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Geometric Galois Representations

Let GQ be the absolute Galois group of Q, i.e. the (topological) group of automor-

phisms of the separable closure Q of Q which act trivially on Q.

Central Theme: Study GQ via its geometric actions, i.e. its actions on fundamental

groups of geometric objects (varieties, schemes, stacks...)

Use this to characterize properties of the elements of GQ.

Note: Apart from complex conjugation, it is impossible to ‘write down’ an element of GQ.

The purpose of the theory developed by Grothendieck in §2 of Esquisse d’un Pro-

gramme is:

1) to identify each element σ ∈ GQ with a pair

(χ(σ), fσ) ∈ Ẑ∗ × F̂ ′2.

Here χ : GQ → Ẑ∗ is just the cyclotomic character giving the action of GQ on roots of

unity; we have the exact sequence

1 → GQab → GQ → Ẑ∗ → 1.

Grothendieck indicated how to do this, and it was completed by Drinfel’d and Ihara.

The cyclotomic character is well-understood, so the deep part is the element fσ in the

(derived subgroup of the) free profinite group on two generators. In fact, one can restrict

to the subgroup GQab and associate an element fσ ∈ F̂ ′2 to each σ ∈ GQab .

The free group is obviously a much simpler group than GQ! But which elements of F̂ ′2

come from GQ? The second part of Grothendieck’s program is:

2) Find necessary and sufficient conditions on f ∈ F̂ ′2 for it to come from a σ ∈ GQ.
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Various necessary conditions have been found, coming from geometry of the moduli

spaces. But it is not known whether they are or are not sufficient.

§1. Galois groups and fundamental groups

Grothendieck’s suggestion for approaching GQ is by geometric Galois actions, i.e.

considering actions of GQ on objects which are geometric/topological rather than directly

on the algebraic numbers.

Here we discuss actions of GQ on two kinds of topological objects:

• dessins d’enfants; these are graphs embedded into topological surfaces, whose faces

are all cells.

• diffeomorphisms (well, actually pro-diffeomorphisms) of topological surfaces.

Recall that the profinite completion of a group is given by the inverse limit of the

system of all its finite quotients:

Ĝ = lim
←

G/N

where N runs through the normal subgroups of finite index of G.

When I wrote “pro-diffeomorphisms” above, I meant elements of the profinite com-

pletion of the group of diffeomorphisms of a topological surface.

The two kinds of actions I want to talk about both actually stem from one main type

of action.

Namely, if X is any algebraic variety defined over Q, let π1(X) denote its topological

fundamental group and π̂1(X) its algebraic fundamental group, which is the profinite

completion of the topological one. Then there is a canonical outer action

GQ → Out
(
π̂1(X)

)
. (1)
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Moreover this outer action preserves conjugacy classes of inertia groups.

Here is where that outer Galois action comes from: the left-hand column shows a finite

cover Y of X, sitting under the universal cover X̃ of X, with Galois group the topological

π1, the middle column shows the function field situation over C, where the top field is

the compositum of all the function fields of the finite covers Y and therefore the Galois

group is the profinite completion of the topological π1, and the right-hand column uses

the Lefschetz theorem to descend from C to the algebraically closed subfield Q without

changing the Galois group, so that the natural inclusion of the field Q(X) into Q(X), with

Galois group GQ, gives a canonical outer action of GQ on π̂1(X).

X̃ C̃(X) Q̃(X)

| | |

π1(X) Y C(Y ) π̂1(X) Q(Y ) π̂1(X)

| | |

X C(X) Q(X)

| GQ

Q(X)

§2. The case P1 − {0, 1,∞}

Let X = P1 − {0, 1,∞}, so that the topological π1 is F2, the free group on two

generators, which we write 〈x, y, z | xyz = 1〉, identifying x, y and z with loops around 0,

1 and ∞ respectively.
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x y

We saw in §1 that we have a canonical homomorphism

GQ → Out
(
π̂1(P

1 − {0, 1,∞}
)

i.e.

GQ → Out(F̂2).

The inertia groups are 〈x〉, 〈y〉 and 〈z〉, so we know that for each σ ∈ GQ, there exist

α, β, λ ∈ Ẑ∗ and f , g ∈ F̂2 such that



σ(x) = xα

σ(y) = g−1yβg
σ(z) = h−1zλh

lifts the canonical outer action of σ on F̂2.

In F̂ ab
2 = Ẑ × Ẑ, this means that xαyβzλ = 1, which is only possible if α = β = λ.

Suppose g ≡ xδyε in F̂ ab
2 , and set f = y−εgxδ. Then

{
σ(x) = xα

σ(y) = f−1yβf

is the unique lifting of the outer action of σ such that f ∈ F̂ ′2.

We have obtained a map

GQ → Ẑ∗ × F̂ ′2.

This map is NOT a group homomorphism. It corresponds to associating to σ ∈ GQ the

automorphism Fσ ∈ Aut(F̂2) associated to the pair (λσ, fσ) such that
{

x 7→ xλσ

y 7→ f−1
σ yλσfσ.
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If σ, τ ∈ GQ, the product σ ·τ corresponds to applying first the automorphism τ , then

σ, so we get

x
τ
7→ xλτ

σ
7→ xλσλτ

y
τ
7→ f−1

τ yλτ fτ
σ
7→ Fσ(fτ )−1f−1

σ yλσλτ fσFσ(fτ ).

In other words, the pair corresponding to σ · τ is

(
λσλτ , fσFσ(fτ )

)
.

§3. Dessins d’enfants

Definition. A dessin d’enfant is a triple X0 ⊂ X1 ⊂ X2 where X0 is a finite set of points

on a compact topological surface X2 of genus g, and X1 is a subset of X2 such that X2 \X1

is a disjoint union of open cells (simply connected regions) of X2. The set X1 consists of

edges connecting the vertices.

The dessin is only defined up to isotopy on the surface, and we also require it to be

bicolorable, i.e. we want to be able to color the vertices in two colors, black and white, in

such a way that all neighbors of every vertex of a given color are of the opposite color.
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WHICH ONES ARE DESSINS?

We have bijections between the following sets

•
{
dessins d’enfant

}

•
{
finite covers of P1 unramified outside {0, 1,∞}

}
,

known as Belyi covers

•
{
finite etale covers of P1 − {0, 1,∞}

}

•
{
conj. classes of subgroups of finite index of F̂2

}
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The first bijection is given by associating to a Belyi cover

β : X → P1

the preimage β−1([0, 1]) of the segment [0, 1] in P1 (automatically bicolorable). The second

and third bijections are basic facts about Riemann surfaces and topological covers.

The degree of the cover is equal to the number of edges of the dessin.

The points over 0 correspond to black vertices of the dessin, the points over 1 to white

vertices.

Example. Genus=0, Degree = 11

5 preimages of 0, 6 preimages of 1

2 preimages of ∞

You can visualize the cover topologically by triangulating the dessin (adding a vertex

marked ? in each face, and adding edges joining it up to the black and white vertices).

This paves the dessin surface with diamonds
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* *

each of which contains exactly one edge of the actual dessin.

The cover identifies the marked pairs of edges, so the quotient is a sphere with three

branch points.

The group F2 acts on the set of edges of the dessin D as follows:

Pick any edge e of the dessin and let N = Stab(e); then N is a finite-index subgroup

of F̂2. The stabilizers of the different flags from a conjugacy class of finite-index subgroups

in F̂2, and this conjugacy class corresponds to a finite cover of P1, namely exactly the Belyi

cover β : X → P1.

The degree of the cover is the number of edges e, and the set of edges is in bijection

with the coset space F̂2/N ; furthermore the action of F̂2 on the edges is exactly the

action on F̂2/N by right multiplication. Obviously, F̂2 acts via a finite quotient, called the

monodromy group of the dessin or the cover.

You can reconstruct the whole dessin just by knowing N (up to conjugacy):
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• Edges are in bijection with F̂2/N ;

• orbits of F̂2/N under x are sets of stars centered around black vertices (edges attached

to same black vertex);

• similarly, orbits of F̂2/N under y are sets of stars centered around white vertices.

Galois action on dessins

The action of GQ on F̂2 sends N to Nσ, so it sends the dessin D to a dessin Dσ. The

field

KD = fixed field of {σ ∈ GQ | Nσ = N, i.e. Dσ = D}

is called the moduli field of D.

Thus, each dessin is naturally defined over a number field, and the set of

dessins is naturally equipped with a Galois action.

Now, what we would like is to give a list of combinatorial Galois invariants of

dessins, the dream being to give a list sufficient to determine Galois orbits of dessins. To

start with, there are some obvious Galois invariants:

• number of edges, faces, black, white vertices

• ramification indices, i.e. valencies of black and white vertices;

• monodromy group...

All these are geometric, i.e. they have to do with the ramification information of the

associated Belyi cover.
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Example:

Every one of the preceding, geometric invariants of these two dessins is equal. There

are 24 dessins having the same valency lists. However, it is actually possible to EXPLIC-

ITLY COMPUTE the associated number fields and see that these two dessins are NOT

Galois conjugates.

The valencies at the black vertices are (5, 1, · · · , 1) and at the white vertices (2, 3, 4, 5, 6).

If you take dessins with the same black valencies and various 5-tuples of white valencies,

you sometimes get a Galois orbit of 24 and sometimes two Galois orbits of 12, as here.

Y. Kochetkov computed many examples and noticed that the Galois orbit appeared to

split exactly when the white valencies are (a, b, c, d, e) such that

abcde(a + b + c + d + e) is a square.

This conjecture was generalized and proved by Leonardo Zapponi (1997), who actually

came up with a NEW GALOIS INVARIANT – arithmetic, not geometric – for a large

family of dessins.

§4. Diffeomorphisms of topological surfaces

Now, let S be a topological surface of genus g, with n distinct ordered marked points

(x1, . . . , xn).
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Let Mg,n denote the moduli space of Riemann surfaces of type (g, n). The points of

Mg,n are isomorphism classes of these Riemann surfaces; it can also be considered as the

space of analytic structures on S up to isomorphism.

In the case of genus zero, we are working with Riemann spheres marked with n distinct

ordered points (x1, . . . , xn), up to isomorphism. The isomorphisms are PSL2(C), which is

triply transitive; this means that we can always find a unique representative

(0, 1,∞, y1, . . . , yn−3)

for each isomorphism class (=point of M0,n), or in other words, a unique element γ ∈

PSL2(C) such that γ(x1) = 0, γ(x2) = 1, γ(x3) = ∞.

Thus, the space M0,n is isomorphic to

(P1 − {0, 1,∞})n−3 − ∆,

where ∆ denotes the union of the lines xi = xj .

PATHS on moduli space are thus continuous parametrized deformations of the analytic

structure of the starting point x (a given Riemann surface).

In particular, LOOPS (up to homotopy) are exactly (orientation preserving) diffeo-

morphisms of x (up to those homotopic to the identity).

This means that if we define the mapping class group to be

Γg,n = Diff+(S)/Diff0(S)

and fix a base point x ∈ Mg,n, we have an isomorphism

Γg,n ' π1(Mg,n, x) ' Diff+(S)/Diff0(S).

12



The group Γg,n is generated by a certain set of diffeomorphisms called Dehn twists

along simple closed loops.

2πi

Dehn twists correspond to certain particularly well-understood loops in the funda-

mental group, corresponding to classical inertia generators (see next talk).

§5. The Grothendieck-Teichmüller group

Recall we have an injective set map

GQ → Ẑ∗ × F̂ ′2

σ 7→ (χ(σ), f)

(put back pages 9-10). We can view this with moduli spaces now.

As we saw (page 26), the moduli space M0,4 is isomorphic to P1 − {0, 1,∞}, since is

the moduli space of Riemann spheres with 4 ordered marked points, and each isomorphism

class of such spheres has a unique representative with marked points

(x1, x2, x3, x4) = (0, 1,∞, x).

There are three basic loops, one around x1 and x2, one around x2 and x3 and one around

x1 and x3.
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The fundamental group π1(M0,4) is just F2, the free group on two generators. The

three Dehn twists along the three loops above are the generators x, y, z with xyz = 1.

Notation: For any group homomorphism

F̂2 → G

x, y 7→ a, b

we write f(a, b) for the image of f ∈ F̂2.

For example:

• under id : F̂2 → F̂2, we have f = f(x, y);

• under the map F̂2 → F̂2 exchanging the generators x and y, we have

f = f(x, y) 7→ f(y, x).

Definition. The Grothendieck-Teichmüller group ĜT is the group of pairs (λ, f) ∈ Ẑ∗×F̂ ′2

such that x 7→ xλ and y 7→ f−1yλf induces an automorphism of F̂2, and such that

(I) f(x, y)f(y, x) = 1,

(II) f(x, y)xmf(z, x)zmf(y, z)ym = 1 where xyz = 1 and m = (λ − 1)/2,

(III) (5-cycle relation) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1

in Γ̂0,5, where xij is the Dehn twist along a loop (on a sphere with 5 numbered marked

points) surrounding points i and j.

This definition clearly shows that GQ → ĜT , and injectivity is easy.

The defining relations (I), (II) and (III) are exactly what is needed in order to ensure

that we have homomorphisms

ĜT → Out(Γ̂0,n)
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for n = 4, 5 which extend the homomorphisms of GQ. But we have more.

Theorem. (D, I-M) For all n ≥ 4, there is a homomorphism ĜT → Out(Γ̂0,n) extending

the action of GQ on these fundamental groups.

The Teichmüller tower

One can go further by identifying ĜT with a specific automorphism group of mapping

class group structures in genus zero.

Consider two specific types of natural morphisms between moduli spaces coming from

topological operations on surfaces: (i) erasing marked points, (ii) subsurface inclusion

(cutting out subsurfaces by disjoint simple closed loops). These give two natural types of

homomorphisms between the corresponding mapping class groups.

First,

η : Γ0,n → Γ0,n−1

corresponds to erasing one point (pulling one strand out of a braid). Then, if a sphere

with n marked points (or boundary components) is cut out of a sphere with n′ marked

points (or boundary components), then we have the homomorphism

η : Γ0,n → Γ0,n′

where every Dehn twist along a simple closed loop of S is mapped to the Dehn twist along

the same simple closed loop of S ′.

Definition. The genus zero Teichmüller tower is the collection of the profinite genus zero

mapping class groups Γ̂0,n linked by all the above homomorphisms.

Theorem. ĜT is the inertia-preserving automorphism group of the Teichmüller tower.

Namely, if Φ is a tuple (φn)n≥4 where each φn ∈ Out(Γ̂0,n) preserves conjugacy classes of
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Dehn twists (inertia) and the diagrams

Γ̂0,n

η //

φn

��

Γ̂0,m

φm

��
Γ̂0,n

η // Γ̂0,m,

commute (up to inners) for all homomorphisms η of the tower, then Φ is an element of

ĜT .

§6. Higher genus and the two-level principle

The above theorem shows that it is enough to ensure that ĜT acts as automorphisms

of Γ̂0,4 and Γ̂0,5 in order to get an action on all of the Γ̂0,n. This corresponds to the

“two-level” principle stated by Grothendieck, that the action on all mapping class groups

of higher dimension (= 3g − 3 + n, dimension of the moduli space) should be completely

determined by the action on those of dimension 1 and 2, namely Γ̂0,4, Γ̂0,5, Γ̂1,1, Γ̂1,2.

3

2

1a

a

a
e
1

e
2

e
3

We define a subgroup Λ of ĜT by adding one relation; we assume here for simplicity

that λ = 1, and require f to satisfy

f(e3, a1)f(a2
2, a

2
3)f(e2, e3)f(e1, e2)f(a2

1, a
2
2)f(a3, e1) = 1

in Γ̂1,2, where ai and ei are twists along the loops in the figure above.

Λ has the property that there is a homomorphism Λ → Out(Γ̂1,2) extending the

canonical homomorphism of GQab (can also do GQ with a more complicated relation).

Grothendieck’s two-level principle turns out to be right! Namely, we also obtain:
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Theorem. There is a homomorphism

Λ → Out(Γ̂g,n)

extending the canonical Galois (GQab) homomorphism for all (g, n).

§7. The lego

Grothendieck justified the two-level principle by saying that the expression of the

action of an element of GQ (or ĜT ) on any Dehn twist in any Γ̂g,n should be given by a

‘game of lego’, fitting together the action on the Dehn twists in dimension 1, i.e. in the

groups Γ̂0,4 and Γ̂1,1.

He was right! The game of lego is now fully understood and works as follows.

Let a pants decomposition on S be a maximal set of 3g − 3 + n disjoint simple

closed loops; they cut S into “pants”.

If we erase any one of these loops, then the pants decomposition becomes a decompo-

sition into many pairs of pants and one larger piece, which is always

• either a genus zero piece with four boundary components

• or a genus one piece with one boundary component.
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We call this piece the neighborhood of the loop in the pants decomposition.

• An A-move on a pants decomposition P is a new pants decomposition obtained from

P by erasing one loop and replacing it by another one which intersects the first one in 2

points.

• An S-move on a pants decomposition P is a new pants decomposition obtained from

P by erasing one loop and replacing it by another one which intersects the first one in 1

point.

Theorem. Let S be a topological surface of type (g, n) and let P be a pants decomposition

on S. Then there exists an injective homomorphism

GQ → AutP (Γ̂g,n)

lifting the canonical homomorphism GQ → Out(Γ̂g,n), such that:

(i) σ(τa) = τλ
a if a ∈ P ;
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(ii) σ(τb) = f(τa, τb)
−1τλ

b f(τa, τb) if a → b is an A-move on P ;

(iii) σ(τc) = f(τ2
a , τ2

c )−1τλ
c f(τ2

a , τ2
c ) if a → c is an S-move on P . This homomorphism

(with λ = 1) extends to a homomorphism Λ → Out(Γ̂g,n).

This means that in acting on a Dehn twist τa along a loop a, Galois not only conjugates

it (we knew that – it’s inertia!), but it conjugates it by a local element of Γ̂g,n, i.e. a profinite

product of Dehn twists living right on the neighborhood of the loop a!

We say the Galois action on Dehn twists is local. This is what Grothendieck called a

game of “Lego-Teichmüller” (see next lecture).
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