄�,ψ
Σp

has relative
dimension [F : Qp] + 3|Σp|.

The following lemma shows that to prove a modularity lifting theorem we are
reduced to showing that M∞ is a faithful R̄∞ = R̄�,ψ

Σp
[[x1, . . . xg]]-module, or to a

question on Hilbert-Samuel multiplicities.

Lemma (2.2.7). The following conditions are equivalent.

(1) M∞ is a faithful R̄∞-module
(2) M∞ is a faithful R̄∞-module which has rank 1 at all generic points of R∞.
(3) e(R̄∞/πR̄∞) = e(M∞/πM∞, R̄∞/πR̄∞).
(4) e(R̄∞/πR̄∞) 6 e(M∞/πM∞, R̄∞/πR̄∞).

Moreover, if these conditions hold, and ρ : GF,S → GL2(O) is a deformation of ρ̄
such that for v ∈ Σp, ρ|Iv is unipotent if v - p, and ρ|GFv is potentially semi-stable
of type τv and with Hodge-Tate weights 0, k−1 if v|p, then ρ is modular, and arises
from an eigenform in Sσ,ψ(U,O)⊗O E.

Proof. Write O[[∆∞]] = O[[y1, . . . yh+j ]], and denote by T∞ the image of R̄∞ in
EndO[[∆∞]](M∞). Then T∞ is a finite, torsion free O[[∆∞]]-module, and hence all
its components have relative dimension h + j over SpecO. Hence, if Z is such
a component, then Z surjects onto SpecO[[∆∞]]. This implies that the rank of
M∞|Z is at most one, since otherwise M0 = M∞ ⊗O[[∆∞]] O would have a fibre
of dimension > 1 over some point of SpecRψF,S [1/p], and Sσ,ψ(U,O)m would have
rank > 1 over some generic point of Tσ,ψ(U)m, which is impossible by the condition
(4) in (2.2). Since M∞ is a faithful T∞-module its rank is exactly one on each
irreducible component of Spec T∞.

This shows the equivalence of (1) and (2). Moreover, by (1.3.3)(2) we have

e(M∞/πM∞, R̄∞/πR̄∞) = e(M∞/πM∞,T∞/πT∞) = e(T∞/πT∞)

Since R̄∞ is pure of relative dimension d+g = h+j overO, the inclusion Spec T∞ ↪→
Spec R̄∞ identifies Spec T∞ with a union of irreducible components of Spec R̄∞, and
we have e(T∞/πT∞) 6 e(R̄∞/πR̄∞) with equality if and only if the above inclusion
is an isomorphism. This shows that (1), (3) and (4) are equivalent.

Suppose that the conditions (1)-(4) hold. Then ρ induces a map T∞ = R̄∞ → O,
which kills the ideal (y1, . . . yh+j), and hence a map ξ : T∞/(y1, . . . yh+j)[1/p] →
E. Since M∞ has positive rank on all components of T∞, the fibre of M0 over
the closed point of T∞/(y1, . . . yh+j)[1/p] corresponding to ξ is non-empty, and ξ
induces a map Tσ,ψ(U)m → E, which corresponds to the required eigenform in
Sσ,ψ(U,O)⊗O E. �

(2.2.8) Our next task is to compute e(M∞/πM∞, R̄∞/πR̄∞). For i = 1, . . . s,
write σi for the representation Li+1/Li. Thus σi has the form σi = ⊗v|pσni,v,mi,v
where (ni,v,mi,v) ∈ {0, 1, . . . , p−1}×{0, 1, . . . , p−2}, and σni,v,mi,v is an irreducible
constituent of Wσv/πWσv .

For v ∈ Σ, we set eΣ =
∏
v∈Σ e(R̄

�,ψ
v /πR̄�,ψ

v ).
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Proposition (2.2.9). The R̄∞-module M i
∞ is non-zero if and only if for each v|p

we have µni,v,mi,v (ρ̄|GFv ) 6= 0. If this condition hold for all v|p, and for each v|p
ρ̄|GFv �

(
χ ∗
0 χ

)
,
(
ωχ ∗
0 χ

)
for any character χ : GFv → F× then

(2.2.10) e(M i
∞, R̄∞/πR̄∞) = eΣ

∏
v|p

µni,v,mi,v (ρ̄|GFv ) = eΣ

Proof. The first statement follow from results of Gee [Ge 1], [Ge 2]. (When F = Q
or ρ̄ arises from a modular representation of GQ this can be deduced from results
asserting that the weights of modular forms giving rise to a given modular ρ̄ are
predicted by Serre’s conjecture).

For n,m ∈ {0, 1, . . . , p− 1} × {0, 1, . . . , p− 2}, let σ̃n,m = SymnO2 ⊗ detm, and
set σ̃i = ⊗v|pσ̃ni,v,mi,v . There is a surjection

M̃ i
n := R�,ψ

F,SQn
⊗RψF,SQn

Sσ̃i,ψ(UQn ,O)mQ → R�,ψ
F,SQn

⊗RψF,SQn
Sσi,ψ(UQn ,F)mQ = Mn

i

so for v|p, the action of R�,ψ
v on M i

∞ factors through R�,ψ(ni,v + 1, τi,v, ρ̄) where
τi,v = χmcyc : IFv → O×.

Now under our restrictions on ρ̄|GFv , R
�,ψ(ni,v + 1, τi,v, ρ̄) is a power series ring

over O. This follows, for example, from (1.6.10). (Of course in most cases, one
does not need the ellaborate arguments of (1.6) to see this; when ρ̄ is absolutely
reducible it follows from a standard calculation using Galois cohomology, while
when ρ̄ is absolutely irreducible, this is a consequence of Fontaine-Laffaille theory
when n 6 p− 2.) Moreover in this situation all the terms in the product in (2.2.10)
are 1, so the claim is that e(M i

∞, R̄∞/πR̄∞) = eΣ.

To prove this, we will need to augment the situation considered in the patching
argument of (2.2.2). Set

R̄�,ψ,i
Σp

= ⊗̂v∈ΣR̄
�,ψ
v ⊗̂v|pR�,ψ(ni,v + 1, τi,v, ρ̄).

and R̄i∞ = R̄�,ψ,i
Σp

[[x1, . . . , xg]]. The same finiteness argument used in (2.2.2) shows
that after replacing the Qn by a subsequence, we may assume that we have maps
of R̄i∞-modules f in : M̃ i

n+1/cn → M̃ i
n/cn, lifting the maps M i

n+1 →M i
n induced by

the maps fn of (2.2.2). We set M̃ i
∞ = lim←−M̃

i
n/cn. The same argument as (2.2.2)

shows that this is a finite flat O[[∆∞]]-module, and we have M̃ i
∞/πM̃

i
∞

∼−→ M i
∞.

Now the image of R̄i∞ in EndO[[∆∞]]M̃
i
∞ has relative dimension h+ j over O, and

since R̄i∞ is a domain we find that M̃ i
∞ is a faithful R̄i∞-module Thus, as in the

proof of (2.2.7) we find

e(M̃ i
∞/πM̃

i
∞, R̄

i
∞/πR̄

i
∞) = e(R̄i∞/πR̄

i
∞) = e(R̄�,ψ,i

Σp
/πR̄�,ψ,i

Σp
) = eΣ

where in the final equality we have used (1.3.9). �
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Corollary (2.2.11). Suppose that for each v|p ρ̄|GFv �
(
χ ∗
0 χ

)
,
(
ωχ ∗
0 χ

)
for any

character χ : GFv → F×. Then M∞ is a faithful R̄∞-module, and any ρ : GF,S →
GL2(O) as in (2.2.7) is modular.

Proof. Using (1.3.9) together with (1.6.16) and (1.6.17), we have

e(R̄∞/πR̄∞) = eΣ
∏
v|p

e(R̄�,ψ
v ) 6 eΣ

∏
v|p

µAut(kv, τv, ρ̄|GFv ).

Now under our assumptions µAut(kv, τv, ρ̄|GFv ) is equal to the number of irre-
ducible constituents of Wσv/πWσv which have the form σn,m with µn,m(ρ̄) 6= 0.
(That is under our assumptions, µn,m(ρ̄) 6= 0 implies µn,m(ρ̄) = 1.) Hence (2.2.9)
yields

eΣ
∏
v|p

µAut(kv, τv, ρ̄|GFv ) =
s∑
i=1

e(M i
∞, R̄∞/πR̄∞) = e(M∞/πM∞, R̄∞/πR̄∞).

Hence
e(R̄∞/πR̄∞) 6 e(M∞/πM∞, R̄∞/πR̄∞),

and the corollary follows from (2.2.7). �

Theorem (2.2.12). Let F be a totally real field where p is totally split and

ρ : GF,S → GL2(O)

a continuous representation. Assume (1.2.6) and suppose that
(1) For v|p ρ|GFv is potentially semi-stable with distinct Hodge-Tate weights.
(2) ρ̄ : GF,S

ρ→ GL2(O) → GL2(F) is modular and ρ̄|F (ζp) is absolutely irre-
ducible.

(3) For v|p ρ̄|GFv �
(
χ ∗
0 χ

)
,
(
ωχ ∗
0 χ

)
for any character χ : GFv → F×.

Then ρ is modular.

Proof. This follows from (2.2.11) using the same base change arguments as in [Ki
2, 3.5]. Note that the relevant results on raising and lowering the level at v - p can
be deduced from the case where all the Wσv are of the form Symkv−2⊗detmv where
2 6 kv 6 p+ 1, and in this case one has the relevant version of Ihara’s lemma, (see
[Ki 2, 3.1.8, 3.1.10]) �
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